1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 23 #include <asm/pkru.h> 24 #include <asm/trapnr.h> 25 #include <asm/fpu/xcr.h> 26 #include <asm/debugreg.h> 27 28 #include "mmu.h" 29 #include "x86.h" 30 #include "svm.h" 31 #include "svm_ops.h" 32 #include "cpuid.h" 33 #include "trace.h" 34 35 #ifndef CONFIG_KVM_AMD_SEV 36 /* 37 * When this config is not defined, SEV feature is not supported and APIs in 38 * this file are not used but this file still gets compiled into the KVM AMD 39 * module. 40 * 41 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 42 * misc_res_type {} defined in linux/misc_cgroup.h. 43 * 44 * Below macros allow compilation to succeed. 45 */ 46 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 47 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 48 #endif 49 50 #ifdef CONFIG_KVM_AMD_SEV 51 /* enable/disable SEV support */ 52 static bool sev_enabled = true; 53 module_param_named(sev, sev_enabled, bool, 0444); 54 55 /* enable/disable SEV-ES support */ 56 static bool sev_es_enabled = true; 57 module_param_named(sev_es, sev_es_enabled, bool, 0444); 58 59 /* enable/disable SEV-ES DebugSwap support */ 60 static bool sev_es_debug_swap_enabled = false; 61 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 62 #else 63 #define sev_enabled false 64 #define sev_es_enabled false 65 #define sev_es_debug_swap_enabled false 66 #endif /* CONFIG_KVM_AMD_SEV */ 67 68 static u8 sev_enc_bit; 69 static DECLARE_RWSEM(sev_deactivate_lock); 70 static DEFINE_MUTEX(sev_bitmap_lock); 71 unsigned int max_sev_asid; 72 static unsigned int min_sev_asid; 73 static unsigned long sev_me_mask; 74 static unsigned int nr_asids; 75 static unsigned long *sev_asid_bitmap; 76 static unsigned long *sev_reclaim_asid_bitmap; 77 78 struct enc_region { 79 struct list_head list; 80 unsigned long npages; 81 struct page **pages; 82 unsigned long uaddr; 83 unsigned long size; 84 }; 85 86 /* Called with the sev_bitmap_lock held, or on shutdown */ 87 static int sev_flush_asids(int min_asid, int max_asid) 88 { 89 int ret, asid, error = 0; 90 91 /* Check if there are any ASIDs to reclaim before performing a flush */ 92 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 93 if (asid > max_asid) 94 return -EBUSY; 95 96 /* 97 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 98 * so it must be guarded. 99 */ 100 down_write(&sev_deactivate_lock); 101 102 wbinvd_on_all_cpus(); 103 ret = sev_guest_df_flush(&error); 104 105 up_write(&sev_deactivate_lock); 106 107 if (ret) 108 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 109 110 return ret; 111 } 112 113 static inline bool is_mirroring_enc_context(struct kvm *kvm) 114 { 115 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 116 } 117 118 /* Must be called with the sev_bitmap_lock held */ 119 static bool __sev_recycle_asids(int min_asid, int max_asid) 120 { 121 if (sev_flush_asids(min_asid, max_asid)) 122 return false; 123 124 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 125 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 126 nr_asids); 127 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 128 129 return true; 130 } 131 132 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 133 { 134 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 135 return misc_cg_try_charge(type, sev->misc_cg, 1); 136 } 137 138 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 139 { 140 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 141 misc_cg_uncharge(type, sev->misc_cg, 1); 142 } 143 144 static int sev_asid_new(struct kvm_sev_info *sev) 145 { 146 int asid, min_asid, max_asid, ret; 147 bool retry = true; 148 149 WARN_ON(sev->misc_cg); 150 sev->misc_cg = get_current_misc_cg(); 151 ret = sev_misc_cg_try_charge(sev); 152 if (ret) { 153 put_misc_cg(sev->misc_cg); 154 sev->misc_cg = NULL; 155 return ret; 156 } 157 158 mutex_lock(&sev_bitmap_lock); 159 160 /* 161 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 162 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 163 */ 164 min_asid = sev->es_active ? 1 : min_sev_asid; 165 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 166 again: 167 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 168 if (asid > max_asid) { 169 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 170 retry = false; 171 goto again; 172 } 173 mutex_unlock(&sev_bitmap_lock); 174 ret = -EBUSY; 175 goto e_uncharge; 176 } 177 178 __set_bit(asid, sev_asid_bitmap); 179 180 mutex_unlock(&sev_bitmap_lock); 181 182 return asid; 183 e_uncharge: 184 sev_misc_cg_uncharge(sev); 185 put_misc_cg(sev->misc_cg); 186 sev->misc_cg = NULL; 187 return ret; 188 } 189 190 static int sev_get_asid(struct kvm *kvm) 191 { 192 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 193 194 return sev->asid; 195 } 196 197 static void sev_asid_free(struct kvm_sev_info *sev) 198 { 199 struct svm_cpu_data *sd; 200 int cpu; 201 202 mutex_lock(&sev_bitmap_lock); 203 204 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 205 206 for_each_possible_cpu(cpu) { 207 sd = per_cpu_ptr(&svm_data, cpu); 208 sd->sev_vmcbs[sev->asid] = NULL; 209 } 210 211 mutex_unlock(&sev_bitmap_lock); 212 213 sev_misc_cg_uncharge(sev); 214 put_misc_cg(sev->misc_cg); 215 sev->misc_cg = NULL; 216 } 217 218 static void sev_decommission(unsigned int handle) 219 { 220 struct sev_data_decommission decommission; 221 222 if (!handle) 223 return; 224 225 decommission.handle = handle; 226 sev_guest_decommission(&decommission, NULL); 227 } 228 229 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 230 { 231 struct sev_data_deactivate deactivate; 232 233 if (!handle) 234 return; 235 236 deactivate.handle = handle; 237 238 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 239 down_read(&sev_deactivate_lock); 240 sev_guest_deactivate(&deactivate, NULL); 241 up_read(&sev_deactivate_lock); 242 243 sev_decommission(handle); 244 } 245 246 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 247 { 248 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 249 struct sev_platform_init_args init_args = {0}; 250 int asid, ret; 251 252 if (kvm->created_vcpus) 253 return -EINVAL; 254 255 ret = -EBUSY; 256 if (unlikely(sev->active)) 257 return ret; 258 259 sev->active = true; 260 sev->es_active = argp->id == KVM_SEV_ES_INIT; 261 asid = sev_asid_new(sev); 262 if (asid < 0) 263 goto e_no_asid; 264 sev->asid = asid; 265 266 init_args.probe = false; 267 ret = sev_platform_init(&init_args); 268 if (ret) 269 goto e_free; 270 271 INIT_LIST_HEAD(&sev->regions_list); 272 INIT_LIST_HEAD(&sev->mirror_vms); 273 274 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 275 276 return 0; 277 278 e_free: 279 argp->error = init_args.error; 280 sev_asid_free(sev); 281 sev->asid = 0; 282 e_no_asid: 283 sev->es_active = false; 284 sev->active = false; 285 return ret; 286 } 287 288 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 289 { 290 struct sev_data_activate activate; 291 int asid = sev_get_asid(kvm); 292 int ret; 293 294 /* activate ASID on the given handle */ 295 activate.handle = handle; 296 activate.asid = asid; 297 ret = sev_guest_activate(&activate, error); 298 299 return ret; 300 } 301 302 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 303 { 304 struct fd f; 305 int ret; 306 307 f = fdget(fd); 308 if (!f.file) 309 return -EBADF; 310 311 ret = sev_issue_cmd_external_user(f.file, id, data, error); 312 313 fdput(f); 314 return ret; 315 } 316 317 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 318 { 319 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 320 321 return __sev_issue_cmd(sev->fd, id, data, error); 322 } 323 324 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 325 { 326 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 327 struct sev_data_launch_start start; 328 struct kvm_sev_launch_start params; 329 void *dh_blob, *session_blob; 330 int *error = &argp->error; 331 int ret; 332 333 if (!sev_guest(kvm)) 334 return -ENOTTY; 335 336 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 337 return -EFAULT; 338 339 memset(&start, 0, sizeof(start)); 340 341 dh_blob = NULL; 342 if (params.dh_uaddr) { 343 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 344 if (IS_ERR(dh_blob)) 345 return PTR_ERR(dh_blob); 346 347 start.dh_cert_address = __sme_set(__pa(dh_blob)); 348 start.dh_cert_len = params.dh_len; 349 } 350 351 session_blob = NULL; 352 if (params.session_uaddr) { 353 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 354 if (IS_ERR(session_blob)) { 355 ret = PTR_ERR(session_blob); 356 goto e_free_dh; 357 } 358 359 start.session_address = __sme_set(__pa(session_blob)); 360 start.session_len = params.session_len; 361 } 362 363 start.handle = params.handle; 364 start.policy = params.policy; 365 366 /* create memory encryption context */ 367 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 368 if (ret) 369 goto e_free_session; 370 371 /* Bind ASID to this guest */ 372 ret = sev_bind_asid(kvm, start.handle, error); 373 if (ret) { 374 sev_decommission(start.handle); 375 goto e_free_session; 376 } 377 378 /* return handle to userspace */ 379 params.handle = start.handle; 380 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 381 sev_unbind_asid(kvm, start.handle); 382 ret = -EFAULT; 383 goto e_free_session; 384 } 385 386 sev->handle = start.handle; 387 sev->fd = argp->sev_fd; 388 389 e_free_session: 390 kfree(session_blob); 391 e_free_dh: 392 kfree(dh_blob); 393 return ret; 394 } 395 396 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 397 unsigned long ulen, unsigned long *n, 398 int write) 399 { 400 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 401 unsigned long npages, size; 402 int npinned; 403 unsigned long locked, lock_limit; 404 struct page **pages; 405 unsigned long first, last; 406 int ret; 407 408 lockdep_assert_held(&kvm->lock); 409 410 if (ulen == 0 || uaddr + ulen < uaddr) 411 return ERR_PTR(-EINVAL); 412 413 /* Calculate number of pages. */ 414 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 415 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 416 npages = (last - first + 1); 417 418 locked = sev->pages_locked + npages; 419 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 420 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 421 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 422 return ERR_PTR(-ENOMEM); 423 } 424 425 if (WARN_ON_ONCE(npages > INT_MAX)) 426 return ERR_PTR(-EINVAL); 427 428 /* Avoid using vmalloc for smaller buffers. */ 429 size = npages * sizeof(struct page *); 430 if (size > PAGE_SIZE) 431 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 432 else 433 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 434 435 if (!pages) 436 return ERR_PTR(-ENOMEM); 437 438 /* Pin the user virtual address. */ 439 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 440 if (npinned != npages) { 441 pr_err("SEV: Failure locking %lu pages.