1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 #include <uapi/linux/sev-guest.h> 23 24 #include <asm/pkru.h> 25 #include <asm/trapnr.h> 26 #include <asm/fpu/xcr.h> 27 #include <asm/fpu/xstate.h> 28 #include <asm/debugreg.h> 29 #include <asm/sev.h> 30 31 #include "mmu.h" 32 #include "x86.h" 33 #include "svm.h" 34 #include "svm_ops.h" 35 #include "cpuid.h" 36 #include "trace.h" 37 38 #define GHCB_VERSION_MAX 2ULL 39 #define GHCB_VERSION_DEFAULT 2ULL 40 #define GHCB_VERSION_MIN 1ULL 41 42 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION) 43 44 /* enable/disable SEV support */ 45 static bool sev_enabled = true; 46 module_param_named(sev, sev_enabled, bool, 0444); 47 48 /* enable/disable SEV-ES support */ 49 static bool sev_es_enabled = true; 50 module_param_named(sev_es, sev_es_enabled, bool, 0444); 51 52 /* enable/disable SEV-SNP support */ 53 static bool sev_snp_enabled = true; 54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444); 55 56 /* enable/disable SEV-ES DebugSwap support */ 57 static bool sev_es_debug_swap_enabled = true; 58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 59 static u64 sev_supported_vmsa_features; 60 61 #define AP_RESET_HOLD_NONE 0 62 #define AP_RESET_HOLD_NAE_EVENT 1 63 #define AP_RESET_HOLD_MSR_PROTO 2 64 65 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */ 66 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0) 67 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8) 68 #define SNP_POLICY_MASK_SMT BIT_ULL(16) 69 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17) 70 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19) 71 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20) 72 73 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \ 74 SNP_POLICY_MASK_API_MAJOR | \ 75 SNP_POLICY_MASK_SMT | \ 76 SNP_POLICY_MASK_RSVD_MBO | \ 77 SNP_POLICY_MASK_DEBUG | \ 78 SNP_POLICY_MASK_SINGLE_SOCKET) 79 80 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000 81 82 static u8 sev_enc_bit; 83 static DECLARE_RWSEM(sev_deactivate_lock); 84 static DEFINE_MUTEX(sev_bitmap_lock); 85 unsigned int max_sev_asid; 86 static unsigned int min_sev_asid; 87 static unsigned long sev_me_mask; 88 static unsigned int nr_asids; 89 static unsigned long *sev_asid_bitmap; 90 static unsigned long *sev_reclaim_asid_bitmap; 91 92 static int snp_decommission_context(struct kvm *kvm); 93 94 struct enc_region { 95 struct list_head list; 96 unsigned long npages; 97 struct page **pages; 98 unsigned long uaddr; 99 unsigned long size; 100 }; 101 102 /* Called with the sev_bitmap_lock held, or on shutdown */ 103 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) 104 { 105 int ret, error = 0; 106 unsigned int asid; 107 108 /* Check if there are any ASIDs to reclaim before performing a flush */ 109 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 110 if (asid > max_asid) 111 return -EBUSY; 112 113 /* 114 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 115 * so it must be guarded. 116 */ 117 down_write(&sev_deactivate_lock); 118 119 wbinvd_on_all_cpus(); 120 121 if (sev_snp_enabled) 122 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error); 123 else 124 ret = sev_guest_df_flush(&error); 125 126 up_write(&sev_deactivate_lock); 127 128 if (ret) 129 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n", 130 sev_snp_enabled ? "-SNP" : "", ret, error); 131 132 return ret; 133 } 134 135 static inline bool is_mirroring_enc_context(struct kvm *kvm) 136 { 137 return !!to_kvm_sev_info(kvm)->enc_context_owner; 138 } 139 140 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm) 141 { 142 struct kvm_vcpu *vcpu = &svm->vcpu; 143 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 144 145 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP; 146 } 147 148 /* Must be called with the sev_bitmap_lock held */ 149 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) 150 { 151 if (sev_flush_asids(min_asid, max_asid)) 152 return false; 153 154 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 155 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 156 nr_asids); 157 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 158 159 return true; 160 } 161 162 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 163 { 164 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 165 return misc_cg_try_charge(type, sev->misc_cg, 1); 166 } 167 168 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 169 { 170 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 171 misc_cg_uncharge(type, sev->misc_cg, 1); 172 } 173 174 static int sev_asid_new(struct kvm_sev_info *sev) 175 { 176 /* 177 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 178 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 179 * Note: min ASID can end up larger than the max if basic SEV support is 180 * effectively disabled by disallowing use of ASIDs for SEV guests. 