1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 #include <uapi/linux/sev-guest.h> 23 24 #include <asm/pkru.h> 25 #include <asm/trapnr.h> 26 #include <asm/fpu/xcr.h> 27 #include <asm/fpu/xstate.h> 28 #include <asm/debugreg.h> 29 #include <asm/sev.h> 30 31 #include "mmu.h" 32 #include "x86.h" 33 #include "svm.h" 34 #include "svm_ops.h" 35 #include "cpuid.h" 36 #include "trace.h" 37 38 #define GHCB_VERSION_MAX 2ULL 39 #define GHCB_VERSION_DEFAULT 2ULL 40 #define GHCB_VERSION_MIN 1ULL 41 42 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION) 43 44 /* enable/disable SEV support */ 45 static bool sev_enabled = true; 46 module_param_named(sev, sev_enabled, bool, 0444); 47 48 /* enable/disable SEV-ES support */ 49 static bool sev_es_enabled = true; 50 module_param_named(sev_es, sev_es_enabled, bool, 0444); 51 52 /* enable/disable SEV-SNP support */ 53 static bool sev_snp_enabled = true; 54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444); 55 56 /* enable/disable SEV-ES DebugSwap support */ 57 static bool sev_es_debug_swap_enabled = true; 58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 59 static u64 sev_supported_vmsa_features; 60 61 #define AP_RESET_HOLD_NONE 0 62 #define AP_RESET_HOLD_NAE_EVENT 1 63 #define AP_RESET_HOLD_MSR_PROTO 2 64 65 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */ 66 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0) 67 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8) 68 #define SNP_POLICY_MASK_SMT BIT_ULL(16) 69 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17) 70 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19) 71 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20) 72 73 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \ 74 SNP_POLICY_MASK_API_MAJOR | \ 75 SNP_POLICY_MASK_SMT | \ 76 SNP_POLICY_MASK_RSVD_MBO | \ 77 SNP_POLICY_MASK_DEBUG | \ 78 SNP_POLICY_MASK_SINGLE_SOCKET) 79 80 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000 81 82 static u8 sev_enc_bit; 83 static DECLARE_RWSEM(sev_deactivate_lock); 84 static DEFINE_MUTEX(sev_bitmap_lock); 85 unsigned int max_sev_asid; 86 static unsigned int min_sev_asid; 87 static unsigned long sev_me_mask; 88 static unsigned int nr_asids; 89 static unsigned long *sev_asid_bitmap; 90 static unsigned long *sev_reclaim_asid_bitmap; 91 92 static int snp_decommission_context(struct kvm *kvm); 93 94 struct enc_region { 95 struct list_head list; 96 unsigned long npages; 97 struct page **pages; 98 unsigned long uaddr; 99 unsigned long size; 100 }; 101 102 /* Called with the sev_bitmap_lock held, or on shutdown */ 103 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) 104 { 105 int ret, error = 0; 106 unsigned int asid; 107 108 /* Check if there are any ASIDs to reclaim before performing a flush */ 109 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 110 if (asid > max_asid) 111 return -EBUSY; 112 113 /* 114 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 115 * so it must be guarded. 116 */ 117 down_write(&sev_deactivate_lock); 118 119 wbinvd_on_all_cpus(); 120 121 if (sev_snp_enabled) 122 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error); 123 else 124 ret = sev_guest_df_flush(&error); 125 126 up_write(&sev_deactivate_lock); 127 128 if (ret) 129 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n", 130 sev_snp_enabled ? "-SNP" : "", ret, error); 131 132 return ret; 133 } 134 135 static inline bool is_mirroring_enc_context(struct kvm *kvm) 136 { 137 return !!to_kvm_sev_info(kvm)->enc_context_owner; 138 } 139 140 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm) 141 { 142 struct kvm_vcpu *vcpu = &svm->vcpu; 143 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 144 145 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP; 146 } 147 148 /* Must be called with the sev_bitmap_lock held */ 149 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) 150 { 151 if (sev_flush_asids(min_asid, max_asid)) 152 return false; 153 154 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 155 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 156 nr_asids); 157 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 158 159 return true; 160 } 161 162 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 163 { 164 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 165 return misc_cg_try_charge(type, sev->misc_cg, 1); 166 } 167 168 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 169 { 170 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 171 misc_cg_uncharge(type, sev->misc_cg, 1); 172 } 173 174 static int sev_asid_new(struct kvm_sev_info *sev) 175 { 176 /* 177 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 178 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 179 * Note: min ASID can end up larger than the max if basic SEV support is 180 * effectively disabled by disallowing use of ASIDs for SEV guests. 181 */ 182 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; 183 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 184 unsigned int asid; 185 bool retry = true; 186 int ret; 187 188 if (min_asid > max_asid) 189 return -ENOTTY; 190 191 WARN_ON(sev->misc_cg); 192 sev->misc_cg = get_current_misc_cg(); 193 ret = sev_misc_cg_try_charge(sev); 194 if (ret) { 195 put_misc_cg(sev->misc_cg); 196 sev->misc_cg = NULL; 197 return ret; 198 } 199 200 mutex_lock(&sev_bitmap_lock); 201 202 again: 203 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 204 if (asid > max_asid) { 205 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 206 retry = false; 207 goto again; 208 } 209 mutex_unlock(&sev_bitmap_lock); 210 ret = -EBUSY; 211 goto e_uncharge; 212 } 213 214 __set_bit(asid, sev_asid_bitmap); 215 216 mutex_unlock(&sev_bitmap_lock); 217 218 sev->asid = asid; 219 return 0; 220 e_uncharge: 221 sev_misc_cg_uncharge(sev); 222 put_misc_cg(sev->misc_cg); 223 sev->misc_cg = NULL; 224 return ret; 225 } 226 227 static unsigned int sev_get_asid(struct kvm *kvm) 228 { 229 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 230 231 return sev->asid; 232 } 233 234 static void sev_asid_free(struct kvm_sev_info *sev) 235 { 236 struct svm_cpu_data *sd; 237 int cpu; 238 239 mutex_lock(&sev_bitmap_lock); 240 241 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 242 243 for_each_possible_cpu(cpu) { 244 sd = per_cpu_ptr(&svm_data, cpu); 245 sd->sev_vmcbs[sev->asid] = NULL; 246 } 247 248 mutex_unlock(&sev_bitmap_lock); 249 250 sev_misc_cg_uncharge(sev); 251 put_misc_cg(sev->misc_cg); 252 sev->misc_cg = NULL; 253 } 254 255 static void sev_decommission(unsigned int handle) 256 { 257 struct sev_data_decommission decommission; 258 259 if (!handle) 260 return; 261 262 decommission.handle = handle; 263 sev_guest_decommission(&decommission, NULL); 264 } 265 266 /* 267 * Transition a page to hypervisor-owned/shared state in the RMP table. This 268 * should not fail under normal conditions, but leak the page should that 269 * happen since it will no longer be usable by the host due to RMP protections. 270 */ 271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level) 272 { 273 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) { 274 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT); 275 return -EIO; 276 } 277 278 return 0; 279 } 280 281 /* 282 * Certain page-states, such as Pre-Guest and Firmware pages (as documented 283 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be 284 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE 285 * unless they are reclaimed first. 286 * 287 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they 288 * might not be usable by the host due to being set as immutable or still 289 * being associated with a guest ASID. 290 * 291 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be 292 * converted back to shared, as the page is no longer usable due to RMP 293 * protections, and it's infeasible for the guest to continue on. 294 */ 295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn) 296 { 297 struct sev_data_snp_page_reclaim data = {0}; 298 int fw_err, rc; 299 300 data.paddr = __sme_set(pfn << PAGE_SHIFT); 301 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err); 302 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) { 303 snp_leak_pages(pfn, 1); 304 return -EIO; 305 } 306 307 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K)) 308 return -EIO; 309 310 return rc; 311 } 312 313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 314 { 315 struct sev_data_deactivate deactivate; 316 317 if (!handle) 318 return; 319 320 deactivate.handle = handle; 321 322 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 323 down_read(&sev_deactivate_lock); 324 sev_guest_deactivate(&deactivate, NULL); 325 up_read(&sev_deactivate_lock); 326 327 sev_decommission(handle); 328 } 329 330 /* 331 * This sets up bounce buffers/firmware pages to handle SNP Guest Request 332 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB 333 * 2.0 specification for more details. 334 * 335 * Technically, when an SNP Guest Request is issued, the guest will provide its 336 * own request/response pages, which could in theory be passed along directly 337 * to firmware rather than using bounce pages. However, these pages would need 338 * special care: 339 * 340 * - Both pages are from shared guest memory, so they need to be protected 341 * from migration/etc. occurring while firmware reads/writes to them. At a 342 * minimum, this requires elevating the ref counts and potentially needing 343 * an explicit pinning of the memory. This places additional restrictions 344 * on what type of memory backends userspace can use for shared guest 345 * memory since there is some reliance on using refcounted pages. 346 * 347 * - The response page needs to be switched to Firmware-owned[1] state 348 * before the firmware can write to it, which can lead to potential 349 * host RMP #PFs if the guest is misbehaved and hands the host a 350 * guest page that KVM might write to for other reasons (e.g. virtio 351 * buffers/etc.). 352 * 353 * Both of these issues can be avoided completely by using separately-allocated 354 * bounce pages for both the request/response pages and passing those to 355 * firmware instead. So that's what is being set up here. 356 * 357 * Guest requests rely on message sequence numbers to ensure requests are 358 * issued to firmware in the order the guest issues them, so concurrent guest 359 * requests generally shouldn't happen. But a misbehaved guest could issue 360 * concurrent guest requests in theory, so a mutex is used to serialize 361 * access to the bounce buffers. 362 * 363 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more 364 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks" 365 * in the APM for details on the related RMP restrictions. 366 */ 367 static int snp_guest_req_init(struct kvm *kvm) 368 { 369 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 370 struct page *req_page; 371 372 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 373 if (!req_page) 374 return -ENOMEM; 375 376 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 377 if (!sev->guest_resp_buf) { 378 __free_page(req_page); 379 return -EIO; 380 } 381 382 sev->guest_req_buf = page_address(req_page); 383 mutex_init(&sev->guest_req_mutex); 384 385 return 0; 386 } 387 388 static void snp_guest_req_cleanup(struct kvm *kvm) 389 { 390 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 391 392 if (sev->guest_resp_buf) 393 snp_free_firmware_page(sev->guest_resp_buf); 394 395 if (sev->guest_req_buf) 396 __free_page(virt_to_page(sev->guest_req_buf)); 397 398 sev->guest_req_buf = NULL; 399 sev->guest_resp_buf = NULL; 400 } 401 402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp, 403 struct kvm_sev_init *data, 404 unsigned long vm_type) 405 { 406 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 407 struct sev_platform_init_args init_args = {0}; 408 bool es_active = vm_type != KVM_X86_SEV_VM; 409 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0; 410 int ret; 411 412 if (kvm->created_vcpus) 413 return -EINVAL; 414 415 if (data->flags) 416 return -EINVAL; 417 418 if (data->vmsa_features & ~valid_vmsa_features) 419 return -EINVAL; 420 421 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version)) 422 return -EINVAL; 423 424 if (unlikely(sev->active)) 425 return -EINVAL; 426 427 sev->active = true; 428 sev->es_active = es_active; 429 sev->vmsa_features = data->vmsa_features; 430 sev->ghcb_version = data->ghcb_version; 431 432 /* 433 * Currently KVM supports the full range of mandatory features defined 434 * by version 2 of the GHCB protocol, so default to that for SEV-ES 435 * guests created via KVM_SEV_INIT2. 436 */ 437 if (sev->es_active && !sev->ghcb_version) 438 sev->ghcb_version = GHCB_VERSION_DEFAULT; 439 440 if (vm_type == KVM_X86_SNP_VM) 441 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE; 442 443 ret = sev_asid_new(sev); 444 if (ret) 445 goto e_no_asid; 446 447 init_args.probe = false; 448 ret = sev_platform_init(&init_args); 449 if (ret) 450 goto e_free; 451 452 /* This needs to happen after SEV/SNP firmware initialization. */ 453 if (vm_type == KVM_X86_SNP_VM && snp_guest_req_init(kvm)) 454 goto e_free; 455 456 INIT_LIST_HEAD(&sev->regions_list); 457 INIT_LIST_HEAD(&sev->mirror_vms); 458 sev->need_init = false; 459 460 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 461 462 return 0; 463 464 e_free: 465 argp->error = init_args.error; 466 sev_asid_free(sev); 467 sev->asid = 0; 468 e_no_asid: 469 sev->vmsa_features = 0; 470 sev->es_active = false; 471 sev->active = false; 472 return ret; 473 } 474 475 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 476 { 477 struct kvm_sev_init data = { 478 .vmsa_features = 0, 479 .ghcb_version = 0, 480 }; 481 unsigned long vm_type; 482 483 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM) 484 return -EINVAL; 485 486 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM); 487 488 /* 489 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will 490 * continue to only ever support the minimal GHCB protocol version. 491 */ 492 if (vm_type == KVM_X86_SEV_ES_VM) 493 data.ghcb_version = GHCB_VERSION_MIN; 494 495 return __sev_guest_init(kvm, argp, &data, vm_type); 496 } 497 498 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp) 499 { 500 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 501 struct kvm_sev_init data; 502 503 if (!sev->need_init) 504 return -EINVAL; 505 506 if (kvm->arch.vm_type != KVM_X86_SEV_VM && 507 kvm->arch.vm_type != KVM_X86_SEV_ES_VM && 508 kvm->arch.vm_type != KVM_X86_SNP_VM) 509 return -EINVAL; 510 511 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data))) 512 return -EFAULT; 513 514 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type); 515 } 516 517 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 518 { 519 unsigned int asid = sev_get_asid(kvm); 520 struct sev_data_activate activate; 521 int ret; 522 523 /* activate ASID on the given handle */ 524 activate.handle = handle; 525 activate.asid = asid; 526 ret = sev_guest_activate(&activate, error); 527 528 return ret; 529 } 530 531 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 532 { 533 struct fd f; 534 int ret; 535 536 f = fdget(fd); 537 if (!f.file) 538 return -EBADF; 539 540 ret = sev_issue_cmd_external_user(f.file, id, data, error); 541 542 fdput(f); 543 return ret; 544 } 545 546 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 547 { 548 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 549 550 return __sev_issue_cmd(sev->fd, id, data, error); 551 } 552 553 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 554 { 555 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 556 struct sev_data_launch_start start; 557 struct kvm_sev_launch_start params; 558 void *dh_blob, *session_blob; 559 int *error = &argp->error; 560 int ret; 561 562 if (!sev_guest(kvm)) 563 return -ENOTTY; 564 565 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 566 return -EFAULT; 567 568 memset(&start, 0, sizeof(start)); 569 570 dh_blob = NULL; 571 if (params.dh_uaddr) { 572 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 573 if (IS_ERR(dh_blob)) 574 return PTR_ERR(dh_blob); 575 576 start.dh_cert_address = __sme_set(__pa(dh_blob)); 577 start.dh_cert_len = params.dh_len; 578 } 579 580 session_blob = NULL; 581 if (params.session_uaddr) { 582 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 583 if (IS_ERR(session_blob)) { 584 ret = PTR_ERR(session_blob); 585 goto e_free_dh; 586 } 587 588 start.session_address = __sme_set(__pa(session_blob)); 589 start.session_len = params.session_len; 590 } 591 592 start.handle = params.handle; 593 start.policy = params.policy; 594 595 /* create memory encryption context */ 596 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 597 if (ret) 598 goto e_free_session; 599 600 /* Bind ASID to this guest */ 601 ret = sev_bind_asid(kvm, start.handle, error); 602 if (ret) { 603 sev_decommission(start.handle); 604 goto e_free_session; 605 } 606 607 /* return handle to userspace */ 608 params.handle = start.handle; 609 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) { 610 sev_unbind_asid(kvm, start.handle); 611 ret = -EFAULT; 612 goto e_free_session; 613 } 614 615 sev->handle = start.handle; 616 sev->fd = argp->sev_fd; 617 618 e_free_session: 619 kfree(session_blob); 620 e_free_dh: 621 kfree(dh_blob); 622 return ret; 623 } 624 625 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 626 unsigned long ulen, unsigned long *n, 627 int write) 628 { 629 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 630 unsigned long npages, size; 631 int npinned; 632 unsigned long locked, lock_limit; 633 struct page **pages; 634 unsigned long first, last; 635 int ret; 636 637 lockdep_assert_held(&kvm->lock); 638 639 if (ulen == 0 || uaddr + ulen < uaddr) 640 return ERR_PTR(-EINVAL); 641 642 /* Calculate number of pages. */ 643 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 644 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 645 npages = (last - first + 1); 646 647 locked = sev->pages_locked + npages; 648 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 649 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 650 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 651 return ERR_PTR(-ENOMEM); 652 } 653 654 if (WARN_ON_ONCE(npages > INT_MAX)) 655 return ERR_PTR(-EINVAL); 656 657 /* Avoid using vmalloc for smaller buffers. */ 658 size = npages * sizeof(struct page *); 659 if (size > PAGE_SIZE) 660 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT); 661 else 662 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 663 664 if (!pages) 665 return ERR_PTR(-ENOMEM); 666 667 /* Pin the user virtual address. */ 668 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 669 if (npinned != npages) { 670 pr_err("SEV: Failure locking %lu pages.