1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 #include <uapi/linux/sev-guest.h> 23 24 #include <asm/pkru.h> 25 #include <asm/trapnr.h> 26 #include <asm/fpu/xcr.h> 27 #include <asm/fpu/xstate.h> 28 #include <asm/debugreg.h> 29 #include <asm/sev.h> 30 31 #include "mmu.h" 32 #include "x86.h" 33 #include "svm.h" 34 #include "svm_ops.h" 35 #include "cpuid.h" 36 #include "trace.h" 37 38 #define GHCB_VERSION_MAX 2ULL 39 #define GHCB_VERSION_DEFAULT 2ULL 40 #define GHCB_VERSION_MIN 1ULL 41 42 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION) 43 44 /* enable/disable SEV support */ 45 static bool sev_enabled = true; 46 module_param_named(sev, sev_enabled, bool, 0444); 47 48 /* enable/disable SEV-ES support */ 49 static bool sev_es_enabled = true; 50 module_param_named(sev_es, sev_es_enabled, bool, 0444); 51 52 /* enable/disable SEV-SNP support */ 53 static bool sev_snp_enabled = true; 54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444); 55 56 /* enable/disable SEV-ES DebugSwap support */ 57 static bool sev_es_debug_swap_enabled = true; 58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 59 static u64 sev_supported_vmsa_features; 60 61 #define AP_RESET_HOLD_NONE 0 62 #define AP_RESET_HOLD_NAE_EVENT 1 63 #define AP_RESET_HOLD_MSR_PROTO 2 64 65 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */ 66 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0) 67 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8) 68 #define SNP_POLICY_MASK_SMT BIT_ULL(16) 69 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17) 70 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19) 71 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20) 72 73 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \ 74 SNP_POLICY_MASK_API_MAJOR | \ 75 SNP_POLICY_MASK_SMT | \ 76 SNP_POLICY_MASK_RSVD_MBO | \ 77 SNP_POLICY_MASK_DEBUG | \ 78 SNP_POLICY_MASK_SINGLE_SOCKET) 79 80 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000 81 82 static u8 sev_enc_bit; 83 static DECLARE_RWSEM(sev_deactivate_lock); 84 static DEFINE_MUTEX(sev_bitmap_lock); 85 unsigned int max_sev_asid; 86 static unsigned int min_sev_asid; 87 static unsigned long sev_me_mask; 88 static unsigned int nr_asids; 89 static unsigned long *sev_asid_bitmap; 90 static unsigned long *sev_reclaim_asid_bitmap; 91 92 static int snp_decommission_context(struct kvm *kvm); 93 94 struct enc_region { 95 struct list_head list; 96 unsigned long npages; 97 struct page **pages; 98 unsigned long uaddr; 99 unsigned long size; 100 }; 101 102 /* Called with the sev_bitmap_lock held, or on shutdown */ 103 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) 104 { 105 int ret, error = 0; 106 unsigned int asid; 107 108 /* Check if there are any ASIDs to reclaim before performing a flush */ 109 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 110 if (asid > max_asid) 111 return -EBUSY; 112 113 /* 114 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 115 * so it must be guarded. 116 */ 117 down_write(&sev_deactivate_lock); 118 119 wbinvd_on_all_cpus(); 120 121 if (sev_snp_enabled) 122 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error); 123 else 124 ret = sev_guest_df_flush(&error); 125 126 up_write(&sev_deactivate_lock); 127 128 if (ret) 129 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n", 130 sev_snp_enabled ? "-SNP" : "", ret, error); 131 132 return ret; 133 } 134 135 static inline bool is_mirroring_enc_context(struct kvm *kvm) 136 { 137 return !!to_kvm_sev_info(kvm)->enc_context_owner; 138 } 139 140 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm) 141 { 142 struct kvm_vcpu *vcpu = &svm->vcpu; 143 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 144 145 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP; 146 } 147 148 /* Must be called with the sev_bitmap_lock held */ 149 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) 150 { 151 if (sev_flush_asids(min_asid, max_asid)) 152 return false; 153 154 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 155 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 156 nr_asids); 157 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 158 159 return true; 160 } 161 162 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 163 { 164 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 165 return misc_cg_try_charge(type, sev->misc_cg, 1); 166 } 167 168 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 169 { 170 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 171 misc_cg_uncharge(type, sev->misc_cg, 1); 172 } 173 174 static int sev_asid_new(struct kvm_sev_info *sev) 175 { 176 /* 177 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 178 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 179 * Note: min ASID can end up larger than the max if basic SEV support is 180 * effectively disabled by disallowing use of ASIDs for SEV guests. 181 */ 182 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; 183 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 184 unsigned int asid; 185 bool retry = true; 186 int ret; 187 188 if (min_asid > max_asid) 189 return -ENOTTY; 190 191 WARN_ON(sev->misc_cg); 192 sev->misc_cg = get_current_misc_cg(); 193 ret = sev_misc_cg_try_charge(sev); 194 if (ret) { 195 put_misc_cg(sev->misc_cg); 196 sev->misc_cg = NULL; 197 return ret; 198 } 199 200 mutex_lock(&sev_bitmap_lock); 201 202 again: 203 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 204 if (asid > max_asid) { 205 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 206 retry = false; 207 goto again; 208 } 209 mutex_unlock(&sev_bitmap_lock); 210 ret = -EBUSY; 211 goto e_uncharge; 212 } 213 214 __set_bit(asid, sev_asid_bitmap); 215 216 mutex_unlock(&sev_bitmap_lock); 217 218 sev->asid = asid; 219 return 0; 220 e_uncharge: 221 sev_misc_cg_uncharge(sev); 222 put_misc_cg(sev->misc_cg); 223 sev->misc_cg = NULL; 224 return ret; 225 } 226 227 static unsigned int sev_get_asid(struct kvm *kvm) 228 { 229 return to_kvm_sev_info(kvm)->asid; 230 } 231 232 static void sev_asid_free(struct kvm_sev_info *sev) 233 { 234 struct svm_cpu_data *sd; 235 int cpu; 236 237 mutex_lock(&sev_bitmap_lock); 238 239 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 240 241 for_each_possible_cpu(cpu) { 242 sd = per_cpu_ptr(&svm_data, cpu); 243 sd->sev_vmcbs[sev->asid] = NULL; 244 } 245 246 mutex_unlock(&sev_bitmap_lock); 247 248 sev_misc_cg_uncharge(sev); 249 put_misc_cg(sev->misc_cg); 250 sev->misc_cg = NULL; 251 } 252 253 static void sev_decommission(unsigned int handle) 254 { 255 struct sev_data_decommission decommission; 256 257 if (!handle) 258 return; 259 260 decommission.handle = handle; 261 sev_guest_decommission(&decommission, NULL); 262 } 263 264 /* 265 * Transition a page to hypervisor-owned/shared state in the RMP table. This 266 * should not fail under normal conditions, but leak the page should that 267 * happen since it will no longer be usable by the host due to RMP protections. 268 */ 269 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level) 270 { 271 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) { 272 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT); 273 return -EIO; 274 } 275 276 return 0; 277 } 278 279 /* 280 * Certain page-states, such as Pre-Guest and Firmware pages (as documented 281 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be 282 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE 283 * unless they are reclaimed first. 284 * 285 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they 286 * might not be usable by the host due to being set as immutable or still 287 * being associated with a guest ASID. 288 * 289 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be 290 * converted back to shared, as the page is no longer usable due to RMP 291 * protections, and it's infeasible for the guest to continue on. 292 */ 293 static int snp_page_reclaim(struct kvm *kvm, u64 pfn) 294 { 295 struct sev_data_snp_page_reclaim data = {0}; 296 int fw_err, rc; 297 298 data.paddr = __sme_set(pfn << PAGE_SHIFT); 299 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err); 300 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) { 301 snp_leak_pages(pfn, 1); 302 return -EIO; 303 } 304 305 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K)) 306 return -EIO; 307 308 return rc; 309 } 310 311 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 312 { 313 struct sev_data_deactivate deactivate; 314 315 if (!handle) 316 return; 317 318 deactivate.handle = handle; 319 320 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 321 down_read(&sev_deactivate_lock); 322 sev_guest_deactivate(&deactivate, NULL); 323 up_read(&sev_deactivate_lock); 324 325 sev_decommission(handle); 326 } 327 328 /* 329 * This sets up bounce buffers/firmware pages to handle SNP Guest Request 330 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB 331 * 2.0 specification for more details. 332 * 333 * Technically, when an SNP Guest Request is issued, the guest will provide its 334 * own request/response pages, which could in theory be passed along directly 335 * to firmware rather than using bounce pages. However, these pages would need 336 * special care: 337 * 338 * - Both pages are from shared guest memory, so they need to be protected 339 * from migration/etc. occurring while firmware reads/writes to them. At a 340 * minimum, this requires elevating the ref counts and potentially needing 341 * an explicit pinning of the memory. This places additional restrictions 342 * on what type of memory backends userspace can use for shared guest 343 * memory since there is some reliance on using refcounted pages. 344 * 345 * - The response page needs to be switched to Firmware-owned[1] state 346 * before the firmware can write to it, which can lead to potential 347 * host RMP #PFs if the guest is misbehaved and hands the host a 348 * guest page that KVM might write to for other reasons (e.g. virtio 349 * buffers/etc.). 350 * 351 * Both of these issues can be avoided completely by using separately-allocated 352 * bounce pages for both the request/response pages and passing those to 353 * firmware instead. So that's what is being set up here. 354 * 355 * Guest requests rely on message sequence numbers to ensure requests are 356 * issued to firmware in the order the guest issues them, so concurrent guest 357 * requests generally shouldn't happen. But a misbehaved guest could issue 358 * concurrent guest requests in theory, so a mutex is used to serialize 359 * access to the bounce buffers. 360 * 361 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more 362 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks" 363 * in the APM for details on the related RMP restrictions. 364 */ 365 static int snp_guest_req_init(struct kvm *kvm) 366 { 367 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 368 struct page *req_page; 369 370 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 371 if (!req_page) 372 return -ENOMEM; 373 374 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 375 if (!sev->guest_resp_buf) { 376 __free_page(req_page); 377 return -EIO; 378 } 379 380 sev->guest_req_buf = page_address(req_page); 381 mutex_init(&sev->guest_req_mutex); 382 383 return 0; 384 } 385 386 static void snp_guest_req_cleanup(struct kvm *kvm) 387 { 388 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 389 390 if (sev->guest_resp_buf) 391 snp_free_firmware_page(sev->guest_resp_buf); 392 393 if (sev->guest_req_buf) 394 __free_page(virt_to_page(sev->guest_req_buf)); 395 396 sev->guest_req_buf = NULL; 397 sev->guest_resp_buf = NULL; 398 } 399 400 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp, 401 struct kvm_sev_init *data, 402 unsigned long vm_type) 403 { 404 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 405 struct sev_platform_init_args init_args = {0}; 406 bool es_active = vm_type != KVM_X86_SEV_VM; 407 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0; 408 int ret; 409 410 if (kvm->created_vcpus) 411 return -EINVAL; 412 413 if (data->flags) 414 return -EINVAL; 415 416 if (data->vmsa_features & ~valid_vmsa_features) 417 return -EINVAL; 418 419 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version)) 420 return -EINVAL; 421 422 if (unlikely(sev->active)) 423 return -EINVAL; 424 425 sev->active = true; 426 sev->es_active = es_active; 427 sev->vmsa_features = data->vmsa_features; 428 sev->ghcb_version = data->ghcb_version; 429 430 /* 431 * Currently KVM supports the full range of mandatory features defined 432 * by version 2 of the GHCB protocol, so default to that for SEV-ES 433 * guests created via KVM_SEV_INIT2. 434 */ 435 if (sev->es_active && !sev->ghcb_version) 436 sev->ghcb_version = GHCB_VERSION_DEFAULT; 437 438 if (vm_type == KVM_X86_SNP_VM) 439 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE; 440 441 ret = sev_asid_new(sev); 442 if (ret) 443 goto e_no_asid; 444 445 init_args.probe = false; 446 ret = sev_platform_init(&init_args); 447 if (ret) 448 goto e_free; 449 450 /* This needs to happen after SEV/SNP firmware initialization. */ 451 if (vm_type == KVM_X86_SNP_VM) { 452 ret = snp_guest_req_init(kvm); 453 if (ret) 454 goto e_free; 455 } 456 457 INIT_LIST_HEAD(&sev->regions_list); 458 INIT_LIST_HEAD(&sev->mirror_vms); 459 sev->need_init = false; 460 461 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 462 463 return 0; 464 465 e_free: 466 argp->error = init_args.error; 467 sev_asid_free(sev); 468 sev->asid = 0; 469 e_no_asid: 470 sev->vmsa_features = 0; 471 sev->es_active = false; 472 sev->active = false; 473 return ret; 474 } 475 476 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 477 { 478 struct kvm_sev_init data = { 479 .vmsa_features = 0, 480 .ghcb_version = 0, 481 }; 482 unsigned long vm_type; 483 484 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM) 485 return -EINVAL; 486 487 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM); 488 489 /* 490 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will 491 * continue to only ever support the minimal GHCB protocol version. 492 */ 493 if (vm_type == KVM_X86_SEV_ES_VM) 494 data.ghcb_version = GHCB_VERSION_MIN; 495 496 return __sev_guest_init(kvm, argp, &data, vm_type); 497 } 498 499 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp) 500 { 501 struct kvm_sev_init data; 502 503 if (!to_kvm_sev_info(kvm)->need_init) 504 return -EINVAL; 505 506 if (kvm->arch.vm_type != KVM_X86_SEV_VM && 507 kvm->arch.vm_type != KVM_X86_SEV_ES_VM && 508 kvm->arch.vm_type != KVM_X86_SNP_VM) 509 return -EINVAL; 510 511 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data))) 512 return -EFAULT; 513 514 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type); 515 } 516 517 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 518 { 519 unsigned int asid = sev_get_asid(kvm); 520 struct sev_data_activate activate; 521 int ret; 522 523 /* activate ASID on the given handle */ 524 activate.handle = handle; 525 activate.asid = asid; 526 ret = sev_guest_activate(&activate, error); 527 528 return ret; 529 } 530 531 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 532 { 533 CLASS(fd, f)(fd); 534 535 if (fd_empty(f)) 536 return -EBADF; 537 538 return sev_issue_cmd_external_user(fd_file(f), id, data, error); 539 } 540 541 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 542 { 543 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 544 545 return __sev_issue_cmd(sev->fd, id, data, error); 546 } 547 548 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 549 { 550 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 551 struct sev_data_launch_start start; 552 struct kvm_sev_launch_start params; 553 void *dh_blob, *session_blob; 554 int *error = &argp->error; 555 int ret; 556 557 if (!sev_guest(kvm)) 558 return -ENOTTY; 559 560 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 561 return -EFAULT; 562 563 memset(&start, 0, sizeof(start)); 564 565 dh_blob = NULL; 566 if (params.dh_uaddr) { 567 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 568 if (IS_ERR(dh_blob)) 569 return PTR_ERR(dh_blob); 570 571 start.dh_cert_address = __sme_set(__pa(dh_blob)); 572 start.dh_cert_len = params.dh_len; 573 } 574 575 session_blob = NULL; 576 if (params.session_uaddr) { 577 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 578 if (IS_ERR(session_blob)) { 579 ret = PTR_ERR(session_blob); 580 goto e_free_dh; 581 } 582 583 start.session_address = __sme_set(__pa(session_blob)); 584 start.session_len = params.session_len; 585 } 586 587 start.handle = params.handle; 588 start.policy = params.policy; 589 590 /* create memory encryption context */ 591 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 592 if (ret) 593 goto e_free_session; 594 595 /* Bind ASID to this guest */ 596 ret = sev_bind_asid(kvm, start.handle, error); 597 if (ret) { 598 sev_decommission(start.handle); 599 goto e_free_session; 600 } 601 602 /* return handle to userspace */ 603 params.handle = start.handle; 604 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) { 605 sev_unbind_asid(kvm, start.handle); 606 ret = -EFAULT; 607 goto e_free_session; 608 } 609 610 sev->handle = start.handle; 611 sev->fd = argp->sev_fd; 612 613 e_free_session: 614 kfree(session_blob); 615 e_free_dh: 616 kfree(dh_blob); 617 return ret; 618 } 619 620 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 621 unsigned long ulen, unsigned long *n, 622 unsigned int flags) 623 { 624 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 625 unsigned long npages, size; 626 int npinned; 627 unsigned long locked, lock_limit; 628 struct page **pages; 629 unsigned long first, last; 630 int ret; 631 632 lockdep_assert_held(&kvm->lock); 633 634 if (ulen == 0 || uaddr + ulen < uaddr) 635 return ERR_PTR(-EINVAL); 636 637 /* Calculate number of pages. */ 638 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 639 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 640 npages = (last - first + 1); 641 642 locked = sev->pages_locked + npages; 643 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 644 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 645 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 646 return ERR_PTR(-ENOMEM); 647 } 648 649 if (WARN_ON_ONCE(npages > INT_MAX)) 650 return ERR_PTR(-EINVAL); 651 652 /* Avoid using vmalloc for smaller buffers. */ 653 size = npages * sizeof(struct page *); 654 if (size > PAGE_SIZE) 655 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT); 656 else 657 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 658 659 if (!pages) 660 return ERR_PTR(-ENOMEM); 661 662 /* Pin the user virtual address. */ 663 npinned = pin_user_pages_fast(uaddr, npages, flags, pages); 664 if (npinned != npages) { 665 pr_err("SEV: Failure locking %lu pages.