181 */ 182 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; 183 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 184 unsigned int asid; 185 bool retry = true; 186 int ret; 187 188 if (min_asid > max_asid) 189 return -ENOTTY; 190 191 WARN_ON(sev->misc_cg); 192 sev->misc_cg = get_current_misc_cg(); 193 ret = sev_misc_cg_try_charge(sev); 194 if (ret) { 195 put_misc_cg(sev->misc_cg); 196 sev->misc_cg = NULL; 197 return ret; 198 } 199 200 mutex_lock(&sev_bitmap_lock); 201 202 again: 203 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 204 if (asid > max_asid) { 205 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 206 retry = false; 207 goto again; 208 } 209 mutex_unlock(&sev_bitmap_lock); 210 ret = -EBUSY; 211 goto e_uncharge; 212 } 213 214 __set_bit(asid, sev_asid_bitmap); 215 216 mutex_unlock(&sev_bitmap_lock); 217 218 sev->asid = asid; 219 return 0; 220 e_uncharge: 221 sev_misc_cg_uncharge(sev); 222 put_misc_cg(sev->misc_cg); 223 sev->misc_cg = NULL; 224 return ret; 225 } 226 227 static unsigned int sev_get_asid(struct kvm *kvm) 228 { 229 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 230 231 return sev->asid; 232 } 233 234 static void sev_asid_free(struct kvm_sev_info *sev) 235 { 236 struct svm_cpu_data *sd; 237 int cpu; 238 239 mutex_lock(&sev_bitmap_lock); 240 241 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 242 243 for_each_possible_cpu(cpu) { 244 sd = per_cpu_ptr(&svm_data, cpu); 245 sd->sev_vmcbs[sev->asid] = NULL; 246 } 247 248 mutex_unlock(&sev_bitmap_lock); 249 250 sev_misc_cg_uncharge(sev); 251 put_misc_cg(sev->misc_cg); 252 sev->misc_cg = NULL; 253 } 254 255 static void sev_decommission(unsigned int handle) 256 { 257 struct sev_data_decommission decommission; 258 259 if (!handle) 260 return; 261 262 decommission.handle = handle; 263 sev_guest_decommission(&decommission, NULL); 264 } 265 266 /* 267 * Transition a page to hypervisor-owned/shared state in the RMP table. This 268 * should not fail under normal conditions, but leak the page should that 269 * happen since it will no longer be usable by the host due to RMP protections. 270 */ 271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level) 272 { 273 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) { 274 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT); 275 return -EIO; 276 } 277 278 return 0; 279 } 280 281 /* 282 * Certain page-states, such as Pre-Guest and Firmware pages (as documented 283 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be 284 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE 285 * unless they are reclaimed first. 286 * 287 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they 288 * might not be usable by the host due to being set as immutable or still 289 * being associated with a guest ASID. 290 * 291 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be 292 * converted back to shared, as the page is no longer usable due to RMP 293 * protections, and it's infeasible for the guest to continue on. 294 */ 295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn) 296 { 297 struct sev_data_snp_page_reclaim data = {0}; 298 int fw_err, rc; 299 300 data.paddr = __sme_set(pfn << PAGE_SHIFT); 301 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err); 302 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) { 303 snp_leak_pages(pfn, 1); 304 return -EIO; 305 } 306 307 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K)) 308 return -EIO; 309 310 return rc; 311 } 312 313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 314 { 315 struct sev_data_deactivate deactivate; 316 317 if (!handle) 318 return; 319 320 deactivate.handle = handle; 321 322 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 323 down_read(&sev_deactivate_lock); 324 sev_guest_deactivate(&deactivate, NULL); 325 up_read(&sev_deactivate_lock); 326 327 sev_decommission(handle); 328 } 329 330 /* 331 * This sets up bounce buffers/firmware pages to handle SNP Guest Request 332 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB 333 * 2.0 specification for more details. 334 * 335 * Technically, when an SNP Guest Request is issued, the guest will provide its 336 * own request/response pages, which could in theory be passed along directly 337 * to firmware rather than using bounce pages. However, these pages would need 338 * special care: 339 * 340 * - Both pages are from shared guest memory, so they need to be protected 341 * from migration/etc. occurring while firmware reads/writes to them. At a 342 * minimum, this requires elevating the ref counts and potentially needing 343 * an explicit pinning of the memory. This places additional restrictions 344 * on what type of memory backends userspace can use for shared guest 345 * memory since there is some reliance on using refcounted pages. 