\n", npages); 671 ret = -ENOMEM; 672 goto err; 673 } 674 675 *n = npages; 676 sev->pages_locked = locked; 677 678 return pages; 679 680 err: 681 if (npinned > 0) 682 unpin_user_pages(pages, npinned); 683 684 kvfree(pages); 685 return ERR_PTR(ret); 686 } 687 688 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 689 unsigned long npages) 690 { 691 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 692 693 unpin_user_pages(pages, npages); 694 kvfree(pages); 695 sev->pages_locked -= npages; 696 } 697 698 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 699 { 700 uint8_t *page_virtual; 701 unsigned long i; 702 703 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 704 pages == NULL) 705 return; 706 707 for (i = 0; i < npages; i++) { 708 page_virtual = kmap_local_page(pages[i]); 709 clflush_cache_range(page_virtual, PAGE_SIZE); 710 kunmap_local(page_virtual); 711 cond_resched(); 712 } 713 } 714 715 static unsigned long get_num_contig_pages(unsigned long idx, 716 struct page **inpages, unsigned long npages) 717 { 718 unsigned long paddr, next_paddr; 719 unsigned long i = idx + 1, pages = 1; 720 721 /* find the number of contiguous pages starting from idx */ 722 paddr = __sme_page_pa(inpages[idx]); 723 while (i < npages) { 724 next_paddr = __sme_page_pa(inpages[i++]); 725 if ((paddr + PAGE_SIZE) == next_paddr) { 726 pages++; 727 paddr = next_paddr; 728 continue; 729 } 730 break; 731 } 732 733 return pages; 734 } 735 736 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 737 { 738 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 739 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 740 struct kvm_sev_launch_update_data params; 741 struct sev_data_launch_update_data data; 742 struct page **inpages; 743 int ret; 744 745 if (!sev_guest(kvm)) 746 return -ENOTTY; 747 748 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 749 return -EFAULT; 750 751 vaddr = params.uaddr; 752 size = params.len; 753 vaddr_end = vaddr + size; 754 755 /* Lock the user memory. */ 756 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 757 if (IS_ERR(inpages)) 758 return PTR_ERR(inpages); 759 760 /* 761 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 762 * place; the cache may contain the data that was written unencrypted. 763 */ 764 sev_clflush_pages(inpages, npages); 765 766 data.reserved = 0; 767 data.handle = sev->handle; 768 769 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 770 int offset, len; 771 772 /* 773 * If the user buffer is not page-aligned, calculate the offset 774 * within the page. 775 */ 776 offset = vaddr & (PAGE_SIZE - 1); 777 778 /* Calculate the number of pages that can be encrypted in one go. */ 779 pages = get_num_contig_pages(i, inpages, npages); 780 781 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 782 783 data.len = len; 784 data.address = __sme_page_pa(inpages[i]) + offset; 785 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 786 if (ret) 787 goto e_unpin; 788 789 size -= len; 790 next_vaddr = vaddr + len; 791 } 792 793 e_unpin: 794 /* content of memory is updated, mark pages dirty */ 795 for (i = 0; i < npages; i++) { 796 set_page_dirty_lock(inpages[i]); 797 mark_page_accessed(inpages[i]); 798 } 799 /* unlock the user pages */ 800 sev_unpin_memory(kvm, inpages, npages); 801 return ret; 802 } 803 804 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 805 { 806 struct kvm_vcpu *vcpu = &svm->vcpu; 807 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 808 struct sev_es_save_area *save = svm->sev_es.vmsa; 809 struct xregs_state *xsave; 810 const u8 *s; 811 u8 *d; 812 int i; 813 814 /* Check some debug related fields before encrypting the VMSA */ 815 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 816 return -EINVAL; 817 818 /* 819 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 820 * the traditional VMSA that is part of the VMCB. Copy the 821 * traditional VMSA as it has been built so far (in prep 822 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 823 */ 824 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 825 826 /* Sync registgers */ 827 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 828 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 829 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 830 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 831 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 832 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 833 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 834 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 835 #ifdef CONFIG_X86_64 836 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 837 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 838 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 839 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 840 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 841 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 842 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 843 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 844 #endif 845 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 846 847 /* Sync some non-GPR registers before encrypting */ 848 save->xcr0 = svm->vcpu.arch.xcr0; 849 save->pkru = svm->vcpu.arch.pkru; 850 save->xss = svm->vcpu.arch.ia32_xss; 851 save->dr6 = svm->vcpu.arch.dr6; 852 853 save->sev_features = sev->vmsa_features; 854 855 /* 856 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid 857 * breaking older measurements. 858 */ 859 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) { 860 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave; 861 save->x87_dp = xsave->i387.rdp; 862 save->mxcsr = xsave->i387.mxcsr; 863 save->x87_ftw = xsave->i387.twd; 864 save->x87_fsw = xsave->i387.swd; 865 save->x87_fcw = xsave->i387.cwd; 866 save->x87_fop = xsave->i387.fop; 867 save->x87_ds = 0; 868 save->x87_cs = 0; 869 save->x87_rip = xsave->i387.rip; 870 871 for (i = 0; i < 8; i++) { 872 /* 873 * The format of the x87 save area is undocumented and 874 * definitely not what you would expect. It consists of 875 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes 876 * area with bytes 8-9 of each register. 877 */ 878 d = save->fpreg_x87 + i * 8; 879 s = ((u8 *)xsave->i387.st_space) + i * 16; 880 memcpy(d, s, 8); 881 save->fpreg_x87[64 + i * 2] = s[8]; 882 save->fpreg_x87[64 + i * 2 + 1] = s[9]; 883 } 884 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256); 885 886 s = get_xsave_addr(xsave, XFEATURE_YMM); 887 if (s) 888 memcpy(save->fpreg_ymm, s, 256); 889 else 890 memset(save->fpreg_ymm, 0, 256); 891 } 892 893 pr_debug("Virtual Machine Save Area (VMSA):\n"); 894 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 895 896 return 0; 897 } 898 899 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 900 int *error) 901 { 902 struct sev_data_launch_update_vmsa vmsa; 903 struct vcpu_svm *svm = to_svm(vcpu); 904 int ret; 905 906 if (vcpu->guest_debug) { 907 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 908 return -EINVAL; 909 } 910 911 /* Perform some pre-encryption checks against the VMSA */ 912 ret = sev_es_sync_vmsa(svm); 913 if (ret) 914 return ret; 915 916 /* 917 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 918 * the VMSA memory content (i.e it will write the same memory region 919 * with the guest's key), so invalidate it first. 920 */ 921 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 922 923 vmsa.reserved = 0; 924 vmsa.handle = to_kvm_sev_info(kvm)->handle; 925 vmsa.address = __sme_pa(svm->sev_es.vmsa); 926 vmsa.len = PAGE_SIZE; 927 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 928 if (ret) 929 return ret; 930 931 /* 932 * SEV-ES guests maintain an encrypted version of their FPU 933 * state which is restored and saved on VMRUN and VMEXIT. 934 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 935 * do xsave/xrstor on it. 936 */ 937 fpstate_set_confidential(&vcpu->arch.guest_fpu); 938 vcpu->arch.guest_state_protected = true; 939 940 /* 941 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it 942 * only after setting guest_state_protected because KVM_SET_MSRS allows 943 * dynamic toggling of LBRV (for performance reason) on write access to 944 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 945 */ 946 svm_enable_lbrv(vcpu); 947 return 0; 948 } 949 950 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 951 { 952 struct kvm_vcpu *vcpu; 953 unsigned long i; 954 int ret; 955 956 if (!sev_es_guest(kvm)) 957 return -ENOTTY; 958 959 kvm_for_each_vcpu(i, vcpu, kvm) { 960 ret = mutex_lock_killable(&vcpu->mutex); 961 if (ret) 962 return ret; 963 964 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 965 966 mutex_unlock(&vcpu->mutex); 967 if (ret) 968 return ret; 969 } 970 971 return 0; 972 } 973 974 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 975 { 976 void __user *measure = u64_to_user_ptr(argp->data); 977 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 978 struct sev_data_launch_measure data; 979 struct kvm_sev_launch_measure params; 980 void __user *p = NULL; 981 void *blob = NULL; 982 int ret; 983 984 if (!sev_guest(kvm)) 985 return -ENOTTY; 986 987 if (copy_from_user(¶ms, measure, sizeof(params))) 988 return -EFAULT; 989 990 memset(&data, 0, sizeof(data)); 991 992 /* User wants to query the blob length */ 993 if (!params.len) 994 goto cmd; 995 996 p = u64_to_user_ptr(params.uaddr); 997 if (p) { 998 if (params.len > SEV_FW_BLOB_MAX_SIZE) 999 return -EINVAL; 1000 1001 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1002 if (!blob) 1003 return -ENOMEM; 1004 1005 data.address = __psp_pa(blob); 1006 data.len = params.len; 1007 } 1008 1009 cmd: 1010 data.handle = sev->handle; 1011 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 1012 1013 /* 1014 * If we query the session length, FW responded with expected data. 1015 */ 1016 if (!params.len) 1017 goto done; 1018 1019 if (ret) 1020 goto e_free_blob; 1021 1022 if (blob) { 1023 if (copy_to_user(p, blob, params.len)) 1024 ret = -EFAULT; 1025 } 1026 1027 done: 1028 params.len = data.len; 1029 if (copy_to_user(measure, ¶ms, sizeof(params))) 1030 ret = -EFAULT; 1031 e_free_blob: 1032 kfree(blob); 1033 return ret; 1034 } 1035 1036 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1037 { 1038 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1039 struct sev_data_launch_finish data; 1040 1041 if (!sev_guest(kvm)) 1042 return -ENOTTY; 1043 1044 data.handle = sev->handle; 1045 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 1046 } 1047 1048 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 1049 { 1050 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1051 struct kvm_sev_guest_status params; 1052 struct sev_data_guest_status data; 1053 int ret; 1054 1055 if (!sev_guest(kvm)) 1056 return -ENOTTY; 1057 1058 memset(&data, 0, sizeof(data)); 1059 1060 data.handle = sev->handle; 1061 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 1062 if (ret) 1063 return ret; 1064 1065 params.policy = data.policy; 1066 params.state = data.state; 1067 params.handle = data.handle; 1068 1069 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 1070 ret = -EFAULT; 1071 1072 return ret; 1073 } 1074 1075 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 1076 unsigned long dst, int size, 1077 int *error, bool enc) 1078 { 1079 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1080 struct sev_data_dbg data; 1081 1082 data.reserved = 0; 1083 data.handle = sev->handle; 1084 data.dst_addr = dst; 1085 data.src_addr = src; 1086 data.len = size; 1087 1088 return sev_issue_cmd(kvm, 1089 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 1090 &data, error); 1091 } 1092 1093 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 1094 unsigned long dst_paddr, int sz, int *err) 1095 { 1096 int offset; 1097 1098 /* 1099 * Its safe to read more than we are asked, caller should ensure that 1100 * destination has enough space. 1101 */ 1102 offset = src_paddr & 15; 1103 src_paddr = round_down(src_paddr, 16); 1104 sz = round_up(sz + offset, 16); 1105 1106 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 1107 } 1108 1109 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 1110 void __user *dst_uaddr, 1111 unsigned long dst_paddr, 1112 int size, int *err) 1113 { 1114 struct page *tpage = NULL; 1115 int ret, offset; 1116 1117 /* if inputs are not 16-byte then use intermediate buffer */ 1118 if (!IS_ALIGNED(dst_paddr, 16) || 1119 !IS_ALIGNED(paddr, 16) || 1120 !IS_ALIGNED(size, 16)) { 1121 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1122 if (!tpage) 1123 return -ENOMEM; 1124 1125 dst_paddr = __sme_page_pa(tpage); 1126 } 1127 1128 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 1129 if (ret) 1130 goto e_free; 1131 1132 if (tpage) { 1133 offset = paddr & 15; 1134 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 1135 ret = -EFAULT; 1136 } 1137 1138 e_free: 1139 if (tpage) 1140 __free_page(tpage); 1141 1142 return ret; 1143 } 1144 1145 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 1146 void __user *vaddr, 1147 unsigned long dst_paddr, 1148 void __user *dst_vaddr, 1149 int size, int *error) 1150 { 1151 struct page *src_tpage = NULL; 1152 struct page *dst_tpage = NULL; 1153 int ret, len = size; 1154 1155 /* If source buffer is not aligned then use an intermediate buffer */ 1156 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 1157 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1158 if (!src_tpage) 1159 return -ENOMEM; 1160 1161 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 1162 __free_page(src_tpage); 1163 return -EFAULT; 1164 } 1165 1166 paddr = __sme_page_pa(src_tpage); 1167 } 1168 1169 /* 1170 * If destination buffer or length is not aligned then do read-modify-write: 1171 * - decrypt destination in an intermediate buffer 1172 * - copy the source buffer in an intermediate buffer 1173 * - use the intermediate buffer as source buffer 1174 */ 1175 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 1176 int dst_offset; 1177 1178 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1179 if (!dst_tpage) { 1180 ret = -ENOMEM; 1181 goto e_free; 1182 } 1183 1184 ret = __sev_dbg_decrypt(kvm, dst_paddr, 1185 __sme_page_pa(dst_tpage), size, error); 1186 if (ret) 1187 goto e_free; 1188 1189 /* 1190 * If source is kernel buffer then use memcpy() otherwise 1191 * copy_from_user(). 1192 */ 1193 dst_offset = dst_paddr & 15; 1194 1195 if (src_tpage) 1196 memcpy(page_address(dst_tpage) + dst_offset, 1197 page_address(src_tpage), size); 1198 else { 1199 if (copy_from_user(page_address(dst_tpage) + dst_offset, 1200 vaddr, size)) { 1201 ret = -EFAULT; 1202 goto e_free; 1203 } 1204 } 1205 1206 paddr = __sme_page_pa(dst_tpage); 1207 dst_paddr = round_down(dst_paddr, 16); 1208 len = round_up(size, 16); 1209 } 1210 1211 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 1212 1213 e_free: 1214 if (src_tpage) 1215 __free_page(src_tpage); 1216 if (dst_tpage) 1217 __free_page(dst_tpage); 1218 return ret; 1219 } 1220 1221 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 1222 { 1223 unsigned long vaddr, vaddr_end, next_vaddr; 1224 unsigned long dst_vaddr; 1225 struct page **src_p, **dst_p; 1226 struct kvm_sev_dbg debug; 1227 unsigned long n; 1228 unsigned int size; 1229 int ret; 1230 1231 if (!sev_guest(kvm)) 1232 return -ENOTTY; 1233 1234 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug))) 1235 return -EFAULT; 1236 1237 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 1238 return -EINVAL; 1239 if (!debug.dst_uaddr) 1240 return -EINVAL; 1241 1242 vaddr = debug.src_uaddr; 1243 size = debug.len; 1244 vaddr_end = vaddr + size; 1245 dst_vaddr = debug.dst_uaddr; 1246 1247 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 1248 int len, s_off, d_off; 1249 1250 /* lock userspace source and destination page */ 1251 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 1252 if (IS_ERR(src_p)) 1253 return PTR_ERR(src_p); 1254 1255 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 1256 if (IS_ERR(dst_p)) { 1257 sev_unpin_memory(kvm, src_p, n); 1258 return PTR_ERR(dst_p); 1259 } 1260 1261 /* 1262 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 1263 * the pages; flush the destination too so that future accesses do not 1264 * see stale data. 1265 */ 1266 sev_clflush_pages(src_p, 1); 1267 sev_clflush_pages(dst_p, 1); 1268 1269 /* 1270 * Since user buffer may not be page aligned, calculate the 1271 * offset within the page. 1272 */ 1273 s_off = vaddr & ~PAGE_MASK; 1274 d_off = dst_vaddr & ~PAGE_MASK; 1275 len = min_t(size_t, (PAGE_SIZE - s_off), size); 1276 1277 if (dec) 1278 ret = __sev_dbg_decrypt_user(kvm, 1279 __sme_page_pa(src_p[0]) + s_off, 1280 (void __user *)dst_vaddr, 1281 __sme_page_pa(dst_p[0]) + d_off, 1282 len, &argp->error); 1283 else 1284 ret = __sev_dbg_encrypt_user(kvm, 1285 __sme_page_pa(src_p[0]) + s_off, 1286 (void __user *)vaddr, 1287 __sme_page_pa(dst_p[0]) + d_off, 1288 (void __user *)dst_vaddr, 1289 len, &argp->error); 1290 1291 sev_unpin_memory(kvm, src_p, n); 1292 sev_unpin_memory(kvm, dst_p, n); 1293 1294 if (ret) 1295 goto err; 1296 1297 next_vaddr = vaddr + len; 1298 dst_vaddr = dst_vaddr + len; 1299 size -= len; 1300 } 1301 err: 1302 return ret; 1303 } 1304 1305 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1306 { 1307 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1308 struct sev_data_launch_secret data; 1309 struct kvm_sev_launch_secret params; 1310 struct page **pages; 1311 void *blob, *hdr; 1312 unsigned long n, i; 1313 int ret, offset; 1314 1315 if (!sev_guest(kvm)) 1316 return -ENOTTY; 1317 1318 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1319 return -EFAULT; 1320 1321 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1322 if (IS_ERR(pages)) 1323 return PTR_ERR(pages); 1324 1325 /* 1326 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1327 * place; the cache may contain the data that was written unencrypted. 