\n", npages); 666 ret = -ENOMEM; 667 goto err; 668 } 669 670 *n = npages; 671 sev->pages_locked = locked; 672 673 return pages; 674 675 err: 676 if (npinned > 0) 677 unpin_user_pages(pages, npinned); 678 679 kvfree(pages); 680 return ERR_PTR(ret); 681 } 682 683 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 684 unsigned long npages) 685 { 686 unpin_user_pages(pages, npages); 687 kvfree(pages); 688 to_kvm_sev_info(kvm)->pages_locked -= npages; 689 } 690 691 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 692 { 693 uint8_t *page_virtual; 694 unsigned long i; 695 696 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 697 pages == NULL) 698 return; 699 700 for (i = 0; i < npages; i++) { 701 page_virtual = kmap_local_page(pages[i]); 702 clflush_cache_range(page_virtual, PAGE_SIZE); 703 kunmap_local(page_virtual); 704 cond_resched(); 705 } 706 } 707 708 static unsigned long get_num_contig_pages(unsigned long idx, 709 struct page **inpages, unsigned long npages) 710 { 711 unsigned long paddr, next_paddr; 712 unsigned long i = idx + 1, pages = 1; 713 714 /* find the number of contiguous pages starting from idx */ 715 paddr = __sme_page_pa(inpages[idx]); 716 while (i < npages) { 717 next_paddr = __sme_page_pa(inpages[i++]); 718 if ((paddr + PAGE_SIZE) == next_paddr) { 719 pages++; 720 paddr = next_paddr; 721 continue; 722 } 723 break; 724 } 725 726 return pages; 727 } 728 729 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 730 { 731 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 732 struct kvm_sev_launch_update_data params; 733 struct sev_data_launch_update_data data; 734 struct page **inpages; 735 int ret; 736 737 if (!sev_guest(kvm)) 738 return -ENOTTY; 739 740 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 741 return -EFAULT; 742 743 vaddr = params.uaddr; 744 size = params.len; 745 vaddr_end = vaddr + size; 746 747 /* Lock the user memory. */ 748 inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE); 749 if (IS_ERR(inpages)) 750 return PTR_ERR(inpages); 751 752 /* 753 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 754 * place; the cache may contain the data that was written unencrypted. 755 */ 756 sev_clflush_pages(inpages, npages); 757 758 data.reserved = 0; 759 data.handle = to_kvm_sev_info(kvm)->handle; 760 761 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 762 int offset, len; 763 764 /* 765 * If the user buffer is not page-aligned, calculate the offset 766 * within the page. 767 */ 768 offset = vaddr & (PAGE_SIZE - 1); 769 770 /* Calculate the number of pages that can be encrypted in one go. */ 771 pages = get_num_contig_pages(i, inpages, npages); 772 773 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 774 775 data.len = len; 776 data.address = __sme_page_pa(inpages[i]) + offset; 777 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 778 if (ret) 779 goto e_unpin; 780 781 size -= len; 782 next_vaddr = vaddr + len; 783 } 784 785 e_unpin: 786 /* content of memory is updated, mark pages dirty */ 787 for (i = 0; i < npages; i++) { 788 set_page_dirty_lock(inpages[i]); 789 mark_page_accessed(inpages[i]); 790 } 791 /* unlock the user pages */ 792 sev_unpin_memory(kvm, inpages, npages); 793 return ret; 794 } 795 796 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 797 { 798 struct kvm_vcpu *vcpu = &svm->vcpu; 799 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 800 struct sev_es_save_area *save = svm->sev_es.vmsa; 801 struct xregs_state *xsave; 802 const u8 *s; 803 u8 *d; 804 int i; 805 806 /* Check some debug related fields before encrypting the VMSA */ 807 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 808 return -EINVAL; 809 810 /* 811 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 812 * the traditional VMSA that is part of the VMCB. Copy the 813 * traditional VMSA as it has been built so far (in prep 814 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 815 */ 816 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 817 818 /* Sync registgers */ 819 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 820 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 821 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 822 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 823 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 824 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 825 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 826 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 827 #ifdef CONFIG_X86_64 828 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 829 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 830 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 831 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 832 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 833 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 834 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 835 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 836 #endif 837 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 838 839 /* Sync some non-GPR registers before encrypting */ 840 save->xcr0 = svm->vcpu.arch.xcr0; 841 save->pkru = svm->vcpu.arch.pkru; 842 save->xss = svm->vcpu.arch.ia32_xss; 843 save->dr6 = svm->vcpu.arch.dr6; 844 845 save->sev_features = sev->vmsa_features; 846 847 /* 848 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid 849 * breaking older measurements. 850 */ 851 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) { 852 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave; 853 save->x87_dp = xsave->i387.rdp; 854 save->mxcsr = xsave->i387.mxcsr; 855 save->x87_ftw = xsave->i387.twd; 856 save->x87_fsw = xsave->i387.swd; 857 save->x87_fcw = xsave->i387.cwd; 858 save->x87_fop = xsave->i387.fop; 859 save->x87_ds = 0; 860 save->x87_cs = 0; 861 save->x87_rip = xsave->i387.rip; 862 863 for (i = 0; i < 8; i++) { 864 /* 865 * The format of the x87 save area is undocumented and 866 * definitely not what you would expect. It consists of 867 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes 868 * area with bytes 8-9 of each register. 869 */ 870 d = save->fpreg_x87 + i * 8; 871 s = ((u8 *)xsave->i387.st_space) + i * 16; 872 memcpy(d, s, 8); 873 save->fpreg_x87[64 + i * 2] = s[8]; 874 save->fpreg_x87[64 + i * 2 + 1] = s[9]; 875 } 876 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256); 877 878 s = get_xsave_addr(xsave, XFEATURE_YMM); 879 if (s) 880 memcpy(save->fpreg_ymm, s, 256); 881 else 882 memset(save->fpreg_ymm, 0, 256); 883 } 884 885 pr_debug("Virtual Machine Save Area (VMSA):\n"); 886 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 887 888 return 0; 889 } 890 891 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 892 int *error) 893 { 894 struct sev_data_launch_update_vmsa vmsa; 895 struct vcpu_svm *svm = to_svm(vcpu); 896 int ret; 897 898 if (vcpu->guest_debug) { 899 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 900 return -EINVAL; 901 } 902 903 /* Perform some pre-encryption checks against the VMSA */ 904 ret = sev_es_sync_vmsa(svm); 905 if (ret) 906 return ret; 907 908 /* 909 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 910 * the VMSA memory content (i.e it will write the same memory region 911 * with the guest's key), so invalidate it first. 912 */ 913 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 914 915 vmsa.reserved = 0; 916 vmsa.handle = to_kvm_sev_info(kvm)->handle; 917 vmsa.address = __sme_pa(svm->sev_es.vmsa); 918 vmsa.len = PAGE_SIZE; 919 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 920 if (ret) 921 return ret; 922 923 /* 924 * SEV-ES guests maintain an encrypted version of their FPU 925 * state which is restored and saved on VMRUN and VMEXIT. 926 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 927 * do xsave/xrstor on it. 928 */ 929 fpstate_set_confidential(&vcpu->arch.guest_fpu); 930 vcpu->arch.guest_state_protected = true; 931 932 /* 933 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it 934 * only after setting guest_state_protected because KVM_SET_MSRS allows 935 * dynamic toggling of LBRV (for performance reason) on write access to 936 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 937 */ 938 svm_enable_lbrv(vcpu); 939 return 0; 940 } 941 942 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 943 { 944 struct kvm_vcpu *vcpu; 945 unsigned long i; 946 int ret; 947 948 if (!sev_es_guest(kvm)) 949 return -ENOTTY; 950 951 kvm_for_each_vcpu(i, vcpu, kvm) { 952 ret = mutex_lock_killable(&vcpu->mutex); 953 if (ret) 954 return ret; 955 956 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 957 958 mutex_unlock(&vcpu->mutex); 959 if (ret) 960 return ret; 961 } 962 963 return 0; 964 } 965 966 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 967 { 968 void __user *measure = u64_to_user_ptr(argp->data); 969 struct sev_data_launch_measure data; 970 struct kvm_sev_launch_measure params; 971 void __user *p = NULL; 972 void *blob = NULL; 973 int ret; 974 975 if (!sev_guest(kvm)) 976 return -ENOTTY; 977 978 if (copy_from_user(¶ms, measure, sizeof(params))) 979 return -EFAULT; 980 981 memset(&data, 0, sizeof(data)); 982 983 /* User wants to query the blob length */ 984 if (!params.len) 985 goto cmd; 986 987 p = u64_to_user_ptr(params.uaddr); 988 if (p) { 989 if (params.len > SEV_FW_BLOB_MAX_SIZE) 990 return -EINVAL; 991 992 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 993 if (!blob) 994 return -ENOMEM; 995 996 data.address = __psp_pa(blob); 997 data.len = params.len; 998 } 999 1000 cmd: 1001 data.handle = to_kvm_sev_info(kvm)->handle; 1002 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 1003 1004 /* 1005 * If we query the session length, FW responded with expected data. 1006 */ 1007 if (!params.len) 1008 goto done; 1009 1010 if (ret) 1011 goto e_free_blob; 1012 1013 if (blob) { 1014 if (copy_to_user(p, blob, params.len)) 1015 ret = -EFAULT; 1016 } 1017 1018 done: 1019 params.len = data.len; 1020 if (copy_to_user(measure, ¶ms, sizeof(params))) 1021 ret = -EFAULT; 1022 e_free_blob: 1023 kfree(blob); 1024 return ret; 1025 } 1026 1027 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1028 { 1029 struct sev_data_launch_finish data; 1030 1031 if (!sev_guest(kvm)) 1032 return -ENOTTY; 1033 1034 data.handle = to_kvm_sev_info(kvm)->handle; 1035 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 1036 } 1037 1038 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 1039 { 1040 struct kvm_sev_guest_status params; 1041 struct sev_data_guest_status data; 1042 int ret; 1043 1044 if (!sev_guest(kvm)) 1045 return -ENOTTY; 1046 1047 memset(&data, 0, sizeof(data)); 1048 1049 data.handle = to_kvm_sev_info(kvm)->handle; 1050 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 1051 if (ret) 1052 return ret; 1053 1054 params.policy = data.policy; 1055 params.state = data.state; 1056 params.handle = data.handle; 1057 1058 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 1059 ret = -EFAULT; 1060 1061 return ret; 1062 } 1063 1064 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 1065 unsigned long dst, int size, 1066 int *error, bool enc) 1067 { 1068 struct sev_data_dbg data; 1069 1070 data.reserved = 0; 1071 data.handle = to_kvm_sev_info(kvm)->handle; 1072 data.dst_addr = dst; 1073 data.src_addr = src; 1074 data.len = size; 1075 1076 return sev_issue_cmd(kvm, 1077 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 1078 &data, error); 1079 } 1080 1081 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 1082 unsigned long dst_paddr, int sz, int *err) 1083 { 1084 int offset; 1085 1086 /* 1087 * Its safe to read more than we are asked, caller should ensure that 1088 * destination has enough space. 1089 */ 1090 offset = src_paddr & 15; 1091 src_paddr = round_down(src_paddr, 16); 1092 sz = round_up(sz + offset, 16); 1093 1094 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 1095 } 1096 1097 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 1098 void __user *dst_uaddr, 1099 unsigned long dst_paddr, 1100 int size, int *err) 1101 { 1102 struct page *tpage = NULL; 1103 int ret, offset; 1104 1105 /* if inputs are not 16-byte then use intermediate buffer */ 1106 if (!IS_ALIGNED(dst_paddr, 16) || 1107 !IS_ALIGNED(paddr, 16) || 1108 !IS_ALIGNED(size, 16)) { 1109 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1110 if (!tpage) 1111 return -ENOMEM; 1112 1113 dst_paddr = __sme_page_pa(tpage); 1114 } 1115 1116 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 1117 if (ret) 1118 goto e_free; 1119 1120 if (tpage) { 1121 offset = paddr & 15; 1122 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 1123 ret = -EFAULT; 1124 } 1125 1126 e_free: 1127 if (tpage) 1128 __free_page(tpage); 1129 1130 return ret; 1131 } 1132 1133 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 1134 void __user *vaddr, 1135 unsigned long dst_paddr, 1136 void __user *dst_vaddr, 1137 int size, int *error) 1138 { 1139 struct page *src_tpage = NULL; 1140 struct page *dst_tpage = NULL; 1141 int ret, len = size; 1142 1143 /* If source buffer is not aligned then use an intermediate buffer */ 1144 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 1145 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1146 if (!src_tpage) 1147 return -ENOMEM; 1148 1149 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 1150 __free_page(src_tpage); 1151 return -EFAULT; 1152 } 1153 1154 paddr = __sme_page_pa(src_tpage); 1155 } 1156 1157 /* 1158 * If destination buffer or length is not aligned then do read-modify-write: 1159 * - decrypt destination in an intermediate buffer 1160 * - copy the source buffer in an intermediate buffer 1161 * - use the intermediate buffer as source buffer 1162 */ 1163 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 1164 int dst_offset; 1165 1166 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1167 if (!dst_tpage) { 1168 ret = -ENOMEM; 1169 goto e_free; 1170 } 1171 1172 ret = __sev_dbg_decrypt(kvm, dst_paddr, 1173 __sme_page_pa(dst_tpage), size, error); 1174 if (ret) 1175 goto e_free; 1176 1177 /* 1178 * If source is kernel buffer then use memcpy() otherwise 1179 * copy_from_user(). 1180 */ 1181 dst_offset = dst_paddr & 15; 1182 1183 if (src_tpage) 1184 memcpy(page_address(dst_tpage) + dst_offset, 1185 page_address(src_tpage), size); 1186 else { 1187 if (copy_from_user(page_address(dst_tpage) + dst_offset, 1188 vaddr, size)) { 1189 ret = -EFAULT; 1190 goto e_free; 1191 } 1192 } 1193 1194 paddr = __sme_page_pa(dst_tpage); 1195 dst_paddr = round_down(dst_paddr, 16); 1196 len = round_up(size, 16); 1197 } 1198 1199 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 1200 1201 e_free: 1202 if (src_tpage) 1203 __free_page(src_tpage); 1204 if (dst_tpage) 1205 __free_page(dst_tpage); 1206 return ret; 1207 } 1208 1209 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 1210 { 1211 unsigned long vaddr, vaddr_end, next_vaddr; 1212 unsigned long dst_vaddr; 1213 struct page **src_p, **dst_p; 1214 struct kvm_sev_dbg debug; 1215 unsigned long n; 1216 unsigned int size; 1217 int ret; 1218 1219 if (!sev_guest(kvm)) 1220 return -ENOTTY; 1221 1222 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug))) 1223 return -EFAULT; 1224 1225 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 1226 return -EINVAL; 1227 if (!debug.dst_uaddr) 1228 return -EINVAL; 1229 1230 vaddr = debug.src_uaddr; 1231 size = debug.len; 1232 vaddr_end = vaddr + size; 1233 dst_vaddr = debug.dst_uaddr; 1234 1235 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 1236 int len, s_off, d_off; 1237 1238 /* lock userspace source and destination page */ 1239 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 1240 if (IS_ERR(src_p)) 1241 return PTR_ERR(src_p); 1242 1243 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE); 1244 if (IS_ERR(dst_p)) { 1245 sev_unpin_memory(kvm, src_p, n); 1246 return PTR_ERR(dst_p); 1247 } 1248 1249 /* 1250 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 1251 * the pages; flush the destination too so that future accesses do not 1252 * see stale data. 1253 */ 1254 sev_clflush_pages(src_p, 1); 1255 sev_clflush_pages(dst_p, 1); 1256 1257 /* 1258 * Since user buffer may not be page aligned, calculate the 1259 * offset within the page. 1260 */ 1261 s_off = vaddr & ~PAGE_MASK; 1262 d_off = dst_vaddr & ~PAGE_MASK; 1263 len = min_t(size_t, (PAGE_SIZE - s_off), size); 1264 1265 if (dec) 1266 ret = __sev_dbg_decrypt_user(kvm, 1267 __sme_page_pa(src_p[0]) + s_off, 1268 (void __user *)dst_vaddr, 1269 __sme_page_pa(dst_p[0]) + d_off, 1270 len, &argp->error); 1271 else 1272 ret = __sev_dbg_encrypt_user(kvm, 1273 __sme_page_pa(src_p[0]) + s_off, 1274 (void __user *)vaddr, 1275 __sme_page_pa(dst_p[0]) + d_off, 1276 (void __user *)dst_vaddr, 1277 len, &argp->error); 1278 1279 sev_unpin_memory(kvm, src_p, n); 1280 sev_unpin_memory(kvm, dst_p, n); 1281 1282 if (ret) 1283 goto err; 1284 1285 next_vaddr = vaddr + len; 1286 dst_vaddr = dst_vaddr + len; 1287 size -= len; 1288 } 1289 err: 1290 return ret; 1291 } 1292 1293 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1294 { 1295 struct sev_data_launch_secret data; 1296 struct kvm_sev_launch_secret params; 1297 struct page **pages; 1298 void *blob, *hdr; 1299 unsigned long n, i; 1300 int ret, offset; 1301 1302 if (!sev_guest(kvm)) 1303 return -ENOTTY; 1304 1305 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1306 return -EFAULT; 1307 1308 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE); 1309 if (IS_ERR(pages)) 1310 return PTR_ERR(pages); 1311 1312 /* 1313 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1314 * place; the cache may contain the data that was written unencrypted. 1315 */ 1316 sev_clflush_pages(pages, n); 1317 1318 /* 1319 * The secret must be copied into contiguous memory region, lets verify 1320 * that userspace memory pages are contiguous before we issue command. 