346 * 347 * - The response page needs to be switched to Firmware-owned[1] state 348 * before the firmware can write to it, which can lead to potential 349 * host RMP #PFs if the guest is misbehaved and hands the host a 350 * guest page that KVM might write to for other reasons (e.g. virtio 351 * buffers/etc.). 352 * 353 * Both of these issues can be avoided completely by using separately-allocated 354 * bounce pages for both the request/response pages and passing those to 355 * firmware instead. So that's what is being set up here. 356 * 357 * Guest requests rely on message sequence numbers to ensure requests are 358 * issued to firmware in the order the guest issues them, so concurrent guest 359 * requests generally shouldn't happen. But a misbehaved guest could issue 360 * concurrent guest requests in theory, so a mutex is used to serialize 361 * access to the bounce buffers. 362 * 363 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more 364 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks" 365 * in the APM for details on the related RMP restrictions. 366 */ 367 static int snp_guest_req_init(struct kvm *kvm) 368 { 369 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 370 struct page *req_page; 371 372 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 373 if (!req_page) 374 return -ENOMEM; 375 376 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 377 if (!sev->guest_resp_buf) { 378 __free_page(req_page); 379 return -EIO; 380 } 381 382 sev->guest_req_buf = page_address(req_page); 383 mutex_init(&sev->guest_req_mutex); 384 385 return 0; 386 } 387 388 static void snp_guest_req_cleanup(struct kvm *kvm) 389 { 390 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 391 392 if (sev->guest_resp_buf) 393 snp_free_firmware_page(sev->guest_resp_buf); 394 395 if (sev->guest_req_buf) 396 __free_page(virt_to_page(sev->guest_req_buf)); 397 398 sev->guest_req_buf = NULL; 399 sev->guest_resp_buf = NULL; 400 } 401 402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp, 403 struct kvm_sev_init *data, 404 unsigned long vm_type) 405 { 406 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 407 struct sev_platform_init_args init_args = {0}; 408 bool es_active = vm_type != KVM_X86_SEV_VM; 409 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0; 410 int ret; 411 412 if (kvm->created_vcpus) 413 return -EINVAL; 414 415 if (data->flags) 416 return -EINVAL; 417 418 if (data->vmsa_features & ~valid_vmsa_features) 419 return -EINVAL; 420 421 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version)) 422 return -EINVAL; 423 424 if (unlikely(sev->active)) 425 return -EINVAL; 426 427 sev->active = true; 428 sev->es_active = es_active; 429 sev->vmsa_features = data->vmsa_features; 430 sev->ghcb_version = data->ghcb_version; 431 432 /* 433 * Currently KVM supports the full range of mandatory features defined 434 * by version 2 of the GHCB protocol, so default to that for SEV-ES 435 * guests created via KVM_SEV_INIT2. 436 */ 437 if (sev->es_active && !sev->ghcb_version) 438 sev->ghcb_version = GHCB_VERSION_DEFAULT; 439 440 if (vm_type == KVM_X86_SNP_VM) 441 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE; 442 443 ret = sev_asid_new(sev); 444 if (ret) 445 goto e_no_asid; 446 447 init_args.probe = false; 448 ret = sev_platform_init(&init_args); 449 if (ret) 450 goto e_free; 451 452 /* This needs to happen after SEV/SNP firmware initialization. */ 453 if (vm_type == KVM_X86_SNP_VM && snp_guest_req_init(kvm)) 454 goto e_free; 455 456 INIT_LIST_HEAD(&sev->regions_list); 457 INIT_LIST_HEAD(&sev->mirror_vms); 458 sev->need_init = false; 459 460 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 461 462 return 0; 463 464 e_free: 465 argp->error = init_args.error; 466 sev_asid_free(sev); 467 sev->asid = 0; 468 e_no_asid: 469 sev->vmsa_features = 0; 470 sev->es_active = false; 471 sev->active = false; 472 return ret; 473 } 474 475 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 476 { 477 struct kvm_sev_init data = { 478 .vmsa_features = 0, 479 .ghcb_version = 0, 480 }; 481 unsigned long vm_type; 482 483 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM) 484 return -EINVAL; 485 486 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM); 487 488 /* 489 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will 490 * continue to only ever support the minimal GHCB protocol version. 