1328 */ 1329 sev_clflush_pages(pages, n); 1330 1331 /* 1332 * The secret must be copied into contiguous memory region, lets verify 1333 * that userspace memory pages are contiguous before we issue command. 1334 */ 1335 if (get_num_contig_pages(0, pages, n) != n) { 1336 ret = -EINVAL; 1337 goto e_unpin_memory; 1338 } 1339 1340 memset(&data, 0, sizeof(data)); 1341 1342 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1343 data.guest_address = __sme_page_pa(pages[0]) + offset; 1344 data.guest_len = params.guest_len; 1345 1346 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1347 if (IS_ERR(blob)) { 1348 ret = PTR_ERR(blob); 1349 goto e_unpin_memory; 1350 } 1351 1352 data.trans_address = __psp_pa(blob); 1353 data.trans_len = params.trans_len; 1354 1355 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1356 if (IS_ERR(hdr)) { 1357 ret = PTR_ERR(hdr); 1358 goto e_free_blob; 1359 } 1360 data.hdr_address = __psp_pa(hdr); 1361 data.hdr_len = params.hdr_len; 1362 1363 data.handle = sev->handle; 1364 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1365 1366 kfree(hdr); 1367 1368 e_free_blob: 1369 kfree(blob); 1370 e_unpin_memory: 1371 /* content of memory is updated, mark pages dirty */ 1372 for (i = 0; i < n; i++) { 1373 set_page_dirty_lock(pages[i]); 1374 mark_page_accessed(pages[i]); 1375 } 1376 sev_unpin_memory(kvm, pages, n); 1377 return ret; 1378 } 1379 1380 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1381 { 1382 void __user *report = u64_to_user_ptr(argp->data); 1383 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1384 struct sev_data_attestation_report data; 1385 struct kvm_sev_attestation_report params; 1386 void __user *p; 1387 void *blob = NULL; 1388 int ret; 1389 1390 if (!sev_guest(kvm)) 1391 return -ENOTTY; 1392 1393 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1394 return -EFAULT; 1395 1396 memset(&data, 0, sizeof(data)); 1397 1398 /* User wants to query the blob length */ 1399 if (!params.len) 1400 goto cmd; 1401 1402 p = u64_to_user_ptr(params.uaddr); 1403 if (p) { 1404 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1405 return -EINVAL; 1406 1407 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1408 if (!blob) 1409 return -ENOMEM; 1410 1411 data.address = __psp_pa(blob); 1412 data.len = params.len; 1413 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1414 } 1415 cmd: 1416 data.handle = sev->handle; 1417 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1418 /* 1419 * If we query the session length, FW responded with expected data. 1420 */ 1421 if (!params.len) 1422 goto done; 1423 1424 if (ret) 1425 goto e_free_blob; 1426 1427 if (blob) { 1428 if (copy_to_user(p, blob, params.len)) 1429 ret = -EFAULT; 1430 } 1431 1432 done: 1433 params.len = data.len; 1434 if (copy_to_user(report, ¶ms, sizeof(params))) 1435 ret = -EFAULT; 1436 e_free_blob: 1437 kfree(blob); 1438 return ret; 1439 } 1440 1441 /* Userspace wants to query session length. */ 1442 static int 1443 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1444 struct kvm_sev_send_start *params) 1445 { 1446 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1447 struct sev_data_send_start data; 1448 int ret; 1449 1450 memset(&data, 0, sizeof(data)); 1451 data.handle = sev->handle; 1452 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1453 1454 params->session_len = data.session_len; 1455 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1456 sizeof(struct kvm_sev_send_start))) 1457 ret = -EFAULT; 1458 1459 return ret; 1460 } 1461 1462 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1463 { 1464 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1465 struct sev_data_send_start data; 1466 struct kvm_sev_send_start params; 1467 void *amd_certs, *session_data; 1468 void *pdh_cert, *plat_certs; 1469 int ret; 1470 1471 if (!sev_guest(kvm)) 1472 return -ENOTTY; 1473 1474 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1475 sizeof(struct kvm_sev_send_start))) 1476 return -EFAULT; 1477 1478 /* if session_len is zero, userspace wants to query the session length */ 1479 if (!params.session_len) 1480 return __sev_send_start_query_session_length(kvm, argp, 1481 ¶ms); 1482 1483 /* some sanity checks */ 1484 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1485 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1486 return -EINVAL; 1487 1488 /* allocate the memory to hold the session data blob */ 1489 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1490 if (!session_data) 1491 return -ENOMEM; 1492 1493 /* copy the certificate blobs from userspace */ 1494 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1495 params.pdh_cert_len); 1496 if (IS_ERR(pdh_cert)) { 1497 ret = PTR_ERR(pdh_cert); 1498 goto e_free_session; 1499 } 1500 1501 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1502 params.plat_certs_len); 1503 if (IS_ERR(plat_certs)) { 1504 ret = PTR_ERR(plat_certs); 1505 goto e_free_pdh; 1506 } 1507 1508 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1509 params.amd_certs_len); 1510 if (IS_ERR(amd_certs)) { 1511 ret = PTR_ERR(amd_certs); 1512 goto e_free_plat_cert; 1513 } 1514 1515 /* populate the FW SEND_START field with system physical address */ 1516 memset(&data, 0, sizeof(data)); 1517 data.pdh_cert_address = __psp_pa(pdh_cert); 1518 data.pdh_cert_len = params.pdh_cert_len; 1519 data.plat_certs_address = __psp_pa(plat_certs); 1520 data.plat_certs_len = params.plat_certs_len; 1521 data.amd_certs_address = __psp_pa(amd_certs); 1522 data.amd_certs_len = params.amd_certs_len; 1523 data.session_address = __psp_pa(session_data); 1524 data.session_len = params.session_len; 1525 data.handle = sev->handle; 1526 1527 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1528 1529 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr), 1530 session_data, params.session_len)) { 1531 ret = -EFAULT; 1532 goto e_free_amd_cert; 1533 } 1534 1535 params.policy = data.policy; 1536 params.session_len = data.session_len; 1537 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, 1538 sizeof(struct kvm_sev_send_start))) 1539 ret = -EFAULT; 1540 1541 e_free_amd_cert: 1542 kfree(amd_certs); 1543 e_free_plat_cert: 1544 kfree(plat_certs); 1545 e_free_pdh: 1546 kfree(pdh_cert); 1547 e_free_session: 1548 kfree(session_data); 1549 return ret; 1550 } 1551 1552 /* Userspace wants to query either header or trans length. */ 1553 static int 1554 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1555 struct kvm_sev_send_update_data *params) 1556 { 1557 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1558 struct sev_data_send_update_data data; 1559 int ret; 1560 1561 memset(&data, 0, sizeof(data)); 1562 data.handle = sev->handle; 1563 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1564 1565 params->hdr_len = data.hdr_len; 1566 params->trans_len = data.trans_len; 1567 1568 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1569 sizeof(struct kvm_sev_send_update_data))) 1570 ret = -EFAULT; 1571 1572 return ret; 1573 } 1574 1575 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1576 { 1577 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1578 struct sev_data_send_update_data data; 1579 struct kvm_sev_send_update_data params; 1580 void *hdr, *trans_data; 1581 struct page **guest_page; 1582 unsigned long n; 1583 int ret, offset; 1584 1585 if (!sev_guest(kvm)) 1586 return -ENOTTY; 1587 1588 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1589 sizeof(struct kvm_sev_send_update_data))) 1590 return -EFAULT; 1591 1592 /* userspace wants to query either header or trans length */ 1593 if (!params.trans_len || !params.hdr_len) 1594 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1595 1596 if (!params.trans_uaddr || !params.guest_uaddr || 1597 !params.guest_len || !params.hdr_uaddr) 1598 return -EINVAL; 1599 1600 /* Check if we are crossing the page boundary */ 1601 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1602 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1603 return -EINVAL; 1604 1605 /* Pin guest memory */ 1606 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1607 PAGE_SIZE, &n, 0); 1608 if (IS_ERR(guest_page)) 1609 return PTR_ERR(guest_page); 1610 1611 /* allocate memory for header and transport buffer */ 1612 ret = -ENOMEM; 1613 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1614 if (!hdr) 1615 goto e_unpin; 1616 1617 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1618 if (!trans_data) 1619 goto e_free_hdr; 1620 1621 memset(&data, 0, sizeof(data)); 1622 data.hdr_address = __psp_pa(hdr); 1623 data.hdr_len = params.hdr_len; 1624 data.trans_address = __psp_pa(trans_data); 1625 data.trans_len = params.trans_len; 1626 1627 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1628 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1629 data.guest_address |= sev_me_mask; 1630 data.guest_len = params.guest_len; 1631 data.handle = sev->handle; 1632 1633 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1634 1635 if (ret) 1636 goto e_free_trans_data; 1637 1638 /* copy transport buffer to user space */ 1639 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr), 1640 trans_data, params.trans_len)) { 1641 ret = -EFAULT; 1642 goto e_free_trans_data; 1643 } 1644 1645 /* Copy packet header to userspace. */ 1646 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr, 1647 params.hdr_len)) 1648 ret = -EFAULT; 1649 1650 e_free_trans_data: 1651 kfree(trans_data); 1652 e_free_hdr: 1653 kfree(hdr); 1654 e_unpin: 1655 sev_unpin_memory(kvm, guest_page, n); 1656 1657 return ret; 1658 } 1659 1660 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1661 { 1662 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1663 struct sev_data_send_finish data; 1664 1665 if (!sev_guest(kvm)) 1666 return -ENOTTY; 1667 1668 data.handle = sev->handle; 1669 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1670 } 1671 1672 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1673 { 1674 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1675 struct sev_data_send_cancel data; 1676 1677 if (!sev_guest(kvm)) 1678 return -ENOTTY; 1679 1680 data.handle = sev->handle; 1681 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1682 } 1683 1684 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1685 { 1686 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1687 struct sev_data_receive_start start; 1688 struct kvm_sev_receive_start params; 1689 int *error = &argp->error; 1690 void *session_data; 1691 void *pdh_data; 1692 int ret; 1693 1694 if (!sev_guest(kvm)) 1695 return -ENOTTY; 1696 1697 /* Get parameter from the userspace */ 1698 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1699 sizeof(struct kvm_sev_receive_start))) 1700 return -EFAULT; 1701 1702 /* some sanity checks */ 1703 if (!params.pdh_uaddr || !params.pdh_len || 1704 !params.session_uaddr || !params.session_len) 1705 return -EINVAL; 1706 1707 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1708 if (IS_ERR(pdh_data)) 1709 return PTR_ERR(pdh_data); 1710 1711 session_data = psp_copy_user_blob(params.session_uaddr, 1712 params.session_len); 1713 if (IS_ERR(session_data)) { 1714 ret = PTR_ERR(session_data); 1715 goto e_free_pdh; 1716 } 1717 1718 memset(&start, 0, sizeof(start)); 1719 start.handle = params.handle; 1720 start.policy = params.policy; 1721 start.pdh_cert_address = __psp_pa(pdh_data); 1722 start.pdh_cert_len = params.pdh_len; 1723 start.session_address = __psp_pa(session_data); 1724 start.session_len = params.session_len; 1725 1726 /* create memory encryption context */ 1727 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1728 error); 1729 if (ret) 1730 goto e_free_session; 1731 1732 /* Bind ASID to this guest */ 1733 ret = sev_bind_asid(kvm, start.handle, error); 1734 if (ret) { 1735 sev_decommission(start.handle); 1736 goto e_free_session; 1737 } 1738 1739 params.handle = start.handle; 1740 if (copy_to_user(u64_to_user_ptr(argp->data), 1741 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1742 ret = -EFAULT; 1743 sev_unbind_asid(kvm, start.handle); 1744 goto e_free_session; 1745 } 1746 1747 sev->handle = start.handle; 1748 sev->fd = argp->sev_fd; 1749 1750 e_free_session: 1751 kfree(session_data); 1752 e_free_pdh: 1753 kfree(pdh_data); 1754 1755 return ret; 1756 } 1757 1758 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1759 { 1760 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1761 struct kvm_sev_receive_update_data params; 1762 struct sev_data_receive_update_data data; 1763 void *hdr = NULL, *trans = NULL; 1764 struct page **guest_page; 1765 unsigned long n; 1766 int ret, offset; 1767 1768 if (!sev_guest(kvm)) 1769 return -EINVAL; 1770 1771 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1772 sizeof(struct kvm_sev_receive_update_data))) 1773 return -EFAULT; 1774 1775 if (!params.hdr_uaddr || !params.hdr_len || 1776 !params.guest_uaddr || !params.guest_len || 1777 !params.trans_uaddr || !params.trans_len) 1778 return -EINVAL; 1779 1780 /* Check if we are crossing the page boundary */ 1781 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1782 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1783 return -EINVAL; 1784 1785 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1786 if (IS_ERR(hdr)) 1787 return PTR_ERR(hdr); 1788 1789 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1790 if (IS_ERR(trans)) { 1791 ret = PTR_ERR(trans); 1792 goto e_free_hdr; 1793 } 1794 1795 memset(&data, 0, sizeof(data)); 1796 data.hdr_address = __psp_pa(hdr); 1797 data.hdr_len = params.hdr_len; 1798 data.trans_address = __psp_pa(trans); 1799 data.trans_len = params.trans_len; 1800 1801 /* Pin guest memory */ 1802 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1803 PAGE_SIZE, &n, 1); 1804 if (IS_ERR(guest_page)) { 1805 ret = PTR_ERR(guest_page); 1806 goto e_free_trans; 1807 } 1808 1809 /* 1810 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1811 * encrypts the written data with the guest's key, and the cache may 1812 * contain dirty, unencrypted data. 1813 */ 1814 sev_clflush_pages(guest_page, n); 1815 1816 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1817 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1818 data.guest_address |= sev_me_mask; 1819 data.guest_len = params.guest_len; 1820 data.handle = sev->handle; 1821 1822 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1823 &argp->error); 1824 1825 sev_unpin_memory(kvm, guest_page, n); 1826 1827 e_free_trans: 1828 kfree(trans); 1829 e_free_hdr: 1830 kfree(hdr); 1831 1832 return ret; 1833 } 1834 1835 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1836 { 1837 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1838 struct sev_data_receive_finish data; 1839 1840 if (!sev_guest(kvm)) 1841 return -ENOTTY; 1842 1843 data.handle = sev->handle; 1844 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1845 } 1846 1847 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1848 { 1849 /* 1850 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1851 * active mirror VMs. Also allow the debugging and status commands. 1852 */ 1853 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1854 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1855 cmd_id == KVM_SEV_DBG_ENCRYPT) 1856 return true; 1857 1858 return false; 1859 } 1860 1861 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1862 { 1863 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1864 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1865 int r = -EBUSY; 1866 1867 if (dst_kvm == src_kvm) 1868 return -EINVAL; 1869 1870 /* 1871 * Bail if these VMs are already involved in a migration to avoid 1872 * deadlock between two VMs trying to migrate to/from each other. 1873 */ 1874 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1875 return -EBUSY; 1876 1877 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1878 goto release_dst; 1879 1880 r = -EINTR; 1881 if (mutex_lock_killable(&dst_kvm->lock)) 1882 goto release_src; 1883 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1884 goto unlock_dst; 1885 return 0; 1886 1887 unlock_dst: 1888 mutex_unlock(&dst_kvm->lock); 1889 release_src: 1890 atomic_set_release(&src_sev->migration_in_progress, 0); 1891 release_dst: 1892 atomic_set_release(&dst_sev->migration_in_progress, 0); 1893 return r; 1894 } 1895 1896 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1897 { 1898 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1899 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1900 1901 mutex_unlock(&dst_kvm->lock); 1902 mutex_unlock(&src_kvm->lock); 1903 atomic_set_release(&dst_sev->migration_in_progress, 0); 1904 atomic_set_release(&src_sev->migration_in_progress, 0); 1905 } 1906 1907 /* vCPU mutex subclasses. */ 1908 enum sev_migration_role { 1909 SEV_MIGRATION_SOURCE = 0, 1910 SEV_MIGRATION_TARGET, 1911 SEV_NR_MIGRATION_ROLES, 1912 }; 1913 1914 static int sev_lock_vcpus_for_migration(struct kvm *kvm, 1915 enum sev_migration_role role) 1916 { 1917 struct kvm_vcpu *vcpu; 1918 unsigned long i, j; 1919 1920 kvm_for_each_vcpu(i, vcpu, kvm) { 1921 if (mutex_lock_killable_nested(&vcpu->mutex, role)) 1922 goto out_unlock; 1923 1924 #ifdef CONFIG_PROVE_LOCKING 1925 if (!i) 1926 /* 1927 * Reset the role to one that avoids colliding with 1928 * the role used for the first vcpu mutex. 