1321 */ 1322 if (get_num_contig_pages(0, pages, n) != n) { 1323 ret = -EINVAL; 1324 goto e_unpin_memory; 1325 } 1326 1327 memset(&data, 0, sizeof(data)); 1328 1329 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1330 data.guest_address = __sme_page_pa(pages[0]) + offset; 1331 data.guest_len = params.guest_len; 1332 1333 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1334 if (IS_ERR(blob)) { 1335 ret = PTR_ERR(blob); 1336 goto e_unpin_memory; 1337 } 1338 1339 data.trans_address = __psp_pa(blob); 1340 data.trans_len = params.trans_len; 1341 1342 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1343 if (IS_ERR(hdr)) { 1344 ret = PTR_ERR(hdr); 1345 goto e_free_blob; 1346 } 1347 data.hdr_address = __psp_pa(hdr); 1348 data.hdr_len = params.hdr_len; 1349 1350 data.handle = to_kvm_sev_info(kvm)->handle; 1351 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1352 1353 kfree(hdr); 1354 1355 e_free_blob: 1356 kfree(blob); 1357 e_unpin_memory: 1358 /* content of memory is updated, mark pages dirty */ 1359 for (i = 0; i < n; i++) { 1360 set_page_dirty_lock(pages[i]); 1361 mark_page_accessed(pages[i]); 1362 } 1363 sev_unpin_memory(kvm, pages, n); 1364 return ret; 1365 } 1366 1367 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1368 { 1369 void __user *report = u64_to_user_ptr(argp->data); 1370 struct sev_data_attestation_report data; 1371 struct kvm_sev_attestation_report params; 1372 void __user *p; 1373 void *blob = NULL; 1374 int ret; 1375 1376 if (!sev_guest(kvm)) 1377 return -ENOTTY; 1378 1379 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1380 return -EFAULT; 1381 1382 memset(&data, 0, sizeof(data)); 1383 1384 /* User wants to query the blob length */ 1385 if (!params.len) 1386 goto cmd; 1387 1388 p = u64_to_user_ptr(params.uaddr); 1389 if (p) { 1390 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1391 return -EINVAL; 1392 1393 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1394 if (!blob) 1395 return -ENOMEM; 1396 1397 data.address = __psp_pa(blob); 1398 data.len = params.len; 1399 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1400 } 1401 cmd: 1402 data.handle = to_kvm_sev_info(kvm)->handle; 1403 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1404 /* 1405 * If we query the session length, FW responded with expected data. 1406 */ 1407 if (!params.len) 1408 goto done; 1409 1410 if (ret) 1411 goto e_free_blob; 1412 1413 if (blob) { 1414 if (copy_to_user(p, blob, params.len)) 1415 ret = -EFAULT; 1416 } 1417 1418 done: 1419 params.len = data.len; 1420 if (copy_to_user(report, ¶ms, sizeof(params))) 1421 ret = -EFAULT; 1422 e_free_blob: 1423 kfree(blob); 1424 return ret; 1425 } 1426 1427 /* Userspace wants to query session length. */ 1428 static int 1429 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1430 struct kvm_sev_send_start *params) 1431 { 1432 struct sev_data_send_start data; 1433 int ret; 1434 1435 memset(&data, 0, sizeof(data)); 1436 data.handle = to_kvm_sev_info(kvm)->handle; 1437 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1438 1439 params->session_len = data.session_len; 1440 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1441 sizeof(struct kvm_sev_send_start))) 1442 ret = -EFAULT; 1443 1444 return ret; 1445 } 1446 1447 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1448 { 1449 struct sev_data_send_start data; 1450 struct kvm_sev_send_start params; 1451 void *amd_certs, *session_data; 1452 void *pdh_cert, *plat_certs; 1453 int ret; 1454 1455 if (!sev_guest(kvm)) 1456 return -ENOTTY; 1457 1458 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1459 sizeof(struct kvm_sev_send_start))) 1460 return -EFAULT; 1461 1462 /* if session_len is zero, userspace wants to query the session length */ 1463 if (!params.session_len) 1464 return __sev_send_start_query_session_length(kvm, argp, 1465 ¶ms); 1466 1467 /* some sanity checks */ 1468 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1469 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1470 return -EINVAL; 1471 1472 /* allocate the memory to hold the session data blob */ 1473 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1474 if (!session_data) 1475 return -ENOMEM; 1476 1477 /* copy the certificate blobs from userspace */ 1478 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1479 params.pdh_cert_len); 1480 if (IS_ERR(pdh_cert)) { 1481 ret = PTR_ERR(pdh_cert); 1482 goto e_free_session; 1483 } 1484 1485 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1486 params.plat_certs_len); 1487 if (IS_ERR(plat_certs)) { 1488 ret = PTR_ERR(plat_certs); 1489 goto e_free_pdh; 1490 } 1491 1492 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1493 params.amd_certs_len); 1494 if (IS_ERR(amd_certs)) { 1495 ret = PTR_ERR(amd_certs); 1496 goto e_free_plat_cert; 1497 } 1498 1499 /* populate the FW SEND_START field with system physical address */ 1500 memset(&data, 0, sizeof(data)); 1501 data.pdh_cert_address = __psp_pa(pdh_cert); 1502 data.pdh_cert_len = params.pdh_cert_len; 1503 data.plat_certs_address = __psp_pa(plat_certs); 1504 data.plat_certs_len = params.plat_certs_len; 1505 data.amd_certs_address = __psp_pa(amd_certs); 1506 data.amd_certs_len = params.amd_certs_len; 1507 data.session_address = __psp_pa(session_data); 1508 data.session_len = params.session_len; 1509 data.handle = to_kvm_sev_info(kvm)->handle; 1510 1511 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1512 1513 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr), 1514 session_data, params.session_len)) { 1515 ret = -EFAULT; 1516 goto e_free_amd_cert; 1517 } 1518 1519 params.policy = data.policy; 1520 params.session_len = data.session_len; 1521 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, 1522 sizeof(struct kvm_sev_send_start))) 1523 ret = -EFAULT; 1524 1525 e_free_amd_cert: 1526 kfree(amd_certs); 1527 e_free_plat_cert: 1528 kfree(plat_certs); 1529 e_free_pdh: 1530 kfree(pdh_cert); 1531 e_free_session: 1532 kfree(session_data); 1533 return ret; 1534 } 1535 1536 /* Userspace wants to query either header or trans length. */ 1537 static int 1538 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1539 struct kvm_sev_send_update_data *params) 1540 { 1541 struct sev_data_send_update_data data; 1542 int ret; 1543 1544 memset(&data, 0, sizeof(data)); 1545 data.handle = to_kvm_sev_info(kvm)->handle; 1546 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1547 1548 params->hdr_len = data.hdr_len; 1549 params->trans_len = data.trans_len; 1550 1551 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1552 sizeof(struct kvm_sev_send_update_data))) 1553 ret = -EFAULT; 1554 1555 return ret; 1556 } 1557 1558 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1559 { 1560 struct sev_data_send_update_data data; 1561 struct kvm_sev_send_update_data params; 1562 void *hdr, *trans_data; 1563 struct page **guest_page; 1564 unsigned long n; 1565 int ret, offset; 1566 1567 if (!sev_guest(kvm)) 1568 return -ENOTTY; 1569 1570 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1571 sizeof(struct kvm_sev_send_update_data))) 1572 return -EFAULT; 1573 1574 /* userspace wants to query either header or trans length */ 1575 if (!params.trans_len || !params.hdr_len) 1576 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1577 1578 if (!params.trans_uaddr || !params.guest_uaddr || 1579 !params.guest_len || !params.hdr_uaddr) 1580 return -EINVAL; 1581 1582 /* Check if we are crossing the page boundary */ 1583 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1584 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1585 return -EINVAL; 1586 1587 /* Pin guest memory */ 1588 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1589 PAGE_SIZE, &n, 0); 1590 if (IS_ERR(guest_page)) 1591 return PTR_ERR(guest_page); 1592 1593 /* allocate memory for header and transport buffer */ 1594 ret = -ENOMEM; 1595 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1596 if (!hdr) 1597 goto e_unpin; 1598 1599 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1600 if (!trans_data) 1601 goto e_free_hdr; 1602 1603 memset(&data, 0, sizeof(data)); 1604 data.hdr_address = __psp_pa(hdr); 1605 data.hdr_len = params.hdr_len; 1606 data.trans_address = __psp_pa(trans_data); 1607 data.trans_len = params.trans_len; 1608 1609 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1610 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1611 data.guest_address |= sev_me_mask; 1612 data.guest_len = params.guest_len; 1613 data.handle = to_kvm_sev_info(kvm)->handle; 1614 1615 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1616 1617 if (ret) 1618 goto e_free_trans_data; 1619 1620 /* copy transport buffer to user space */ 1621 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr), 1622 trans_data, params.trans_len)) { 1623 ret = -EFAULT; 1624 goto e_free_trans_data; 1625 } 1626 1627 /* Copy packet header to userspace. */ 1628 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr, 1629 params.hdr_len)) 1630 ret = -EFAULT; 1631 1632 e_free_trans_data: 1633 kfree(trans_data); 1634 e_free_hdr: 1635 kfree(hdr); 1636 e_unpin: 1637 sev_unpin_memory(kvm, guest_page, n); 1638 1639 return ret; 1640 } 1641 1642 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1643 { 1644 struct sev_data_send_finish data; 1645 1646 if (!sev_guest(kvm)) 1647 return -ENOTTY; 1648 1649 data.handle = to_kvm_sev_info(kvm)->handle; 1650 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1651 } 1652 1653 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1654 { 1655 struct sev_data_send_cancel data; 1656 1657 if (!sev_guest(kvm)) 1658 return -ENOTTY; 1659 1660 data.handle = to_kvm_sev_info(kvm)->handle; 1661 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1662 } 1663 1664 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1665 { 1666 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 1667 struct sev_data_receive_start start; 1668 struct kvm_sev_receive_start params; 1669 int *error = &argp->error; 1670 void *session_data; 1671 void *pdh_data; 1672 int ret; 1673 1674 if (!sev_guest(kvm)) 1675 return -ENOTTY; 1676 1677 /* Get parameter from the userspace */ 1678 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1679 sizeof(struct kvm_sev_receive_start))) 1680 return -EFAULT; 1681 1682 /* some sanity checks */ 1683 if (!params.pdh_uaddr || !params.pdh_len || 1684 !params.session_uaddr || !params.session_len) 1685 return -EINVAL; 1686 1687 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1688 if (IS_ERR(pdh_data)) 1689 return PTR_ERR(pdh_data); 1690 1691 session_data = psp_copy_user_blob(params.session_uaddr, 1692 params.session_len); 1693 if (IS_ERR(session_data)) { 1694 ret = PTR_ERR(session_data); 1695 goto e_free_pdh; 1696 } 1697 1698 memset(&start, 0, sizeof(start)); 1699 start.handle = params.handle; 1700 start.policy = params.policy; 1701 start.pdh_cert_address = __psp_pa(pdh_data); 1702 start.pdh_cert_len = params.pdh_len; 1703 start.session_address = __psp_pa(session_data); 1704 start.session_len = params.session_len; 1705 1706 /* create memory encryption context */ 1707 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1708 error); 1709 if (ret) 1710 goto e_free_session; 1711 1712 /* Bind ASID to this guest */ 1713 ret = sev_bind_asid(kvm, start.handle, error); 1714 if (ret) { 1715 sev_decommission(start.handle); 1716 goto e_free_session; 1717 } 1718 1719 params.handle = start.handle; 1720 if (copy_to_user(u64_to_user_ptr(argp->data), 1721 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1722 ret = -EFAULT; 1723 sev_unbind_asid(kvm, start.handle); 1724 goto e_free_session; 1725 } 1726 1727 sev->handle = start.handle; 1728 sev->fd = argp->sev_fd; 1729 1730 e_free_session: 1731 kfree(session_data); 1732 e_free_pdh: 1733 kfree(pdh_data); 1734 1735 return ret; 1736 } 1737 1738 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1739 { 1740 struct kvm_sev_receive_update_data params; 1741 struct sev_data_receive_update_data data; 1742 void *hdr = NULL, *trans = NULL; 1743 struct page **guest_page; 1744 unsigned long n; 1745 int ret, offset; 1746 1747 if (!sev_guest(kvm)) 1748 return -EINVAL; 1749 1750 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1751 sizeof(struct kvm_sev_receive_update_data))) 1752 return -EFAULT; 1753 1754 if (!params.hdr_uaddr || !params.hdr_len || 1755 !params.guest_uaddr || !params.guest_len || 1756 !params.trans_uaddr || !params.trans_len) 1757 return -EINVAL; 1758 1759 /* Check if we are crossing the page boundary */ 1760 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1761 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1762 return -EINVAL; 1763 1764 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1765 if (IS_ERR(hdr)) 1766 return PTR_ERR(hdr); 1767 1768 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1769 if (IS_ERR(trans)) { 1770 ret = PTR_ERR(trans); 1771 goto e_free_hdr; 1772 } 1773 1774 memset(&data, 0, sizeof(data)); 1775 data.hdr_address = __psp_pa(hdr); 1776 data.hdr_len = params.hdr_len; 1777 data.trans_address = __psp_pa(trans); 1778 data.trans_len = params.trans_len; 1779 1780 /* Pin guest memory */ 1781 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1782 PAGE_SIZE, &n, FOLL_WRITE); 1783 if (IS_ERR(guest_page)) { 1784 ret = PTR_ERR(guest_page); 1785 goto e_free_trans; 1786 } 1787 1788 /* 1789 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1790 * encrypts the written data with the guest's key, and the cache may 1791 * contain dirty, unencrypted data. 1792 */ 1793 sev_clflush_pages(guest_page, n); 1794 1795 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1796 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1797 data.guest_address |= sev_me_mask; 1798 data.guest_len = params.guest_len; 1799 data.handle = to_kvm_sev_info(kvm)->handle; 1800 1801 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1802 &argp->error); 1803 1804 sev_unpin_memory(kvm, guest_page, n); 1805 1806 e_free_trans: 1807 kfree(trans); 1808 e_free_hdr: 1809 kfree(hdr); 1810 1811 return ret; 1812 } 1813 1814 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1815 { 1816 struct sev_data_receive_finish data; 1817 1818 if (!sev_guest(kvm)) 1819 return -ENOTTY; 1820 1821 data.handle = to_kvm_sev_info(kvm)->handle; 1822 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1823 } 1824 1825 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1826 { 1827 /* 1828 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1829 * active mirror VMs. Also allow the debugging and status commands. 1830 */ 1831 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1832 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1833 cmd_id == KVM_SEV_DBG_ENCRYPT) 1834 return true; 1835 1836 return false; 1837 } 1838 1839 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1840 { 1841 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm); 1842 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm); 1843 int r = -EBUSY; 1844 1845 if (dst_kvm == src_kvm) 1846 return -EINVAL; 1847 1848 /* 1849 * Bail if these VMs are already involved in a migration to avoid 1850 * deadlock between two VMs trying to migrate to/from each other. 1851 */ 1852 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1853 return -EBUSY; 1854 1855 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1856 goto release_dst; 1857 1858 r = -EINTR; 1859 if (mutex_lock_killable(&dst_kvm->lock)) 1860 goto release_src; 1861 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1862 goto unlock_dst; 1863 return 0; 1864 1865 unlock_dst: 1866 mutex_unlock(&dst_kvm->lock); 1867 release_src: 1868 atomic_set_release(&src_sev->migration_in_progress, 0); 1869 release_dst: 1870 atomic_set_release(&dst_sev->migration_in_progress, 0); 1871 return r; 1872 } 1873 1874 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1875 { 1876 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm); 1877 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm); 1878 1879 mutex_unlock(&dst_kvm->lock); 1880 mutex_unlock(&src_kvm->lock); 1881 atomic_set_release(&dst_sev->migration_in_progress, 0); 1882 atomic_set_release(&src_sev->migration_in_progress, 0); 1883 } 1884 1885 /* vCPU mutex subclasses. */ 1886 enum sev_migration_role { 1887 SEV_MIGRATION_SOURCE = 0, 1888 SEV_MIGRATION_TARGET, 1889 SEV_NR_MIGRATION_ROLES, 1890 }; 1891 1892 static int sev_lock_vcpus_for_migration(struct kvm *kvm, 1893 enum sev_migration_role role) 1894 { 1895 struct kvm_vcpu *vcpu; 1896 unsigned long i, j; 1897 1898 kvm_for_each_vcpu(i, vcpu, kvm) { 1899 if (mutex_lock_killable_nested(&vcpu->mutex, role)) 1900 goto out_unlock; 1901 1902 #ifdef CONFIG_PROVE_LOCKING 1903 if (!i) 1904 /* 1905 * Reset the role to one that avoids colliding with 1906 * the role used for the first vcpu mutex. 1907 */ 1908 role = SEV_NR_MIGRATION_ROLES; 1909 else 1910 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_); 1911 #endif 1912 } 1913 1914 return 0; 1915 1916 out_unlock: 1917 1918 kvm_for_each_vcpu(j, vcpu, kvm) { 1919 if (i == j) 1920 break; 1921 1922 #ifdef CONFIG_PROVE_LOCKING 1923 if (j) 1924 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_); 1925 #endif 1926 1927 mutex_unlock(&vcpu->mutex); 1928 } 1929 return -EINTR; 1930 } 1931 1932 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1933 { 1934 struct kvm_vcpu *vcpu; 1935 unsigned long i; 1936 bool first = true; 1937 1938 kvm_for_each_vcpu(i, vcpu, kvm) { 1939 if (first) 1940 first = false; 1941 else 1942 mutex_acquire(&vcpu->mutex.dep_map, 1943 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_); 1944 1945 mutex_unlock(&vcpu->mutex); 1946 } 1947 } 1948 1949 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1950 { 1951 struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm); 1952 struct kvm_sev_info *src = to_kvm_sev_info(src_kvm); 1953 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1954 struct vcpu_svm *dst_svm, *src_svm; 1955 struct kvm_sev_info *mirror; 1956 unsigned long i; 1957 1958 dst->active = true; 1959 dst->asid = src->asid; 1960 dst->handle = src->handle; 1961 dst->pages_locked = src->pages_locked; 1962 dst->enc_context_owner = src->enc_context_owner; 1963 dst->es_active = src->es_active; 1964 dst->vmsa_features = src->vmsa_features; 1965 1966 src->asid = 0; 1967 src->active = false; 1968 src->handle = 0; 1969 src->pages_locked = 0; 1970 src->enc_context_owner = NULL; 1971 src->es_active = false; 1972 1973 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1974 1975 /* 1976 * If this VM has mirrors, "transfer" each mirror's refcount of the 1977 * source to the destination (this KVM). The caller holds a reference 1978 * to the source, so there's no danger of use-after-free. 1979 */ 1980 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 1981 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 1982 kvm_get_kvm(dst_kvm); 1983 kvm_put_kvm(src_kvm); 1984 mirror->enc_context_owner = dst_kvm; 1985 } 1986 1987 /* 1988 * If this VM is a mirror, remove the old mirror from the owners list 1989 * and add the new mirror to the list. 1990 */ 1991 if (is_mirroring_enc_context(dst_kvm)) { 1992 struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner); 1993 1994 list_del(&src->mirror_entry); 1995 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 1996 } 1997 1998 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 1999 dst_svm = to_svm(dst_vcpu); 2000 2001 sev_init_vmcb(dst_svm); 2002 2003 if (!dst->es_active) 2004 continue; 2005 2006 /* 2007 * Note, the source is not required to have the same number of 2008 * vCPUs as the destination when migrating a vanilla SEV VM. 2009 */ 2010 src_vcpu = kvm_get_vcpu(src_kvm, i); 2011 src_svm = to_svm(src_vcpu); 2012 2013 /* 2014 * Transfer VMSA and GHCB state to the destination. Nullify and 2015 * clear source fields as appropriate, the state now belongs to 2016 * the destination. 