\n", npages); 442 ret = -ENOMEM; 443 goto err; 444 } 445 446 *n = npages; 447 sev->pages_locked = locked; 448 449 return pages; 450 451 err: 452 if (npinned > 0) 453 unpin_user_pages(pages, npinned); 454 455 kvfree(pages); 456 return ERR_PTR(ret); 457 } 458 459 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 460 unsigned long npages) 461 { 462 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 463 464 unpin_user_pages(pages, npages); 465 kvfree(pages); 466 sev->pages_locked -= npages; 467 } 468 469 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 470 { 471 uint8_t *page_virtual; 472 unsigned long i; 473 474 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 475 pages == NULL) 476 return; 477 478 for (i = 0; i < npages; i++) { 479 page_virtual = kmap_local_page(pages[i]); 480 clflush_cache_range(page_virtual, PAGE_SIZE); 481 kunmap_local(page_virtual); 482 cond_resched(); 483 } 484 } 485 486 static unsigned long get_num_contig_pages(unsigned long idx, 487 struct page **inpages, unsigned long npages) 488 { 489 unsigned long paddr, next_paddr; 490 unsigned long i = idx + 1, pages = 1; 491 492 /* find the number of contiguous pages starting from idx */ 493 paddr = __sme_page_pa(inpages[idx]); 494 while (i < npages) { 495 next_paddr = __sme_page_pa(inpages[i++]); 496 if ((paddr + PAGE_SIZE) == next_paddr) { 497 pages++; 498 paddr = next_paddr; 499 continue; 500 } 501 break; 502 } 503 504 return pages; 505 } 506 507 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 508 { 509 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 510 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 511 struct kvm_sev_launch_update_data params; 512 struct sev_data_launch_update_data data; 513 struct page **inpages; 514 int ret; 515 516 if (!sev_guest(kvm)) 517 return -ENOTTY; 518 519 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 520 return -EFAULT; 521 522 vaddr = params.uaddr; 523 size = params.len; 524 vaddr_end = vaddr + size; 525 526 /* Lock the user memory. */ 527 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 528 if (IS_ERR(inpages)) 529 return PTR_ERR(inpages); 530 531 /* 532 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 533 * place; the cache may contain the data that was written unencrypted. 534 */ 535 sev_clflush_pages(inpages, npages); 536 537 data.reserved = 0; 538 data.handle = sev->handle; 539 540 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 541 int offset, len; 542 543 /* 544 * If the user buffer is not page-aligned, calculate the offset 545 * within the page. 546 */ 547 offset = vaddr & (PAGE_SIZE - 1); 548 549 /* Calculate the number of pages that can be encrypted in one go. */ 550 pages = get_num_contig_pages(i, inpages, npages); 551 552 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 553 554 data.len = len; 555 data.address = __sme_page_pa(inpages[i]) + offset; 556 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 557 if (ret) 558 goto e_unpin; 559 560 size -= len; 561 next_vaddr = vaddr + len; 562 } 563 564 e_unpin: 565 /* content of memory is updated, mark pages dirty */ 566 for (i = 0; i < npages; i++) { 567 set_page_dirty_lock(inpages[i]); 568 mark_page_accessed(inpages[i]); 569 } 570 /* unlock the user pages */ 571 sev_unpin_memory(kvm, inpages, npages); 572 return ret; 573 } 574 575 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 576 { 577 struct sev_es_save_area *save = svm->sev_es.vmsa; 578 579 /* Check some debug related fields before encrypting the VMSA */ 580 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 581 return -EINVAL; 582 583 /* 584 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 585 * the traditional VMSA that is part of the VMCB. Copy the 586 * traditional VMSA as it has been built so far (in prep 587 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 588 */ 589 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 590 591 /* Sync registgers */ 592 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 593 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 594 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 595 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 596 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 597 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 598 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 599 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 600 #ifdef CONFIG_X86_64 601 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 602 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 603 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 604 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 605 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 606 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 607 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 608 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 609 #endif 610 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 611 612 /* Sync some non-GPR registers before encrypting */ 613 save->xcr0 = svm->vcpu.arch.xcr0; 614 save->pkru = svm->vcpu.arch.pkru; 615 save->xss = svm->vcpu.arch.ia32_xss; 616 save->dr6 = svm->vcpu.arch.dr6; 617 618 if (sev_es_debug_swap_enabled) { 619 save->sev_features |= SVM_SEV_FEAT_DEBUG_SWAP; 620 pr_warn_once("Enabling DebugSwap with KVM_SEV_ES_INIT. " 621 "This will not work starting with Linux 6.10\n"); 622 } 623 624 pr_debug("Virtual Machine Save Area (VMSA):\n"); 625 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 626 627 return 0; 628 } 629 630 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 631 int *error) 632 { 633 struct sev_data_launch_update_vmsa vmsa; 634 struct vcpu_svm *svm = to_svm(vcpu); 635 int ret; 636 637 if (vcpu->guest_debug) { 638 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 639 return -EINVAL; 640 } 641 642 /* Perform some pre-encryption checks against the VMSA */ 643 ret = sev_es_sync_vmsa(svm); 644 if (ret) 645 return ret; 646 647 /* 648 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 649 * the VMSA memory content (i.e it will write the same memory region 650 * with the guest's key), so invalidate it first. 651 */ 652 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 653 654 vmsa.reserved = 0; 655 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle; 656 vmsa.address = __sme_pa(svm->sev_es.vmsa); 657 vmsa.len = PAGE_SIZE; 658 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 659 if (ret) 660 return ret; 661 662 vcpu->arch.guest_state_protected = true; 663 return 0; 664 } 665 666 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 667 { 668 struct kvm_vcpu *vcpu; 669 unsigned long i; 670 int ret; 671 672 if (!sev_es_guest(kvm)) 673 return -ENOTTY; 674 675 kvm_for_each_vcpu(i, vcpu, kvm) { 676 ret = mutex_lock_killable(&vcpu->mutex); 677 if (ret) 678 return ret; 679 680 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 681 682 mutex_unlock(&vcpu->mutex); 683 if (ret) 684 return ret; 685 } 686 687 return 0; 688 } 689 690 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 691 { 692 void __user *measure = (void __user *)(uintptr_t)argp->data; 693 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 694 struct sev_data_launch_measure data; 695 struct kvm_sev_launch_measure params; 696 void __user *p = NULL; 697 void *blob = NULL; 698 int ret; 699 700 if (!sev_guest(kvm)) 701 return -ENOTTY; 702 703 if (copy_from_user(¶ms, measure, sizeof(params))) 704 return -EFAULT; 705 706 memset(&data, 0, sizeof(data)); 707 708 /* User wants to query the blob length */ 709 if (!params.len) 710 goto cmd; 711 712 p = (void __user *)(uintptr_t)params.uaddr; 713 if (p) { 714 if (params.len > SEV_FW_BLOB_MAX_SIZE) 715 return -EINVAL; 716 717 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 718 if (!blob) 719 return -ENOMEM; 720 721 data.address = __psp_pa(blob); 722 data.len = params.len; 723 } 724 725 cmd: 726 data.handle = sev->handle; 727 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 728 729 /* 730 * If we query the session length, FW responded with expected data. 731 */ 732 if (!params.len) 733 goto done; 734 735 if (ret) 736 goto e_free_blob; 737 738 if (blob) { 739 if (copy_to_user(p, blob, params.len)) 740 ret = -EFAULT; 741 } 742 743 done: 744 params.len = data.len; 745 if (copy_to_user(measure, ¶ms, sizeof(params))) 746 ret = -EFAULT; 747 e_free_blob: 748 kfree(blob); 749 return ret; 750 } 751 752 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 753 { 754 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 755 struct sev_data_launch_finish data; 756 757 if (!sev_guest(kvm)) 758 return -ENOTTY; 759 760 data.handle = sev->handle; 761 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 762 } 763 764 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 765 { 766 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 767 struct kvm_sev_guest_status params; 768 struct sev_data_guest_status data; 769 int ret; 770 771 if (!sev_guest(kvm)) 772 return -ENOTTY; 773 774 memset(&data, 0, sizeof(data)); 775 776 data.handle = sev->handle; 777 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 778 if (ret) 779 return ret; 780 781 params.policy = data.policy; 782 params.state = data.state; 783 params.handle = data.handle; 784 785 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 786 ret = -EFAULT; 787 788 return ret; 789 } 790 791 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 792 unsigned long dst, int size, 793 int *error, bool enc) 794 { 795 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 796 struct sev_data_dbg data; 797 798 data.reserved = 0; 799 data.handle = sev->handle; 800 data.dst_addr = dst; 801 data.src_addr = src; 802 data.len = size; 803 804 return sev_issue_cmd(kvm, 805 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 806 &data, error); 807 } 808 809 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 810 unsigned long dst_paddr, int sz, int *err) 811 { 812 int offset; 813 814 /* 815 * Its safe to read more than we are asked, caller should ensure that 816 * destination has enough space. 817 */ 818 offset = src_paddr & 15; 819 src_paddr = round_down(src_paddr, 16); 820 sz = round_up(sz + offset, 16); 821 822 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 823 } 824 825 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 826 void __user *dst_uaddr, 827 unsigned long dst_paddr, 828 int size, int *err) 829 { 830 struct page *tpage = NULL; 831 int ret, offset; 832 833 /* if inputs are not 16-byte then use intermediate buffer */ 834 if (!IS_ALIGNED(dst_paddr, 16) || 835 !IS_ALIGNED(paddr, 16) || 836 !IS_ALIGNED(size, 16)) { 837 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 838 if (!tpage) 839 return -ENOMEM; 840 841 dst_paddr = __sme_page_pa(tpage); 842 } 843 844 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 845 if (ret) 846 goto e_free; 847 848 if (tpage) { 849 offset = paddr & 15; 850 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 851 ret = -EFAULT; 852 } 853 854 e_free: 855 if (tpage) 856 __free_page(tpage); 857 858 return ret; 859 } 860 861 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 862 void __user *vaddr, 863 unsigned long dst_paddr, 864 void __user *dst_vaddr, 865 int size, int *error) 866 { 867 struct page *src_tpage = NULL; 868 struct page *dst_tpage = NULL; 869 int ret, len = size; 870 871 /* If source buffer is not aligned then use an intermediate buffer */ 872 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 873 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 874 if (!src_tpage) 875 return -ENOMEM; 876 877 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 878 __free_page(src_tpage); 879 return -EFAULT; 880 } 881 882 paddr = __sme_page_pa(src_tpage); 883 } 884 885 /* 886 * If destination buffer or length is not aligned then do read-modify-write: 887 * - decrypt destination in an intermediate buffer 888 * - copy the source buffer in an intermediate buffer 889 * - use the intermediate buffer as source buffer 890 */ 891 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 892 int dst_offset; 893 894 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 895 if (!dst_tpage) { 896 ret = -ENOMEM; 897 goto e_free; 898 } 899 900 ret = __sev_dbg_decrypt(kvm, dst_paddr, 901 __sme_page_pa(dst_tpage), size, error); 902 if (ret) 903 goto e_free; 904 905 /* 906 * If source is kernel buffer then use memcpy() otherwise 907 * copy_from_user(). 