1929 */ 1930 role = SEV_NR_MIGRATION_ROLES; 1931 else 1932 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_); 1933 #endif 1934 } 1935 1936 return 0; 1937 1938 out_unlock: 1939 1940 kvm_for_each_vcpu(j, vcpu, kvm) { 1941 if (i == j) 1942 break; 1943 1944 #ifdef CONFIG_PROVE_LOCKING 1945 if (j) 1946 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_); 1947 #endif 1948 1949 mutex_unlock(&vcpu->mutex); 1950 } 1951 return -EINTR; 1952 } 1953 1954 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1955 { 1956 struct kvm_vcpu *vcpu; 1957 unsigned long i; 1958 bool first = true; 1959 1960 kvm_for_each_vcpu(i, vcpu, kvm) { 1961 if (first) 1962 first = false; 1963 else 1964 mutex_acquire(&vcpu->mutex.dep_map, 1965 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_); 1966 1967 mutex_unlock(&vcpu->mutex); 1968 } 1969 } 1970 1971 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1972 { 1973 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info; 1974 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info; 1975 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1976 struct vcpu_svm *dst_svm, *src_svm; 1977 struct kvm_sev_info *mirror; 1978 unsigned long i; 1979 1980 dst->active = true; 1981 dst->asid = src->asid; 1982 dst->handle = src->handle; 1983 dst->pages_locked = src->pages_locked; 1984 dst->enc_context_owner = src->enc_context_owner; 1985 dst->es_active = src->es_active; 1986 dst->vmsa_features = src->vmsa_features; 1987 1988 src->asid = 0; 1989 src->active = false; 1990 src->handle = 0; 1991 src->pages_locked = 0; 1992 src->enc_context_owner = NULL; 1993 src->es_active = false; 1994 1995 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1996 1997 /* 1998 * If this VM has mirrors, "transfer" each mirror's refcount of the 1999 * source to the destination (this KVM). The caller holds a reference 2000 * to the source, so there's no danger of use-after-free. 2001 */ 2002 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 2003 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 2004 kvm_get_kvm(dst_kvm); 2005 kvm_put_kvm(src_kvm); 2006 mirror->enc_context_owner = dst_kvm; 2007 } 2008 2009 /* 2010 * If this VM is a mirror, remove the old mirror from the owners list 2011 * and add the new mirror to the list. 2012 */ 2013 if (is_mirroring_enc_context(dst_kvm)) { 2014 struct kvm_sev_info *owner_sev_info = 2015 &to_kvm_svm(dst->enc_context_owner)->sev_info; 2016 2017 list_del(&src->mirror_entry); 2018 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 2019 } 2020 2021 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 2022 dst_svm = to_svm(dst_vcpu); 2023 2024 sev_init_vmcb(dst_svm); 2025 2026 if (!dst->es_active) 2027 continue; 2028 2029 /* 2030 * Note, the source is not required to have the same number of 2031 * vCPUs as the destination when migrating a vanilla SEV VM. 2032 */ 2033 src_vcpu = kvm_get_vcpu(src_kvm, i); 2034 src_svm = to_svm(src_vcpu); 2035 2036 /* 2037 * Transfer VMSA and GHCB state to the destination. Nullify and 2038 * clear source fields as appropriate, the state now belongs to 2039 * the destination. 2040 */ 2041 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 2042 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 2043 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 2044 dst_vcpu->arch.guest_state_protected = true; 2045 2046 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 2047 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 2048 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 2049 src_vcpu->arch.guest_state_protected = false; 2050 } 2051 } 2052 2053 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 2054 { 2055 struct kvm_vcpu *src_vcpu; 2056 unsigned long i; 2057 2058 if (!sev_es_guest(src)) 2059 return 0; 2060 2061 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 2062 return -EINVAL; 2063 2064 kvm_for_each_vcpu(i, src_vcpu, src) { 2065 if (!src_vcpu->arch.guest_state_protected) 2066 return -EINVAL; 2067 } 2068 2069 return 0; 2070 } 2071 2072 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2073 { 2074 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 2075 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 2076 struct fd f = fdget(source_fd); 2077 struct kvm *source_kvm; 2078 bool charged = false; 2079 int ret; 2080 2081 if (!f.file) 2082 return -EBADF; 2083 2084 if (!file_is_kvm(f.file)) { 2085 ret = -EBADF; 2086 goto out_fput; 2087 } 2088 2089 source_kvm = f.file->private_data; 2090 ret = sev_lock_two_vms(kvm, source_kvm); 2091 if (ret) 2092 goto out_fput; 2093 2094 if (kvm->arch.vm_type != source_kvm->arch.vm_type || 2095 sev_guest(kvm) || !sev_guest(source_kvm)) { 2096 ret = -EINVAL; 2097 goto out_unlock; 2098 } 2099 2100 src_sev = &to_kvm_svm(source_kvm)->sev_info; 2101 2102 dst_sev->misc_cg = get_current_misc_cg(); 2103 cg_cleanup_sev = dst_sev; 2104 if (dst_sev->misc_cg != src_sev->misc_cg) { 2105 ret = sev_misc_cg_try_charge(dst_sev); 2106 if (ret) 2107 goto out_dst_cgroup; 2108 charged = true; 2109 } 2110 2111 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE); 2112 if (ret) 2113 goto out_dst_cgroup; 2114 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET); 2115 if (ret) 2116 goto out_dst_vcpu; 2117 2118 ret = sev_check_source_vcpus(kvm, source_kvm); 2119 if (ret) 2120 goto out_source_vcpu; 2121 2122 sev_migrate_from(kvm, source_kvm); 2123 kvm_vm_dead(source_kvm); 2124 cg_cleanup_sev = src_sev; 2125 ret = 0; 2126 2127 out_source_vcpu: 2128 sev_unlock_vcpus_for_migration(source_kvm); 2129 out_dst_vcpu: 2130 sev_unlock_vcpus_for_migration(kvm); 2131 out_dst_cgroup: 2132 /* Operates on the source on success, on the destination on failure. */ 2133 if (charged) 2134 sev_misc_cg_uncharge(cg_cleanup_sev); 2135 put_misc_cg(cg_cleanup_sev->misc_cg); 2136 cg_cleanup_sev->misc_cg = NULL; 2137 out_unlock: 2138 sev_unlock_two_vms(kvm, source_kvm); 2139 out_fput: 2140 fdput(f); 2141 return ret; 2142 } 2143 2144 int sev_dev_get_attr(u32 group, u64 attr, u64 *val) 2145 { 2146 if (group != KVM_X86_GRP_SEV) 2147 return -ENXIO; 2148 2149 switch (attr) { 2150 case KVM_X86_SEV_VMSA_FEATURES: 2151 *val = sev_supported_vmsa_features; 2152 return 0; 2153 2154 default: 2155 return -ENXIO; 2156 } 2157 } 2158 2159 /* 2160 * The guest context contains all the information, keys and metadata 2161 * associated with the guest that the firmware tracks to implement SEV 2162 * and SNP features. The firmware stores the guest context in hypervisor 2163 * provide page via the SNP_GCTX_CREATE command. 2164 */ 2165 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp) 2166 { 2167 struct sev_data_snp_addr data = {}; 2168 void *context; 2169 int rc; 2170 2171 /* Allocate memory for context page */ 2172 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT); 2173 if (!context) 2174 return NULL; 2175 2176 data.address = __psp_pa(context); 2177 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error); 2178 if (rc) { 2179 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d", 2180 rc, argp->error); 2181 snp_free_firmware_page(context); 2182 return NULL; 2183 } 2184 2185 return context; 2186 } 2187 2188 static int snp_bind_asid(struct kvm *kvm, int *error) 2189 { 2190 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2191 struct sev_data_snp_activate data = {0}; 2192 2193 data.gctx_paddr = __psp_pa(sev->snp_context); 2194 data.asid = sev_get_asid(kvm); 2195 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error); 2196 } 2197 2198 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 2199 { 2200 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2201 struct sev_data_snp_launch_start start = {0}; 2202 struct kvm_sev_snp_launch_start params; 2203 int rc; 2204 2205 if (!sev_snp_guest(kvm)) 2206 return -ENOTTY; 2207 2208 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2209 return -EFAULT; 2210 2211 /* Don't allow userspace to allocate memory for more than 1 SNP context. */ 2212 if (sev->snp_context) 2213 return -EINVAL; 2214 2215 sev->snp_context = snp_context_create(kvm, argp); 2216 if (!sev->snp_context) 2217 return -ENOTTY; 2218 2219 if (params.flags) 2220 return -EINVAL; 2221 2222 if (params.policy & ~SNP_POLICY_MASK_VALID) 2223 return -EINVAL; 2224 2225 /* Check for policy bits that must be set */ 2226 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) || 2227 !(params.policy & SNP_POLICY_MASK_SMT)) 2228 return -EINVAL; 2229 2230 if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET) 2231 return -EINVAL; 2232 2233 start.gctx_paddr = __psp_pa(sev->snp_context); 2234 start.policy = params.policy; 2235 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw)); 2236 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error); 2237 if (rc) { 2238 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n", 2239 __func__, rc); 2240 goto e_free_context; 2241 } 2242 2243 sev->fd = argp->sev_fd; 2244 rc = snp_bind_asid(kvm, &argp->error); 2245 if (rc) { 2246 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n", 2247 __func__, rc); 2248 goto e_free_context; 2249 } 2250 2251 return 0; 2252 2253 e_free_context: 2254 snp_decommission_context(kvm); 2255 2256 return rc; 2257 } 2258 2259 struct sev_gmem_populate_args { 2260 __u8 type; 2261 int sev_fd; 2262 int fw_error; 2263 }; 2264 2265 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn, 2266 void __user *src, int order, void *opaque) 2267 { 2268 struct sev_gmem_populate_args *sev_populate_args = opaque; 2269 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2270 int n_private = 0, ret, i; 2271 int npages = (1 << order); 2272 gfn_t gfn; 2273 2274 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src)) 2275 return -EINVAL; 2276 2277 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) { 2278 struct sev_data_snp_launch_update fw_args = {0}; 2279 bool assigned; 2280 int level; 2281 2282 if (!kvm_mem_is_private(kvm, gfn)) { 2283 pr_debug("%s: Failed to ensure GFN 0x%llx has private memory attribute set\n", 2284 __func__, gfn); 2285 ret = -EINVAL; 2286 goto err; 2287 } 2288 2289 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level); 2290 if (ret || assigned) { 2291 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n", 2292 __func__, gfn, ret, assigned); 2293 ret = -EINVAL; 2294 goto err; 2295 } 2296 2297 if (src) { 2298 void *vaddr = kmap_local_pfn(pfn + i); 2299 2300 ret = copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE); 2301 if (ret) 2302 goto err; 2303 kunmap_local(vaddr); 2304 } 2305 2306 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K, 2307 sev_get_asid(kvm), true); 2308 if (ret) 2309 goto err; 2310 2311 n_private++; 2312 2313 fw_args.gctx_paddr = __psp_pa(sev->snp_context); 2314 fw_args.address = __sme_set(pfn_to_hpa(pfn + i)); 2315 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K); 2316 fw_args.page_type = sev_populate_args->type; 2317 2318 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2319 &fw_args, &sev_populate_args->fw_error); 2320 if (ret) 2321 goto fw_err; 2322 } 2323 2324 return 0; 2325 2326 fw_err: 2327 /* 2328 * If the firmware command failed handle the reclaim and cleanup of that 2329 * PFN specially vs. prior pages which can be cleaned up below without 2330 * needing to reclaim in advance. 2331 * 2332 * Additionally, when invalid CPUID function entries are detected, 2333 * firmware writes the expected values into the page and leaves it 2334 * unencrypted so it can be used for debugging and error-reporting. 2335 * 2336 * Copy this page back into the source buffer so userspace can use this 2337 * information to provide information on which CPUID leaves/fields 2338 * failed CPUID validation. 2339 */ 2340 if (!snp_page_reclaim(kvm, pfn + i) && 2341 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID && 2342 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) { 2343 void *vaddr = kmap_local_pfn(pfn + i); 2344 2345 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE)) 2346 pr_debug("Failed to write CPUID page back to userspace\n"); 2347 2348 kunmap_local(vaddr); 2349 } 2350 2351 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */ 2352 n_private--; 2353 2354 err: 2355 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n", 2356 __func__, ret, sev_populate_args->fw_error, n_private); 2357 for (i = 0; i < n_private; i++) 2358 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K); 2359 2360 return ret; 2361 } 2362 2363 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp) 2364 { 2365 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2366 struct sev_gmem_populate_args sev_populate_args = {0}; 2367 struct kvm_sev_snp_launch_update params; 2368 struct kvm_memory_slot *memslot; 2369 long npages, count; 2370 void __user *src; 2371 int ret = 0; 2372 2373 if (!sev_snp_guest(kvm) || !sev->snp_context) 2374 return -EINVAL; 2375 2376 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2377 return -EFAULT; 2378 2379 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__, 2380 params.gfn_start, params.len, params.type, params.flags); 2381 2382 if (!PAGE_ALIGNED(params.len) || params.flags || 2383 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL && 2384 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO && 2385 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED && 2386 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS && 2387 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID)) 2388 return -EINVAL; 2389 2390 npages = params.len / PAGE_SIZE; 2391 2392 /* 2393 * For each GFN that's being prepared as part of the initial guest 2394 * state, the following pre-conditions are verified: 2395 * 2396 * 1) The backing memslot is a valid private memslot. 2397 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES 2398 * beforehand. 2399 * 3) The PFN of the guest_memfd has not already been set to private 2400 * in the RMP table. 2401 * 2402 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page 2403 * faults if there's a race between a fault and an attribute update via 2404 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized 2405 * here. However, kvm->slots_lock guards against both this as well as 2406 * concurrent memslot updates occurring while these checks are being 2407 * performed, so use that here to make it easier to reason about the 2408 * initial expected state and better guard against unexpected 2409 * situations. 2410 */ 2411 mutex_lock(&kvm->slots_lock); 2412 2413 memslot = gfn_to_memslot(kvm, params.gfn_start); 2414 if (!kvm_slot_can_be_private(memslot)) { 2415 ret = -EINVAL; 2416 goto out; 2417 } 2418 2419 sev_populate_args.sev_fd = argp->sev_fd; 2420 sev_populate_args.type = params.type; 2421 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr); 2422 2423 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages, 2424 sev_gmem_post_populate, &sev_populate_args); 2425 if (count < 0) { 2426 argp->error = sev_populate_args.fw_error; 2427 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n", 2428 __func__, count, argp->error); 2429 ret = -EIO; 2430 } else { 2431 params.gfn_start += count; 2432 params.len -= count * PAGE_SIZE; 2433 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO) 2434 params.uaddr += count * PAGE_SIZE; 2435 2436 ret = 0; 2437 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 2438 ret = -EFAULT; 2439 } 2440 2441 out: 2442 mutex_unlock(&kvm->slots_lock); 2443 2444 return ret; 2445 } 2446 2447 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 2448 { 2449 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2450 struct sev_data_snp_launch_update data = {}; 2451 struct kvm_vcpu *vcpu; 2452 unsigned long i; 2453 int ret; 2454 2455 data.gctx_paddr = __psp_pa(sev->snp_context); 2456 data.page_type = SNP_PAGE_TYPE_VMSA; 2457 2458 kvm_for_each_vcpu(i, vcpu, kvm) { 2459 struct vcpu_svm *svm = to_svm(vcpu); 2460 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 2461 2462 ret = sev_es_sync_vmsa(svm); 2463 if (ret) 2464 return ret; 2465 2466 /* Transition the VMSA page to a firmware state. */ 2467 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true); 2468 if (ret) 2469 return ret; 2470 2471 /* Issue the SNP command to encrypt the VMSA */ 2472 data.address = __sme_pa(svm->sev_es.vmsa); 2473 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2474 &data, &argp->error); 2475 if (ret) { 2476 snp_page_reclaim(kvm, pfn); 2477 2478 return ret; 2479 } 2480 2481 svm->vcpu.arch.guest_state_protected = true; 2482 /* 2483 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to 2484 * be _always_ ON. Enable it only after setting 2485 * guest_state_protected because KVM_SET_MSRS allows dynamic 2486 * toggling of LBRV (for performance reason) on write access to 2487 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 2488 */ 2489 svm_enable_lbrv(vcpu); 2490 } 2491 2492 return 0; 2493 } 2494 2495 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 2496 { 2497 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2498 struct kvm_sev_snp_launch_finish params; 2499 struct sev_data_snp_launch_finish *data; 2500 void *id_block = NULL, *id_auth = NULL; 2501 int ret; 2502 2503 if (!sev_snp_guest(kvm)) 2504 return -ENOTTY; 2505 2506 if (!sev->snp_context) 2507 return -EINVAL; 2508 2509 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2510 return -EFAULT; 2511 2512 if (params.flags) 2513 return -EINVAL; 2514 2515 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */ 2516 ret = snp_launch_update_vmsa(kvm, argp); 2517 if (ret) 2518 return ret; 2519 2520 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 2521 if (!data) 2522 return -ENOMEM; 2523 2524 if (params.id_block_en) { 2525 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE); 2526 if (IS_ERR(id_block)) { 2527 ret = PTR_ERR(id_block); 2528 goto e_free; 2529 } 2530 2531 data->id_block_en = 1; 2532 data->id_block_paddr = __sme_pa(id_block); 2533 2534 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE); 2535 if (IS_ERR(id_auth)) { 2536 ret = PTR_ERR(id_auth); 2537 goto e_free_id_block; 2538 } 2539 2540 data->id_auth_paddr = __sme_pa(id_auth); 2541 2542 if (params.auth_key_en) 2543 data->auth_key_en = 1; 2544 } 2545 2546 data->vcek_disabled = params.vcek_disabled; 2547 2548 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE); 2549 data->gctx_paddr = __psp_pa(sev->snp_context); 2550 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error); 2551 2552 kfree(id_auth); 2553 2554 e_free_id_block: 2555 kfree(id_block); 2556 2557 e_free: 2558 kfree(data); 2559 2560 return ret; 2561 } 2562 2563 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 2564 { 2565 struct kvm_sev_cmd sev_cmd; 2566 int r; 2567 2568 if (!sev_enabled) 2569 return -ENOTTY; 2570 2571 if (!argp) 2572 return 0; 2573 2574 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 2575 return -EFAULT; 2576 2577 mutex_lock(&kvm->lock); 2578 2579 /* Only the enc_context_owner handles some memory enc operations. */ 2580 if (is_mirroring_enc_context(kvm) && 2581 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 2582 r = -EINVAL; 2583 goto out; 2584 } 2585 2586 /* 2587 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only 2588 * allow the use of SNP-specific commands. 