2017 */ 2018 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 2019 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 2020 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 2021 dst_vcpu->arch.guest_state_protected = true; 2022 2023 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 2024 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 2025 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 2026 src_vcpu->arch.guest_state_protected = false; 2027 } 2028 } 2029 2030 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 2031 { 2032 struct kvm_vcpu *src_vcpu; 2033 unsigned long i; 2034 2035 if (!sev_es_guest(src)) 2036 return 0; 2037 2038 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 2039 return -EINVAL; 2040 2041 kvm_for_each_vcpu(i, src_vcpu, src) { 2042 if (!src_vcpu->arch.guest_state_protected) 2043 return -EINVAL; 2044 } 2045 2046 return 0; 2047 } 2048 2049 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2050 { 2051 struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm); 2052 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 2053 CLASS(fd, f)(source_fd); 2054 struct kvm *source_kvm; 2055 bool charged = false; 2056 int ret; 2057 2058 if (fd_empty(f)) 2059 return -EBADF; 2060 2061 if (!file_is_kvm(fd_file(f))) 2062 return -EBADF; 2063 2064 source_kvm = fd_file(f)->private_data; 2065 ret = sev_lock_two_vms(kvm, source_kvm); 2066 if (ret) 2067 return ret; 2068 2069 if (kvm->arch.vm_type != source_kvm->arch.vm_type || 2070 sev_guest(kvm) || !sev_guest(source_kvm)) { 2071 ret = -EINVAL; 2072 goto out_unlock; 2073 } 2074 2075 src_sev = to_kvm_sev_info(source_kvm); 2076 2077 dst_sev->misc_cg = get_current_misc_cg(); 2078 cg_cleanup_sev = dst_sev; 2079 if (dst_sev->misc_cg != src_sev->misc_cg) { 2080 ret = sev_misc_cg_try_charge(dst_sev); 2081 if (ret) 2082 goto out_dst_cgroup; 2083 charged = true; 2084 } 2085 2086 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE); 2087 if (ret) 2088 goto out_dst_cgroup; 2089 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET); 2090 if (ret) 2091 goto out_dst_vcpu; 2092 2093 ret = sev_check_source_vcpus(kvm, source_kvm); 2094 if (ret) 2095 goto out_source_vcpu; 2096 2097 sev_migrate_from(kvm, source_kvm); 2098 kvm_vm_dead(source_kvm); 2099 cg_cleanup_sev = src_sev; 2100 ret = 0; 2101 2102 out_source_vcpu: 2103 sev_unlock_vcpus_for_migration(source_kvm); 2104 out_dst_vcpu: 2105 sev_unlock_vcpus_for_migration(kvm); 2106 out_dst_cgroup: 2107 /* Operates on the source on success, on the destination on failure. */ 2108 if (charged) 2109 sev_misc_cg_uncharge(cg_cleanup_sev); 2110 put_misc_cg(cg_cleanup_sev->misc_cg); 2111 cg_cleanup_sev->misc_cg = NULL; 2112 out_unlock: 2113 sev_unlock_two_vms(kvm, source_kvm); 2114 return ret; 2115 } 2116 2117 int sev_dev_get_attr(u32 group, u64 attr, u64 *val) 2118 { 2119 if (group != KVM_X86_GRP_SEV) 2120 return -ENXIO; 2121 2122 switch (attr) { 2123 case KVM_X86_SEV_VMSA_FEATURES: 2124 *val = sev_supported_vmsa_features; 2125 return 0; 2126 2127 default: 2128 return -ENXIO; 2129 } 2130 } 2131 2132 /* 2133 * The guest context contains all the information, keys and metadata 2134 * associated with the guest that the firmware tracks to implement SEV 2135 * and SNP features. The firmware stores the guest context in hypervisor 2136 * provide page via the SNP_GCTX_CREATE command. 2137 */ 2138 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp) 2139 { 2140 struct sev_data_snp_addr data = {}; 2141 void *context; 2142 int rc; 2143 2144 /* Allocate memory for context page */ 2145 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT); 2146 if (!context) 2147 return NULL; 2148 2149 data.address = __psp_pa(context); 2150 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error); 2151 if (rc) { 2152 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d", 2153 rc, argp->error); 2154 snp_free_firmware_page(context); 2155 return NULL; 2156 } 2157 2158 return context; 2159 } 2160 2161 static int snp_bind_asid(struct kvm *kvm, int *error) 2162 { 2163 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2164 struct sev_data_snp_activate data = {0}; 2165 2166 data.gctx_paddr = __psp_pa(sev->snp_context); 2167 data.asid = sev_get_asid(kvm); 2168 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error); 2169 } 2170 2171 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 2172 { 2173 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2174 struct sev_data_snp_launch_start start = {0}; 2175 struct kvm_sev_snp_launch_start params; 2176 int rc; 2177 2178 if (!sev_snp_guest(kvm)) 2179 return -ENOTTY; 2180 2181 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2182 return -EFAULT; 2183 2184 /* Don't allow userspace to allocate memory for more than 1 SNP context. */ 2185 if (sev->snp_context) 2186 return -EINVAL; 2187 2188 if (params.flags) 2189 return -EINVAL; 2190 2191 if (params.policy & ~SNP_POLICY_MASK_VALID) 2192 return -EINVAL; 2193 2194 /* Check for policy bits that must be set */ 2195 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) || 2196 !(params.policy & SNP_POLICY_MASK_SMT)) 2197 return -EINVAL; 2198 2199 if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET) 2200 return -EINVAL; 2201 2202 sev->snp_context = snp_context_create(kvm, argp); 2203 if (!sev->snp_context) 2204 return -ENOTTY; 2205 2206 start.gctx_paddr = __psp_pa(sev->snp_context); 2207 start.policy = params.policy; 2208 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw)); 2209 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error); 2210 if (rc) { 2211 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n", 2212 __func__, rc); 2213 goto e_free_context; 2214 } 2215 2216 sev->fd = argp->sev_fd; 2217 rc = snp_bind_asid(kvm, &argp->error); 2218 if (rc) { 2219 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n", 2220 __func__, rc); 2221 goto e_free_context; 2222 } 2223 2224 return 0; 2225 2226 e_free_context: 2227 snp_decommission_context(kvm); 2228 2229 return rc; 2230 } 2231 2232 struct sev_gmem_populate_args { 2233 __u8 type; 2234 int sev_fd; 2235 int fw_error; 2236 }; 2237 2238 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn, 2239 void __user *src, int order, void *opaque) 2240 { 2241 struct sev_gmem_populate_args *sev_populate_args = opaque; 2242 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2243 int n_private = 0, ret, i; 2244 int npages = (1 << order); 2245 gfn_t gfn; 2246 2247 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src)) 2248 return -EINVAL; 2249 2250 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) { 2251 struct sev_data_snp_launch_update fw_args = {0}; 2252 bool assigned = false; 2253 int level; 2254 2255 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level); 2256 if (ret || assigned) { 2257 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n", 2258 __func__, gfn, ret, assigned); 2259 ret = ret ? -EINVAL : -EEXIST; 2260 goto err; 2261 } 2262 2263 if (src) { 2264 void *vaddr = kmap_local_pfn(pfn + i); 2265 2266 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) { 2267 ret = -EFAULT; 2268 goto err; 2269 } 2270 kunmap_local(vaddr); 2271 } 2272 2273 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K, 2274 sev_get_asid(kvm), true); 2275 if (ret) 2276 goto err; 2277 2278 n_private++; 2279 2280 fw_args.gctx_paddr = __psp_pa(sev->snp_context); 2281 fw_args.address = __sme_set(pfn_to_hpa(pfn + i)); 2282 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K); 2283 fw_args.page_type = sev_populate_args->type; 2284 2285 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2286 &fw_args, &sev_populate_args->fw_error); 2287 if (ret) 2288 goto fw_err; 2289 } 2290 2291 return 0; 2292 2293 fw_err: 2294 /* 2295 * If the firmware command failed handle the reclaim and cleanup of that 2296 * PFN specially vs. prior pages which can be cleaned up below without 2297 * needing to reclaim in advance. 2298 * 2299 * Additionally, when invalid CPUID function entries are detected, 2300 * firmware writes the expected values into the page and leaves it 2301 * unencrypted so it can be used for debugging and error-reporting. 2302 * 2303 * Copy this page back into the source buffer so userspace can use this 2304 * information to provide information on which CPUID leaves/fields 2305 * failed CPUID validation. 2306 */ 2307 if (!snp_page_reclaim(kvm, pfn + i) && 2308 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID && 2309 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) { 2310 void *vaddr = kmap_local_pfn(pfn + i); 2311 2312 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE)) 2313 pr_debug("Failed to write CPUID page back to userspace\n"); 2314 2315 kunmap_local(vaddr); 2316 } 2317 2318 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */ 2319 n_private--; 2320 2321 err: 2322 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n", 2323 __func__, ret, sev_populate_args->fw_error, n_private); 2324 for (i = 0; i < n_private; i++) 2325 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K); 2326 2327 return ret; 2328 } 2329 2330 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp) 2331 { 2332 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2333 struct sev_gmem_populate_args sev_populate_args = {0}; 2334 struct kvm_sev_snp_launch_update params; 2335 struct kvm_memory_slot *memslot; 2336 long npages, count; 2337 void __user *src; 2338 int ret = 0; 2339 2340 if (!sev_snp_guest(kvm) || !sev->snp_context) 2341 return -EINVAL; 2342 2343 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2344 return -EFAULT; 2345 2346 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__, 2347 params.gfn_start, params.len, params.type, params.flags); 2348 2349 if (!PAGE_ALIGNED(params.len) || params.flags || 2350 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL && 2351 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO && 2352 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED && 2353 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS && 2354 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID)) 2355 return -EINVAL; 2356 2357 npages = params.len / PAGE_SIZE; 2358 2359 /* 2360 * For each GFN that's being prepared as part of the initial guest 2361 * state, the following pre-conditions are verified: 2362 * 2363 * 1) The backing memslot is a valid private memslot. 2364 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES 2365 * beforehand. 2366 * 3) The PFN of the guest_memfd has not already been set to private 2367 * in the RMP table. 2368 * 2369 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page 2370 * faults if there's a race between a fault and an attribute update via 2371 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized 2372 * here. However, kvm->slots_lock guards against both this as well as 2373 * concurrent memslot updates occurring while these checks are being 2374 * performed, so use that here to make it easier to reason about the 2375 * initial expected state and better guard against unexpected 2376 * situations. 2377 */ 2378 mutex_lock(&kvm->slots_lock); 2379 2380 memslot = gfn_to_memslot(kvm, params.gfn_start); 2381 if (!kvm_slot_can_be_private(memslot)) { 2382 ret = -EINVAL; 2383 goto out; 2384 } 2385 2386 sev_populate_args.sev_fd = argp->sev_fd; 2387 sev_populate_args.type = params.type; 2388 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr); 2389 2390 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages, 2391 sev_gmem_post_populate, &sev_populate_args); 2392 if (count < 0) { 2393 argp->error = sev_populate_args.fw_error; 2394 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n", 2395 __func__, count, argp->error); 2396 ret = -EIO; 2397 } else { 2398 params.gfn_start += count; 2399 params.len -= count * PAGE_SIZE; 2400 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO) 2401 params.uaddr += count * PAGE_SIZE; 2402 2403 ret = 0; 2404 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 2405 ret = -EFAULT; 2406 } 2407 2408 out: 2409 mutex_unlock(&kvm->slots_lock); 2410 2411 return ret; 2412 } 2413 2414 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 2415 { 2416 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2417 struct sev_data_snp_launch_update data = {}; 2418 struct kvm_vcpu *vcpu; 2419 unsigned long i; 2420 int ret; 2421 2422 data.gctx_paddr = __psp_pa(sev->snp_context); 2423 data.page_type = SNP_PAGE_TYPE_VMSA; 2424 2425 kvm_for_each_vcpu(i, vcpu, kvm) { 2426 struct vcpu_svm *svm = to_svm(vcpu); 2427 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 2428 2429 ret = sev_es_sync_vmsa(svm); 2430 if (ret) 2431 return ret; 2432 2433 /* Transition the VMSA page to a firmware state. */ 2434 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true); 2435 if (ret) 2436 return ret; 2437 2438 /* Issue the SNP command to encrypt the VMSA */ 2439 data.address = __sme_pa(svm->sev_es.vmsa); 2440 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2441 &data, &argp->error); 2442 if (ret) { 2443 snp_page_reclaim(kvm, pfn); 2444 2445 return ret; 2446 } 2447 2448 svm->vcpu.arch.guest_state_protected = true; 2449 /* 2450 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to 2451 * be _always_ ON. Enable it only after setting 2452 * guest_state_protected because KVM_SET_MSRS allows dynamic 2453 * toggling of LBRV (for performance reason) on write access to 2454 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 2455 */ 2456 svm_enable_lbrv(vcpu); 2457 } 2458 2459 return 0; 2460 } 2461 2462 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 2463 { 2464 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2465 struct kvm_sev_snp_launch_finish params; 2466 struct sev_data_snp_launch_finish *data; 2467 void *id_block = NULL, *id_auth = NULL; 2468 int ret; 2469 2470 if (!sev_snp_guest(kvm)) 2471 return -ENOTTY; 2472 2473 if (!sev->snp_context) 2474 return -EINVAL; 2475 2476 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2477 return -EFAULT; 2478 2479 if (params.flags) 2480 return -EINVAL; 2481 2482 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */ 2483 ret = snp_launch_update_vmsa(kvm, argp); 2484 if (ret) 2485 return ret; 2486 2487 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 2488 if (!data) 2489 return -ENOMEM; 2490 2491 if (params.id_block_en) { 2492 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE); 2493 if (IS_ERR(id_block)) { 2494 ret = PTR_ERR(id_block); 2495 goto e_free; 2496 } 2497 2498 data->id_block_en = 1; 2499 data->id_block_paddr = __sme_pa(id_block); 2500 2501 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE); 2502 if (IS_ERR(id_auth)) { 2503 ret = PTR_ERR(id_auth); 2504 goto e_free_id_block; 2505 } 2506 2507 data->id_auth_paddr = __sme_pa(id_auth); 2508 2509 if (params.auth_key_en) 2510 data->auth_key_en = 1; 2511 } 2512 2513 data->vcek_disabled = params.vcek_disabled; 2514 2515 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE); 2516 data->gctx_paddr = __psp_pa(sev->snp_context); 2517 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error); 2518 2519 /* 2520 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages 2521 * can be given to the guest simply by marking the RMP entry as private. 2522 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY. 2523 */ 2524 if (!ret) 2525 kvm->arch.pre_fault_allowed = true; 2526 2527 kfree(id_auth); 2528 2529 e_free_id_block: 2530 kfree(id_block); 2531 2532 e_free: 2533 kfree(data); 2534 2535 return ret; 2536 } 2537 2538 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 2539 { 2540 struct kvm_sev_cmd sev_cmd; 2541 int r; 2542 2543 if (!sev_enabled) 2544 return -ENOTTY; 2545 2546 if (!argp) 2547 return 0; 2548 2549 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 2550 return -EFAULT; 2551 2552 mutex_lock(&kvm->lock); 2553 2554 /* Only the enc_context_owner handles some memory enc operations. */ 2555 if (is_mirroring_enc_context(kvm) && 2556 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 2557 r = -EINVAL; 2558 goto out; 2559 } 2560 2561 /* 2562 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only 2563 * allow the use of SNP-specific commands. 