908 */ 909 dst_offset = dst_paddr & 15; 910 911 if (src_tpage) 912 memcpy(page_address(dst_tpage) + dst_offset, 913 page_address(src_tpage), size); 914 else { 915 if (copy_from_user(page_address(dst_tpage) + dst_offset, 916 vaddr, size)) { 917 ret = -EFAULT; 918 goto e_free; 919 } 920 } 921 922 paddr = __sme_page_pa(dst_tpage); 923 dst_paddr = round_down(dst_paddr, 16); 924 len = round_up(size, 16); 925 } 926 927 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 928 929 e_free: 930 if (src_tpage) 931 __free_page(src_tpage); 932 if (dst_tpage) 933 __free_page(dst_tpage); 934 return ret; 935 } 936 937 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 938 { 939 unsigned long vaddr, vaddr_end, next_vaddr; 940 unsigned long dst_vaddr; 941 struct page **src_p, **dst_p; 942 struct kvm_sev_dbg debug; 943 unsigned long n; 944 unsigned int size; 945 int ret; 946 947 if (!sev_guest(kvm)) 948 return -ENOTTY; 949 950 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 951 return -EFAULT; 952 953 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 954 return -EINVAL; 955 if (!debug.dst_uaddr) 956 return -EINVAL; 957 958 vaddr = debug.src_uaddr; 959 size = debug.len; 960 vaddr_end = vaddr + size; 961 dst_vaddr = debug.dst_uaddr; 962 963 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 964 int len, s_off, d_off; 965 966 /* lock userspace source and destination page */ 967 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 968 if (IS_ERR(src_p)) 969 return PTR_ERR(src_p); 970 971 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 972 if (IS_ERR(dst_p)) { 973 sev_unpin_memory(kvm, src_p, n); 974 return PTR_ERR(dst_p); 975 } 976 977 /* 978 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 979 * the pages; flush the destination too so that future accesses do not 980 * see stale data. 981 */ 982 sev_clflush_pages(src_p, 1); 983 sev_clflush_pages(dst_p, 1); 984 985 /* 986 * Since user buffer may not be page aligned, calculate the 987 * offset within the page. 988 */ 989 s_off = vaddr & ~PAGE_MASK; 990 d_off = dst_vaddr & ~PAGE_MASK; 991 len = min_t(size_t, (PAGE_SIZE - s_off), size); 992 993 if (dec) 994 ret = __sev_dbg_decrypt_user(kvm, 995 __sme_page_pa(src_p[0]) + s_off, 996 (void __user *)dst_vaddr, 997 __sme_page_pa(dst_p[0]) + d_off, 998 len, &argp->error); 999 else 1000 ret = __sev_dbg_encrypt_user(kvm, 1001 __sme_page_pa(src_p[0]) + s_off, 1002 (void __user *)vaddr, 1003 __sme_page_pa(dst_p[0]) + d_off, 1004 (void __user *)dst_vaddr, 1005 len, &argp->error); 1006 1007 sev_unpin_memory(kvm, src_p, n); 1008 sev_unpin_memory(kvm, dst_p, n); 1009 1010 if (ret) 1011 goto err; 1012 1013 next_vaddr = vaddr + len; 1014 dst_vaddr = dst_vaddr + len; 1015 size -= len; 1016 } 1017 err: 1018 return ret; 1019 } 1020 1021 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1022 { 1023 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1024 struct sev_data_launch_secret data; 1025 struct kvm_sev_launch_secret params; 1026 struct page **pages; 1027 void *blob, *hdr; 1028 unsigned long n, i; 1029 int ret, offset; 1030 1031 if (!sev_guest(kvm)) 1032 return -ENOTTY; 1033 1034 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1035 return -EFAULT; 1036 1037 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1038 if (IS_ERR(pages)) 1039 return PTR_ERR(pages); 1040 1041 /* 1042 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1043 * place; the cache may contain the data that was written unencrypted. 1044 */ 1045 sev_clflush_pages(pages, n); 1046 1047 /* 1048 * The secret must be copied into contiguous memory region, lets verify 1049 * that userspace memory pages are contiguous before we issue command. 1050 */ 1051 if (get_num_contig_pages(0, pages, n) != n) { 1052 ret = -EINVAL; 1053 goto e_unpin_memory; 1054 } 1055 1056 memset(&data, 0, sizeof(data)); 1057 1058 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1059 data.guest_address = __sme_page_pa(pages[0]) + offset; 1060 data.guest_len = params.guest_len; 1061 1062 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1063 if (IS_ERR(blob)) { 1064 ret = PTR_ERR(blob); 1065 goto e_unpin_memory; 1066 } 1067 1068 data.trans_address = __psp_pa(blob); 1069 data.trans_len = params.trans_len; 1070 1071 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1072 if (IS_ERR(hdr)) { 1073 ret = PTR_ERR(hdr); 1074 goto e_free_blob; 1075 } 1076 data.hdr_address = __psp_pa(hdr); 1077 data.hdr_len = params.hdr_len; 1078 1079 data.handle = sev->handle; 1080 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1081 1082 kfree(hdr); 1083 1084 e_free_blob: 1085 kfree(blob); 1086 e_unpin_memory: 1087 /* content of memory is updated, mark pages dirty */ 1088 for (i = 0; i < n; i++) { 1089 set_page_dirty_lock(pages[i]); 1090 mark_page_accessed(pages[i]); 1091 } 1092 sev_unpin_memory(kvm, pages, n); 1093 return ret; 1094 } 1095 1096 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1097 { 1098 void __user *report = (void __user *)(uintptr_t)argp->data; 1099 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1100 struct sev_data_attestation_report data; 1101 struct kvm_sev_attestation_report params; 1102 void __user *p; 1103 void *blob = NULL; 1104 int ret; 1105 1106 if (!sev_guest(kvm)) 1107 return -ENOTTY; 1108 1109 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1110 return -EFAULT; 1111 1112 memset(&data, 0, sizeof(data)); 1113 1114 /* User wants to query the blob length */ 1115 if (!params.len) 1116 goto cmd; 1117 1118 p = (void __user *)(uintptr_t)params.uaddr; 1119 if (p) { 1120 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1121 return -EINVAL; 1122 1123 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1124 if (!blob) 1125 return -ENOMEM; 1126 1127 data.address = __psp_pa(blob); 1128 data.len = params.len; 1129 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1130 } 1131 cmd: 1132 data.handle = sev->handle; 1133 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1134 /* 1135 * If we query the session length, FW responded with expected data. 1136 */ 1137 if (!params.len) 1138 goto done; 1139 1140 if (ret) 1141 goto e_free_blob; 1142 1143 if (blob) { 1144 if (copy_to_user(p, blob, params.len)) 1145 ret = -EFAULT; 1146 } 1147 1148 done: 1149 params.len = data.len; 1150 if (copy_to_user(report, ¶ms, sizeof(params))) 1151 ret = -EFAULT; 1152 e_free_blob: 1153 kfree(blob); 1154 return ret; 1155 } 1156 1157 /* Userspace wants to query session length. */ 1158 static int 1159 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1160 struct kvm_sev_send_start *params) 1161 { 1162 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1163 struct sev_data_send_start data; 1164 int ret; 1165 1166 memset(&data, 0, sizeof(data)); 1167 data.handle = sev->handle; 1168 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1169 1170 params->session_len = data.session_len; 1171 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1172 sizeof(struct kvm_sev_send_start))) 1173 ret = -EFAULT; 1174 1175 return ret; 1176 } 1177 1178 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1179 { 1180 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1181 struct sev_data_send_start data; 1182 struct kvm_sev_send_start params; 1183 void *amd_certs, *session_data; 1184 void *pdh_cert, *plat_certs; 1185 int ret; 1186 1187 if (!sev_guest(kvm)) 1188 return -ENOTTY; 1189 1190 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1191 sizeof(struct kvm_sev_send_start))) 1192 return -EFAULT; 1193 1194 /* if session_len is zero, userspace wants to query the session length */ 1195 if (!params.session_len) 1196 return __sev_send_start_query_session_length(kvm, argp, 1197 ¶ms); 1198 1199 /* some sanity checks */ 1200 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1201 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1202 return -EINVAL; 1203 1204 /* allocate the memory to hold the session data blob */ 1205 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1206 if (!session_data) 1207 return -ENOMEM; 1208 1209 /* copy the certificate blobs from userspace */ 1210 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1211 params.pdh_cert_len); 1212 if (IS_ERR(pdh_cert)) { 1213 ret = PTR_ERR(pdh_cert); 1214 goto e_free_session; 1215 } 1216 1217 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1218 params.plat_certs_len); 1219 if (IS_ERR(plat_certs)) { 1220 ret = PTR_ERR(plat_certs); 1221 goto e_free_pdh; 1222 } 1223 1224 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1225 params.amd_certs_len); 1226 if (IS_ERR(amd_certs)) { 1227 ret = PTR_ERR(amd_certs); 1228 goto e_free_plat_cert; 1229 } 1230 1231 /* populate the FW SEND_START field with system physical address */ 1232 memset(&data, 0, sizeof(data)); 1233 data.pdh_cert_address = __psp_pa(pdh_cert); 1234 data.pdh_cert_len = params.pdh_cert_len; 1235 data.plat_certs_address = __psp_pa(plat_certs); 1236 data.plat_certs_len = params.plat_certs_len; 1237 data.amd_certs_address = __psp_pa(amd_certs); 1238 data.amd_certs_len = params.amd_certs_len; 1239 data.session_address = __psp_pa(session_data); 1240 data.session_len = params.session_len; 1241 data.handle = sev->handle; 1242 1243 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1244 1245 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1246 session_data, params.session_len)) { 1247 ret = -EFAULT; 1248 goto e_free_amd_cert; 1249 } 1250 1251 params.policy = data.policy; 1252 params.session_len = data.session_len; 1253 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1254 sizeof(struct kvm_sev_send_start))) 1255 ret = -EFAULT; 1256 1257 e_free_amd_cert: 1258 kfree(amd_certs); 1259 e_free_plat_cert: 1260 kfree(plat_certs); 1261 e_free_pdh: 1262 kfree(pdh_cert); 1263 e_free_session: 1264 kfree(session_data); 1265 return ret; 1266 } 1267 1268 /* Userspace wants to query either header or trans length. */ 1269 static int 1270 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1271 struct kvm_sev_send_update_data *params) 1272 { 1273 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1274 struct sev_data_send_update_data data; 1275 int ret; 1276 1277 memset(&data, 0, sizeof(data)); 1278 data.handle = sev->handle; 1279 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1280 1281 params->hdr_len = data.hdr_len; 1282 params->trans_len = data.trans_len; 1283 1284 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1285 sizeof(struct kvm_sev_send_update_data))) 1286 ret = -EFAULT; 1287 1288 return ret; 1289 } 1290 1291 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1292 { 1293 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1294 struct sev_data_send_update_data data; 1295 struct kvm_sev_send_update_data params; 1296 void *hdr, *trans_data; 1297 struct page **guest_page; 1298 unsigned long n; 1299 int ret, offset; 1300 1301 if (!sev_guest(kvm)) 1302 return -ENOTTY; 1303 1304 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1305 sizeof(struct kvm_sev_send_update_data))) 1306 return -EFAULT; 1307 1308 /* userspace wants to query either header or trans length */ 1309 if (!params.trans_len || !params.hdr_len) 1310 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1311 1312 if (!params.trans_uaddr || !params.guest_uaddr || 1313 !params.guest_len || !params.hdr_uaddr) 1314 return -EINVAL; 1315 1316 /* Check if we are crossing the page boundary */ 1317 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1318 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1319 return -EINVAL; 1320 1321 /* Pin guest memory */ 1322 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1323 PAGE_SIZE, &n, 0); 1324 if (IS_ERR(guest_page)) 1325 return PTR_ERR(guest_page); 1326 1327 /* allocate memory for header and transport buffer */ 1328 ret = -ENOMEM; 1329 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1330 if (!hdr) 1331 goto e_unpin; 1332 1333 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1334 if (!trans_data) 1335 goto e_free_hdr; 1336 1337 memset(&data, 0, sizeof(data)); 1338 data.hdr_address = __psp_pa(hdr); 1339 data.hdr_len = params.hdr_len; 1340 data.trans_address = __psp_pa(trans_data); 1341 data.trans_len = params.trans_len; 1342 1343 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1344 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1345 data.guest_address |= sev_me_mask; 1346 data.guest_len = params.guest_len; 1347 data.handle = sev->handle; 1348 1349 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1350 1351 if (ret) 1352 goto e_free_trans_data; 1353 1354 /* copy transport buffer to user space */ 1355 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1356 trans_data, params.trans_len)) { 1357 ret = -EFAULT; 1358 goto e_free_trans_data; 1359 } 1360 1361 /* Copy packet header to userspace. */ 1362 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1363 params.hdr_len)) 1364 ret = -EFAULT; 1365 1366 e_free_trans_data: 1367 kfree(trans_data); 1368 e_free_hdr: 1369 kfree(hdr); 1370 e_unpin: 1371 sev_unpin_memory(kvm, guest_page, n); 1372 1373 return ret; 1374 } 1375 1376 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1377 { 1378 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1379 struct sev_data_send_finish data; 1380 1381 if (!sev_guest(kvm)) 1382 return -ENOTTY; 1383 1384 data.handle = sev->handle; 1385 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1386 } 1387 1388 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1389 { 1390 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1391 struct sev_data_send_cancel data; 1392 1393 if (!sev_guest(kvm)) 1394 return -ENOTTY; 1395 1396 data.handle = sev->handle; 1397 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1398 } 1399 1400 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1401 { 1402 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1403 struct sev_data_receive_start start; 1404 struct kvm_sev_receive_start params; 1405 int *error = &argp->error; 1406 void *session_data; 1407 void *pdh_data; 1408 int ret; 1409 1410 if (!sev_guest(kvm)) 1411 return -ENOTTY; 1412 1413 /* Get parameter from the userspace */ 1414 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1415 sizeof(struct kvm_sev_receive_start))) 1416 return -EFAULT; 1417 1418 /* some sanity checks */ 1419 if (!params.pdh_uaddr || !params.pdh_len || 1420 !params.session_uaddr || !params.session_len) 1421 return -EINVAL; 1422 1423 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1424 if (IS_ERR(pdh_data)) 1425 return PTR_ERR(pdh_data); 1426 1427 session_data = psp_copy_user_blob(params.session_uaddr, 1428 params.session_len); 1429 if (IS_ERR(session_data)) { 1430 ret = PTR_ERR(session_data); 1431 goto e_free_pdh; 1432 } 1433 1434 memset(&start, 0, sizeof(start)); 1435 start.handle = params.handle; 1436 start.policy = params.policy; 1437 start.pdh_cert_address = __psp_pa(pdh_data); 1438 start.pdh_cert_len = params.pdh_len; 1439 start.session_address = __psp_pa(session_data); 1440 start.session_len = params.session_len; 1441 1442 /* create memory encryption context */ 1443 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1444 error); 1445 if (ret) 1446 goto e_free_session; 1447 1448 /* Bind ASID to this guest */ 1449 ret = sev_bind_asid(kvm, start.handle, error); 1450 if (ret) { 1451 sev_decommission(start.handle); 1452 goto e_free_session; 1453 } 1454 1455 params.handle = start.handle; 1456 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1457 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1458 ret = -EFAULT; 1459 sev_unbind_asid(kvm, start.handle); 1460 goto e_free_session; 1461 } 1462 1463 sev->handle = start.handle; 1464 sev->fd = argp->sev_fd; 1465 1466 e_free_session: 1467 kfree(session_data); 1468 e_free_pdh: 1469 kfree(pdh_data); 1470 1471 return ret; 1472 } 1473 1474 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1475 { 1476 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1477 struct kvm_sev_receive_update_data params; 1478 struct sev_data_receive_update_data data; 1479 void *hdr = NULL, *trans = NULL; 1480 struct page **guest_page; 1481 unsigned long n; 1482 int ret, offset; 1483 1484 if (!sev_guest(kvm)) 1485 return -EINVAL; 1486 1487 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1488 sizeof(struct kvm_sev_receive_update_data))) 1489 return -EFAULT; 1490 1491 if (!params.hdr_uaddr || !params.hdr_len || 1492 !params.guest_uaddr || !params.guest_len || 1493 !params.trans_uaddr || !params.trans_len) 1494 return -EINVAL; 1495 1496 /* Check if we are crossing the page boundary */ 1497 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1498 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1499 return -EINVAL; 1500 1501 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1502 if (IS_ERR(hdr)) 1503 return PTR_ERR(hdr); 1504 1505 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1506 if (IS_ERR(trans)) { 1507 ret = PTR_ERR(trans); 1508 goto e_free_hdr; 1509 } 1510 1511 memset(&data, 0, sizeof(data)); 1512 data.hdr_address = __psp_pa(hdr); 1513 data.hdr_len = params.hdr_len; 1514 data.trans_address = __psp_pa(trans); 1515 data.trans_len = params.trans_len; 1516 1517 /* Pin guest memory */ 1518 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1519 PAGE_SIZE, &n, 1); 1520 if (IS_ERR(guest_page)) { 1521 ret = PTR_ERR(guest_page); 1522 goto e_free_trans; 1523 } 1524 1525 /* 1526 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1527 * encrypts the written data with the guest's key, and the cache may 1528 * contain dirty, unencrypted data. 1529 */ 1530 sev_clflush_pages(guest_page, n); 1531 1532 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1533 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1534 data.guest_address |= sev_me_mask; 1535 data.guest_len = params.guest_len; 1536 data.handle = sev->handle; 1537 1538 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1539 &argp->error); 1540 1541 sev_unpin_memory(kvm, guest_page, n); 1542 1543 e_free_trans: 1544 kfree(trans); 1545 e_free_hdr: 1546 kfree(hdr); 1547 1548 return ret; 1549 } 1550 1551 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1552 { 1553 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1554 struct sev_data_receive_finish data; 1555 1556 if (!sev_guest(kvm)) 1557 return -ENOTTY; 1558 1559 data.handle = sev->handle; 1560 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1561 } 1562 1563 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1564 { 1565 /* 1566 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1567 * active mirror VMs. Also allow the debugging and status commands. 1568 */ 1569 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1570 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1571 cmd_id == KVM_SEV_DBG_ENCRYPT) 1572 return true; 1573 1574 return false; 1575 } 1576 1577 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1578 { 1579 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1580 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1581 int r = -EBUSY; 1582 1583 if (dst_kvm == src_kvm) 1584 return -EINVAL; 1585 1586 /* 1587 * Bail if these VMs are already involved in a migration to avoid 1588 * deadlock between two VMs trying to migrate to/from each other. 1589 */ 1590 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1591 return -EBUSY; 1592 1593 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1594 goto release_dst; 1595 1596 r = -EINTR; 1597 if (mutex_lock_killable(&dst_kvm->lock)) 1598 goto release_src; 1599 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1600 goto unlock_dst; 1601 return 0; 1602 1603 unlock_dst: 1604 mutex_unlock(&dst_kvm->lock); 1605 release_src: 1606 atomic_set_release(&src_sev->migration_in_progress, 0); 1607 release_dst: 1608 atomic_set_release(&dst_sev->migration_in_progress, 0); 1609 return r; 1610 } 1611 1612 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1613 { 1614 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1615 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1616 1617 mutex_unlock(&dst_kvm->lock); 1618 mutex_unlock(&src_kvm->lock); 1619 atomic_set_release(&dst_sev->migration_in_progress, 0); 1620 atomic_set_release(&src_sev->migration_in_progress, 0); 1621 } 1622 1623 /* vCPU mutex subclasses. */ 1624 enum sev_migration_role { 1625 SEV_MIGRATION_SOURCE = 0, 1626 SEV_MIGRATION_TARGET, 1627 SEV_NR_MIGRATION_ROLES, 1628 }; 1629 1630 static int sev_lock_vcpus_for_migration(struct kvm *kvm, 1631 enum sev_migration_role role) 1632 { 1633 struct kvm_vcpu *vcpu; 1634 unsigned long i, j; 1635 1636 kvm_for_each_vcpu(i, vcpu, kvm) { 1637 if (mutex_lock_killable_nested(&vcpu->mutex, role)) 1638 goto out_unlock; 1639 1640 #ifdef CONFIG_PROVE_LOCKING 1641 if (!i) 1642 /* 1643 * Reset the role to one that avoids colliding with 1644 * the role used for the first vcpu mutex. 