2589 */ 2590 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) { 2591 r = -EPERM; 2592 goto out; 2593 } 2594 2595 switch (sev_cmd.id) { 2596 case KVM_SEV_ES_INIT: 2597 if (!sev_es_enabled) { 2598 r = -ENOTTY; 2599 goto out; 2600 } 2601 fallthrough; 2602 case KVM_SEV_INIT: 2603 r = sev_guest_init(kvm, &sev_cmd); 2604 break; 2605 case KVM_SEV_INIT2: 2606 r = sev_guest_init2(kvm, &sev_cmd); 2607 break; 2608 case KVM_SEV_LAUNCH_START: 2609 r = sev_launch_start(kvm, &sev_cmd); 2610 break; 2611 case KVM_SEV_LAUNCH_UPDATE_DATA: 2612 r = sev_launch_update_data(kvm, &sev_cmd); 2613 break; 2614 case KVM_SEV_LAUNCH_UPDATE_VMSA: 2615 r = sev_launch_update_vmsa(kvm, &sev_cmd); 2616 break; 2617 case KVM_SEV_LAUNCH_MEASURE: 2618 r = sev_launch_measure(kvm, &sev_cmd); 2619 break; 2620 case KVM_SEV_LAUNCH_FINISH: 2621 r = sev_launch_finish(kvm, &sev_cmd); 2622 break; 2623 case KVM_SEV_GUEST_STATUS: 2624 r = sev_guest_status(kvm, &sev_cmd); 2625 break; 2626 case KVM_SEV_DBG_DECRYPT: 2627 r = sev_dbg_crypt(kvm, &sev_cmd, true); 2628 break; 2629 case KVM_SEV_DBG_ENCRYPT: 2630 r = sev_dbg_crypt(kvm, &sev_cmd, false); 2631 break; 2632 case KVM_SEV_LAUNCH_SECRET: 2633 r = sev_launch_secret(kvm, &sev_cmd); 2634 break; 2635 case KVM_SEV_GET_ATTESTATION_REPORT: 2636 r = sev_get_attestation_report(kvm, &sev_cmd); 2637 break; 2638 case KVM_SEV_SEND_START: 2639 r = sev_send_start(kvm, &sev_cmd); 2640 break; 2641 case KVM_SEV_SEND_UPDATE_DATA: 2642 r = sev_send_update_data(kvm, &sev_cmd); 2643 break; 2644 case KVM_SEV_SEND_FINISH: 2645 r = sev_send_finish(kvm, &sev_cmd); 2646 break; 2647 case KVM_SEV_SEND_CANCEL: 2648 r = sev_send_cancel(kvm, &sev_cmd); 2649 break; 2650 case KVM_SEV_RECEIVE_START: 2651 r = sev_receive_start(kvm, &sev_cmd); 2652 break; 2653 case KVM_SEV_RECEIVE_UPDATE_DATA: 2654 r = sev_receive_update_data(kvm, &sev_cmd); 2655 break; 2656 case KVM_SEV_RECEIVE_FINISH: 2657 r = sev_receive_finish(kvm, &sev_cmd); 2658 break; 2659 case KVM_SEV_SNP_LAUNCH_START: 2660 r = snp_launch_start(kvm, &sev_cmd); 2661 break; 2662 case KVM_SEV_SNP_LAUNCH_UPDATE: 2663 r = snp_launch_update(kvm, &sev_cmd); 2664 break; 2665 case KVM_SEV_SNP_LAUNCH_FINISH: 2666 r = snp_launch_finish(kvm, &sev_cmd); 2667 break; 2668 default: 2669 r = -EINVAL; 2670 goto out; 2671 } 2672 2673 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 2674 r = -EFAULT; 2675 2676 out: 2677 mutex_unlock(&kvm->lock); 2678 return r; 2679 } 2680 2681 int sev_mem_enc_register_region(struct kvm *kvm, 2682 struct kvm_enc_region *range) 2683 { 2684 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2685 struct enc_region *region; 2686 int ret = 0; 2687 2688 if (!sev_guest(kvm)) 2689 return -ENOTTY; 2690 2691 /* If kvm is mirroring encryption context it isn't responsible for it */ 2692 if (is_mirroring_enc_context(kvm)) 2693 return -EINVAL; 2694 2695 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 2696 return -EINVAL; 2697 2698 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 2699 if (!region) 2700 return -ENOMEM; 2701 2702 mutex_lock(&kvm->lock); 2703 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 2704 if (IS_ERR(region->pages)) { 2705 ret = PTR_ERR(region->pages); 2706 mutex_unlock(&kvm->lock); 2707 goto e_free; 2708 } 2709 2710 /* 2711 * The guest may change the memory encryption attribute from C=0 -> C=1 2712 * or vice versa for this memory range. Lets make sure caches are 2713 * flushed to ensure that guest data gets written into memory with 2714 * correct C-bit. Note, this must be done before dropping kvm->lock, 2715 * as region and its array of pages can be freed by a different task 2716 * once kvm->lock is released. 2717 */ 2718 sev_clflush_pages(region->pages, region->npages); 2719 2720 region->uaddr = range->addr; 2721 region->size = range->size; 2722 2723 list_add_tail(®ion->list, &sev->regions_list); 2724 mutex_unlock(&kvm->lock); 2725 2726 return ret; 2727 2728 e_free: 2729 kfree(region); 2730 return ret; 2731 } 2732 2733 static struct enc_region * 2734 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2735 { 2736 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2737 struct list_head *head = &sev->regions_list; 2738 struct enc_region *i; 2739 2740 list_for_each_entry(i, head, list) { 2741 if (i->uaddr == range->addr && 2742 i->size == range->size) 2743 return i; 2744 } 2745 2746 return NULL; 2747 } 2748 2749 static void __unregister_enc_region_locked(struct kvm *kvm, 2750 struct enc_region *region) 2751 { 2752 sev_unpin_memory(kvm, region->pages, region->npages); 2753 list_del(®ion->list); 2754 kfree(region); 2755 } 2756 2757 int sev_mem_enc_unregister_region(struct kvm *kvm, 2758 struct kvm_enc_region *range) 2759 { 2760 struct enc_region *region; 2761 int ret; 2762 2763 /* If kvm is mirroring encryption context it isn't responsible for it */ 2764 if (is_mirroring_enc_context(kvm)) 2765 return -EINVAL; 2766 2767 mutex_lock(&kvm->lock); 2768 2769 if (!sev_guest(kvm)) { 2770 ret = -ENOTTY; 2771 goto failed; 2772 } 2773 2774 region = find_enc_region(kvm, range); 2775 if (!region) { 2776 ret = -EINVAL; 2777 goto failed; 2778 } 2779 2780 /* 2781 * Ensure that all guest tagged cache entries are flushed before 2782 * releasing the pages back to the system for use. CLFLUSH will 2783 * not do this, so issue a WBINVD. 2784 */ 2785 wbinvd_on_all_cpus(); 2786 2787 __unregister_enc_region_locked(kvm, region); 2788 2789 mutex_unlock(&kvm->lock); 2790 return 0; 2791 2792 failed: 2793 mutex_unlock(&kvm->lock); 2794 return ret; 2795 } 2796 2797 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2798 { 2799 struct fd f = fdget(source_fd); 2800 struct kvm *source_kvm; 2801 struct kvm_sev_info *source_sev, *mirror_sev; 2802 int ret; 2803 2804 if (!f.file) 2805 return -EBADF; 2806 2807 if (!file_is_kvm(f.file)) { 2808 ret = -EBADF; 2809 goto e_source_fput; 2810 } 2811 2812 source_kvm = f.file->private_data; 2813 ret = sev_lock_two_vms(kvm, source_kvm); 2814 if (ret) 2815 goto e_source_fput; 2816 2817 /* 2818 * Mirrors of mirrors should work, but let's not get silly. Also 2819 * disallow out-of-band SEV/SEV-ES init if the target is already an 2820 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2821 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2822 */ 2823 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2824 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2825 ret = -EINVAL; 2826 goto e_unlock; 2827 } 2828 2829 /* 2830 * The mirror kvm holds an enc_context_owner ref so its asid can't 2831 * disappear until we're done with it 2832 */ 2833 source_sev = &to_kvm_svm(source_kvm)->sev_info; 2834 kvm_get_kvm(source_kvm); 2835 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2836 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2837 2838 /* Set enc_context_owner and copy its encryption context over */ 2839 mirror_sev->enc_context_owner = source_kvm; 2840 mirror_sev->active = true; 2841 mirror_sev->asid = source_sev->asid; 2842 mirror_sev->fd = source_sev->fd; 2843 mirror_sev->es_active = source_sev->es_active; 2844 mirror_sev->need_init = false; 2845 mirror_sev->handle = source_sev->handle; 2846 INIT_LIST_HEAD(&mirror_sev->regions_list); 2847 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2848 ret = 0; 2849 2850 /* 2851 * Do not copy ap_jump_table. Since the mirror does not share the same 2852 * KVM contexts as the original, and they may have different 2853 * memory-views. 2854 */ 2855 2856 e_unlock: 2857 sev_unlock_two_vms(kvm, source_kvm); 2858 e_source_fput: 2859 fdput(f); 2860 return ret; 2861 } 2862 2863 static int snp_decommission_context(struct kvm *kvm) 2864 { 2865 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2866 struct sev_data_snp_addr data = {}; 2867 int ret; 2868 2869 /* If context is not created then do nothing */ 2870 if (!sev->snp_context) 2871 return 0; 2872 2873 /* Do the decommision, which will unbind the ASID from the SNP context */ 2874 data.address = __sme_pa(sev->snp_context); 2875 down_write(&sev_deactivate_lock); 2876 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL); 2877 up_write(&sev_deactivate_lock); 2878 2879 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret)) 2880 return ret; 2881 2882 snp_free_firmware_page(sev->snp_context); 2883 sev->snp_context = NULL; 2884 2885 return 0; 2886 } 2887 2888 void sev_vm_destroy(struct kvm *kvm) 2889 { 2890 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2891 struct list_head *head = &sev->regions_list; 2892 struct list_head *pos, *q; 2893 2894 if (!sev_guest(kvm)) 2895 return; 2896 2897 WARN_ON(!list_empty(&sev->mirror_vms)); 2898 2899 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2900 if (is_mirroring_enc_context(kvm)) { 2901 struct kvm *owner_kvm = sev->enc_context_owner; 2902 2903 mutex_lock(&owner_kvm->lock); 2904 list_del(&sev->mirror_entry); 2905 mutex_unlock(&owner_kvm->lock); 2906 kvm_put_kvm(owner_kvm); 2907 return; 2908 } 2909 2910 /* 2911 * Ensure that all guest tagged cache entries are flushed before 2912 * releasing the pages back to the system for use. CLFLUSH will 2913 * not do this, so issue a WBINVD. 2914 */ 2915 wbinvd_on_all_cpus(); 2916 2917 /* 2918 * if userspace was terminated before unregistering the memory regions 2919 * then lets unpin all the registered memory. 2920 */ 2921 if (!list_empty(head)) { 2922 list_for_each_safe(pos, q, head) { 2923 __unregister_enc_region_locked(kvm, 2924 list_entry(pos, struct enc_region, list)); 2925 cond_resched(); 2926 } 2927 } 2928 2929 if (sev_snp_guest(kvm)) { 2930 snp_guest_req_cleanup(kvm); 2931 2932 /* 2933 * Decomission handles unbinding of the ASID. If it fails for 2934 * some unexpected reason, just leak the ASID. 2935 */ 2936 if (snp_decommission_context(kvm)) 2937 return; 2938 } else { 2939 sev_unbind_asid(kvm, sev->handle); 2940 } 2941 2942 sev_asid_free(sev); 2943 } 2944 2945 void __init sev_set_cpu_caps(void) 2946 { 2947 if (sev_enabled) { 2948 kvm_cpu_cap_set(X86_FEATURE_SEV); 2949 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM); 2950 } 2951 if (sev_es_enabled) { 2952 kvm_cpu_cap_set(X86_FEATURE_SEV_ES); 2953 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM); 2954 } 2955 if (sev_snp_enabled) { 2956 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP); 2957 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM); 2958 } 2959 } 2960 2961 void __init sev_hardware_setup(void) 2962 { 2963 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2964 bool sev_snp_supported = false; 2965 bool sev_es_supported = false; 2966 bool sev_supported = false; 2967 2968 if (!sev_enabled || !npt_enabled || !nrips) 2969 goto out; 2970 2971 /* 2972 * SEV must obviously be supported in hardware. Sanity check that the 2973 * CPU supports decode assists, which is mandatory for SEV guests to 2974 * support instruction emulation. Ditto for flushing by ASID, as SEV 2975 * guests are bound to a single ASID, i.e. KVM can't rotate to a new 2976 * ASID to effect a TLB flush. 2977 */ 2978 if (!boot_cpu_has(X86_FEATURE_SEV) || 2979 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || 2980 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) 2981 goto out; 2982 2983 /* Retrieve SEV CPUID information */ 2984 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2985 2986 /* Set encryption bit location for SEV-ES guests */ 2987 sev_enc_bit = ebx & 0x3f; 2988 2989 /* Maximum number of encrypted guests supported simultaneously */ 2990 max_sev_asid = ecx; 2991 if (!max_sev_asid) 2992 goto out; 2993 2994 /* Minimum ASID value that should be used for SEV guest */ 2995 min_sev_asid = edx; 2996 sev_me_mask = 1UL << (ebx & 0x3f); 2997 2998 /* 2999 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 3000 * even though it's never used, so that the bitmap is indexed by the 3001 * actual ASID. 3002 */ 3003 nr_asids = max_sev_asid + 1; 3004 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 3005 if (!sev_asid_bitmap) 3006 goto out; 3007 3008 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 3009 if (!sev_reclaim_asid_bitmap) { 3010 bitmap_free(sev_asid_bitmap); 3011 sev_asid_bitmap = NULL; 3012 goto out; 3013 } 3014 3015 if (min_sev_asid <= max_sev_asid) { 3016 sev_asid_count = max_sev_asid - min_sev_asid + 1; 3017 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 3018 } 3019 sev_supported = true; 3020 3021 /* SEV-ES support requested? */ 3022 if (!sev_es_enabled) 3023 goto out; 3024 3025 /* 3026 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 3027 * instruction stream, i.e. can't emulate in response to a #NPF and 3028 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 3029 * (the guest can then do a #VMGEXIT to request MMIO emulation). 3030 */ 3031 if (!enable_mmio_caching) 3032 goto out; 3033 3034 /* Does the CPU support SEV-ES? */ 3035 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 3036 goto out; 3037 3038 if (!lbrv) { 3039 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV), 3040 "LBRV must be present for SEV-ES support"); 3041 goto out; 3042 } 3043 3044 /* Has the system been allocated ASIDs for SEV-ES? */ 3045 if (min_sev_asid == 1) 3046 goto out; 3047 3048 sev_es_asid_count = min_sev_asid - 1; 3049 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 3050 sev_es_supported = true; 3051 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP); 3052 3053 out: 3054 if (boot_cpu_has(X86_FEATURE_SEV)) 3055 pr_info("SEV %s (ASIDs %u - %u)\n", 3056 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : 3057 "unusable" : 3058 "disabled", 3059 min_sev_asid, max_sev_asid); 3060 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 3061 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 3062 sev_es_supported ? "enabled" : "disabled", 3063 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3064 if (boot_cpu_has(X86_FEATURE_SEV_SNP)) 3065 pr_info("SEV-SNP %s (ASIDs %u - %u)\n", 3066 sev_snp_supported ? "enabled" : "disabled", 3067 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3068 3069 sev_enabled = sev_supported; 3070 sev_es_enabled = sev_es_supported; 3071 sev_snp_enabled = sev_snp_supported; 3072 3073 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 3074 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 3075 sev_es_debug_swap_enabled = false; 3076 3077 sev_supported_vmsa_features = 0; 3078 if (sev_es_debug_swap_enabled) 3079 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP; 3080 } 3081 3082 void sev_hardware_unsetup(void) 3083 { 3084 if (!sev_enabled) 3085 return; 3086 3087 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 3088 sev_flush_asids(1, max_sev_asid); 3089 3090 bitmap_free(sev_asid_bitmap); 3091 bitmap_free(sev_reclaim_asid_bitmap); 3092 3093 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 3094 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 3095 } 3096 3097 int sev_cpu_init(struct svm_cpu_data *sd) 3098 { 3099 if (!sev_enabled) 3100 return 0; 3101 3102 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 3103 if (!sd->sev_vmcbs) 3104 return -ENOMEM; 3105 3106 return 0; 3107 } 3108 3109 /* 3110 * Pages used by hardware to hold guest encrypted state must be flushed before 3111 * returning them to the system. 3112 */ 3113 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 3114 { 3115 unsigned int asid = sev_get_asid(vcpu->kvm); 3116 3117 /* 3118 * Note! The address must be a kernel address, as regular page walk 3119 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 3120 * address is non-deterministic and unsafe. This function deliberately 3121 * takes a pointer to deter passing in a user address. 3122 */ 3123 unsigned long addr = (unsigned long)va; 3124 3125 /* 3126 * If CPU enforced cache coherency for encrypted mappings of the 3127 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 3128 * flush is still needed in order to work properly with DMA devices. 3129 */ 3130 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 3131 clflush_cache_range(va, PAGE_SIZE); 3132 return; 3133 } 3134 3135 /* 3136 * VM Page Flush takes a host virtual address and a guest ASID. Fall 3137 * back to WBINVD if this faults so as not to make any problems worse 3138 * by leaving stale encrypted data in the cache. 3139 */ 3140 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 3141 goto do_wbinvd; 3142 3143 return; 3144 3145 do_wbinvd: 3146 wbinvd_on_all_cpus(); 3147 } 3148 3149 void sev_guest_memory_reclaimed(struct kvm *kvm) 3150 { 3151 /* 3152 * With SNP+gmem, private/encrypted memory is unreachable via the 3153 * hva-based mmu notifiers, so these events are only actually 3154 * pertaining to shared pages where there is no need to perform 3155 * the WBINVD to flush associated caches. 3156 */ 3157 if (!sev_guest(kvm) || sev_snp_guest(kvm)) 3158 return; 3159 3160 wbinvd_on_all_cpus(); 3161 } 3162 3163 void sev_free_vcpu(struct kvm_vcpu *vcpu) 3164 { 3165 struct vcpu_svm *svm; 3166 3167 if (!sev_es_guest(vcpu->kvm)) 3168 return; 3169 3170 svm = to_svm(vcpu); 3171 3172 /* 3173 * If it's an SNP guest, then the VMSA was marked in the RMP table as 3174 * a guest-owned page. Transition the page to hypervisor state before 3175 * releasing it back to the system. 