2564 */ 2565 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) { 2566 r = -EPERM; 2567 goto out; 2568 } 2569 2570 switch (sev_cmd.id) { 2571 case KVM_SEV_ES_INIT: 2572 if (!sev_es_enabled) { 2573 r = -ENOTTY; 2574 goto out; 2575 } 2576 fallthrough; 2577 case KVM_SEV_INIT: 2578 r = sev_guest_init(kvm, &sev_cmd); 2579 break; 2580 case KVM_SEV_INIT2: 2581 r = sev_guest_init2(kvm, &sev_cmd); 2582 break; 2583 case KVM_SEV_LAUNCH_START: 2584 r = sev_launch_start(kvm, &sev_cmd); 2585 break; 2586 case KVM_SEV_LAUNCH_UPDATE_DATA: 2587 r = sev_launch_update_data(kvm, &sev_cmd); 2588 break; 2589 case KVM_SEV_LAUNCH_UPDATE_VMSA: 2590 r = sev_launch_update_vmsa(kvm, &sev_cmd); 2591 break; 2592 case KVM_SEV_LAUNCH_MEASURE: 2593 r = sev_launch_measure(kvm, &sev_cmd); 2594 break; 2595 case KVM_SEV_LAUNCH_FINISH: 2596 r = sev_launch_finish(kvm, &sev_cmd); 2597 break; 2598 case KVM_SEV_GUEST_STATUS: 2599 r = sev_guest_status(kvm, &sev_cmd); 2600 break; 2601 case KVM_SEV_DBG_DECRYPT: 2602 r = sev_dbg_crypt(kvm, &sev_cmd, true); 2603 break; 2604 case KVM_SEV_DBG_ENCRYPT: 2605 r = sev_dbg_crypt(kvm, &sev_cmd, false); 2606 break; 2607 case KVM_SEV_LAUNCH_SECRET: 2608 r = sev_launch_secret(kvm, &sev_cmd); 2609 break; 2610 case KVM_SEV_GET_ATTESTATION_REPORT: 2611 r = sev_get_attestation_report(kvm, &sev_cmd); 2612 break; 2613 case KVM_SEV_SEND_START: 2614 r = sev_send_start(kvm, &sev_cmd); 2615 break; 2616 case KVM_SEV_SEND_UPDATE_DATA: 2617 r = sev_send_update_data(kvm, &sev_cmd); 2618 break; 2619 case KVM_SEV_SEND_FINISH: 2620 r = sev_send_finish(kvm, &sev_cmd); 2621 break; 2622 case KVM_SEV_SEND_CANCEL: 2623 r = sev_send_cancel(kvm, &sev_cmd); 2624 break; 2625 case KVM_SEV_RECEIVE_START: 2626 r = sev_receive_start(kvm, &sev_cmd); 2627 break; 2628 case KVM_SEV_RECEIVE_UPDATE_DATA: 2629 r = sev_receive_update_data(kvm, &sev_cmd); 2630 break; 2631 case KVM_SEV_RECEIVE_FINISH: 2632 r = sev_receive_finish(kvm, &sev_cmd); 2633 break; 2634 case KVM_SEV_SNP_LAUNCH_START: 2635 r = snp_launch_start(kvm, &sev_cmd); 2636 break; 2637 case KVM_SEV_SNP_LAUNCH_UPDATE: 2638 r = snp_launch_update(kvm, &sev_cmd); 2639 break; 2640 case KVM_SEV_SNP_LAUNCH_FINISH: 2641 r = snp_launch_finish(kvm, &sev_cmd); 2642 break; 2643 default: 2644 r = -EINVAL; 2645 goto out; 2646 } 2647 2648 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 2649 r = -EFAULT; 2650 2651 out: 2652 mutex_unlock(&kvm->lock); 2653 return r; 2654 } 2655 2656 int sev_mem_enc_register_region(struct kvm *kvm, 2657 struct kvm_enc_region *range) 2658 { 2659 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2660 struct enc_region *region; 2661 int ret = 0; 2662 2663 if (!sev_guest(kvm)) 2664 return -ENOTTY; 2665 2666 /* If kvm is mirroring encryption context it isn't responsible for it */ 2667 if (is_mirroring_enc_context(kvm)) 2668 return -EINVAL; 2669 2670 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 2671 return -EINVAL; 2672 2673 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 2674 if (!region) 2675 return -ENOMEM; 2676 2677 mutex_lock(&kvm->lock); 2678 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 2679 FOLL_WRITE | FOLL_LONGTERM); 2680 if (IS_ERR(region->pages)) { 2681 ret = PTR_ERR(region->pages); 2682 mutex_unlock(&kvm->lock); 2683 goto e_free; 2684 } 2685 2686 /* 2687 * The guest may change the memory encryption attribute from C=0 -> C=1 2688 * or vice versa for this memory range. Lets make sure caches are 2689 * flushed to ensure that guest data gets written into memory with 2690 * correct C-bit. Note, this must be done before dropping kvm->lock, 2691 * as region and its array of pages can be freed by a different task 2692 * once kvm->lock is released. 2693 */ 2694 sev_clflush_pages(region->pages, region->npages); 2695 2696 region->uaddr = range->addr; 2697 region->size = range->size; 2698 2699 list_add_tail(®ion->list, &sev->regions_list); 2700 mutex_unlock(&kvm->lock); 2701 2702 return ret; 2703 2704 e_free: 2705 kfree(region); 2706 return ret; 2707 } 2708 2709 static struct enc_region * 2710 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2711 { 2712 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2713 struct list_head *head = &sev->regions_list; 2714 struct enc_region *i; 2715 2716 list_for_each_entry(i, head, list) { 2717 if (i->uaddr == range->addr && 2718 i->size == range->size) 2719 return i; 2720 } 2721 2722 return NULL; 2723 } 2724 2725 static void __unregister_enc_region_locked(struct kvm *kvm, 2726 struct enc_region *region) 2727 { 2728 sev_unpin_memory(kvm, region->pages, region->npages); 2729 list_del(®ion->list); 2730 kfree(region); 2731 } 2732 2733 int sev_mem_enc_unregister_region(struct kvm *kvm, 2734 struct kvm_enc_region *range) 2735 { 2736 struct enc_region *region; 2737 int ret; 2738 2739 /* If kvm is mirroring encryption context it isn't responsible for it */ 2740 if (is_mirroring_enc_context(kvm)) 2741 return -EINVAL; 2742 2743 mutex_lock(&kvm->lock); 2744 2745 if (!sev_guest(kvm)) { 2746 ret = -ENOTTY; 2747 goto failed; 2748 } 2749 2750 region = find_enc_region(kvm, range); 2751 if (!region) { 2752 ret = -EINVAL; 2753 goto failed; 2754 } 2755 2756 /* 2757 * Ensure that all guest tagged cache entries are flushed before 2758 * releasing the pages back to the system for use. CLFLUSH will 2759 * not do this, so issue a WBINVD. 2760 */ 2761 wbinvd_on_all_cpus(); 2762 2763 __unregister_enc_region_locked(kvm, region); 2764 2765 mutex_unlock(&kvm->lock); 2766 return 0; 2767 2768 failed: 2769 mutex_unlock(&kvm->lock); 2770 return ret; 2771 } 2772 2773 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2774 { 2775 CLASS(fd, f)(source_fd); 2776 struct kvm *source_kvm; 2777 struct kvm_sev_info *source_sev, *mirror_sev; 2778 int ret; 2779 2780 if (fd_empty(f)) 2781 return -EBADF; 2782 2783 if (!file_is_kvm(fd_file(f))) 2784 return -EBADF; 2785 2786 source_kvm = fd_file(f)->private_data; 2787 ret = sev_lock_two_vms(kvm, source_kvm); 2788 if (ret) 2789 return ret; 2790 2791 /* 2792 * Mirrors of mirrors should work, but let's not get silly. Also 2793 * disallow out-of-band SEV/SEV-ES init if the target is already an 2794 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2795 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2796 */ 2797 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2798 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2799 ret = -EINVAL; 2800 goto e_unlock; 2801 } 2802 2803 /* 2804 * The mirror kvm holds an enc_context_owner ref so its asid can't 2805 * disappear until we're done with it 2806 */ 2807 source_sev = to_kvm_sev_info(source_kvm); 2808 kvm_get_kvm(source_kvm); 2809 mirror_sev = to_kvm_sev_info(kvm); 2810 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2811 2812 /* Set enc_context_owner and copy its encryption context over */ 2813 mirror_sev->enc_context_owner = source_kvm; 2814 mirror_sev->active = true; 2815 mirror_sev->asid = source_sev->asid; 2816 mirror_sev->fd = source_sev->fd; 2817 mirror_sev->es_active = source_sev->es_active; 2818 mirror_sev->need_init = false; 2819 mirror_sev->handle = source_sev->handle; 2820 INIT_LIST_HEAD(&mirror_sev->regions_list); 2821 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2822 ret = 0; 2823 2824 /* 2825 * Do not copy ap_jump_table. Since the mirror does not share the same 2826 * KVM contexts as the original, and they may have different 2827 * memory-views. 2828 */ 2829 2830 e_unlock: 2831 sev_unlock_two_vms(kvm, source_kvm); 2832 return ret; 2833 } 2834 2835 static int snp_decommission_context(struct kvm *kvm) 2836 { 2837 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2838 struct sev_data_snp_addr data = {}; 2839 int ret; 2840 2841 /* If context is not created then do nothing */ 2842 if (!sev->snp_context) 2843 return 0; 2844 2845 /* Do the decommision, which will unbind the ASID from the SNP context */ 2846 data.address = __sme_pa(sev->snp_context); 2847 down_write(&sev_deactivate_lock); 2848 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL); 2849 up_write(&sev_deactivate_lock); 2850 2851 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret)) 2852 return ret; 2853 2854 snp_free_firmware_page(sev->snp_context); 2855 sev->snp_context = NULL; 2856 2857 return 0; 2858 } 2859 2860 void sev_vm_destroy(struct kvm *kvm) 2861 { 2862 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2863 struct list_head *head = &sev->regions_list; 2864 struct list_head *pos, *q; 2865 2866 if (!sev_guest(kvm)) 2867 return; 2868 2869 WARN_ON(!list_empty(&sev->mirror_vms)); 2870 2871 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2872 if (is_mirroring_enc_context(kvm)) { 2873 struct kvm *owner_kvm = sev->enc_context_owner; 2874 2875 mutex_lock(&owner_kvm->lock); 2876 list_del(&sev->mirror_entry); 2877 mutex_unlock(&owner_kvm->lock); 2878 kvm_put_kvm(owner_kvm); 2879 return; 2880 } 2881 2882 /* 2883 * Ensure that all guest tagged cache entries are flushed before 2884 * releasing the pages back to the system for use. CLFLUSH will 2885 * not do this, so issue a WBINVD. 2886 */ 2887 wbinvd_on_all_cpus(); 2888 2889 /* 2890 * if userspace was terminated before unregistering the memory regions 2891 * then lets unpin all the registered memory. 2892 */ 2893 if (!list_empty(head)) { 2894 list_for_each_safe(pos, q, head) { 2895 __unregister_enc_region_locked(kvm, 2896 list_entry(pos, struct enc_region, list)); 2897 cond_resched(); 2898 } 2899 } 2900 2901 if (sev_snp_guest(kvm)) { 2902 snp_guest_req_cleanup(kvm); 2903 2904 /* 2905 * Decomission handles unbinding of the ASID. If it fails for 2906 * some unexpected reason, just leak the ASID. 2907 */ 2908 if (snp_decommission_context(kvm)) 2909 return; 2910 } else { 2911 sev_unbind_asid(kvm, sev->handle); 2912 } 2913 2914 sev_asid_free(sev); 2915 } 2916 2917 void __init sev_set_cpu_caps(void) 2918 { 2919 if (sev_enabled) { 2920 kvm_cpu_cap_set(X86_FEATURE_SEV); 2921 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM); 2922 } 2923 if (sev_es_enabled) { 2924 kvm_cpu_cap_set(X86_FEATURE_SEV_ES); 2925 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM); 2926 } 2927 if (sev_snp_enabled) { 2928 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP); 2929 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM); 2930 } 2931 } 2932 2933 void __init sev_hardware_setup(void) 2934 { 2935 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2936 bool sev_snp_supported = false; 2937 bool sev_es_supported = false; 2938 bool sev_supported = false; 2939 2940 if (!sev_enabled || !npt_enabled || !nrips) 2941 goto out; 2942 2943 /* 2944 * SEV must obviously be supported in hardware. Sanity check that the 2945 * CPU supports decode assists, which is mandatory for SEV guests to 2946 * support instruction emulation. Ditto for flushing by ASID, as SEV 2947 * guests are bound to a single ASID, i.e. KVM can't rotate to a new 2948 * ASID to effect a TLB flush. 2949 */ 2950 if (!boot_cpu_has(X86_FEATURE_SEV) || 2951 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || 2952 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) 2953 goto out; 2954 2955 /* 2956 * The kernel's initcall infrastructure lacks the ability to express 2957 * dependencies between initcalls, whereas the modules infrastructure 2958 * automatically handles dependencies via symbol loading. Ensure the 2959 * PSP SEV driver is initialized before proceeding if KVM is built-in, 2960 * as the dependency isn't handled by the initcall infrastructure. 2961 */ 2962 if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init()) 2963 goto out; 2964 2965 /* Retrieve SEV CPUID information */ 2966 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2967 2968 /* Set encryption bit location for SEV-ES guests */ 2969 sev_enc_bit = ebx & 0x3f; 2970 2971 /* Maximum number of encrypted guests supported simultaneously */ 2972 max_sev_asid = ecx; 2973 if (!max_sev_asid) 2974 goto out; 2975 2976 /* Minimum ASID value that should be used for SEV guest */ 2977 min_sev_asid = edx; 2978 sev_me_mask = 1UL << (ebx & 0x3f); 2979 2980 /* 2981 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2982 * even though it's never used, so that the bitmap is indexed by the 2983 * actual ASID. 2984 */ 2985 nr_asids = max_sev_asid + 1; 2986 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2987 if (!sev_asid_bitmap) 2988 goto out; 2989 2990 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2991 if (!sev_reclaim_asid_bitmap) { 2992 bitmap_free(sev_asid_bitmap); 2993 sev_asid_bitmap = NULL; 2994 goto out; 2995 } 2996 2997 if (min_sev_asid <= max_sev_asid) { 2998 sev_asid_count = max_sev_asid - min_sev_asid + 1; 2999 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 3000 } 3001 sev_supported = true; 3002 3003 /* SEV-ES support requested? */ 3004 if (!sev_es_enabled) 3005 goto out; 3006 3007 /* 3008 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 3009 * instruction stream, i.e. can't emulate in response to a #NPF and 3010 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 3011 * (the guest can then do a #VMGEXIT to request MMIO emulation). 3012 */ 3013 if (!enable_mmio_caching) 3014 goto out; 3015 3016 /* Does the CPU support SEV-ES? */ 3017 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 3018 goto out; 3019 3020 if (!lbrv) { 3021 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV), 3022 "LBRV must be present for SEV-ES support"); 3023 goto out; 3024 } 3025 3026 /* Has the system been allocated ASIDs for SEV-ES? */ 3027 if (min_sev_asid == 1) 3028 goto out; 3029 3030 sev_es_asid_count = min_sev_asid - 1; 3031 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 3032 sev_es_supported = true; 3033 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP); 3034 3035 out: 3036 if (boot_cpu_has(X86_FEATURE_SEV)) 3037 pr_info("SEV %s (ASIDs %u - %u)\n", 3038 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : 3039 "unusable" : 3040 "disabled", 3041 min_sev_asid, max_sev_asid); 3042 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 3043 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 3044 str_enabled_disabled(sev_es_supported), 3045 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3046 if (boot_cpu_has(X86_FEATURE_SEV_SNP)) 3047 pr_info("SEV-SNP %s (ASIDs %u - %u)\n", 3048 str_enabled_disabled(sev_snp_supported), 3049 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3050 3051 sev_enabled = sev_supported; 3052 sev_es_enabled = sev_es_supported; 3053 sev_snp_enabled = sev_snp_supported; 3054 3055 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 3056 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 3057 sev_es_debug_swap_enabled = false; 3058 3059 sev_supported_vmsa_features = 0; 3060 if (sev_es_debug_swap_enabled) 3061 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP; 3062 } 3063 3064 void sev_hardware_unsetup(void) 3065 { 3066 if (!sev_enabled) 3067 return; 3068 3069 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 3070 sev_flush_asids(1, max_sev_asid); 3071 3072 bitmap_free(sev_asid_bitmap); 3073 bitmap_free(sev_reclaim_asid_bitmap); 3074 3075 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 3076 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 3077 } 3078 3079 int sev_cpu_init(struct svm_cpu_data *sd) 3080 { 3081 if (!sev_enabled) 3082 return 0; 3083 3084 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 3085 if (!sd->sev_vmcbs) 3086 return -ENOMEM; 3087 3088 return 0; 3089 } 3090 3091 /* 3092 * Pages used by hardware to hold guest encrypted state must be flushed before 3093 * returning them to the system. 3094 */ 3095 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 3096 { 3097 unsigned int asid = sev_get_asid(vcpu->kvm); 3098 3099 /* 3100 * Note! The address must be a kernel address, as regular page walk 3101 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 3102 * address is non-deterministic and unsafe. This function deliberately 3103 * takes a pointer to deter passing in a user address. 3104 */ 3105 unsigned long addr = (unsigned long)va; 3106 3107 /* 3108 * If CPU enforced cache coherency for encrypted mappings of the 3109 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 3110 * flush is still needed in order to work properly with DMA devices. 3111 */ 3112 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 3113 clflush_cache_range(va, PAGE_SIZE); 3114 return; 3115 } 3116 3117 /* 3118 * VM Page Flush takes a host virtual address and a guest ASID. Fall 3119 * back to WBINVD if this faults so as not to make any problems worse 3120 * by leaving stale encrypted data in the cache. 3121 */ 3122 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 3123 goto do_wbinvd; 3124 3125 return; 3126 3127 do_wbinvd: 3128 wbinvd_on_all_cpus(); 3129 } 3130 3131 void sev_guest_memory_reclaimed(struct kvm *kvm) 3132 { 3133 /* 3134 * With SNP+gmem, private/encrypted memory is unreachable via the 3135 * hva-based mmu notifiers, so these events are only actually 3136 * pertaining to shared pages where there is no need to perform 3137 * the WBINVD to flush associated caches. 3138 */ 3139 if (!sev_guest(kvm) || sev_snp_guest(kvm)) 3140 return; 3141 3142 wbinvd_on_all_cpus(); 3143 } 3144 3145 void sev_free_vcpu(struct kvm_vcpu *vcpu) 3146 { 3147 struct vcpu_svm *svm; 3148 3149 if (!sev_es_guest(vcpu->kvm)) 3150 return; 3151 3152 svm = to_svm(vcpu); 3153 3154 /* 3155 * If it's an SNP guest, then the VMSA was marked in the RMP table as 3156 * a guest-owned page. Transition the page to hypervisor state before 3157 * releasing it back to the system. 3158 */ 3159 if (sev_snp_guest(vcpu->kvm)) { 3160 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 3161 3162 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K)) 3163 goto skip_vmsa_free; 3164 } 3165 3166 if (vcpu->arch.guest_state_protected) 3167 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 3168 3169 __free_page(virt_to_page(svm->sev_es.vmsa)); 3170 3171 skip_vmsa_free: 3172 if (svm->sev_es.ghcb_sa_free) 3173 kvfree(svm->sev_es.ghcb_sa); 3174 } 3175 3176 static void dump_ghcb(struct vcpu_svm *svm) 3177 { 3178 struct ghcb *ghcb = svm->sev_es.ghcb; 3179 unsigned int nbits; 3180 3181 /* Re-use the dump_invalid_vmcb module parameter */ 3182 if (!dump_invalid_vmcb) { 3183 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3184 return; 3185 } 3186 3187 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 3188 3189 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 3190 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 3191 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 3192 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 3193 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 3194 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 3195 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 3196 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 3197 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 3198 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 3199 } 3200 3201 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 3202 { 3203 struct kvm_vcpu *vcpu = &svm->vcpu; 3204 struct ghcb *ghcb = svm->sev_es.ghcb; 3205 3206 /* 3207 * The GHCB protocol so far allows for the following data 3208 * to be returned: 3209 * GPRs RAX, RBX, RCX, RDX 3210 * 3211 * Copy their values, even if they may not have been written during the 3212 * VM-Exit. It's the guest's responsibility to not consume random data. 3213 */ 3214 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 3215 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 3216 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 3217 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 3218 } 3219 3220 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 3221 { 3222 struct vmcb_control_area *control = &svm->vmcb->control; 3223 struct kvm_vcpu *vcpu = &svm->vcpu; 3224 struct ghcb *ghcb = svm->sev_es.ghcb; 3225 u64 exit_code; 3226 3227 /* 3228 * The GHCB protocol so far allows for the following data 3229 * to be supplied: 3230 * GPRs RAX, RBX, RCX, RDX 3231 * XCR0 3232 * CPL 3233 * 3234 * VMMCALL allows the guest to provide extra registers. KVM also 3235 * expects RSI for hypercalls, so include that, too. 3236 * 3237 * Copy their values to the appropriate location if supplied. 