1645 */ 1646 role = SEV_NR_MIGRATION_ROLES; 1647 else 1648 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_); 1649 #endif 1650 } 1651 1652 return 0; 1653 1654 out_unlock: 1655 1656 kvm_for_each_vcpu(j, vcpu, kvm) { 1657 if (i == j) 1658 break; 1659 1660 #ifdef CONFIG_PROVE_LOCKING 1661 if (j) 1662 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_); 1663 #endif 1664 1665 mutex_unlock(&vcpu->mutex); 1666 } 1667 return -EINTR; 1668 } 1669 1670 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1671 { 1672 struct kvm_vcpu *vcpu; 1673 unsigned long i; 1674 bool first = true; 1675 1676 kvm_for_each_vcpu(i, vcpu, kvm) { 1677 if (first) 1678 first = false; 1679 else 1680 mutex_acquire(&vcpu->mutex.dep_map, 1681 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_); 1682 1683 mutex_unlock(&vcpu->mutex); 1684 } 1685 } 1686 1687 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1688 { 1689 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info; 1690 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info; 1691 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1692 struct vcpu_svm *dst_svm, *src_svm; 1693 struct kvm_sev_info *mirror; 1694 unsigned long i; 1695 1696 dst->active = true; 1697 dst->asid = src->asid; 1698 dst->handle = src->handle; 1699 dst->pages_locked = src->pages_locked; 1700 dst->enc_context_owner = src->enc_context_owner; 1701 dst->es_active = src->es_active; 1702 1703 src->asid = 0; 1704 src->active = false; 1705 src->handle = 0; 1706 src->pages_locked = 0; 1707 src->enc_context_owner = NULL; 1708 src->es_active = false; 1709 1710 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1711 1712 /* 1713 * If this VM has mirrors, "transfer" each mirror's refcount of the 1714 * source to the destination (this KVM). The caller holds a reference 1715 * to the source, so there's no danger of use-after-free. 1716 */ 1717 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 1718 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 1719 kvm_get_kvm(dst_kvm); 1720 kvm_put_kvm(src_kvm); 1721 mirror->enc_context_owner = dst_kvm; 1722 } 1723 1724 /* 1725 * If this VM is a mirror, remove the old mirror from the owners list 1726 * and add the new mirror to the list. 1727 */ 1728 if (is_mirroring_enc_context(dst_kvm)) { 1729 struct kvm_sev_info *owner_sev_info = 1730 &to_kvm_svm(dst->enc_context_owner)->sev_info; 1731 1732 list_del(&src->mirror_entry); 1733 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 1734 } 1735 1736 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 1737 dst_svm = to_svm(dst_vcpu); 1738 1739 sev_init_vmcb(dst_svm); 1740 1741 if (!dst->es_active) 1742 continue; 1743 1744 /* 1745 * Note, the source is not required to have the same number of 1746 * vCPUs as the destination when migrating a vanilla SEV VM. 1747 */ 1748 src_vcpu = kvm_get_vcpu(src_kvm, i); 1749 src_svm = to_svm(src_vcpu); 1750 1751 /* 1752 * Transfer VMSA and GHCB state to the destination. Nullify and 1753 * clear source fields as appropriate, the state now belongs to 1754 * the destination. 1755 */ 1756 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 1757 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 1758 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 1759 dst_vcpu->arch.guest_state_protected = true; 1760 1761 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 1762 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 1763 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 1764 src_vcpu->arch.guest_state_protected = false; 1765 } 1766 } 1767 1768 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 1769 { 1770 struct kvm_vcpu *src_vcpu; 1771 unsigned long i; 1772 1773 if (!sev_es_guest(src)) 1774 return 0; 1775 1776 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 1777 return -EINVAL; 1778 1779 kvm_for_each_vcpu(i, src_vcpu, src) { 1780 if (!src_vcpu->arch.guest_state_protected) 1781 return -EINVAL; 1782 } 1783 1784 return 0; 1785 } 1786 1787 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 1788 { 1789 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 1790 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 1791 struct fd f = fdget(source_fd); 1792 struct kvm *source_kvm; 1793 bool charged = false; 1794 int ret; 1795 1796 if (!f.file) 1797 return -EBADF; 1798 1799 if (!file_is_kvm(f.file)) { 1800 ret = -EBADF; 1801 goto out_fput; 1802 } 1803 1804 source_kvm = f.file->private_data; 1805 ret = sev_lock_two_vms(kvm, source_kvm); 1806 if (ret) 1807 goto out_fput; 1808 1809 if (sev_guest(kvm) || !sev_guest(source_kvm)) { 1810 ret = -EINVAL; 1811 goto out_unlock; 1812 } 1813 1814 src_sev = &to_kvm_svm(source_kvm)->sev_info; 1815 1816 dst_sev->misc_cg = get_current_misc_cg(); 1817 cg_cleanup_sev = dst_sev; 1818 if (dst_sev->misc_cg != src_sev->misc_cg) { 1819 ret = sev_misc_cg_try_charge(dst_sev); 1820 if (ret) 1821 goto out_dst_cgroup; 1822 charged = true; 1823 } 1824 1825 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE); 1826 if (ret) 1827 goto out_dst_cgroup; 1828 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET); 1829 if (ret) 1830 goto out_dst_vcpu; 1831 1832 ret = sev_check_source_vcpus(kvm, source_kvm); 1833 if (ret) 1834 goto out_source_vcpu; 1835 1836 sev_migrate_from(kvm, source_kvm); 1837 kvm_vm_dead(source_kvm); 1838 cg_cleanup_sev = src_sev; 1839 ret = 0; 1840 1841 out_source_vcpu: 1842 sev_unlock_vcpus_for_migration(source_kvm); 1843 out_dst_vcpu: 1844 sev_unlock_vcpus_for_migration(kvm); 1845 out_dst_cgroup: 1846 /* Operates on the source on success, on the destination on failure. */ 1847 if (charged) 1848 sev_misc_cg_uncharge(cg_cleanup_sev); 1849 put_misc_cg(cg_cleanup_sev->misc_cg); 1850 cg_cleanup_sev->misc_cg = NULL; 1851 out_unlock: 1852 sev_unlock_two_vms(kvm, source_kvm); 1853 out_fput: 1854 fdput(f); 1855 return ret; 1856 } 1857 1858 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 1859 { 1860 struct kvm_sev_cmd sev_cmd; 1861 int r; 1862 1863 if (!sev_enabled) 1864 return -ENOTTY; 1865 1866 if (!argp) 1867 return 0; 1868 1869 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1870 return -EFAULT; 1871 1872 mutex_lock(&kvm->lock); 1873 1874 /* Only the enc_context_owner handles some memory enc operations. */ 1875 if (is_mirroring_enc_context(kvm) && 1876 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 1877 r = -EINVAL; 1878 goto out; 1879 } 1880 1881 switch (sev_cmd.id) { 1882 case KVM_SEV_ES_INIT: 1883 if (!sev_es_enabled) { 1884 r = -ENOTTY; 1885 goto out; 1886 } 1887 fallthrough; 1888 case KVM_SEV_INIT: 1889 r = sev_guest_init(kvm, &sev_cmd); 1890 break; 1891 case KVM_SEV_LAUNCH_START: 1892 r = sev_launch_start(kvm, &sev_cmd); 1893 break; 1894 case KVM_SEV_LAUNCH_UPDATE_DATA: 1895 r = sev_launch_update_data(kvm, &sev_cmd); 1896 break; 1897 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1898 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1899 break; 1900 case KVM_SEV_LAUNCH_MEASURE: 1901 r = sev_launch_measure(kvm, &sev_cmd); 1902 break; 1903 case KVM_SEV_LAUNCH_FINISH: 1904 r = sev_launch_finish(kvm, &sev_cmd); 1905 break; 1906 case KVM_SEV_GUEST_STATUS: 1907 r = sev_guest_status(kvm, &sev_cmd); 1908 break; 1909 case KVM_SEV_DBG_DECRYPT: 1910 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1911 break; 1912 case KVM_SEV_DBG_ENCRYPT: 1913 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1914 break; 1915 case KVM_SEV_LAUNCH_SECRET: 1916 r = sev_launch_secret(kvm, &sev_cmd); 1917 break; 1918 case KVM_SEV_GET_ATTESTATION_REPORT: 1919 r = sev_get_attestation_report(kvm, &sev_cmd); 1920 break; 1921 case KVM_SEV_SEND_START: 1922 r = sev_send_start(kvm, &sev_cmd); 1923 break; 1924 case KVM_SEV_SEND_UPDATE_DATA: 1925 r = sev_send_update_data(kvm, &sev_cmd); 1926 break; 1927 case KVM_SEV_SEND_FINISH: 1928 r = sev_send_finish(kvm, &sev_cmd); 1929 break; 1930 case KVM_SEV_SEND_CANCEL: 1931 r = sev_send_cancel(kvm, &sev_cmd); 1932 break; 1933 case KVM_SEV_RECEIVE_START: 1934 r = sev_receive_start(kvm, &sev_cmd); 1935 break; 1936 case KVM_SEV_RECEIVE_UPDATE_DATA: 1937 r = sev_receive_update_data(kvm, &sev_cmd); 1938 break; 1939 case KVM_SEV_RECEIVE_FINISH: 1940 r = sev_receive_finish(kvm, &sev_cmd); 1941 break; 1942 default: 1943 r = -EINVAL; 1944 goto out; 1945 } 1946 1947 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1948 r = -EFAULT; 1949 1950 out: 1951 mutex_unlock(&kvm->lock); 1952 return r; 1953 } 1954 1955 int sev_mem_enc_register_region(struct kvm *kvm, 1956 struct kvm_enc_region *range) 1957 { 1958 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1959 struct enc_region *region; 1960 int ret = 0; 1961 1962 if (!sev_guest(kvm)) 1963 return -ENOTTY; 1964 1965 /* If kvm is mirroring encryption context it isn't responsible for it */ 1966 if (is_mirroring_enc_context(kvm)) 1967 return -EINVAL; 1968 1969 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1970 return -EINVAL; 1971 1972 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1973 if (!region) 1974 return -ENOMEM; 1975 1976 mutex_lock(&kvm->lock); 1977 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1978 if (IS_ERR(region->pages)) { 1979 ret = PTR_ERR(region->pages); 1980 mutex_unlock(&kvm->lock); 1981 goto e_free; 1982 } 1983 1984 /* 1985 * The guest may change the memory encryption attribute from C=0 -> C=1 1986 * or vice versa for this memory range. Lets make sure caches are 1987 * flushed to ensure that guest data gets written into memory with 1988 * correct C-bit. Note, this must be done before dropping kvm->lock, 1989 * as region and its array of pages can be freed by a different task 1990 * once kvm->lock is released. 1991 */ 1992 sev_clflush_pages(region->pages, region->npages); 1993 1994 region->uaddr = range->addr; 1995 region->size = range->size; 1996 1997 list_add_tail(®ion->list, &sev->regions_list); 1998 mutex_unlock(&kvm->lock); 1999 2000 return ret; 2001 2002 e_free: 2003 kfree(region); 2004 return ret; 2005 } 2006 2007 static struct enc_region * 2008 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2009 { 2010 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2011 struct list_head *head = &sev->regions_list; 2012 struct enc_region *i; 2013 2014 list_for_each_entry(i, head, list) { 2015 if (i->uaddr == range->addr && 2016 i->size == range->size) 2017 return i; 2018 } 2019 2020 return NULL; 2021 } 2022 2023 static void __unregister_enc_region_locked(struct kvm *kvm, 2024 struct enc_region *region) 2025 { 2026 sev_unpin_memory(kvm, region->pages, region->npages); 2027 list_del(®ion->list); 2028 kfree(region); 2029 } 2030 2031 int sev_mem_enc_unregister_region(struct kvm *kvm, 2032 struct kvm_enc_region *range) 2033 { 2034 struct enc_region *region; 2035 int ret; 2036 2037 /* If kvm is mirroring encryption context it isn't responsible for it */ 2038 if (is_mirroring_enc_context(kvm)) 2039 return -EINVAL; 2040 2041 mutex_lock(&kvm->lock); 2042 2043 if (!sev_guest(kvm)) { 2044 ret = -ENOTTY; 2045 goto failed; 2046 } 2047 2048 region = find_enc_region(kvm, range); 2049 if (!region) { 2050 ret = -EINVAL; 2051 goto failed; 2052 } 2053 2054 /* 2055 * Ensure that all guest tagged cache entries are flushed before 2056 * releasing the pages back to the system for use. CLFLUSH will 2057 * not do this, so issue a WBINVD. 2058 */ 2059 wbinvd_on_all_cpus(); 2060 2061 __unregister_enc_region_locked(kvm, region); 2062 2063 mutex_unlock(&kvm->lock); 2064 return 0; 2065 2066 failed: 2067 mutex_unlock(&kvm->lock); 2068 return ret; 2069 } 2070 2071 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2072 { 2073 struct fd f = fdget(source_fd); 2074 struct kvm *source_kvm; 2075 struct kvm_sev_info *source_sev, *mirror_sev; 2076 int ret; 2077 2078 if (!f.file) 2079 return -EBADF; 2080 2081 if (!file_is_kvm(f.file)) { 2082 ret = -EBADF; 2083 goto e_source_fput; 2084 } 2085 2086 source_kvm = f.file->private_data; 2087 ret = sev_lock_two_vms(kvm, source_kvm); 2088 if (ret) 2089 goto e_source_fput; 2090 2091 /* 2092 * Mirrors of mirrors should work, but let's not get silly. Also 2093 * disallow out-of-band SEV/SEV-ES init if the target is already an 2094 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2095 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2096 */ 2097 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2098 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2099 ret = -EINVAL; 2100 goto e_unlock; 2101 } 2102 2103 /* 2104 * The mirror kvm holds an enc_context_owner ref so its asid can't 2105 * disappear until we're done with it 2106 */ 2107 source_sev = &to_kvm_svm(source_kvm)->sev_info; 2108 kvm_get_kvm(source_kvm); 2109 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2110 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2111 2112 /* Set enc_context_owner and copy its encryption context over */ 2113 mirror_sev->enc_context_owner = source_kvm; 2114 mirror_sev->active = true; 2115 mirror_sev->asid = source_sev->asid; 2116 mirror_sev->fd = source_sev->fd; 2117 mirror_sev->es_active = source_sev->es_active; 2118 mirror_sev->handle = source_sev->handle; 2119 INIT_LIST_HEAD(&mirror_sev->regions_list); 2120 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2121 ret = 0; 2122 2123 /* 2124 * Do not copy ap_jump_table. Since the mirror does not share the same 2125 * KVM contexts as the original, and they may have different 2126 * memory-views. 