3176 */ 3177 if (sev_snp_guest(vcpu->kvm)) { 3178 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 3179 3180 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K)) 3181 goto skip_vmsa_free; 3182 } 3183 3184 if (vcpu->arch.guest_state_protected) 3185 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 3186 3187 __free_page(virt_to_page(svm->sev_es.vmsa)); 3188 3189 skip_vmsa_free: 3190 if (svm->sev_es.ghcb_sa_free) 3191 kvfree(svm->sev_es.ghcb_sa); 3192 } 3193 3194 static void dump_ghcb(struct vcpu_svm *svm) 3195 { 3196 struct ghcb *ghcb = svm->sev_es.ghcb; 3197 unsigned int nbits; 3198 3199 /* Re-use the dump_invalid_vmcb module parameter */ 3200 if (!dump_invalid_vmcb) { 3201 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3202 return; 3203 } 3204 3205 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 3206 3207 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 3208 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 3209 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 3210 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 3211 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 3212 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 3213 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 3214 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 3215 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 3216 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 3217 } 3218 3219 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 3220 { 3221 struct kvm_vcpu *vcpu = &svm->vcpu; 3222 struct ghcb *ghcb = svm->sev_es.ghcb; 3223 3224 /* 3225 * The GHCB protocol so far allows for the following data 3226 * to be returned: 3227 * GPRs RAX, RBX, RCX, RDX 3228 * 3229 * Copy their values, even if they may not have been written during the 3230 * VM-Exit. It's the guest's responsibility to not consume random data. 3231 */ 3232 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 3233 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 3234 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 3235 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 3236 } 3237 3238 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 3239 { 3240 struct vmcb_control_area *control = &svm->vmcb->control; 3241 struct kvm_vcpu *vcpu = &svm->vcpu; 3242 struct ghcb *ghcb = svm->sev_es.ghcb; 3243 u64 exit_code; 3244 3245 /* 3246 * The GHCB protocol so far allows for the following data 3247 * to be supplied: 3248 * GPRs RAX, RBX, RCX, RDX 3249 * XCR0 3250 * CPL 3251 * 3252 * VMMCALL allows the guest to provide extra registers. KVM also 3253 * expects RSI for hypercalls, so include that, too. 3254 * 3255 * Copy their values to the appropriate location if supplied. 3256 */ 3257 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 3258 3259 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 3260 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 3261 3262 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); 3263 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); 3264 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); 3265 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); 3266 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); 3267 3268 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); 3269 3270 if (kvm_ghcb_xcr0_is_valid(svm)) { 3271 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 3272 kvm_update_cpuid_runtime(vcpu); 3273 } 3274 3275 /* Copy the GHCB exit information into the VMCB fields */ 3276 exit_code = ghcb_get_sw_exit_code(ghcb); 3277 control->exit_code = lower_32_bits(exit_code); 3278 control->exit_code_hi = upper_32_bits(exit_code); 3279 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 3280 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 3281 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); 3282 3283 /* Clear the valid entries fields */ 3284 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 3285 } 3286 3287 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) 3288 { 3289 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 3290 } 3291 3292 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 3293 { 3294 struct vmcb_control_area *control = &svm->vmcb->control; 3295 struct kvm_vcpu *vcpu = &svm->vcpu; 3296 u64 exit_code; 3297 u64 reason; 3298 3299 /* 3300 * Retrieve the exit code now even though it may not be marked valid 3301 * as it could help with debugging. 3302 */ 3303 exit_code = kvm_ghcb_get_sw_exit_code(control); 3304 3305 /* Only GHCB Usage code 0 is supported */ 3306 if (svm->sev_es.ghcb->ghcb_usage) { 3307 reason = GHCB_ERR_INVALID_USAGE; 3308 goto vmgexit_err; 3309 } 3310 3311 reason = GHCB_ERR_MISSING_INPUT; 3312 3313 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 3314 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 3315 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 3316 goto vmgexit_err; 3317 3318 switch (exit_code) { 3319 case SVM_EXIT_READ_DR7: 3320 break; 3321 case SVM_EXIT_WRITE_DR7: 3322 if (!kvm_ghcb_rax_is_valid(svm)) 3323 goto vmgexit_err; 3324 break; 3325 case SVM_EXIT_RDTSC: 3326 break; 3327 case SVM_EXIT_RDPMC: 3328 if (!kvm_ghcb_rcx_is_valid(svm)) 3329 goto vmgexit_err; 3330 break; 3331 case SVM_EXIT_CPUID: 3332 if (!kvm_ghcb_rax_is_valid(svm) || 3333 !kvm_ghcb_rcx_is_valid(svm)) 3334 goto vmgexit_err; 3335 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 3336 if (!kvm_ghcb_xcr0_is_valid(svm)) 3337 goto vmgexit_err; 3338 break; 3339 case SVM_EXIT_INVD: 3340 break; 3341 case SVM_EXIT_IOIO: 3342 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 3343 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3344 goto vmgexit_err; 3345 } else { 3346 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 3347 if (!kvm_ghcb_rax_is_valid(svm)) 3348 goto vmgexit_err; 3349 } 3350 break; 3351 case SVM_EXIT_MSR: 3352 if (!kvm_ghcb_rcx_is_valid(svm)) 3353 goto vmgexit_err; 3354 if (control->exit_info_1) { 3355 if (!kvm_ghcb_rax_is_valid(svm) || 3356 !kvm_ghcb_rdx_is_valid(svm)) 3357 goto vmgexit_err; 3358 } 3359 break; 3360 case SVM_EXIT_VMMCALL: 3361 if (!kvm_ghcb_rax_is_valid(svm) || 3362 !kvm_ghcb_cpl_is_valid(svm)) 3363 goto vmgexit_err; 3364 break; 3365 case SVM_EXIT_RDTSCP: 3366 break; 3367 case SVM_EXIT_WBINVD: 3368 break; 3369 case SVM_EXIT_MONITOR: 3370 if (!kvm_ghcb_rax_is_valid(svm) || 3371 !kvm_ghcb_rcx_is_valid(svm) || 3372 !kvm_ghcb_rdx_is_valid(svm)) 3373 goto vmgexit_err; 3374 break; 3375 case SVM_EXIT_MWAIT: 3376 if (!kvm_ghcb_rax_is_valid(svm) || 3377 !kvm_ghcb_rcx_is_valid(svm)) 3378 goto vmgexit_err; 3379 break; 3380 case SVM_VMGEXIT_MMIO_READ: 3381 case SVM_VMGEXIT_MMIO_WRITE: 3382 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3383 goto vmgexit_err; 3384 break; 3385 case SVM_VMGEXIT_AP_CREATION: 3386 if (!sev_snp_guest(vcpu->kvm)) 3387 goto vmgexit_err; 3388 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY) 3389 if (!kvm_ghcb_rax_is_valid(svm)) 3390 goto vmgexit_err; 3391 break; 3392 case SVM_VMGEXIT_NMI_COMPLETE: 3393 case SVM_VMGEXIT_AP_HLT_LOOP: 3394 case SVM_VMGEXIT_AP_JUMP_TABLE: 3395 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 3396 case SVM_VMGEXIT_HV_FEATURES: 3397 case SVM_VMGEXIT_TERM_REQUEST: 3398 break; 3399 case SVM_VMGEXIT_PSC: 3400 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm)) 3401 goto vmgexit_err; 3402 break; 3403 case SVM_VMGEXIT_GUEST_REQUEST: 3404 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 3405 if (!sev_snp_guest(vcpu->kvm) || 3406 !PAGE_ALIGNED(control->exit_info_1) || 3407 !PAGE_ALIGNED(control->exit_info_2) || 3408 control->exit_info_1 == control->exit_info_2) 3409 goto vmgexit_err; 3410 break; 3411 default: 3412 reason = GHCB_ERR_INVALID_EVENT; 3413 goto vmgexit_err; 3414 } 3415 3416 return 0; 3417 3418 vmgexit_err: 3419 if (reason == GHCB_ERR_INVALID_USAGE) { 3420 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 3421 svm->sev_es.ghcb->ghcb_usage); 3422 } else if (reason == GHCB_ERR_INVALID_EVENT) { 3423 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 3424 exit_code); 3425 } else { 3426 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 3427 exit_code); 3428 dump_ghcb(svm); 3429 } 3430 3431 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 3432 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason); 3433 3434 /* Resume the guest to "return" the error code. */ 3435 return 1; 3436 } 3437 3438 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 3439 { 3440 /* Clear any indication that the vCPU is in a type of AP Reset Hold */ 3441 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE; 3442 3443 if (!svm->sev_es.ghcb) 3444 return; 3445 3446 if (svm->sev_es.ghcb_sa_free) { 3447 /* 3448 * The scratch area lives outside the GHCB, so there is a 3449 * buffer that, depending on the operation performed, may 3450 * need to be synced, then freed. 3451 */ 3452 if (svm->sev_es.ghcb_sa_sync) { 3453 kvm_write_guest(svm->vcpu.kvm, 3454 svm->sev_es.sw_scratch, 3455 svm->sev_es.ghcb_sa, 3456 svm->sev_es.ghcb_sa_len); 3457 svm->sev_es.ghcb_sa_sync = false; 3458 } 3459 3460 kvfree(svm->sev_es.ghcb_sa); 3461 svm->sev_es.ghcb_sa = NULL; 3462 svm->sev_es.ghcb_sa_free = false; 3463 } 3464 3465 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 3466 3467 sev_es_sync_to_ghcb(svm); 3468 3469 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); 3470 svm->sev_es.ghcb = NULL; 3471 } 3472 3473 void pre_sev_run(struct vcpu_svm *svm, int cpu) 3474 { 3475 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 3476 unsigned int asid = sev_get_asid(svm->vcpu.kvm); 3477 3478 /* Assign the asid allocated with this SEV guest */ 3479 svm->asid = asid; 3480 3481 /* 3482 * Flush guest TLB: 3483 * 3484 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 3485 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 3486 */ 3487 if (sd->sev_vmcbs[asid] == svm->vmcb && 3488 svm->vcpu.arch.last_vmentry_cpu == cpu) 3489 return; 3490 3491 sd->sev_vmcbs[asid] = svm->vmcb; 3492 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3493 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3494 } 3495 3496 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 3497 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 3498 { 3499 struct vmcb_control_area *control = &svm->vmcb->control; 3500 u64 ghcb_scratch_beg, ghcb_scratch_end; 3501 u64 scratch_gpa_beg, scratch_gpa_end; 3502 void *scratch_va; 3503 3504 scratch_gpa_beg = svm->sev_es.sw_scratch; 3505 if (!scratch_gpa_beg) { 3506 pr_err("vmgexit: scratch gpa not provided\n"); 3507 goto e_scratch; 3508 } 3509 3510 scratch_gpa_end = scratch_gpa_beg + len; 3511 if (scratch_gpa_end < scratch_gpa_beg) { 3512 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 3513 len, scratch_gpa_beg); 3514 goto e_scratch; 3515 } 3516 3517 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 3518 /* Scratch area begins within GHCB */ 3519 ghcb_scratch_beg = control->ghcb_gpa + 3520 offsetof(struct ghcb, shared_buffer); 3521 ghcb_scratch_end = control->ghcb_gpa + 3522 offsetof(struct ghcb, reserved_0xff0); 3523 3524 /* 3525 * If the scratch area begins within the GHCB, it must be 3526 * completely contained in the GHCB shared buffer area. 3527 */ 3528 if (scratch_gpa_beg < ghcb_scratch_beg || 3529 scratch_gpa_end > ghcb_scratch_end) { 3530 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 3531 scratch_gpa_beg, scratch_gpa_end); 3532 goto e_scratch; 3533 } 3534 3535 scratch_va = (void *)svm->sev_es.ghcb; 3536 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 3537 } else { 3538 /* 3539 * The guest memory must be read into a kernel buffer, so 3540 * limit the size 3541 */ 3542 if (len > GHCB_SCRATCH_AREA_LIMIT) { 3543 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 3544 len, GHCB_SCRATCH_AREA_LIMIT); 3545 goto e_scratch; 3546 } 3547 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 3548 if (!scratch_va) 3549 return -ENOMEM; 3550 3551 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 3552 /* Unable to copy scratch area from guest */ 3553 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 3554 3555 kvfree(scratch_va); 3556 return -EFAULT; 3557 } 3558 3559 /* 3560 * The scratch area is outside the GHCB. The operation will 3561 * dictate whether the buffer needs to be synced before running 3562 * the vCPU next time (i.e. a read was requested so the data 3563 * must be written back to the guest memory). 3564 */ 3565 svm->sev_es.ghcb_sa_sync = sync; 3566 svm->sev_es.ghcb_sa_free = true; 3567 } 3568 3569 svm->sev_es.ghcb_sa = scratch_va; 3570 svm->sev_es.ghcb_sa_len = len; 3571 3572 return 0; 3573 3574 e_scratch: 3575 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 3576 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); 3577 3578 return 1; 3579 } 3580 3581 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 3582 unsigned int pos) 3583 { 3584 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 3585 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 3586 } 3587 3588 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 3589 { 3590 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 3591 } 3592 3593 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 3594 { 3595 svm->vmcb->control.ghcb_gpa = value; 3596 } 3597 3598 static int snp_rmptable_psmash(kvm_pfn_t pfn) 3599 { 3600 int ret; 3601 3602 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1); 3603 3604 /* 3605 * PSMASH_FAIL_INUSE indicates another processor is modifying the 3606 * entry, so retry until that's no longer the case. 3607 */ 3608 do { 3609 ret = psmash(pfn); 3610 } while (ret == PSMASH_FAIL_INUSE); 3611 3612 return ret; 3613 } 3614 3615 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu) 3616 { 3617 struct vcpu_svm *svm = to_svm(vcpu); 3618 3619 if (vcpu->run->hypercall.ret) 3620 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3621 else 3622 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP); 3623 3624 return 1; /* resume guest */ 3625 } 3626 3627 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) 3628 { 3629 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr)); 3630 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr); 3631 struct kvm_vcpu *vcpu = &svm->vcpu; 3632 3633 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) { 3634 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3635 return 1; /* resume guest */ 3636 } 3637 3638 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { 3639 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3640 return 1; /* resume guest */ 3641 } 3642 3643 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3644 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3645 vcpu->run->hypercall.args[0] = gpa; 3646 vcpu->run->hypercall.args[1] = 1; 3647 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) 3648 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3649 : KVM_MAP_GPA_RANGE_DECRYPTED; 3650 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3651 3652 vcpu->arch.complete_userspace_io = snp_complete_psc_msr; 3653 3654 return 0; /* forward request to userspace */ 3655 } 3656 3657 struct psc_buffer { 3658 struct psc_hdr hdr; 3659 struct psc_entry entries[]; 3660 } __packed; 3661 3662 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc); 3663 3664 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret) 3665 { 3666 svm->sev_es.psc_inflight = 0; 3667 svm->sev_es.psc_idx = 0; 3668 svm->sev_es.psc_2m = false; 3669 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret); 3670 } 3671 3672 static void __snp_complete_one_psc(struct vcpu_svm *svm) 3673 { 3674 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3675 struct psc_entry *entries = psc->entries; 3676 struct psc_hdr *hdr = &psc->hdr; 3677 __u16 idx; 3678 3679 /* 3680 * Everything in-flight has been processed successfully. Update the 3681 * corresponding entries in the guest's PSC buffer and zero out the 3682 * count of in-flight PSC entries. 3683 */ 3684 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight; 3685 svm->sev_es.psc_inflight--, idx++) { 3686 struct psc_entry *entry = &entries[idx]; 3687 3688 entry->cur_page = entry->pagesize ? 512 : 1; 3689 } 3690 3691 hdr->cur_entry = idx; 3692 } 3693 3694 static int snp_complete_one_psc(struct kvm_vcpu *vcpu) 3695 { 3696 struct vcpu_svm *svm = to_svm(vcpu); 3697 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3698 3699 if (vcpu->run->hypercall.ret) { 3700 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3701 return 1; /* resume guest */ 3702 } 3703 3704 __snp_complete_one_psc(svm); 3705 3706 /* Handle the next range (if any). */ 3707 return snp_begin_psc(svm, psc); 3708 } 3709 3710 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) 3711 { 3712 struct psc_entry *entries = psc->entries; 3713 struct kvm_vcpu *vcpu = &svm->vcpu; 3714 struct psc_hdr *hdr = &psc->hdr; 3715 struct psc_entry entry_start; 3716 u16 idx, idx_start, idx_end; 3717 int npages; 3718 bool huge; 3719 u64 gfn; 3720 3721 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { 3722 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3723 return 1; 3724 } 3725 3726 next_range: 3727 /* There should be no other PSCs in-flight at this point. */ 3728 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) { 3729 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3730 return 1; 3731 } 3732 3733 /* 3734 * The PSC descriptor buffer can be modified by a misbehaved guest after 3735 * validation, so take care to only use validated copies of values used 3736 * for things like array indexing. 3737 */ 3738 idx_start = hdr->cur_entry; 3739 idx_end = hdr->end_entry; 3740 3741 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) { 3742 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR); 3743 return 1; 3744 } 3745 3746 /* Find the start of the next range which needs processing. */ 3747 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) { 3748 entry_start = entries[idx]; 3749 3750 gfn = entry_start.gfn; 3751 huge = entry_start.pagesize; 3752 npages = huge ? 512 : 1; 3753 3754 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) { 3755 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY); 3756 return 1; 3757 } 3758 3759 if (entry_start.cur_page) { 3760 /* 3761 * If this is a partially-completed 2M range, force 4K handling 3762 * for the remaining pages since they're effectively split at 3763 * this point. Subsequent code should ensure this doesn't get 3764 * combined with adjacent PSC entries where 2M handling is still 3765 * possible. 3766 */ 3767 npages -= entry_start.cur_page; 3768 gfn += entry_start.cur_page; 3769 huge = false; 3770 } 3771 3772 if (npages) 3773 break; 3774 } 3775 3776 if (idx > idx_end) { 3777 /* Nothing more to process. */ 3778 snp_complete_psc(svm, 0); 3779 return 1; 3780 } 3781 3782 svm->sev_es.psc_2m = huge; 3783 svm->sev_es.psc_idx = idx; 3784 svm->sev_es.psc_inflight = 1; 3785 3786 /* 3787 * Find all subsequent PSC entries that contain adjacent GPA 3788 * ranges/operations and can be combined into a single 3789 * KVM_HC_MAP_GPA_RANGE exit. 3790 */ 3791 while (++idx <= idx_end) { 3792 struct psc_entry entry = entries[idx]; 3793 3794 if (entry.operation != entry_start.operation || 3795 entry.gfn != entry_start.gfn + npages || 3796 entry.cur_page || !!entry.pagesize != huge) 3797 break; 3798 3799 svm->sev_es.psc_inflight++; 3800 npages += huge ? 