3238 */ 3239 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 3240 3241 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 3242 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 3243 3244 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); 3245 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); 3246 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); 3247 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); 3248 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); 3249 3250 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); 3251 3252 if (kvm_ghcb_xcr0_is_valid(svm)) { 3253 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 3254 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3255 } 3256 3257 /* Copy the GHCB exit information into the VMCB fields */ 3258 exit_code = ghcb_get_sw_exit_code(ghcb); 3259 control->exit_code = lower_32_bits(exit_code); 3260 control->exit_code_hi = upper_32_bits(exit_code); 3261 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 3262 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 3263 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); 3264 3265 /* Clear the valid entries fields */ 3266 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 3267 } 3268 3269 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) 3270 { 3271 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 3272 } 3273 3274 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 3275 { 3276 struct vmcb_control_area *control = &svm->vmcb->control; 3277 struct kvm_vcpu *vcpu = &svm->vcpu; 3278 u64 exit_code; 3279 u64 reason; 3280 3281 /* 3282 * Retrieve the exit code now even though it may not be marked valid 3283 * as it could help with debugging. 3284 */ 3285 exit_code = kvm_ghcb_get_sw_exit_code(control); 3286 3287 /* Only GHCB Usage code 0 is supported */ 3288 if (svm->sev_es.ghcb->ghcb_usage) { 3289 reason = GHCB_ERR_INVALID_USAGE; 3290 goto vmgexit_err; 3291 } 3292 3293 reason = GHCB_ERR_MISSING_INPUT; 3294 3295 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 3296 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 3297 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 3298 goto vmgexit_err; 3299 3300 switch (exit_code) { 3301 case SVM_EXIT_READ_DR7: 3302 break; 3303 case SVM_EXIT_WRITE_DR7: 3304 if (!kvm_ghcb_rax_is_valid(svm)) 3305 goto vmgexit_err; 3306 break; 3307 case SVM_EXIT_RDTSC: 3308 break; 3309 case SVM_EXIT_RDPMC: 3310 if (!kvm_ghcb_rcx_is_valid(svm)) 3311 goto vmgexit_err; 3312 break; 3313 case SVM_EXIT_CPUID: 3314 if (!kvm_ghcb_rax_is_valid(svm) || 3315 !kvm_ghcb_rcx_is_valid(svm)) 3316 goto vmgexit_err; 3317 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 3318 if (!kvm_ghcb_xcr0_is_valid(svm)) 3319 goto vmgexit_err; 3320 break; 3321 case SVM_EXIT_INVD: 3322 break; 3323 case SVM_EXIT_IOIO: 3324 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 3325 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3326 goto vmgexit_err; 3327 } else { 3328 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 3329 if (!kvm_ghcb_rax_is_valid(svm)) 3330 goto vmgexit_err; 3331 } 3332 break; 3333 case SVM_EXIT_MSR: 3334 if (!kvm_ghcb_rcx_is_valid(svm)) 3335 goto vmgexit_err; 3336 if (control->exit_info_1) { 3337 if (!kvm_ghcb_rax_is_valid(svm) || 3338 !kvm_ghcb_rdx_is_valid(svm)) 3339 goto vmgexit_err; 3340 } 3341 break; 3342 case SVM_EXIT_VMMCALL: 3343 if (!kvm_ghcb_rax_is_valid(svm) || 3344 !kvm_ghcb_cpl_is_valid(svm)) 3345 goto vmgexit_err; 3346 break; 3347 case SVM_EXIT_RDTSCP: 3348 break; 3349 case SVM_EXIT_WBINVD: 3350 break; 3351 case SVM_EXIT_MONITOR: 3352 if (!kvm_ghcb_rax_is_valid(svm) || 3353 !kvm_ghcb_rcx_is_valid(svm) || 3354 !kvm_ghcb_rdx_is_valid(svm)) 3355 goto vmgexit_err; 3356 break; 3357 case SVM_EXIT_MWAIT: 3358 if (!kvm_ghcb_rax_is_valid(svm) || 3359 !kvm_ghcb_rcx_is_valid(svm)) 3360 goto vmgexit_err; 3361 break; 3362 case SVM_VMGEXIT_MMIO_READ: 3363 case SVM_VMGEXIT_MMIO_WRITE: 3364 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3365 goto vmgexit_err; 3366 break; 3367 case SVM_VMGEXIT_AP_CREATION: 3368 if (!sev_snp_guest(vcpu->kvm)) 3369 goto vmgexit_err; 3370 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY) 3371 if (!kvm_ghcb_rax_is_valid(svm)) 3372 goto vmgexit_err; 3373 break; 3374 case SVM_VMGEXIT_NMI_COMPLETE: 3375 case SVM_VMGEXIT_AP_HLT_LOOP: 3376 case SVM_VMGEXIT_AP_JUMP_TABLE: 3377 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 3378 case SVM_VMGEXIT_HV_FEATURES: 3379 case SVM_VMGEXIT_TERM_REQUEST: 3380 break; 3381 case SVM_VMGEXIT_PSC: 3382 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm)) 3383 goto vmgexit_err; 3384 break; 3385 case SVM_VMGEXIT_GUEST_REQUEST: 3386 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 3387 if (!sev_snp_guest(vcpu->kvm) || 3388 !PAGE_ALIGNED(control->exit_info_1) || 3389 !PAGE_ALIGNED(control->exit_info_2) || 3390 control->exit_info_1 == control->exit_info_2) 3391 goto vmgexit_err; 3392 break; 3393 default: 3394 reason = GHCB_ERR_INVALID_EVENT; 3395 goto vmgexit_err; 3396 } 3397 3398 return 0; 3399 3400 vmgexit_err: 3401 if (reason == GHCB_ERR_INVALID_USAGE) { 3402 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 3403 svm->sev_es.ghcb->ghcb_usage); 3404 } else if (reason == GHCB_ERR_INVALID_EVENT) { 3405 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 3406 exit_code); 3407 } else { 3408 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 3409 exit_code); 3410 dump_ghcb(svm); 3411 } 3412 3413 svm_vmgexit_bad_input(svm, reason); 3414 3415 /* Resume the guest to "return" the error code. */ 3416 return 1; 3417 } 3418 3419 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 3420 { 3421 /* Clear any indication that the vCPU is in a type of AP Reset Hold */ 3422 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE; 3423 3424 if (!svm->sev_es.ghcb) 3425 return; 3426 3427 if (svm->sev_es.ghcb_sa_free) { 3428 /* 3429 * The scratch area lives outside the GHCB, so there is a 3430 * buffer that, depending on the operation performed, may 3431 * need to be synced, then freed. 3432 */ 3433 if (svm->sev_es.ghcb_sa_sync) { 3434 kvm_write_guest(svm->vcpu.kvm, 3435 svm->sev_es.sw_scratch, 3436 svm->sev_es.ghcb_sa, 3437 svm->sev_es.ghcb_sa_len); 3438 svm->sev_es.ghcb_sa_sync = false; 3439 } 3440 3441 kvfree(svm->sev_es.ghcb_sa); 3442 svm->sev_es.ghcb_sa = NULL; 3443 svm->sev_es.ghcb_sa_free = false; 3444 } 3445 3446 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 3447 3448 sev_es_sync_to_ghcb(svm); 3449 3450 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map); 3451 svm->sev_es.ghcb = NULL; 3452 } 3453 3454 int pre_sev_run(struct vcpu_svm *svm, int cpu) 3455 { 3456 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 3457 struct kvm *kvm = svm->vcpu.kvm; 3458 unsigned int asid = sev_get_asid(kvm); 3459 3460 /* 3461 * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid 3462 * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP 3463 * AP Destroy event. 3464 */ 3465 if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa)) 3466 return -EINVAL; 3467 3468 /* Assign the asid allocated with this SEV guest */ 3469 svm->asid = asid; 3470 3471 /* 3472 * Flush guest TLB: 3473 * 3474 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 3475 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 3476 */ 3477 if (sd->sev_vmcbs[asid] == svm->vmcb && 3478 svm->vcpu.arch.last_vmentry_cpu == cpu) 3479 return 0; 3480 3481 sd->sev_vmcbs[asid] = svm->vmcb; 3482 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3483 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3484 return 0; 3485 } 3486 3487 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 3488 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 3489 { 3490 struct vmcb_control_area *control = &svm->vmcb->control; 3491 u64 ghcb_scratch_beg, ghcb_scratch_end; 3492 u64 scratch_gpa_beg, scratch_gpa_end; 3493 void *scratch_va; 3494 3495 scratch_gpa_beg = svm->sev_es.sw_scratch; 3496 if (!scratch_gpa_beg) { 3497 pr_err("vmgexit: scratch gpa not provided\n"); 3498 goto e_scratch; 3499 } 3500 3501 scratch_gpa_end = scratch_gpa_beg + len; 3502 if (scratch_gpa_end < scratch_gpa_beg) { 3503 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 3504 len, scratch_gpa_beg); 3505 goto e_scratch; 3506 } 3507 3508 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 3509 /* Scratch area begins within GHCB */ 3510 ghcb_scratch_beg = control->ghcb_gpa + 3511 offsetof(struct ghcb, shared_buffer); 3512 ghcb_scratch_end = control->ghcb_gpa + 3513 offsetof(struct ghcb, reserved_0xff0); 3514 3515 /* 3516 * If the scratch area begins within the GHCB, it must be 3517 * completely contained in the GHCB shared buffer area. 3518 */ 3519 if (scratch_gpa_beg < ghcb_scratch_beg || 3520 scratch_gpa_end > ghcb_scratch_end) { 3521 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 3522 scratch_gpa_beg, scratch_gpa_end); 3523 goto e_scratch; 3524 } 3525 3526 scratch_va = (void *)svm->sev_es.ghcb; 3527 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 3528 } else { 3529 /* 3530 * The guest memory must be read into a kernel buffer, so 3531 * limit the size 3532 */ 3533 if (len > GHCB_SCRATCH_AREA_LIMIT) { 3534 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 3535 len, GHCB_SCRATCH_AREA_LIMIT); 3536 goto e_scratch; 3537 } 3538 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 3539 if (!scratch_va) 3540 return -ENOMEM; 3541 3542 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 3543 /* Unable to copy scratch area from guest */ 3544 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 3545 3546 kvfree(scratch_va); 3547 return -EFAULT; 3548 } 3549 3550 /* 3551 * The scratch area is outside the GHCB. The operation will 3552 * dictate whether the buffer needs to be synced before running 3553 * the vCPU next time (i.e. a read was requested so the data 3554 * must be written back to the guest memory). 3555 */ 3556 svm->sev_es.ghcb_sa_sync = sync; 3557 svm->sev_es.ghcb_sa_free = true; 3558 } 3559 3560 svm->sev_es.ghcb_sa = scratch_va; 3561 svm->sev_es.ghcb_sa_len = len; 3562 3563 return 0; 3564 3565 e_scratch: 3566 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA); 3567 3568 return 1; 3569 } 3570 3571 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 3572 unsigned int pos) 3573 { 3574 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 3575 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 3576 } 3577 3578 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 3579 { 3580 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 3581 } 3582 3583 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 3584 { 3585 svm->vmcb->control.ghcb_gpa = value; 3586 } 3587 3588 static int snp_rmptable_psmash(kvm_pfn_t pfn) 3589 { 3590 int ret; 3591 3592 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1); 3593 3594 /* 3595 * PSMASH_FAIL_INUSE indicates another processor is modifying the 3596 * entry, so retry until that's no longer the case. 3597 */ 3598 do { 3599 ret = psmash(pfn); 3600 } while (ret == PSMASH_FAIL_INUSE); 3601 3602 return ret; 3603 } 3604 3605 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu) 3606 { 3607 struct vcpu_svm *svm = to_svm(vcpu); 3608 3609 if (vcpu->run->hypercall.ret) 3610 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3611 else 3612 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP); 3613 3614 return 1; /* resume guest */ 3615 } 3616 3617 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) 3618 { 3619 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr)); 3620 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr); 3621 struct kvm_vcpu *vcpu = &svm->vcpu; 3622 3623 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) { 3624 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3625 return 1; /* resume guest */ 3626 } 3627 3628 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { 3629 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3630 return 1; /* resume guest */ 3631 } 3632 3633 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3634 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3635 /* 3636 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 3637 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 3638 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 3639 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 3640 */ 3641 vcpu->run->hypercall.ret = 0; 3642 vcpu->run->hypercall.args[0] = gpa; 3643 vcpu->run->hypercall.args[1] = 1; 3644 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) 3645 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3646 : KVM_MAP_GPA_RANGE_DECRYPTED; 3647 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3648 3649 vcpu->arch.complete_userspace_io = snp_complete_psc_msr; 3650 3651 return 0; /* forward request to userspace */ 3652 } 3653 3654 struct psc_buffer { 3655 struct psc_hdr hdr; 3656 struct psc_entry entries[]; 3657 } __packed; 3658 3659 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc); 3660 3661 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret) 3662 { 3663 svm->sev_es.psc_inflight = 0; 3664 svm->sev_es.psc_idx = 0; 3665 svm->sev_es.psc_2m = false; 3666 3667 /* 3668 * PSC requests always get a "no action" response in SW_EXITINFO1, with 3669 * a PSC-specific return code in SW_EXITINFO2 that provides the "real" 3670 * return code. E.g. if the PSC request was interrupted, the need to 3671 * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1. 3672 */ 3673 svm_vmgexit_no_action(svm, psc_ret); 3674 } 3675 3676 static void __snp_complete_one_psc(struct vcpu_svm *svm) 3677 { 3678 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3679 struct psc_entry *entries = psc->entries; 3680 struct psc_hdr *hdr = &psc->hdr; 3681 __u16 idx; 3682 3683 /* 3684 * Everything in-flight has been processed successfully. Update the 3685 * corresponding entries in the guest's PSC buffer and zero out the 3686 * count of in-flight PSC entries. 3687 */ 3688 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight; 3689 svm->sev_es.psc_inflight--, idx++) { 3690 struct psc_entry *entry = &entries[idx]; 3691 3692 entry->cur_page = entry->pagesize ? 512 : 1; 3693 } 3694 3695 hdr->cur_entry = idx; 3696 } 3697 3698 static int snp_complete_one_psc(struct kvm_vcpu *vcpu) 3699 { 3700 struct vcpu_svm *svm = to_svm(vcpu); 3701 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3702 3703 if (vcpu->run->hypercall.ret) { 3704 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3705 return 1; /* resume guest */ 3706 } 3707 3708 __snp_complete_one_psc(svm); 3709 3710 /* Handle the next range (if any). */ 3711 return snp_begin_psc(svm, psc); 3712 } 3713 3714 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) 3715 { 3716 struct psc_entry *entries = psc->entries; 3717 struct kvm_vcpu *vcpu = &svm->vcpu; 3718 struct psc_hdr *hdr = &psc->hdr; 3719 struct psc_entry entry_start; 3720 u16 idx, idx_start, idx_end; 3721 int npages; 3722 bool huge; 3723 u64 gfn; 3724 3725 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { 3726 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3727 return 1; 3728 } 3729 3730 next_range: 3731 /* There should be no other PSCs in-flight at this point. */ 3732 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) { 3733 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3734 return 1; 3735 } 3736 3737 /* 3738 * The PSC descriptor buffer can be modified by a misbehaved guest after 3739 * validation, so take care to only use validated copies of values used 3740 * for things like array indexing. 3741 */ 3742 idx_start = hdr->cur_entry; 3743 idx_end = hdr->end_entry; 3744 3745 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) { 3746 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR); 3747 return 1; 3748 } 3749 3750 /* Find the start of the next range which needs processing. */ 3751 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) { 3752 entry_start = entries[idx]; 3753 3754 gfn = entry_start.gfn; 3755 huge = entry_start.pagesize; 3756 npages = huge ? 512 : 1; 3757 3758 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) { 3759 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY); 3760 return 1; 3761 } 3762 3763 if (entry_start.cur_page) { 3764 /* 3765 * If this is a partially-completed 2M range, force 4K handling 3766 * for the remaining pages since they're effectively split at 3767 * this point. Subsequent code should ensure this doesn't get 3768 * combined with adjacent PSC entries where 2M handling is still 3769 * possible. 3770 */ 3771 npages -= entry_start.cur_page; 3772 gfn += entry_start.cur_page; 3773 huge = false; 3774 } 3775 3776 if (npages) 3777 break; 3778 } 3779 3780 if (idx > idx_end) { 3781 /* Nothing more to process. */ 3782 snp_complete_psc(svm, 0); 3783 return 1; 3784 } 3785 3786 svm->sev_es.psc_2m = huge; 3787 svm->sev_es.psc_idx = idx; 3788 svm->sev_es.psc_inflight = 1; 3789 3790 /* 3791 * Find all subsequent PSC entries that contain adjacent GPA 3792 * ranges/operations and can be combined into a single 3793 * KVM_HC_MAP_GPA_RANGE exit. 3794 */ 3795 while (++idx <= idx_end) { 3796 struct psc_entry entry = entries[idx]; 3797 3798 if (entry.operation != entry_start.operation || 3799 entry.gfn != entry_start.gfn + npages || 3800 entry.cur_page || !!entry.pagesize != huge) 3801 break; 3802 3803 svm->sev_es.psc_inflight++; 3804 npages += huge ? 