2127 */ 2128 2129 e_unlock: 2130 sev_unlock_two_vms(kvm, source_kvm); 2131 e_source_fput: 2132 fdput(f); 2133 return ret; 2134 } 2135 2136 void sev_vm_destroy(struct kvm *kvm) 2137 { 2138 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2139 struct list_head *head = &sev->regions_list; 2140 struct list_head *pos, *q; 2141 2142 if (!sev_guest(kvm)) 2143 return; 2144 2145 WARN_ON(!list_empty(&sev->mirror_vms)); 2146 2147 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2148 if (is_mirroring_enc_context(kvm)) { 2149 struct kvm *owner_kvm = sev->enc_context_owner; 2150 2151 mutex_lock(&owner_kvm->lock); 2152 list_del(&sev->mirror_entry); 2153 mutex_unlock(&owner_kvm->lock); 2154 kvm_put_kvm(owner_kvm); 2155 return; 2156 } 2157 2158 /* 2159 * Ensure that all guest tagged cache entries are flushed before 2160 * releasing the pages back to the system for use. CLFLUSH will 2161 * not do this, so issue a WBINVD. 2162 */ 2163 wbinvd_on_all_cpus(); 2164 2165 /* 2166 * if userspace was terminated before unregistering the memory regions 2167 * then lets unpin all the registered memory. 2168 */ 2169 if (!list_empty(head)) { 2170 list_for_each_safe(pos, q, head) { 2171 __unregister_enc_region_locked(kvm, 2172 list_entry(pos, struct enc_region, list)); 2173 cond_resched(); 2174 } 2175 } 2176 2177 sev_unbind_asid(kvm, sev->handle); 2178 sev_asid_free(sev); 2179 } 2180 2181 void __init sev_set_cpu_caps(void) 2182 { 2183 if (!sev_enabled) 2184 kvm_cpu_cap_clear(X86_FEATURE_SEV); 2185 if (!sev_es_enabled) 2186 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 2187 } 2188 2189 void __init sev_hardware_setup(void) 2190 { 2191 #ifdef CONFIG_KVM_AMD_SEV 2192 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2193 bool sev_es_supported = false; 2194 bool sev_supported = false; 2195 2196 if (!sev_enabled || !npt_enabled || !nrips) 2197 goto out; 2198 2199 /* 2200 * SEV must obviously be supported in hardware. Sanity check that the 2201 * CPU supports decode assists, which is mandatory for SEV guests to 2202 * support instruction emulation. Ditto for flushing by ASID, as SEV 2203 * guests are bound to a single ASID, i.e. KVM can't rotate to a new 2204 * ASID to effect a TLB flush. 2205 */ 2206 if (!boot_cpu_has(X86_FEATURE_SEV) || 2207 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || 2208 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) 2209 goto out; 2210 2211 /* Retrieve SEV CPUID information */ 2212 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2213 2214 /* Set encryption bit location for SEV-ES guests */ 2215 sev_enc_bit = ebx & 0x3f; 2216 2217 /* Maximum number of encrypted guests supported simultaneously */ 2218 max_sev_asid = ecx; 2219 if (!max_sev_asid) 2220 goto out; 2221 2222 /* Minimum ASID value that should be used for SEV guest */ 2223 min_sev_asid = edx; 2224 sev_me_mask = 1UL << (ebx & 0x3f); 2225 2226 /* 2227 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2228 * even though it's never used, so that the bitmap is indexed by the 2229 * actual ASID. 2230 */ 2231 nr_asids = max_sev_asid + 1; 2232 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2233 if (!sev_asid_bitmap) 2234 goto out; 2235 2236 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2237 if (!sev_reclaim_asid_bitmap) { 2238 bitmap_free(sev_asid_bitmap); 2239 sev_asid_bitmap = NULL; 2240 goto out; 2241 } 2242 2243 sev_asid_count = max_sev_asid - min_sev_asid + 1; 2244 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 2245 sev_supported = true; 2246 2247 /* SEV-ES support requested? */ 2248 if (!sev_es_enabled) 2249 goto out; 2250 2251 /* 2252 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 2253 * instruction stream, i.e. can't emulate in response to a #NPF and 2254 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 2255 * (the guest can then do a #VMGEXIT to request MMIO emulation). 2256 */ 2257 if (!enable_mmio_caching) 2258 goto out; 2259 2260 /* Does the CPU support SEV-ES? */ 2261 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 2262 goto out; 2263 2264 /* Has the system been allocated ASIDs for SEV-ES? */ 2265 if (min_sev_asid == 1) 2266 goto out; 2267 2268 sev_es_asid_count = min_sev_asid - 1; 2269 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 2270 sev_es_supported = true; 2271 2272 out: 2273 if (boot_cpu_has(X86_FEATURE_SEV)) 2274 pr_info("SEV %s (ASIDs %u - %u)\n", 2275 sev_supported ? "enabled" : "disabled", 2276 min_sev_asid, max_sev_asid); 2277 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 2278 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 2279 sev_es_supported ? "enabled" : "disabled", 2280 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 2281 2282 sev_enabled = sev_supported; 2283 sev_es_enabled = sev_es_supported; 2284 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 2285 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 2286 sev_es_debug_swap_enabled = false; 2287 #endif 2288 } 2289 2290 void sev_hardware_unsetup(void) 2291 { 2292 if (!sev_enabled) 2293 return; 2294 2295 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 2296 sev_flush_asids(1, max_sev_asid); 2297 2298 bitmap_free(sev_asid_bitmap); 2299 bitmap_free(sev_reclaim_asid_bitmap); 2300 2301 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 2302 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 2303 } 2304 2305 int sev_cpu_init(struct svm_cpu_data *sd) 2306 { 2307 if (!sev_enabled) 2308 return 0; 2309 2310 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 2311 if (!sd->sev_vmcbs) 2312 return -ENOMEM; 2313 2314 return 0; 2315 } 2316 2317 /* 2318 * Pages used by hardware to hold guest encrypted state must be flushed before 2319 * returning them to the system. 2320 */ 2321 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 2322 { 2323 int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid; 2324 2325 /* 2326 * Note! The address must be a kernel address, as regular page walk 2327 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 2328 * address is non-deterministic and unsafe. This function deliberately 2329 * takes a pointer to deter passing in a user address. 2330 */ 2331 unsigned long addr = (unsigned long)va; 2332 2333 /* 2334 * If CPU enforced cache coherency for encrypted mappings of the 2335 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 2336 * flush is still needed in order to work properly with DMA devices. 2337 */ 2338 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 2339 clflush_cache_range(va, PAGE_SIZE); 2340 return; 2341 } 2342 2343 /* 2344 * VM Page Flush takes a host virtual address and a guest ASID. Fall 2345 * back to WBINVD if this faults so as not to make any problems worse 2346 * by leaving stale encrypted data in the cache. 2347 */ 2348 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 2349 goto do_wbinvd; 2350 2351 return; 2352 2353 do_wbinvd: 2354 wbinvd_on_all_cpus(); 2355 } 2356 2357 void sev_guest_memory_reclaimed(struct kvm *kvm) 2358 { 2359 if (!sev_guest(kvm)) 2360 return; 2361 2362 wbinvd_on_all_cpus(); 2363 } 2364 2365 void sev_free_vcpu(struct kvm_vcpu *vcpu) 2366 { 2367 struct vcpu_svm *svm; 2368 2369 if (!sev_es_guest(vcpu->kvm)) 2370 return; 2371 2372 svm = to_svm(vcpu); 2373 2374 if (vcpu->arch.guest_state_protected) 2375 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 2376 2377 __free_page(virt_to_page(svm->sev_es.vmsa)); 2378 2379 if (svm->sev_es.ghcb_sa_free) 2380 kvfree(svm->sev_es.ghcb_sa); 2381 } 2382 2383 static void dump_ghcb(struct vcpu_svm *svm) 2384 { 2385 struct ghcb *ghcb = svm->sev_es.ghcb; 2386 unsigned int nbits; 2387 2388 /* Re-use the dump_invalid_vmcb module parameter */ 2389 if (!dump_invalid_vmcb) { 2390 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2391 return; 2392 } 2393 2394 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2395 2396 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2397 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2398 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2399 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2400 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2401 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2402 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2403 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2404 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2405 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2406 } 2407 2408 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2409 { 2410 struct kvm_vcpu *vcpu = &svm->vcpu; 2411 struct ghcb *ghcb = svm->sev_es.ghcb; 2412 2413 /* 2414 * The GHCB protocol so far allows for the following data 2415 * to be returned: 2416 * GPRs RAX, RBX, RCX, RDX 2417 * 2418 * Copy their values, even if they may not have been written during the 2419 * VM-Exit. It's the guest's responsibility to not consume random data. 2420 */ 2421 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2422 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2423 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2424 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2425 } 2426 2427 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2428 { 2429 struct vmcb_control_area *control = &svm->vmcb->control; 2430 struct kvm_vcpu *vcpu = &svm->vcpu; 2431 struct ghcb *ghcb = svm->sev_es.ghcb; 2432 u64 exit_code; 2433 2434 /* 2435 * The GHCB protocol so far allows for the following data 2436 * to be supplied: 2437 * GPRs RAX, RBX, RCX, RDX 2438 * XCR0 2439 * CPL 2440 * 2441 * VMMCALL allows the guest to provide extra registers. KVM also 2442 * expects RSI for hypercalls, so include that, too. 2443 * 2444 * Copy their values to the appropriate location if supplied. 2445 */ 2446 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2447 2448 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 2449 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 2450 2451 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); 2452 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); 2453 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); 2454 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); 2455 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); 2456 2457 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); 2458 2459 if (kvm_ghcb_xcr0_is_valid(svm)) { 2460 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2461 kvm_update_cpuid_runtime(vcpu); 2462 } 2463 2464 /* Copy the GHCB exit information into the VMCB fields */ 2465 exit_code = ghcb_get_sw_exit_code(ghcb); 2466 control->exit_code = lower_32_bits(exit_code); 2467 control->exit_code_hi = upper_32_bits(exit_code); 2468 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2469 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2470 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); 2471 2472 /* Clear the valid entries fields */ 2473 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2474 } 2475 2476 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) 2477 { 2478 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 2479 } 2480 2481 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2482 { 2483 struct vmcb_control_area *control = &svm->vmcb->control; 2484 struct kvm_vcpu *vcpu = &svm->vcpu; 2485 u64 exit_code; 2486 u64 reason; 2487 2488 /* 2489 * Retrieve the exit code now even though it may not be marked valid 2490 * as it could help with debugging. 