512 : 1; 3801 } 3802 3803 switch (entry_start.operation) { 3804 case VMGEXIT_PSC_OP_PRIVATE: 3805 case VMGEXIT_PSC_OP_SHARED: 3806 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3807 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3808 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); 3809 vcpu->run->hypercall.args[1] = npages; 3810 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE 3811 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3812 : KVM_MAP_GPA_RANGE_DECRYPTED; 3813 vcpu->run->hypercall.args[2] |= entry_start.pagesize 3814 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M 3815 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3816 vcpu->arch.complete_userspace_io = snp_complete_one_psc; 3817 return 0; /* forward request to userspace */ 3818 default: 3819 /* 3820 * Only shared/private PSC operations are currently supported, so if the 3821 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH), 3822 * then consider the entire range completed and avoid exiting to 3823 * userspace. In theory snp_complete_psc() can always be called directly 3824 * at this point to complete the current range and start the next one, 3825 * but that could lead to unexpected levels of recursion. 3826 */ 3827 __snp_complete_one_psc(svm); 3828 goto next_range; 3829 } 3830 3831 unreachable(); 3832 } 3833 3834 static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu) 3835 { 3836 struct vcpu_svm *svm = to_svm(vcpu); 3837 3838 WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex)); 3839 3840 /* Mark the vCPU as offline and not runnable */ 3841 vcpu->arch.pv.pv_unhalted = false; 3842 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 3843 3844 /* Clear use of the VMSA */ 3845 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 3846 3847 if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) { 3848 gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa); 3849 struct kvm_memory_slot *slot; 3850 kvm_pfn_t pfn; 3851 3852 slot = gfn_to_memslot(vcpu->kvm, gfn); 3853 if (!slot) 3854 return -EINVAL; 3855 3856 /* 3857 * The new VMSA will be private memory guest memory, so 3858 * retrieve the PFN from the gmem backend. 3859 */ 3860 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, NULL)) 3861 return -EINVAL; 3862 3863 /* 3864 * From this point forward, the VMSA will always be a 3865 * guest-mapped page rather than the initial one allocated 3866 * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa 3867 * could be free'd and cleaned up here, but that involves 3868 * cleanups like wbinvd_on_all_cpus() which would ideally 3869 * be handled during teardown rather than guest boot. 3870 * Deferring that also allows the existing logic for SEV-ES 3871 * VMSAs to be re-used with minimal SNP-specific changes. 3872 */ 3873 svm->sev_es.snp_has_guest_vmsa = true; 3874 3875 /* Use the new VMSA */ 3876 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn); 3877 3878 /* Mark the vCPU as runnable */ 3879 vcpu->arch.pv.pv_unhalted = false; 3880 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3881 3882 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3883 3884 /* 3885 * gmem pages aren't currently migratable, but if this ever 3886 * changes then care should be taken to ensure 3887 * svm->sev_es.vmsa is pinned through some other means. 3888 */ 3889 kvm_release_pfn_clean(pfn); 3890 } 3891 3892 /* 3893 * When replacing the VMSA during SEV-SNP AP creation, 3894 * mark the VMCB dirty so that full state is always reloaded. 3895 */ 3896 vmcb_mark_all_dirty(svm->vmcb); 3897 3898 return 0; 3899 } 3900 3901 /* 3902 * Invoked as part of svm_vcpu_reset() processing of an init event. 3903 */ 3904 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) 3905 { 3906 struct vcpu_svm *svm = to_svm(vcpu); 3907 int ret; 3908 3909 if (!sev_snp_guest(vcpu->kvm)) 3910 return; 3911 3912 mutex_lock(&svm->sev_es.snp_vmsa_mutex); 3913 3914 if (!svm->sev_es.snp_ap_waiting_for_reset) 3915 goto unlock; 3916 3917 svm->sev_es.snp_ap_waiting_for_reset = false; 3918 3919 ret = __sev_snp_update_protected_guest_state(vcpu); 3920 if (ret) 3921 vcpu_unimpl(vcpu, "snp: AP state update on init failed\n"); 3922 3923 unlock: 3924 mutex_unlock(&svm->sev_es.snp_vmsa_mutex); 3925 } 3926 3927 static int sev_snp_ap_creation(struct vcpu_svm *svm) 3928 { 3929 struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 3930 struct kvm_vcpu *vcpu = &svm->vcpu; 3931 struct kvm_vcpu *target_vcpu; 3932 struct vcpu_svm *target_svm; 3933 unsigned int request; 3934 unsigned int apic_id; 3935 bool kick; 3936 int ret; 3937 3938 request = lower_32_bits(svm->vmcb->control.exit_info_1); 3939 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1); 3940 3941 /* Validate the APIC ID */ 3942 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id); 3943 if (!target_vcpu) { 3944 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n", 3945 apic_id); 3946 return -EINVAL; 3947 } 3948 3949 ret = 0; 3950 3951 target_svm = to_svm(target_vcpu); 3952 3953 /* 3954 * The target vCPU is valid, so the vCPU will be kicked unless the 3955 * request is for CREATE_ON_INIT. For any errors at this stage, the 3956 * kick will place the vCPU in an non-runnable state. 3957 */ 3958 kick = true; 3959 3960 mutex_lock(&target_svm->sev_es.snp_vmsa_mutex); 3961 3962 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3963 target_svm->sev_es.snp_ap_waiting_for_reset = true; 3964 3965 /* Interrupt injection mode shouldn't change for AP creation */ 3966 if (request < SVM_VMGEXIT_AP_DESTROY) { 3967 u64 sev_features; 3968 3969 sev_features = vcpu->arch.regs[VCPU_REGS_RAX]; 3970 sev_features ^= sev->vmsa_features; 3971 3972 if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) { 3973 vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n", 3974 vcpu->arch.regs[VCPU_REGS_RAX]); 3975 ret = -EINVAL; 3976 goto out; 3977 } 3978 } 3979 3980 switch (request) { 3981 case SVM_VMGEXIT_AP_CREATE_ON_INIT: 3982 kick = false; 3983 fallthrough; 3984 case SVM_VMGEXIT_AP_CREATE: 3985 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) { 3986 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n", 3987 svm->vmcb->control.exit_info_2); 3988 ret = -EINVAL; 3989 goto out; 3990 } 3991 3992 /* 3993 * Malicious guest can RMPADJUST a large page into VMSA which 3994 * will hit the SNP erratum where the CPU will incorrectly signal 3995 * an RMP violation #PF if a hugepage collides with the RMP entry 3996 * of VMSA page, reject the AP CREATE request if VMSA address from 3997 * guest is 2M aligned. 3998 */ 3999 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) { 4000 vcpu_unimpl(vcpu, 4001 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n", 4002 svm->vmcb->control.exit_info_2); 4003 ret = -EINVAL; 4004 goto out; 4005 } 4006 4007 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; 4008 break; 4009 case SVM_VMGEXIT_AP_DESTROY: 4010 break; 4011 default: 4012 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", 4013 request); 4014 ret = -EINVAL; 4015 break; 4016 } 4017 4018 out: 4019 if (kick) { 4020 kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); 4021 kvm_vcpu_kick(target_vcpu); 4022 } 4023 4024 mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex); 4025 4026 return ret; 4027 } 4028 4029 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4030 { 4031 struct sev_data_snp_guest_request data = {0}; 4032 struct kvm *kvm = svm->vcpu.kvm; 4033 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4034 sev_ret_code fw_err = 0; 4035 int ret; 4036 4037 if (!sev_snp_guest(kvm)) 4038 return -EINVAL; 4039 4040 mutex_lock(&sev->guest_req_mutex); 4041 4042 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) { 4043 ret = -EIO; 4044 goto out_unlock; 4045 } 4046 4047 data.gctx_paddr = __psp_pa(sev->snp_context); 4048 data.req_paddr = __psp_pa(sev->guest_req_buf); 4049 data.res_paddr = __psp_pa(sev->guest_resp_buf); 4050 4051 /* 4052 * Firmware failures are propagated on to guest, but any other failure 4053 * condition along the way should be reported to userspace. E.g. if 4054 * the PSP is dead and commands are timing out. 4055 */ 4056 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err); 4057 if (ret && !fw_err) 4058 goto out_unlock; 4059 4060 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) { 4061 ret = -EIO; 4062 goto out_unlock; 4063 } 4064 4065 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err)); 4066 4067 ret = 1; /* resume guest */ 4068 4069 out_unlock: 4070 mutex_unlock(&sev->guest_req_mutex); 4071 return ret; 4072 } 4073 4074 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4075 { 4076 struct kvm *kvm = svm->vcpu.kvm; 4077 u8 msg_type; 4078 4079 if (!sev_snp_guest(kvm)) 4080 return -EINVAL; 4081 4082 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type), 4083 &msg_type, 1)) 4084 return -EIO; 4085 4086 /* 4087 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for 4088 * additional certificate data to be provided alongside the attestation 4089 * report via the guest-provided data pages indicated by RAX/RBX. The 4090 * certificate data is optional and requires additional KVM enablement 4091 * to provide an interface for userspace to provide it, but KVM still 4092 * needs to be able to handle extended guest requests either way. So 4093 * provide a stub implementation that will always return an empty 4094 * certificate table in the guest-provided data pages. 4095 */ 4096 if (msg_type == SNP_MSG_REPORT_REQ) { 4097 struct kvm_vcpu *vcpu = &svm->vcpu; 4098 u64 data_npages; 4099 gpa_t data_gpa; 4100 4101 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm)) 4102 goto request_invalid; 4103 4104 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX]; 4105 data_npages = vcpu->arch.regs[VCPU_REGS_RBX]; 4106 4107 if (!PAGE_ALIGNED(data_gpa)) 4108 goto request_invalid; 4109 4110 /* 4111 * As per GHCB spec (see "SNP Extended Guest Request"), the 4112 * certificate table is terminated by 24-bytes of zeroes. 4113 */ 4114 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24)) 4115 return -EIO; 4116 } 4117 4118 return snp_handle_guest_req(svm, req_gpa, resp_gpa); 4119 4120 request_invalid: 4121 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4122 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4123 return 1; /* resume guest */ 4124 } 4125 4126 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 4127 { 4128 struct vmcb_control_area *control = &svm->vmcb->control; 4129 struct kvm_vcpu *vcpu = &svm->vcpu; 4130 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4131 u64 ghcb_info; 4132 int ret = 1; 4133 4134 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 4135 4136 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 4137 control->ghcb_gpa); 4138 4139 switch (ghcb_info) { 4140 case GHCB_MSR_SEV_INFO_REQ: 4141 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4142 GHCB_VERSION_MIN, 4143 sev_enc_bit)); 4144 break; 4145 case GHCB_MSR_CPUID_REQ: { 4146 u64 cpuid_fn, cpuid_reg, cpuid_value; 4147 4148 cpuid_fn = get_ghcb_msr_bits(svm, 4149 GHCB_MSR_CPUID_FUNC_MASK, 4150 GHCB_MSR_CPUID_FUNC_POS); 4151 4152 /* Initialize the registers needed by the CPUID intercept */ 4153 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 4154 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 4155 4156 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 4157 if (!ret) { 4158 /* Error, keep GHCB MSR value as-is */ 4159 break; 4160 } 4161 4162 cpuid_reg = get_ghcb_msr_bits(svm, 4163 GHCB_MSR_CPUID_REG_MASK, 4164 GHCB_MSR_CPUID_REG_POS); 4165 if (cpuid_reg == 0) 4166 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 4167 else if (cpuid_reg == 1) 4168 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 4169 else if (cpuid_reg == 2) 4170 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 4171 else 4172 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 4173 4174 set_ghcb_msr_bits(svm, cpuid_value, 4175 GHCB_MSR_CPUID_VALUE_MASK, 4176 GHCB_MSR_CPUID_VALUE_POS); 4177 4178 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 4179 GHCB_MSR_INFO_MASK, 4180 GHCB_MSR_INFO_POS); 4181 break; 4182 } 4183 case GHCB_MSR_AP_RESET_HOLD_REQ: 4184 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO; 4185 ret = kvm_emulate_ap_reset_hold(&svm->vcpu); 4186 4187 /* 4188 * Preset the result to a non-SIPI return and then only set 4189 * the result to non-zero when delivering a SIPI. 4190 */ 4191 set_ghcb_msr_bits(svm, 0, 4192 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4193 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4194 4195 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4196 GHCB_MSR_INFO_MASK, 4197 GHCB_MSR_INFO_POS); 4198 break; 4199 case GHCB_MSR_HV_FT_REQ: 4200 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED, 4201 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS); 4202 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP, 4203 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); 4204 break; 4205 case GHCB_MSR_PREF_GPA_REQ: 4206 if (!sev_snp_guest(vcpu->kvm)) 4207 goto out_terminate; 4208 4209 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK, 4210 GHCB_MSR_GPA_VALUE_POS); 4211 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK, 4212 GHCB_MSR_INFO_POS); 4213 break; 4214 case GHCB_MSR_REG_GPA_REQ: { 4215 u64 gfn; 4216 4217 if (!sev_snp_guest(vcpu->kvm)) 4218 goto out_terminate; 4219 4220 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK, 4221 GHCB_MSR_GPA_VALUE_POS); 4222 4223 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn); 4224 4225 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK, 4226 GHCB_MSR_GPA_VALUE_POS); 4227 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK, 4228 GHCB_MSR_INFO_POS); 4229 break; 4230 } 4231 case GHCB_MSR_PSC_REQ: 4232 if (!sev_snp_guest(vcpu->kvm)) 4233 goto out_terminate; 4234 4235 ret = snp_begin_psc_msr(svm, control->ghcb_gpa); 4236 break; 4237 case GHCB_MSR_TERM_REQ: { 4238 u64 reason_set, reason_code; 4239 4240 reason_set = get_ghcb_msr_bits(svm, 4241 GHCB_MSR_TERM_REASON_SET_MASK, 4242 GHCB_MSR_TERM_REASON_SET_POS); 4243 reason_code = get_ghcb_msr_bits(svm, 4244 GHCB_MSR_TERM_REASON_MASK, 4245 GHCB_MSR_TERM_REASON_POS); 4246 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 4247 reason_set, reason_code); 4248 4249 goto out_terminate; 4250 } 4251 default: 4252 /* Error, keep GHCB MSR value as-is */ 4253 break; 4254 } 4255 4256 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 4257 control->ghcb_gpa, ret); 4258 4259 return ret; 4260 4261 out_terminate: 4262 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4263 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4264 vcpu->run->system_event.ndata = 1; 4265 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4266 4267 return 0; 4268 } 4269 4270 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 4271 { 4272 struct vcpu_svm *svm = to_svm(vcpu); 4273 struct vmcb_control_area *control = &svm->vmcb->control; 4274 u64 ghcb_gpa, exit_code; 4275 int ret; 4276 4277 /* Validate the GHCB */ 4278 ghcb_gpa = control->ghcb_gpa; 4279 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 4280 return sev_handle_vmgexit_msr_protocol(svm); 4281 4282 if (!ghcb_gpa) { 4283 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 4284 4285 /* Without a GHCB, just return right back to the guest */ 4286 return 1; 4287 } 4288 4289 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 4290 /* Unable to map GHCB from guest */ 4291 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 4292 ghcb_gpa); 4293 4294 /* Without a GHCB, just return right back to the guest */ 4295 return 1; 4296 } 4297 4298 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 4299 4300 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 4301 4302 sev_es_sync_from_ghcb(svm); 4303 4304 /* SEV-SNP guest requires that the GHCB GPA must be registered */ 4305 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) { 4306 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa); 4307 return -EINVAL; 4308 } 4309 4310 ret = sev_es_validate_vmgexit(svm); 4311 if (ret) 4312 return ret; 4313 4314 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0); 4315 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0); 4316 4317 exit_code = kvm_ghcb_get_sw_exit_code(control); 4318 switch (exit_code) { 4319 case SVM_VMGEXIT_MMIO_READ: 4320 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4321 if (ret) 4322 break; 4323 4324 ret = kvm_sev_es_mmio_read(vcpu, 4325 control->exit_info_1, 4326 control->exit_info_2, 4327 svm->sev_es.ghcb_sa); 4328 break; 4329 case SVM_VMGEXIT_MMIO_WRITE: 4330 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 4331 if (ret) 4332 break; 4333 4334 ret = kvm_sev_es_mmio_write(vcpu, 4335 control->exit_info_1, 4336 control->exit_info_2, 4337 svm->sev_es.ghcb_sa); 4338 break; 4339 case SVM_VMGEXIT_NMI_COMPLETE: 4340 ++vcpu->stat.nmi_window_exits; 4341 svm->nmi_masked = false; 4342 kvm_make_request(KVM_REQ_EVENT, vcpu); 4343 ret = 1; 4344 break; 4345 case SVM_VMGEXIT_AP_HLT_LOOP: 4346 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT; 4347 ret = kvm_emulate_ap_reset_hold(vcpu); 4348 break; 4349 case SVM_VMGEXIT_AP_JUMP_TABLE: { 4350 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4351 4352 switch (control->exit_info_1) { 4353 case 0: 4354 /* Set AP jump table address */ 4355 sev->ap_jump_table = control->exit_info_2; 4356 break; 4357 case 1: 4358 /* Get AP jump table address */ 4359 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table); 4360 break; 4361 default: 4362 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 4363 control->exit_info_1); 4364 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4365 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4366 } 4367 4368 ret = 1; 4369 break; 4370 } 4371 case SVM_VMGEXIT_HV_FEATURES: 4372 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED); 4373 4374 ret = 1; 4375 break; 4376 case SVM_VMGEXIT_TERM_REQUEST: 4377 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n", 4378 control->exit_info_1, control->exit_info_2); 4379 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4380 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4381 vcpu->run->system_event.ndata = 1; 4382 