512 : 1; 3805 } 3806 3807 switch (entry_start.operation) { 3808 case VMGEXIT_PSC_OP_PRIVATE: 3809 case VMGEXIT_PSC_OP_SHARED: 3810 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3811 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3812 /* 3813 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 3814 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 3815 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 3816 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 3817 */ 3818 vcpu->run->hypercall.ret = 0; 3819 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); 3820 vcpu->run->hypercall.args[1] = npages; 3821 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE 3822 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3823 : KVM_MAP_GPA_RANGE_DECRYPTED; 3824 vcpu->run->hypercall.args[2] |= entry_start.pagesize 3825 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M 3826 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3827 vcpu->arch.complete_userspace_io = snp_complete_one_psc; 3828 return 0; /* forward request to userspace */ 3829 default: 3830 /* 3831 * Only shared/private PSC operations are currently supported, so if the 3832 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH), 3833 * then consider the entire range completed and avoid exiting to 3834 * userspace. In theory snp_complete_psc() can always be called directly 3835 * at this point to complete the current range and start the next one, 3836 * but that could lead to unexpected levels of recursion. 3837 */ 3838 __snp_complete_one_psc(svm); 3839 goto next_range; 3840 } 3841 3842 BUG(); 3843 } 3844 3845 /* 3846 * Invoked as part of svm_vcpu_reset() processing of an init event. 3847 */ 3848 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) 3849 { 3850 struct vcpu_svm *svm = to_svm(vcpu); 3851 struct kvm_memory_slot *slot; 3852 struct page *page; 3853 kvm_pfn_t pfn; 3854 gfn_t gfn; 3855 3856 if (!sev_snp_guest(vcpu->kvm)) 3857 return; 3858 3859 guard(mutex)(&svm->sev_es.snp_vmsa_mutex); 3860 3861 if (!svm->sev_es.snp_ap_waiting_for_reset) 3862 return; 3863 3864 svm->sev_es.snp_ap_waiting_for_reset = false; 3865 3866 /* Mark the vCPU as offline and not runnable */ 3867 vcpu->arch.pv.pv_unhalted = false; 3868 kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED); 3869 3870 /* Clear use of the VMSA */ 3871 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 3872 3873 /* 3874 * When replacing the VMSA during SEV-SNP AP creation, 3875 * mark the VMCB dirty so that full state is always reloaded. 3876 */ 3877 vmcb_mark_all_dirty(svm->vmcb); 3878 3879 if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) 3880 return; 3881 3882 gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa); 3883 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3884 3885 slot = gfn_to_memslot(vcpu->kvm, gfn); 3886 if (!slot) 3887 return; 3888 3889 /* 3890 * The new VMSA will be private memory guest memory, so retrieve the 3891 * PFN from the gmem backend. 3892 */ 3893 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL)) 3894 return; 3895 3896 /* 3897 * From this point forward, the VMSA will always be a guest-mapped page 3898 * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In 3899 * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but 3900 * that involves cleanups like wbinvd_on_all_cpus() which would ideally 3901 * be handled during teardown rather than guest boot. Deferring that 3902 * also allows the existing logic for SEV-ES VMSAs to be re-used with 3903 * minimal SNP-specific changes. 3904 */ 3905 svm->sev_es.snp_has_guest_vmsa = true; 3906 3907 /* Use the new VMSA */ 3908 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn); 3909 3910 /* Mark the vCPU as runnable */ 3911 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3912 3913 /* 3914 * gmem pages aren't currently migratable, but if this ever changes 3915 * then care should be taken to ensure svm->sev_es.vmsa is pinned 3916 * through some other means. 3917 */ 3918 kvm_release_page_clean(page); 3919 } 3920 3921 static int sev_snp_ap_creation(struct vcpu_svm *svm) 3922 { 3923 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm); 3924 struct kvm_vcpu *vcpu = &svm->vcpu; 3925 struct kvm_vcpu *target_vcpu; 3926 struct vcpu_svm *target_svm; 3927 unsigned int request; 3928 unsigned int apic_id; 3929 3930 request = lower_32_bits(svm->vmcb->control.exit_info_1); 3931 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1); 3932 3933 /* Validate the APIC ID */ 3934 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id); 3935 if (!target_vcpu) { 3936 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n", 3937 apic_id); 3938 return -EINVAL; 3939 } 3940 3941 target_svm = to_svm(target_vcpu); 3942 3943 guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex); 3944 3945 switch (request) { 3946 case SVM_VMGEXIT_AP_CREATE_ON_INIT: 3947 case SVM_VMGEXIT_AP_CREATE: 3948 if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) { 3949 vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n", 3950 vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features); 3951 return -EINVAL; 3952 } 3953 3954 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) { 3955 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n", 3956 svm->vmcb->control.exit_info_2); 3957 return -EINVAL; 3958 } 3959 3960 /* 3961 * Malicious guest can RMPADJUST a large page into VMSA which 3962 * will hit the SNP erratum where the CPU will incorrectly signal 3963 * an RMP violation #PF if a hugepage collides with the RMP entry 3964 * of VMSA page, reject the AP CREATE request if VMSA address from 3965 * guest is 2M aligned. 3966 */ 3967 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) { 3968 vcpu_unimpl(vcpu, 3969 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n", 3970 svm->vmcb->control.exit_info_2); 3971 return -EINVAL; 3972 } 3973 3974 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; 3975 break; 3976 case SVM_VMGEXIT_AP_DESTROY: 3977 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3978 break; 3979 default: 3980 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", 3981 request); 3982 return -EINVAL; 3983 } 3984 3985 target_svm->sev_es.snp_ap_waiting_for_reset = true; 3986 3987 /* 3988 * Unless Creation is deferred until INIT, signal the vCPU to update 3989 * its state. 3990 */ 3991 if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT) { 3992 kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); 3993 kvm_vcpu_kick(target_vcpu); 3994 } 3995 3996 return 0; 3997 } 3998 3999 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4000 { 4001 struct sev_data_snp_guest_request data = {0}; 4002 struct kvm *kvm = svm->vcpu.kvm; 4003 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4004 sev_ret_code fw_err = 0; 4005 int ret; 4006 4007 if (!sev_snp_guest(kvm)) 4008 return -EINVAL; 4009 4010 mutex_lock(&sev->guest_req_mutex); 4011 4012 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) { 4013 ret = -EIO; 4014 goto out_unlock; 4015 } 4016 4017 data.gctx_paddr = __psp_pa(sev->snp_context); 4018 data.req_paddr = __psp_pa(sev->guest_req_buf); 4019 data.res_paddr = __psp_pa(sev->guest_resp_buf); 4020 4021 /* 4022 * Firmware failures are propagated on to guest, but any other failure 4023 * condition along the way should be reported to userspace. E.g. if 4024 * the PSP is dead and commands are timing out. 4025 */ 4026 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err); 4027 if (ret && !fw_err) 4028 goto out_unlock; 4029 4030 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) { 4031 ret = -EIO; 4032 goto out_unlock; 4033 } 4034 4035 /* No action is requested *from KVM* if there was a firmware error. */ 4036 svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err)); 4037 4038 ret = 1; /* resume guest */ 4039 4040 out_unlock: 4041 mutex_unlock(&sev->guest_req_mutex); 4042 return ret; 4043 } 4044 4045 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4046 { 4047 struct kvm *kvm = svm->vcpu.kvm; 4048 u8 msg_type; 4049 4050 if (!sev_snp_guest(kvm)) 4051 return -EINVAL; 4052 4053 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type), 4054 &msg_type, 1)) 4055 return -EIO; 4056 4057 /* 4058 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for 4059 * additional certificate data to be provided alongside the attestation 4060 * report via the guest-provided data pages indicated by RAX/RBX. The 4061 * certificate data is optional and requires additional KVM enablement 4062 * to provide an interface for userspace to provide it, but KVM still 4063 * needs to be able to handle extended guest requests either way. So 4064 * provide a stub implementation that will always return an empty 4065 * certificate table in the guest-provided data pages. 4066 */ 4067 if (msg_type == SNP_MSG_REPORT_REQ) { 4068 struct kvm_vcpu *vcpu = &svm->vcpu; 4069 u64 data_npages; 4070 gpa_t data_gpa; 4071 4072 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm)) 4073 goto request_invalid; 4074 4075 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX]; 4076 data_npages = vcpu->arch.regs[VCPU_REGS_RBX]; 4077 4078 if (!PAGE_ALIGNED(data_gpa)) 4079 goto request_invalid; 4080 4081 /* 4082 * As per GHCB spec (see "SNP Extended Guest Request"), the 4083 * certificate table is terminated by 24-bytes of zeroes. 4084 */ 4085 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24)) 4086 return -EIO; 4087 } 4088 4089 return snp_handle_guest_req(svm, req_gpa, resp_gpa); 4090 4091 request_invalid: 4092 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4093 return 1; /* resume guest */ 4094 } 4095 4096 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 4097 { 4098 struct vmcb_control_area *control = &svm->vmcb->control; 4099 struct kvm_vcpu *vcpu = &svm->vcpu; 4100 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4101 u64 ghcb_info; 4102 int ret = 1; 4103 4104 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 4105 4106 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 4107 control->ghcb_gpa); 4108 4109 switch (ghcb_info) { 4110 case GHCB_MSR_SEV_INFO_REQ: 4111 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4112 GHCB_VERSION_MIN, 4113 sev_enc_bit)); 4114 break; 4115 case GHCB_MSR_CPUID_REQ: { 4116 u64 cpuid_fn, cpuid_reg, cpuid_value; 4117 4118 cpuid_fn = get_ghcb_msr_bits(svm, 4119 GHCB_MSR_CPUID_FUNC_MASK, 4120 GHCB_MSR_CPUID_FUNC_POS); 4121 4122 /* Initialize the registers needed by the CPUID intercept */ 4123 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 4124 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 4125 4126 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 4127 if (!ret) { 4128 /* Error, keep GHCB MSR value as-is */ 4129 break; 4130 } 4131 4132 cpuid_reg = get_ghcb_msr_bits(svm, 4133 GHCB_MSR_CPUID_REG_MASK, 4134 GHCB_MSR_CPUID_REG_POS); 4135 if (cpuid_reg == 0) 4136 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 4137 else if (cpuid_reg == 1) 4138 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 4139 else if (cpuid_reg == 2) 4140 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 4141 else 4142 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 4143 4144 set_ghcb_msr_bits(svm, cpuid_value, 4145 GHCB_MSR_CPUID_VALUE_MASK, 4146 GHCB_MSR_CPUID_VALUE_POS); 4147 4148 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 4149 GHCB_MSR_INFO_MASK, 4150 GHCB_MSR_INFO_POS); 4151 break; 4152 } 4153 case GHCB_MSR_AP_RESET_HOLD_REQ: 4154 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO; 4155 ret = kvm_emulate_ap_reset_hold(&svm->vcpu); 4156 4157 /* 4158 * Preset the result to a non-SIPI return and then only set 4159 * the result to non-zero when delivering a SIPI. 4160 */ 4161 set_ghcb_msr_bits(svm, 0, 4162 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4163 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4164 4165 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4166 GHCB_MSR_INFO_MASK, 4167 GHCB_MSR_INFO_POS); 4168 break; 4169 case GHCB_MSR_HV_FT_REQ: 4170 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED, 4171 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS); 4172 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP, 4173 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); 4174 break; 4175 case GHCB_MSR_PREF_GPA_REQ: 4176 if (!sev_snp_guest(vcpu->kvm)) 4177 goto out_terminate; 4178 4179 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK, 4180 GHCB_MSR_GPA_VALUE_POS); 4181 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK, 4182 GHCB_MSR_INFO_POS); 4183 break; 4184 case GHCB_MSR_REG_GPA_REQ: { 4185 u64 gfn; 4186 4187 if (!sev_snp_guest(vcpu->kvm)) 4188 goto out_terminate; 4189 4190 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK, 4191 GHCB_MSR_GPA_VALUE_POS); 4192 4193 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn); 4194 4195 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK, 4196 GHCB_MSR_GPA_VALUE_POS); 4197 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK, 4198 GHCB_MSR_INFO_POS); 4199 break; 4200 } 4201 case GHCB_MSR_PSC_REQ: 4202 if (!sev_snp_guest(vcpu->kvm)) 4203 goto out_terminate; 4204 4205 ret = snp_begin_psc_msr(svm, control->ghcb_gpa); 4206 break; 4207 case GHCB_MSR_TERM_REQ: { 4208 u64 reason_set, reason_code; 4209 4210 reason_set = get_ghcb_msr_bits(svm, 4211 GHCB_MSR_TERM_REASON_SET_MASK, 4212 GHCB_MSR_TERM_REASON_SET_POS); 4213 reason_code = get_ghcb_msr_bits(svm, 4214 GHCB_MSR_TERM_REASON_MASK, 4215 GHCB_MSR_TERM_REASON_POS); 4216 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 4217 reason_set, reason_code); 4218 4219 goto out_terminate; 4220 } 4221 default: 4222 /* Error, keep GHCB MSR value as-is */ 4223 break; 4224 } 4225 4226 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 4227 control->ghcb_gpa, ret); 4228 4229 return ret; 4230 4231 out_terminate: 4232 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4233 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4234 vcpu->run->system_event.ndata = 1; 4235 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4236 4237 return 0; 4238 } 4239 4240 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 4241 { 4242 struct vcpu_svm *svm = to_svm(vcpu); 4243 struct vmcb_control_area *control = &svm->vmcb->control; 4244 u64 ghcb_gpa, exit_code; 4245 int ret; 4246 4247 /* Validate the GHCB */ 4248 ghcb_gpa = control->ghcb_gpa; 4249 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 4250 return sev_handle_vmgexit_msr_protocol(svm); 4251 4252 if (!ghcb_gpa) { 4253 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 4254 4255 /* Without a GHCB, just return right back to the guest */ 4256 return 1; 4257 } 4258 4259 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 4260 /* Unable to map GHCB from guest */ 4261 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 4262 ghcb_gpa); 4263 4264 /* Without a GHCB, just return right back to the guest */ 4265 return 1; 4266 } 4267 4268 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 4269 4270 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 4271 4272 sev_es_sync_from_ghcb(svm); 4273 4274 /* SEV-SNP guest requires that the GHCB GPA must be registered */ 4275 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) { 4276 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa); 4277 return -EINVAL; 4278 } 4279 4280 ret = sev_es_validate_vmgexit(svm); 4281 if (ret) 4282 return ret; 4283 4284 svm_vmgexit_success(svm, 0); 4285 4286 exit_code = kvm_ghcb_get_sw_exit_code(control); 4287 switch (exit_code) { 4288 case SVM_VMGEXIT_MMIO_READ: 4289 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4290 if (ret) 4291 break; 4292 4293 ret = kvm_sev_es_mmio_read(vcpu, 4294 control->exit_info_1, 4295 control->exit_info_2, 4296 svm->sev_es.ghcb_sa); 4297 break; 4298 case SVM_VMGEXIT_MMIO_WRITE: 4299 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 4300 if (ret) 4301 break; 4302 4303 ret = kvm_sev_es_mmio_write(vcpu, 4304 control->exit_info_1, 4305 control->exit_info_2, 4306 svm->sev_es.ghcb_sa); 4307 break; 4308 case SVM_VMGEXIT_NMI_COMPLETE: 4309 ++vcpu->stat.nmi_window_exits; 4310 svm->nmi_masked = false; 4311 kvm_make_request(KVM_REQ_EVENT, vcpu); 4312 ret = 1; 4313 break; 4314 case SVM_VMGEXIT_AP_HLT_LOOP: 4315 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT; 4316 ret = kvm_emulate_ap_reset_hold(vcpu); 4317 break; 4318 case SVM_VMGEXIT_AP_JUMP_TABLE: { 4319 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4320 4321 switch (control->exit_info_1) { 4322 case 0: 4323 /* Set AP jump table address */ 4324 sev->ap_jump_table = control->exit_info_2; 4325 break; 4326 case 1: 4327 /* Get AP jump table address */ 4328 svm_vmgexit_success(svm, sev->ap_jump_table); 4329 break; 4330 default: 4331 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 4332 control->exit_info_1); 4333 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4334 } 4335 4336 ret = 1; 4337 break; 4338 } 4339 case SVM_VMGEXIT_HV_FEATURES: 4340 svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED); 4341 ret = 1; 4342 break; 4343 case SVM_VMGEXIT_TERM_REQUEST: 4344 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n", 4345 control->exit_info_1, control->exit_info_2); 4346 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4347 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4348 vcpu->run->system_event.ndata = 1; 4349 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4350 break; 4351 case SVM_VMGEXIT_PSC: 4352 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4353 if (ret) 4354 break; 4355 4356 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa); 4357 break; 4358 case SVM_VMGEXIT_AP_CREATION: 4359 ret = sev_snp_ap_creation(svm); 4360 if (ret) { 4361 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4362 } 4363 4364 ret = 1; 4365 break; 4366 case SVM_VMGEXIT_GUEST_REQUEST: 4367 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2); 4368 break; 4369 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 4370 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2); 4371 break; 4372 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 4373 vcpu_unimpl(vcpu, 4374 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 4375 control->exit_info_1, control->exit_info_2); 4376 ret = -EINVAL; 4377 break; 4378 default: 4379 ret = svm_invoke_exit_handler(vcpu, exit_code); 4380 } 4381 4382 return ret; 4383 } 4384 4385 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 4386 { 4387 int count; 4388 int bytes; 4389 int r; 4390 4391 if (svm->vmcb->control.exit_info_2 > INT_MAX) 4392 return -EINVAL; 4393 4394 count = svm->vmcb->control.exit_info_2; 4395 if (unlikely(check_mul_overflow(count, size, &bytes))) 4396 return -EINVAL; 4397 4398 r = setup_vmgexit_scratch(svm, in, bytes); 4399 if (r) 4400 return r; 4401 4402 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 4403 count, in); 4404 } 4405 4406 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4407 { 4408 struct kvm_vcpu *vcpu = &svm->vcpu; 4409 4410 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 4411 bool v_tsc_aux = guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) || 4412 guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID); 4413 4414 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); 4415 } 4416 4417 /* 4418 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if 4419 * the host/guest supports its use. 4420 * 4421 * KVM treats the guest as being capable of using XSAVES even if XSAVES 4422 * isn't enabled in guest CPUID as there is no intercept for XSAVES, 4423 * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is 4424 * exposed to the guest and XSAVES is supported in hardware. Condition 4425 * full XSS passthrough on the guest being able to use XSAVES *and* 4426 * XSAVES being exposed to the guest so that KVM can at least honor 4427 * guest CPUID for RDMSR and WRMSR. 