2491 */ 2492 exit_code = kvm_ghcb_get_sw_exit_code(control); 2493 2494 /* Only GHCB Usage code 0 is supported */ 2495 if (svm->sev_es.ghcb->ghcb_usage) { 2496 reason = GHCB_ERR_INVALID_USAGE; 2497 goto vmgexit_err; 2498 } 2499 2500 reason = GHCB_ERR_MISSING_INPUT; 2501 2502 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 2503 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 2504 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 2505 goto vmgexit_err; 2506 2507 switch (exit_code) { 2508 case SVM_EXIT_READ_DR7: 2509 break; 2510 case SVM_EXIT_WRITE_DR7: 2511 if (!kvm_ghcb_rax_is_valid(svm)) 2512 goto vmgexit_err; 2513 break; 2514 case SVM_EXIT_RDTSC: 2515 break; 2516 case SVM_EXIT_RDPMC: 2517 if (!kvm_ghcb_rcx_is_valid(svm)) 2518 goto vmgexit_err; 2519 break; 2520 case SVM_EXIT_CPUID: 2521 if (!kvm_ghcb_rax_is_valid(svm) || 2522 !kvm_ghcb_rcx_is_valid(svm)) 2523 goto vmgexit_err; 2524 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 2525 if (!kvm_ghcb_xcr0_is_valid(svm)) 2526 goto vmgexit_err; 2527 break; 2528 case SVM_EXIT_INVD: 2529 break; 2530 case SVM_EXIT_IOIO: 2531 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 2532 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 2533 goto vmgexit_err; 2534 } else { 2535 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 2536 if (!kvm_ghcb_rax_is_valid(svm)) 2537 goto vmgexit_err; 2538 } 2539 break; 2540 case SVM_EXIT_MSR: 2541 if (!kvm_ghcb_rcx_is_valid(svm)) 2542 goto vmgexit_err; 2543 if (control->exit_info_1) { 2544 if (!kvm_ghcb_rax_is_valid(svm) || 2545 !kvm_ghcb_rdx_is_valid(svm)) 2546 goto vmgexit_err; 2547 } 2548 break; 2549 case SVM_EXIT_VMMCALL: 2550 if (!kvm_ghcb_rax_is_valid(svm) || 2551 !kvm_ghcb_cpl_is_valid(svm)) 2552 goto vmgexit_err; 2553 break; 2554 case SVM_EXIT_RDTSCP: 2555 break; 2556 case SVM_EXIT_WBINVD: 2557 break; 2558 case SVM_EXIT_MONITOR: 2559 if (!kvm_ghcb_rax_is_valid(svm) || 2560 !kvm_ghcb_rcx_is_valid(svm) || 2561 !kvm_ghcb_rdx_is_valid(svm)) 2562 goto vmgexit_err; 2563 break; 2564 case SVM_EXIT_MWAIT: 2565 if (!kvm_ghcb_rax_is_valid(svm) || 2566 !kvm_ghcb_rcx_is_valid(svm)) 2567 goto vmgexit_err; 2568 break; 2569 case SVM_VMGEXIT_MMIO_READ: 2570 case SVM_VMGEXIT_MMIO_WRITE: 2571 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 2572 goto vmgexit_err; 2573 break; 2574 case SVM_VMGEXIT_NMI_COMPLETE: 2575 case SVM_VMGEXIT_AP_HLT_LOOP: 2576 case SVM_VMGEXIT_AP_JUMP_TABLE: 2577 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2578 break; 2579 default: 2580 reason = GHCB_ERR_INVALID_EVENT; 2581 goto vmgexit_err; 2582 } 2583 2584 return 0; 2585 2586 vmgexit_err: 2587 if (reason == GHCB_ERR_INVALID_USAGE) { 2588 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2589 svm->sev_es.ghcb->ghcb_usage); 2590 } else if (reason == GHCB_ERR_INVALID_EVENT) { 2591 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 2592 exit_code); 2593 } else { 2594 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 2595 exit_code); 2596 dump_ghcb(svm); 2597 } 2598 2599 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 2600 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason); 2601 2602 /* Resume the guest to "return" the error code. */ 2603 return 1; 2604 } 2605 2606 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2607 { 2608 if (!svm->sev_es.ghcb) 2609 return; 2610 2611 if (svm->sev_es.ghcb_sa_free) { 2612 /* 2613 * The scratch area lives outside the GHCB, so there is a 2614 * buffer that, depending on the operation performed, may 2615 * need to be synced, then freed. 2616 */ 2617 if (svm->sev_es.ghcb_sa_sync) { 2618 kvm_write_guest(svm->vcpu.kvm, 2619 svm->sev_es.sw_scratch, 2620 svm->sev_es.ghcb_sa, 2621 svm->sev_es.ghcb_sa_len); 2622 svm->sev_es.ghcb_sa_sync = false; 2623 } 2624 2625 kvfree(svm->sev_es.ghcb_sa); 2626 svm->sev_es.ghcb_sa = NULL; 2627 svm->sev_es.ghcb_sa_free = false; 2628 } 2629 2630 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 2631 2632 sev_es_sync_to_ghcb(svm); 2633 2634 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); 2635 svm->sev_es.ghcb = NULL; 2636 } 2637 2638 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2639 { 2640 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 2641 int asid = sev_get_asid(svm->vcpu.kvm); 2642 2643 /* Assign the asid allocated with this SEV guest */ 2644 svm->asid = asid; 2645 2646 /* 2647 * Flush guest TLB: 2648 * 2649 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2650 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2651 */ 2652 if (sd->sev_vmcbs[asid] == svm->vmcb && 2653 svm->vcpu.arch.last_vmentry_cpu == cpu) 2654 return; 2655 2656 sd->sev_vmcbs[asid] = svm->vmcb; 2657 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2658 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2659 } 2660 2661 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2662 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2663 { 2664 struct vmcb_control_area *control = &svm->vmcb->control; 2665 u64 ghcb_scratch_beg, ghcb_scratch_end; 2666 u64 scratch_gpa_beg, scratch_gpa_end; 2667 void *scratch_va; 2668 2669 scratch_gpa_beg = svm->sev_es.sw_scratch; 2670 if (!scratch_gpa_beg) { 2671 pr_err("vmgexit: scratch gpa not provided\n"); 2672 goto e_scratch; 2673 } 2674 2675 scratch_gpa_end = scratch_gpa_beg + len; 2676 if (scratch_gpa_end < scratch_gpa_beg) { 2677 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2678 len, scratch_gpa_beg); 2679 goto e_scratch; 2680 } 2681 2682 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2683 /* Scratch area begins within GHCB */ 2684 ghcb_scratch_beg = control->ghcb_gpa + 2685 offsetof(struct ghcb, shared_buffer); 2686 ghcb_scratch_end = control->ghcb_gpa + 2687 offsetof(struct ghcb, reserved_0xff0); 2688 2689 /* 2690 * If the scratch area begins within the GHCB, it must be 2691 * completely contained in the GHCB shared buffer area. 2692 */ 2693 if (scratch_gpa_beg < ghcb_scratch_beg || 2694 scratch_gpa_end > ghcb_scratch_end) { 2695 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2696 scratch_gpa_beg, scratch_gpa_end); 2697 goto e_scratch; 2698 } 2699 2700 scratch_va = (void *)svm->sev_es.ghcb; 2701 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2702 } else { 2703 /* 2704 * The guest memory must be read into a kernel buffer, so 2705 * limit the size 2706 */ 2707 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2708 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2709 len, GHCB_SCRATCH_AREA_LIMIT); 2710 goto e_scratch; 2711 } 2712 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 2713 if (!scratch_va) 2714 return -ENOMEM; 2715 2716 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2717 /* Unable to copy scratch area from guest */ 2718 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2719 2720 kvfree(scratch_va); 2721 return -EFAULT; 2722 } 2723 2724 /* 2725 * The scratch area is outside the GHCB. The operation will 2726 * dictate whether the buffer needs to be synced before running 2727 * the vCPU next time (i.e. a read was requested so the data 2728 * must be written back to the guest memory). 2729 */ 2730 svm->sev_es.ghcb_sa_sync = sync; 2731 svm->sev_es.ghcb_sa_free = true; 2732 } 2733 2734 svm->sev_es.ghcb_sa = scratch_va; 2735 svm->sev_es.ghcb_sa_len = len; 2736 2737 return 0; 2738 2739 e_scratch: 2740 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 2741 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); 2742 2743 return 1; 2744 } 2745 2746 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2747 unsigned int pos) 2748 { 2749 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2750 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2751 } 2752 2753 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2754 { 2755 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2756 } 2757 2758 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2759 { 2760 svm->vmcb->control.ghcb_gpa = value; 2761 } 2762 2763 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2764 { 2765 struct vmcb_control_area *control = &svm->vmcb->control; 2766 struct kvm_vcpu *vcpu = &svm->vcpu; 2767 u64 ghcb_info; 2768 int ret = 1; 2769 2770 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2771 2772 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2773 control->ghcb_gpa); 2774 2775 switch (ghcb_info) { 2776 case GHCB_MSR_SEV_INFO_REQ: 2777 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2778 GHCB_VERSION_MIN, 2779 sev_enc_bit)); 2780 break; 2781 case GHCB_MSR_CPUID_REQ: { 2782 u64 cpuid_fn, cpuid_reg, cpuid_value; 2783 2784 cpuid_fn = get_ghcb_msr_bits(svm, 2785 GHCB_MSR_CPUID_FUNC_MASK, 2786 GHCB_MSR_CPUID_FUNC_POS); 2787 2788 /* Initialize the registers needed by the CPUID intercept */ 2789 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2790 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2791 2792 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2793 if (!ret) { 2794 /* Error, keep GHCB MSR value as-is */ 2795 break; 2796 } 2797 2798 cpuid_reg = get_ghcb_msr_bits(svm, 2799 GHCB_MSR_CPUID_REG_MASK, 2800 GHCB_MSR_CPUID_REG_POS); 2801 if (cpuid_reg == 0) 2802 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2803 else if (cpuid_reg == 1) 2804 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2805 else if (cpuid_reg == 2) 2806 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2807 else 2808 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2809 2810 set_ghcb_msr_bits(svm, cpuid_value, 2811 GHCB_MSR_CPUID_VALUE_MASK, 2812 GHCB_MSR_CPUID_VALUE_POS); 2813 2814 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2815 GHCB_MSR_INFO_MASK, 2816 GHCB_MSR_INFO_POS); 2817 break; 2818 } 2819 case GHCB_MSR_TERM_REQ: { 2820 u64 reason_set, reason_code; 2821 2822 reason_set = get_ghcb_msr_bits(svm, 2823 GHCB_MSR_TERM_REASON_SET_MASK, 2824 GHCB_MSR_TERM_REASON_SET_POS); 2825 reason_code = get_ghcb_msr_bits(svm, 2826 GHCB_MSR_TERM_REASON_MASK, 2827 GHCB_MSR_TERM_REASON_POS); 2828 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2829 reason_set, reason_code); 2830 2831 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 2832 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 2833 vcpu->run->system_event.ndata = 1; 2834 vcpu->run->system_event.data[0] = control->ghcb_gpa; 2835 2836 return 0; 2837 } 2838 default: 2839 /* Error, keep GHCB MSR value as-is */ 2840 break; 2841 } 2842 2843 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2844 control->ghcb_gpa, ret); 2845 2846 return ret; 2847 } 2848 2849 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2850 { 2851 struct vcpu_svm *svm = to_svm(vcpu); 2852 struct vmcb_control_area *control = &svm->vmcb->control; 2853 u64 ghcb_gpa, exit_code; 2854 int ret; 2855 2856 /* Validate the GHCB */ 2857 ghcb_gpa = control->ghcb_gpa; 2858 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2859 return