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4383 break; 4384 case SVM_VMGEXIT_PSC: 4385 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4386 if (ret) 4387 break; 4388 4389 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa); 4390 break; 4391 case SVM_VMGEXIT_AP_CREATION: 4392 ret = sev_snp_ap_creation(svm); 4393 if (ret) { 4394 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4395 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4396 } 4397 4398 ret = 1; 4399 break; 4400 case SVM_VMGEXIT_GUEST_REQUEST: 4401 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2); 4402 break; 4403 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 4404 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2); 4405 break; 4406 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 4407 vcpu_unimpl(vcpu, 4408 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 4409 control->exit_info_1, control->exit_info_2); 4410 ret = -EINVAL; 4411 break; 4412 default: 4413 ret = svm_invoke_exit_handler(vcpu, exit_code); 4414 } 4415 4416 return ret; 4417 } 4418 4419 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 4420 { 4421 int count; 4422 int bytes; 4423 int r; 4424 4425 if (svm->vmcb->control.exit_info_2 > INT_MAX) 4426 return -EINVAL; 4427 4428 count = svm->vmcb->control.exit_info_2; 4429 if (unlikely(check_mul_overflow(count, size, &bytes))) 4430 return -EINVAL; 4431 4432 r = setup_vmgexit_scratch(svm, in, bytes); 4433 if (r) 4434 return r; 4435 4436 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 4437 count, in); 4438 } 4439 4440 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4441 { 4442 struct kvm_vcpu *vcpu = &svm->vcpu; 4443 4444 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 4445 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4446 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4447 4448 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); 4449 } 4450 4451 /* 4452 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if 4453 * the host/guest supports its use. 4454 * 4455 * guest_can_use() checks a number of requirements on the host/guest to 4456 * ensure that MSR_IA32_XSS is available, but it might report true even 4457 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host 4458 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better 4459 * to further check that the guest CPUID actually supports 4460 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved 4461 * guests will still get intercepted and caught in the normal 4462 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths. 4463 */ 4464 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 4465 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4466 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); 4467 else 4468 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0); 4469 } 4470 4471 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4472 { 4473 struct kvm_vcpu *vcpu = &svm->vcpu; 4474 struct kvm_cpuid_entry2 *best; 4475 4476 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4477 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4478 if (best) 4479 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4480 4481 if (sev_es_guest(svm->vcpu.kvm)) 4482 sev_es_vcpu_after_set_cpuid(svm); 4483 } 4484 4485 static void sev_es_init_vmcb(struct vcpu_svm *svm) 4486 { 4487 struct vmcb *vmcb = svm->vmcb01.ptr; 4488 struct kvm_vcpu *vcpu = &svm->vcpu; 4489 4490 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 4491 4492 /* 4493 * An SEV-ES guest requires a VMSA area that is a separate from the 4494 * VMCB page. Do not include the encryption mask on the VMSA physical 4495 * address since hardware will access it using the guest key. Note, 4496 * the VMSA will be NULL if this vCPU is the destination for intrahost 4497 * migration, and will be copied later. 4498 */ 4499 if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa) 4500 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 4501 4502 /* Can't intercept CR register access, HV can't modify CR registers */ 4503 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 4504 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 4505 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 4506 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 4507 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 4508 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 4509 4510 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 4511 4512 /* Track EFER/CR register changes */ 4513 svm_set_intercept(svm, TRAP_EFER_WRITE); 4514 svm_set_intercept(svm, TRAP_CR0_WRITE); 4515 svm_set_intercept(svm, TRAP_CR4_WRITE); 4516 svm_set_intercept(svm, TRAP_CR8_WRITE); 4517 4518 vmcb->control.intercepts[INTERCEPT_DR] = 0; 4519 if (!sev_vcpu_has_debug_swap(svm)) { 4520 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 4521 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 4522 recalc_intercepts(svm); 4523 } else { 4524 /* 4525 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 4526 * allow debugging SEV-ES guests, and enables DebugSwap iff 4527 * NO_NESTED_DATA_BP is supported, so there's no reason to 4528 * intercept #DB when DebugSwap is enabled. For simplicity 4529 * with respect to guest debug, intercept #DB for other VMs 4530 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 4531 * guest can't DoS the CPU with infinite #DB vectoring. 4532 */ 4533 clr_exception_intercept(svm, DB_VECTOR); 4534 } 4535 4536 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 4537 svm_clr_intercept(svm, INTERCEPT_XSETBV); 4538 4539 /* Clear intercepts on selected MSRs */ 4540 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 4541 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 4542 } 4543 4544 void sev_init_vmcb(struct vcpu_svm *svm) 4545 { 4546 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 4547 clr_exception_intercept(svm, UD_VECTOR); 4548 4549 /* 4550 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 4551 * KVM can't decrypt guest memory to decode the faulting instruction. 4552 */ 4553 clr_exception_intercept(svm, GP_VECTOR); 4554 4555 if (sev_es_guest(svm->vcpu.kvm)) 4556 sev_es_init_vmcb(svm); 4557 } 4558 4559 void sev_es_vcpu_reset(struct vcpu_svm *svm) 4560 { 4561 struct kvm_vcpu *vcpu = &svm->vcpu; 4562 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4563 4564 /* 4565 * Set the GHCB MSR value as per the GHCB specification when emulating 4566 * vCPU RESET for an SEV-ES guest. 4567 */ 4568 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4569 GHCB_VERSION_MIN, 4570 sev_enc_bit)); 4571 4572 mutex_init(&svm->sev_es.snp_vmsa_mutex); 4573 } 4574 4575 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa) 4576 { 4577 /* 4578 * All host state for SEV-ES guests is categorized into three swap types 4579 * based on how it is handled by hardware during a world switch: 4580 * 4581 * A: VMRUN: Host state saved in host save area 4582 * VMEXIT: Host state loaded from host save area 4583 * 4584 * B: VMRUN: Host state _NOT_ saved in host save area 4585 * VMEXIT: Host state loaded from host save area 4586 * 4587 * C: VMRUN: Host state _NOT_ saved in host save area 4588 * VMEXIT: Host state initialized to default(reset) values 4589 * 4590 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 4591 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 4592 * by common SVM code). 4593 */ 4594 hostsa->xcr0 = kvm_host.xcr0; 4595 hostsa->pkru = read_pkru(); 4596 hostsa->xss = kvm_host.xss; 4597 4598 /* 4599 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 4600 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both 4601 * saves and loads debug registers (Type-A). 4602 */ 4603 if (sev_vcpu_has_debug_swap(svm)) { 4604 hostsa->dr0 = native_get_debugreg(0); 4605 hostsa->dr1 = native_get_debugreg(1); 4606 hostsa->dr2 = native_get_debugreg(2); 4607 hostsa->dr3 = native_get_debugreg(3); 4608 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 4609 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 4610 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 4611 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 4612 } 4613 } 4614 4615 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4616 { 4617 struct vcpu_svm *svm = to_svm(vcpu); 4618 4619 /* First SIPI: Use the values as initially set by the VMM */ 4620 if (!svm->sev_es.received_first_sipi) { 4621 svm->sev_es.received_first_sipi = true; 4622 return; 4623 } 4624 4625 /* Subsequent SIPI */ 4626 switch (svm->sev_es.ap_reset_hold_type) { 4627 case AP_RESET_HOLD_NAE_EVENT: 4628 /* 4629 * Return from an AP Reset Hold VMGEXIT, where the guest will 4630 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value. 4631 */ 4632 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 4633 break; 4634 case AP_RESET_HOLD_MSR_PROTO: 4635 /* 4636 * Return from an AP Reset Hold VMGEXIT, where the guest will 4637 * set the CS and RIP. Set GHCB data field to a non-zero value. 4638 */ 4639 set_ghcb_msr_bits(svm, 1, 4640 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4641 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4642 4643 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4644 GHCB_MSR_INFO_MASK, 4645 GHCB_MSR_INFO_POS); 4646 break; 4647 default: 4648 break; 4649 } 4650 } 4651 4652 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) 4653 { 4654 unsigned long pfn; 4655 struct page *p; 4656 4657 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4658 return alloc_pages_node(node, gfp | __GFP_ZERO, 0); 4659 4660 /* 4661 * Allocate an SNP-safe page to workaround the SNP erratum where 4662 * the CPU will incorrectly signal an RMP violation #PF if a 4663 * hugepage (2MB or 1GB) collides with the RMP entry of a 4664 * 2MB-aligned VMCB, VMSA, or AVIC backing page. 4665 * 4666 * Allocate one extra page, choose a page which is not 4667 * 2MB-aligned, and free the other. 4668 */ 4669 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1); 4670 if (!p) 4671 return NULL; 4672 4673 split_page(p, 1); 4674 4675 pfn = page_to_pfn(p); 4676 if (IS_ALIGNED(pfn, PTRS_PER_PMD)) 4677 __free_page(p++); 4678 else 4679 __free_page(p + 1); 4680 4681 return p; 4682 } 4683 4684 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) 4685 { 4686 struct kvm_memory_slot *slot; 4687 struct kvm *kvm = vcpu->kvm; 4688 int order, rmp_level, ret; 4689 bool assigned; 4690 kvm_pfn_t pfn; 4691 gfn_t gfn; 4692 4693 gfn = gpa >> PAGE_SHIFT; 4694 4695 /* 4696 * The only time RMP faults occur for shared pages is when the guest is 4697 * triggering an RMP fault for an implicit page-state change from 4698 * shared->private. Implicit page-state changes are forwarded to 4699 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults 4700 * for shared pages should not end up here. 4701 */ 4702 if (!kvm_mem_is_private(kvm, gfn)) { 4703 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n", 4704 gpa); 4705 return; 4706 } 4707 4708 slot = gfn_to_memslot(kvm, gfn); 4709 if (!kvm_slot_can_be_private(slot)) { 4710 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n", 4711 gpa); 4712 return; 4713 } 4714 4715 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &order); 4716 if (ret) { 4717 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n", 4718 gpa); 4719 return; 4720 } 4721 4722 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4723 if (ret || !assigned) { 4724 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n", 4725 gpa, pfn, ret); 4726 goto out_no_trace; 4727 } 4728 4729 /* 4730 * There are 2 cases where a PSMASH may be needed to resolve an #NPF 4731 * with PFERR_GUEST_RMP_BIT set: 4732 * 4733 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM 4734 * bit set if the guest issues them with a smaller granularity than 4735 * what is indicated by the page-size bit in the 2MB RMP entry for 4736 * the PFN that backs the GPA. 4737 * 4738 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is 4739 * smaller than what is indicated by the 2MB RMP entry for the PFN 4740 * that backs the GPA. 4741 * 4742 * In both these cases, the corresponding 2M RMP entry needs to 4743 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already 4744 * split into 4K RMP entries, then this is likely a spurious case which 4745 * can occur when there are concurrent accesses by the guest to a 2MB 4746 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in 4747 * the process of being PMASH'd into 4K entries. These cases should 4748 * resolve automatically on subsequent accesses, so just ignore them 4749 * here. 4750 */ 4751 if (rmp_level == PG_LEVEL_4K) 4752 goto out; 4753 4754 ret = snp_rmptable_psmash(pfn); 4755 if (ret) { 4756 /* 4757 * Look it up again. If it's 4K now then the PSMASH may have 4758 * raced with another process and the issue has already resolved 4759 * itself. 4760 */ 4761 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) && 4762 assigned && rmp_level == PG_LEVEL_4K) 4763 goto out; 4764 4765 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n", 4766 gpa, pfn, ret); 4767 } 4768 4769 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD); 4770 out: 4771 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret); 4772 out_no_trace: 4773 put_page(pfn_to_page(pfn)); 4774 } 4775 4776 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end) 4777 { 4778 kvm_pfn_t pfn = start; 4779 4780 while (pfn < end) { 4781 int ret, rmp_level; 4782 bool assigned; 4783 4784 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4785 if (ret) { 4786 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n", 4787 pfn, start, end, rmp_level, ret); 4788 return false; 4789 } 4790 4791 if (assigned) { 4792 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n", 4793 __func__, pfn, start, end, rmp_level); 4794 return false; 4795 } 4796 4797 pfn++; 4798 } 4799 4800 return true; 4801 } 4802 4803 static u8 max_level_for_order(int order) 4804 { 4805 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4806 return PG_LEVEL_2M; 4807 4808 return PG_LEVEL_4K; 4809 } 4810 4811 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order) 4812 { 4813 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4814 4815 /* 4816 * If this is a large folio, and the entire 2M range containing the 4817 * PFN is currently shared, then the entire 2M-aligned range can be 4818 * set to private via a single 2M RMP entry. 4819 */ 4820 if (max_level_for_order(order) > PG_LEVEL_4K && 4821 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD)) 4822 return true; 4823 4824 return false; 4825 } 4826 4827 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) 4828 { 4829 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 4830 kvm_pfn_t pfn_aligned; 4831 gfn_t gfn_aligned; 4832 int level, rc; 4833 bool assigned; 4834 4835 if (!sev_snp_guest(kvm)) 4836 return 0; 4837 4838 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4839 if (rc) { 4840 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n", 4841 gfn, pfn, rc); 4842 return -ENOENT; 4843 } 4844 4845 if (assigned) { 4846 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n", 4847 __func__, gfn, pfn, max_order, level); 4848 return 0; 4849 } 4850 4851 if (is_large_rmp_possible(kvm, pfn, max_order)) { 4852 level = PG_LEVEL_2M; 4853 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4854 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD); 4855 } else { 4856 level = PG_LEVEL_4K; 4857 pfn_aligned = pfn; 4858 gfn_aligned = gfn; 4859 } 4860 4861 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false); 4862 if (rc) { 4863 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n", 4864 gfn, pfn, level, rc); 4865 return -EINVAL; 4866 } 4867 4868 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n", 4869 __func__, gfn, pfn, pfn_aligned, max_order, level); 4870 4871 return 0; 4872 } 4873 4874 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 4875 { 4876 kvm_pfn_t pfn; 4877 4878 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4879 return; 4880 4881 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end); 4882 4883 for (pfn = start; pfn < end;) { 4884 bool use_2m_update = false; 4885 int rc, rmp_level; 4886 bool assigned; 4887 4888 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4889 if (rc || !assigned) 4890 goto next_pfn; 4891 4892 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) && 4893 end >= (pfn + PTRS_PER_PMD) && 4894 rmp_level > PG_LEVEL_4K; 4895 4896 /* 4897 * If an unaligned PFN corresponds to a 2M region assigned as a 4898 * large page in the RMP table, PSMASH the region into individual 4899 * 4K RMP entries before attempting to convert a 4K sub-page. 4900 */ 4901 if (!use_2m_update && rmp_level > PG_LEVEL_4K) { 4902 /* 4903 * This shouldn't fail, but if it does, report it, but 4904 * still try to update RMP entry to shared and pray this 4905 * was a spurious error that can be addressed later. 4906 */ 4907 rc = snp_rmptable_psmash(pfn); 4908 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n", 4909 pfn, rc); 4910 } 4911 4912 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K); 4913 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n", 4914 pfn, rc)) 4915 goto next_pfn; 4916 4917 /* 4918 * SEV-ES avoids host/guest cache coherency issues through 4919 * WBINVD hooks issued via MMU notifiers during run-time, and 4920 * KVM's VM destroy path at shutdown. Those MMU notifier events 4921 * don't cover gmem since there is no requirement to map pages 4922 * to a HVA in order to use them for a running guest. While the 4923 * shutdown path would still likely cover things for SNP guests, 4924 * userspace may also free gmem pages during run-time via 4925 * hole-punching operations on the guest_memfd, so flush the 4926 * cache entries for these pages before free'ing them back to 4927 * the host. 4928 */ 4929 clflush_cache_range(__va(pfn_to_hpa(pfn)), 4930 use_2m_update ? PMD_SIZE : PAGE_SIZE); 4931 next_pfn: 4932 pfn += use_2m_update ? PTRS_PER_PMD : 1; 4933 cond_resched(); 4934 } 4935 } 4936 4937 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn) 4938 { 4939 int level, rc; 4940 bool assigned; 4941 4942 if (!sev_snp_guest(kvm)) 4943 return 0; 4944 4945 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4946 if (rc || !assigned) 4947 return PG_LEVEL_4K; 4948 4949 return level; 4950 } 4951