4428 */ 4429 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 4430 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4431 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); 4432 else 4433 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0); 4434 } 4435 4436 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4437 { 4438 struct kvm_vcpu *vcpu = &svm->vcpu; 4439 struct kvm_cpuid_entry2 *best; 4440 4441 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4442 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4443 if (best) 4444 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4445 4446 if (sev_es_guest(svm->vcpu.kvm)) 4447 sev_es_vcpu_after_set_cpuid(svm); 4448 } 4449 4450 static void sev_es_init_vmcb(struct vcpu_svm *svm) 4451 { 4452 struct vmcb *vmcb = svm->vmcb01.ptr; 4453 struct kvm_vcpu *vcpu = &svm->vcpu; 4454 4455 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 4456 4457 /* 4458 * An SEV-ES guest requires a VMSA area that is a separate from the 4459 * VMCB page. Do not include the encryption mask on the VMSA physical 4460 * address since hardware will access it using the guest key. Note, 4461 * the VMSA will be NULL if this vCPU is the destination for intrahost 4462 * migration, and will be copied later. 4463 */ 4464 if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa) 4465 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 4466 4467 /* Can't intercept CR register access, HV can't modify CR registers */ 4468 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 4469 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 4470 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 4471 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 4472 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 4473 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 4474 4475 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 4476 4477 /* Track EFER/CR register changes */ 4478 svm_set_intercept(svm, TRAP_EFER_WRITE); 4479 svm_set_intercept(svm, TRAP_CR0_WRITE); 4480 svm_set_intercept(svm, TRAP_CR4_WRITE); 4481 svm_set_intercept(svm, TRAP_CR8_WRITE); 4482 4483 vmcb->control.intercepts[INTERCEPT_DR] = 0; 4484 if (!sev_vcpu_has_debug_swap(svm)) { 4485 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 4486 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 4487 recalc_intercepts(svm); 4488 } else { 4489 /* 4490 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 4491 * allow debugging SEV-ES guests, and enables DebugSwap iff 4492 * NO_NESTED_DATA_BP is supported, so there's no reason to 4493 * intercept #DB when DebugSwap is enabled. For simplicity 4494 * with respect to guest debug, intercept #DB for other VMs 4495 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 4496 * guest can't DoS the CPU with infinite #DB vectoring. 4497 */ 4498 clr_exception_intercept(svm, DB_VECTOR); 4499 } 4500 4501 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 4502 svm_clr_intercept(svm, INTERCEPT_XSETBV); 4503 4504 /* Clear intercepts on selected MSRs */ 4505 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 4506 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 4507 } 4508 4509 void sev_init_vmcb(struct vcpu_svm *svm) 4510 { 4511 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 4512 clr_exception_intercept(svm, UD_VECTOR); 4513 4514 /* 4515 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 4516 * KVM can't decrypt guest memory to decode the faulting instruction. 4517 */ 4518 clr_exception_intercept(svm, GP_VECTOR); 4519 4520 if (sev_es_guest(svm->vcpu.kvm)) 4521 sev_es_init_vmcb(svm); 4522 } 4523 4524 void sev_es_vcpu_reset(struct vcpu_svm *svm) 4525 { 4526 struct kvm_vcpu *vcpu = &svm->vcpu; 4527 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4528 4529 /* 4530 * Set the GHCB MSR value as per the GHCB specification when emulating 4531 * vCPU RESET for an SEV-ES guest. 4532 */ 4533 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4534 GHCB_VERSION_MIN, 4535 sev_enc_bit)); 4536 4537 mutex_init(&svm->sev_es.snp_vmsa_mutex); 4538 } 4539 4540 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa) 4541 { 4542 struct kvm *kvm = svm->vcpu.kvm; 4543 4544 /* 4545 * All host state for SEV-ES guests is categorized into three swap types 4546 * based on how it is handled by hardware during a world switch: 4547 * 4548 * A: VMRUN: Host state saved in host save area 4549 * VMEXIT: Host state loaded from host save area 4550 * 4551 * B: VMRUN: Host state _NOT_ saved in host save area 4552 * VMEXIT: Host state loaded from host save area 4553 * 4554 * C: VMRUN: Host state _NOT_ saved in host save area 4555 * VMEXIT: Host state initialized to default(reset) values 4556 * 4557 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 4558 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 4559 * by common SVM code). 4560 */ 4561 hostsa->xcr0 = kvm_host.xcr0; 4562 hostsa->pkru = read_pkru(); 4563 hostsa->xss = kvm_host.xss; 4564 4565 /* 4566 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 4567 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does 4568 * not save or load debug registers. Sadly, KVM can't prevent SNP 4569 * guests from lying about DebugSwap on secondary vCPUs, i.e. the 4570 * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what 4571 * the guest has actually enabled (or not!) in the VMSA. 4572 * 4573 * If DebugSwap is *possible*, save the masks so that they're restored 4574 * if the guest enables DebugSwap. But for the DRs themselves, do NOT 4575 * rely on the CPU to restore the host values; KVM will restore them as 4576 * needed in common code, via hw_breakpoint_restore(). Note, KVM does 4577 * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs 4578 * don't need to be restored per se, KVM just needs to ensure they are 4579 * loaded with the correct values *if* the CPU writes the MSRs. 4580 */ 4581 if (sev_vcpu_has_debug_swap(svm) || 4582 (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) { 4583 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 4584 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 4585 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 4586 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 4587 } 4588 } 4589 4590 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4591 { 4592 struct vcpu_svm *svm = to_svm(vcpu); 4593 4594 /* First SIPI: Use the values as initially set by the VMM */ 4595 if (!svm->sev_es.received_first_sipi) { 4596 svm->sev_es.received_first_sipi = true; 4597 return; 4598 } 4599 4600 /* Subsequent SIPI */ 4601 switch (svm->sev_es.ap_reset_hold_type) { 4602 case AP_RESET_HOLD_NAE_EVENT: 4603 /* 4604 * Return from an AP Reset Hold VMGEXIT, where the guest will 4605 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value. 4606 */ 4607 svm_vmgexit_success(svm, 1); 4608 break; 4609 case AP_RESET_HOLD_MSR_PROTO: 4610 /* 4611 * Return from an AP Reset Hold VMGEXIT, where the guest will 4612 * set the CS and RIP. Set GHCB data field to a non-zero value. 4613 */ 4614 set_ghcb_msr_bits(svm, 1, 4615 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4616 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4617 4618 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4619 GHCB_MSR_INFO_MASK, 4620 GHCB_MSR_INFO_POS); 4621 break; 4622 default: 4623 break; 4624 } 4625 } 4626 4627 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) 4628 { 4629 unsigned long pfn; 4630 struct page *p; 4631 4632 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4633 return alloc_pages_node(node, gfp | __GFP_ZERO, 0); 4634 4635 /* 4636 * Allocate an SNP-safe page to workaround the SNP erratum where 4637 * the CPU will incorrectly signal an RMP violation #PF if a 4638 * hugepage (2MB or 1GB) collides with the RMP entry of a 4639 * 2MB-aligned VMCB, VMSA, or AVIC backing page. 4640 * 4641 * Allocate one extra page, choose a page which is not 4642 * 2MB-aligned, and free the other. 4643 */ 4644 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1); 4645 if (!p) 4646 return NULL; 4647 4648 split_page(p, 1); 4649 4650 pfn = page_to_pfn(p); 4651 if (IS_ALIGNED(pfn, PTRS_PER_PMD)) 4652 __free_page(p++); 4653 else 4654 __free_page(p + 1); 4655 4656 return p; 4657 } 4658 4659 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) 4660 { 4661 struct kvm_memory_slot *slot; 4662 struct kvm *kvm = vcpu->kvm; 4663 int order, rmp_level, ret; 4664 struct page *page; 4665 bool assigned; 4666 kvm_pfn_t pfn; 4667 gfn_t gfn; 4668 4669 gfn = gpa >> PAGE_SHIFT; 4670 4671 /* 4672 * The only time RMP faults occur for shared pages is when the guest is 4673 * triggering an RMP fault for an implicit page-state change from 4674 * shared->private. Implicit page-state changes are forwarded to 4675 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults 4676 * for shared pages should not end up here. 4677 */ 4678 if (!kvm_mem_is_private(kvm, gfn)) { 4679 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n", 4680 gpa); 4681 return; 4682 } 4683 4684 slot = gfn_to_memslot(kvm, gfn); 4685 if (!kvm_slot_can_be_private(slot)) { 4686 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n", 4687 gpa); 4688 return; 4689 } 4690 4691 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order); 4692 if (ret) { 4693 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n", 4694 gpa); 4695 return; 4696 } 4697 4698 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4699 if (ret || !assigned) { 4700 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n", 4701 gpa, pfn, ret); 4702 goto out_no_trace; 4703 } 4704 4705 /* 4706 * There are 2 cases where a PSMASH may be needed to resolve an #NPF 4707 * with PFERR_GUEST_RMP_BIT set: 4708 * 4709 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM 4710 * bit set if the guest issues them with a smaller granularity than 4711 * what is indicated by the page-size bit in the 2MB RMP entry for 4712 * the PFN that backs the GPA. 4713 * 4714 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is 4715 * smaller than what is indicated by the 2MB RMP entry for the PFN 4716 * that backs the GPA. 4717 * 4718 * In both these cases, the corresponding 2M RMP entry needs to 4719 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already 4720 * split into 4K RMP entries, then this is likely a spurious case which 4721 * can occur when there are concurrent accesses by the guest to a 2MB 4722 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in 4723 * the process of being PMASH'd into 4K entries. These cases should 4724 * resolve automatically on subsequent accesses, so just ignore them 4725 * here. 4726 */ 4727 if (rmp_level == PG_LEVEL_4K) 4728 goto out; 4729 4730 ret = snp_rmptable_psmash(pfn); 4731 if (ret) { 4732 /* 4733 * Look it up again. If it's 4K now then the PSMASH may have 4734 * raced with another process and the issue has already resolved 4735 * itself. 4736 */ 4737 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) && 4738 assigned && rmp_level == PG_LEVEL_4K) 4739 goto out; 4740 4741 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n", 4742 gpa, pfn, ret); 4743 } 4744 4745 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD); 4746 out: 4747 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret); 4748 out_no_trace: 4749 kvm_release_page_unused(page); 4750 } 4751 4752 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end) 4753 { 4754 kvm_pfn_t pfn = start; 4755 4756 while (pfn < end) { 4757 int ret, rmp_level; 4758 bool assigned; 4759 4760 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4761 if (ret) { 4762 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n", 4763 pfn, start, end, rmp_level, ret); 4764 return false; 4765 } 4766 4767 if (assigned) { 4768 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n", 4769 __func__, pfn, start, end, rmp_level); 4770 return false; 4771 } 4772 4773 pfn++; 4774 } 4775 4776 return true; 4777 } 4778 4779 static u8 max_level_for_order(int order) 4780 { 4781 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4782 return PG_LEVEL_2M; 4783 4784 return PG_LEVEL_4K; 4785 } 4786 4787 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order) 4788 { 4789 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4790 4791 /* 4792 * If this is a large folio, and the entire 2M range containing the 4793 * PFN is currently shared, then the entire 2M-aligned range can be 4794 * set to private via a single 2M RMP entry. 4795 */ 4796 if (max_level_for_order(order) > PG_LEVEL_4K && 4797 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD)) 4798 return true; 4799 4800 return false; 4801 } 4802 4803 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) 4804 { 4805 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4806 kvm_pfn_t pfn_aligned; 4807 gfn_t gfn_aligned; 4808 int level, rc; 4809 bool assigned; 4810 4811 if (!sev_snp_guest(kvm)) 4812 return 0; 4813 4814 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4815 if (rc) { 4816 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n", 4817 gfn, pfn, rc); 4818 return -ENOENT; 4819 } 4820 4821 if (assigned) { 4822 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n", 4823 __func__, gfn, pfn, max_order, level); 4824 return 0; 4825 } 4826 4827 if (is_large_rmp_possible(kvm, pfn, max_order)) { 4828 level = PG_LEVEL_2M; 4829 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4830 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD); 4831 } else { 4832 level = PG_LEVEL_4K; 4833 pfn_aligned = pfn; 4834 gfn_aligned = gfn; 4835 } 4836 4837 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false); 4838 if (rc) { 4839 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n", 4840 gfn, pfn, level, rc); 4841 return -EINVAL; 4842 } 4843 4844 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n", 4845 __func__, gfn, pfn, pfn_aligned, max_order, level); 4846 4847 return 0; 4848 } 4849 4850 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 4851 { 4852 kvm_pfn_t pfn; 4853 4854 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4855 return; 4856 4857 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end); 4858 4859 for (pfn = start; pfn < end;) { 4860 bool use_2m_update = false; 4861 int rc, rmp_level; 4862 bool assigned; 4863 4864 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4865 if (rc || !assigned) 4866 goto next_pfn; 4867 4868 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) && 4869 end >= (pfn + PTRS_PER_PMD) && 4870 rmp_level > PG_LEVEL_4K; 4871 4872 /* 4873 * If an unaligned PFN corresponds to a 2M region assigned as a 4874 * large page in the RMP table, PSMASH the region into individual 4875 * 4K RMP entries before attempting to convert a 4K sub-page. 4876 */ 4877 if (!use_2m_update && rmp_level > PG_LEVEL_4K) { 4878 /* 4879 * This shouldn't fail, but if it does, report it, but 4880 * still try to update RMP entry to shared and pray this 4881 * was a spurious error that can be addressed later. 4882 */ 4883 rc = snp_rmptable_psmash(pfn); 4884 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n", 4885 pfn, rc); 4886 } 4887 4888 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K); 4889 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n", 4890 pfn, rc)) 4891 goto next_pfn; 4892 4893 /* 4894 * SEV-ES avoids host/guest cache coherency issues through 4895 * WBINVD hooks issued via MMU notifiers during run-time, and 4896 * KVM's VM destroy path at shutdown. Those MMU notifier events 4897 * don't cover gmem since there is no requirement to map pages 4898 * to a HVA in order to use them for a running guest. While the 4899 * shutdown path would still likely cover things for SNP guests, 4900 * userspace may also free gmem pages during run-time via 4901 * hole-punching operations on the guest_memfd, so flush the 4902 * cache entries for these pages before free'ing them back to 4903 * the host. 4904 */ 4905 clflush_cache_range(__va(pfn_to_hpa(pfn)), 4906 use_2m_update ? PMD_SIZE : PAGE_SIZE); 4907 next_pfn: 4908 pfn += use_2m_update ? PTRS_PER_PMD : 1; 4909 cond_resched(); 4910 } 4911 } 4912 4913 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn) 4914 { 4915 int level, rc; 4916 bool assigned; 4917 4918 if (!sev_snp_guest(kvm)) 4919 return 0; 4920 4921 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4922 if (rc || !assigned) 4923 return PG_LEVEL_4K; 4924 4925 return level; 4926 } 4927