sev_handle_vmgexit_msr_protocol(svm); 2860 2861 if (!ghcb_gpa) { 2862 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2863 2864 /* Without a GHCB, just return right back to the guest */ 2865 return 1; 2866 } 2867 2868 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 2869 /* Unable to map GHCB from guest */ 2870 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2871 ghcb_gpa); 2872 2873 /* Without a GHCB, just return right back to the guest */ 2874 return 1; 2875 } 2876 2877 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 2878 2879 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 2880 2881 sev_es_sync_from_ghcb(svm); 2882 ret = sev_es_validate_vmgexit(svm); 2883 if (ret) 2884 return ret; 2885 2886 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0); 2887 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0); 2888 2889 exit_code = kvm_ghcb_get_sw_exit_code(control); 2890 switch (exit_code) { 2891 case SVM_VMGEXIT_MMIO_READ: 2892 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 2893 if (ret) 2894 break; 2895 2896 ret = kvm_sev_es_mmio_read(vcpu, 2897 control->exit_info_1, 2898 control->exit_info_2, 2899 svm->sev_es.ghcb_sa); 2900 break; 2901 case SVM_VMGEXIT_MMIO_WRITE: 2902 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 2903 if (ret) 2904 break; 2905 2906 ret = kvm_sev_es_mmio_write(vcpu, 2907 control->exit_info_1, 2908 control->exit_info_2, 2909 svm->sev_es.ghcb_sa); 2910 break; 2911 case SVM_VMGEXIT_NMI_COMPLETE: 2912 ++vcpu->stat.nmi_window_exits; 2913 svm->nmi_masked = false; 2914 kvm_make_request(KVM_REQ_EVENT, vcpu); 2915 ret = 1; 2916 break; 2917 case SVM_VMGEXIT_AP_HLT_LOOP: 2918 ret = kvm_emulate_ap_reset_hold(vcpu); 2919 break; 2920 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2921 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2922 2923 switch (control->exit_info_1) { 2924 case 0: 2925 /* Set AP jump table address */ 2926 sev->ap_jump_table = control->exit_info_2; 2927 break; 2928 case 1: 2929 /* Get AP jump table address */ 2930 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table); 2931 break; 2932 default: 2933 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2934 control->exit_info_1); 2935 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 2936 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 2937 } 2938 2939 ret = 1; 2940 break; 2941 } 2942 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2943 vcpu_unimpl(vcpu, 2944 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2945 control->exit_info_1, control->exit_info_2); 2946 ret = -EINVAL; 2947 break; 2948 default: 2949 ret = svm_invoke_exit_handler(vcpu, exit_code); 2950 } 2951 2952 return ret; 2953 } 2954 2955 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2956 { 2957 int count; 2958 int bytes; 2959 int r; 2960 2961 if (svm->vmcb->control.exit_info_2 > INT_MAX) 2962 return -EINVAL; 2963 2964 count = svm->vmcb->control.exit_info_2; 2965 if (unlikely(check_mul_overflow(count, size, &bytes))) 2966 return -EINVAL; 2967 2968 r = setup_vmgexit_scratch(svm, in, bytes); 2969 if (r) 2970 return r; 2971 2972 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 2973 count, in); 2974 } 2975 2976 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) 2977 { 2978 struct kvm_vcpu *vcpu = &svm->vcpu; 2979 2980 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 2981 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 2982 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 2983 2984 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); 2985 } 2986 2987 /* 2988 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if 2989 * the host/guest supports its use. 2990 * 2991 * guest_can_use() checks a number of requirements on the host/guest to 2992 * ensure that MSR_IA32_XSS is available, but it might report true even 2993 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host 2994 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better 2995 * to further check that the guest CPUID actually supports 2996 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved 2997 * guests will still get intercepted and caught in the normal 2998 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths. 2999 */ 3000 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 3001 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3002 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); 3003 else 3004 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0); 3005 } 3006 3007 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 3008 { 3009 struct kvm_vcpu *vcpu = &svm->vcpu; 3010 struct kvm_cpuid_entry2 *best; 3011 3012 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 3013 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 3014 if (best) 3015 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 3016 3017 if (sev_es_guest(svm->vcpu.kvm)) 3018 sev_es_vcpu_after_set_cpuid(svm); 3019 } 3020 3021 static void sev_es_init_vmcb(struct vcpu_svm *svm) 3022 { 3023 struct vmcb *vmcb = svm->vmcb01.ptr; 3024 struct kvm_vcpu *vcpu = &svm->vcpu; 3025 3026 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 3027 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 3028 3029 /* 3030 * An SEV-ES guest requires a VMSA area that is a separate from the 3031 * VMCB page. Do not include the encryption mask on the VMSA physical 3032 * address since hardware will access it using the guest key. Note, 3033 * the VMSA will be NULL if this vCPU is the destination for intrahost 3034 * migration, and will be copied later. 3035 */ 3036 if (svm->sev_es.vmsa) 3037 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 3038 3039 /* Can't intercept CR register access, HV can't modify CR registers */ 3040 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 3041 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 3042 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 3043 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 3044 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 3045 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3046 3047 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 3048 3049 /* Track EFER/CR register changes */ 3050 svm_set_intercept(svm, TRAP_EFER_WRITE); 3051 svm_set_intercept(svm, TRAP_CR0_WRITE); 3052 svm_set_intercept(svm, TRAP_CR4_WRITE); 3053 svm_set_intercept(svm, TRAP_CR8_WRITE); 3054 3055 vmcb->control.intercepts[INTERCEPT_DR] = 0; 3056 if (!sev_es_debug_swap_enabled) { 3057 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 3058 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 3059 recalc_intercepts(svm); 3060 } else { 3061 /* 3062 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 3063 * allow debugging SEV-ES guests, and enables DebugSwap iff 3064 * NO_NESTED_DATA_BP is supported, so there's no reason to 3065 * intercept #DB when DebugSwap is enabled. For simplicity 3066 * with respect to guest debug, intercept #DB for other VMs 3067 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 3068 * guest can't DoS the CPU with infinite #DB vectoring. 3069 */ 3070 clr_exception_intercept(svm, DB_VECTOR); 3071 } 3072 3073 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 3074 svm_clr_intercept(svm, INTERCEPT_XSETBV); 3075 3076 /* Clear intercepts on selected MSRs */ 3077 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 3078 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 3079 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 3080 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 3081 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 3082 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 3083 } 3084 3085 void sev_init_vmcb(struct vcpu_svm *svm) 3086 { 3087 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 3088 clr_exception_intercept(svm, UD_VECTOR); 3089 3090 /* 3091 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 3092 * KVM can't decrypt guest memory to decode the faulting instruction. 3093 */ 3094 clr_exception_intercept(svm, GP_VECTOR); 3095 3096 if (sev_es_guest(svm->vcpu.kvm)) 3097 sev_es_init_vmcb(svm); 3098 } 3099 3100 void sev_es_vcpu_reset(struct vcpu_svm *svm) 3101 { 3102 /* 3103 * Set the GHCB MSR value as per the GHCB specification when emulating 3104 * vCPU RESET for an SEV-ES guest. 3105 */ 3106 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 3107 GHCB_VERSION_MIN, 3108 sev_enc_bit)); 3109 } 3110 3111 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa) 3112 { 3113 /* 3114 * All host state for SEV-ES guests is categorized into three swap types 3115 * based on how it is handled by hardware during a world switch: 3116 * 3117 * A: VMRUN: Host state saved in host save area 3118 * VMEXIT: Host state loaded from host save area 3119 * 3120 * B: VMRUN: Host state _NOT_ saved in host save area 3121 * VMEXIT: Host state loaded from host save area 3122 * 3123 * C: VMRUN: Host state _NOT_ saved in host save area 3124 * VMEXIT: Host state initialized to default(reset) values 3125 * 3126 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 3127 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 3128 * by common SVM code). 3129 */ 3130 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 3131 hostsa->pkru = read_pkru(); 3132 hostsa->xss = host_xss; 3133 3134 /* 3135 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 3136 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both 3137 * saves and loads debug registers (Type-A). 3138 */ 3139 if (sev_es_debug_swap_enabled) { 3140 hostsa->dr0 = native_get_debugreg(0); 3141 hostsa->dr1 = native_get_debugreg(1); 3142 hostsa->dr2 = native_get_debugreg(2); 3143 hostsa->dr3 = native_get_debugreg(3); 3144 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 3145 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 3146 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 3147 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 3148 } 3149 } 3150 3151 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 3152 { 3153 struct vcpu_svm *svm = to_svm(vcpu); 3154 3155 /* First SIPI: Use the values as initially set by the VMM */ 3156 if (!svm->sev_es.received_first_sipi) { 3157 svm->sev_es.received_first_sipi = true; 3158 return; 3159 } 3160 3161 /* 3162 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 3163 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 3164 * non-zero value. 3165 */ 3166 if (!svm->sev_es.ghcb) 3167 return; 3168 3169 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 3170 } 3171 3172 struct page *snp_safe_alloc_page(struct kvm_vcpu *vcpu) 3173 { 3174 unsigned long pfn; 3175 struct page *p; 3176 3177 if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP)) 3178 return alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3179 3180 /* 3181 * Allocate an SNP-safe page to workaround the SNP erratum where 3182 * the CPU will incorrectly signal an RMP violation #PF if a 3183 * hugepage (2MB or 1GB) collides with the RMP entry of a 3184 * 2MB-aligned VMCB, VMSA, or AVIC backing page. 3185 * 3186 * Allocate one extra page, choose a page which is not 3187 * 2MB-aligned, and free the other. 3188 */ 3189 p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1); 3190 if (!p) 3191 return NULL; 3192 3193 split_page(p, 1); 3194 3195 pfn = page_to_pfn(p); 3196 if (IS_ALIGNED(pfn, PTRS_PER_PMD)) 3197 __free_page(p++); 3198 else 3199 __free_page(p + 1); 3200 3201 return p; 3202 } 3203