491 */ 492 if (vm_type == KVM_X86_SEV_ES_VM) 493 data.ghcb_version = GHCB_VERSION_MIN; 494 495 return __sev_guest_init(kvm, argp, &data, vm_type); 496 } 497 498 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp) 499 { 500 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 501 struct kvm_sev_init data; 502 503 if (!sev->need_init) 504 return -EINVAL; 505 506 if (kvm->arch.vm_type != KVM_X86_SEV_VM && 507 kvm->arch.vm_type != KVM_X86_SEV_ES_VM && 508 kvm->arch.vm_type != KVM_X86_SNP_VM) 509 return -EINVAL; 510 511 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data))) 512 return -EFAULT; 513 514 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type); 515 } 516 517 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 518 { 519 unsigned int asid = sev_get_asid(kvm); 520 struct sev_data_activate activate; 521 int ret; 522 523 /* activate ASID on the given handle */ 524 activate.handle = handle; 525 activate.asid = asid; 526 ret = sev_guest_activate(&activate, error); 527 528 return ret; 529 } 530 531 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 532 { 533 struct fd f; 534 int ret; 535 536 f = fdget(fd); 537 if (!f.file) 538 return -EBADF; 539 540 ret = sev_issue_cmd_external_user(f.file, id, data, error); 541 542 fdput(f); 543 return ret; 544 } 545 546 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 547 { 548 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 549 550 return __sev_issue_cmd(sev->fd, id, data, error); 551 } 552 553 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 554 { 555 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 556 struct sev_data_launch_start start; 557 struct kvm_sev_launch_start params; 558 void *dh_blob, *session_blob; 559 int *error = &argp->error; 560 int ret; 561 562 if (!sev_guest(kvm)) 563 return -ENOTTY; 564 565 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 566 return -EFAULT; 567 568 memset(&start, 0, sizeof(start)); 569 570 dh_blob = NULL; 571 if (params.dh_uaddr) { 572 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 573 if (IS_ERR(dh_blob)) 574 return PTR_ERR(dh_blob); 575 576 start.dh_cert_address = __sme_set(__pa(dh_blob)); 577 start.dh_cert_len = params.dh_len; 578 } 579 580 session_blob = NULL; 581 if (params.session_uaddr) { 582 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 583 if (IS_ERR(session_blob)) { 584 ret = PTR_ERR(session_blob); 585 goto e_free_dh; 586 } 587 588 start.session_address = __sme_set(__pa(session_blob)); 589 start.session_len = params.session_len; 590 } 591 592 start.handle = params.handle; 593 start.policy = params.policy; 594 595 /* create memory encryption context */ 596 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 597 if (ret) 598 goto e_free_session; 599 600 /* Bind ASID to this guest */ 601 ret = sev_bind_asid(kvm, start.handle, error); 602 if (ret) { 603 sev_decommission(start.handle); 604 goto e_free_session; 605 } 606 607 /* return handle to userspace */ 608 params.handle = start.handle; 609 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) { 610 sev_unbind_asid(kvm, start.handle); 611 ret = -EFAULT; 612 goto e_free_session; 613 } 614 615 sev->handle = start.handle; 616 sev->fd = argp->sev_fd; 617 618 e_free_session: 619 kfree(session_blob); 620 e_free_dh: 621 kfree(dh_blob); 622 return ret; 623 } 624 625 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 626 unsigned long ulen, unsigned long *n, 627 int write) 628 { 629 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 630 unsigned long npages, size; 631 int npinned; 632 unsigned long locked, lock_limit; 633 struct page **pages; 634 unsigned long first, last; 635 int ret; 636 637 lockdep_assert_held(&kvm->lock); 638 639 if (ulen == 0 || uaddr + ulen < uaddr) 640 return ERR_PTR(-EINVAL); 641 642 /* Calculate number of pages. */ 643 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 644 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 645 npages = (last - first + 1); 646 647 locked = sev->pages_locked + npages; 648 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 649 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 650 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 651 return ERR_PTR(-ENOMEM); 652 } 653 654 if (WARN_ON_ONCE(npages > INT_MAX)) 655 return ERR_PTR(-EINVAL); 656 657 /* Avoid using vmalloc for smaller buffers. */ 658 size = npages * sizeof(struct page *); 659 if (size > PAGE_SIZE) 660 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT); 661 else 662 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 663 664 if (!pages) 665 return ERR_PTR(-ENOMEM); 666 667 /* Pin the user virtual address. */ 668 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 669 if (npinned != npages) { 670 pr_err("SEV: Failure locking %lu pages.\n", npages); 671 ret = -ENOMEM; 672 goto err; 673 } 674 675 *n = npages; 676 sev->pages_locked = locked; 677 678 return pages; 679 680 err: 681 if (npinned > 0) 682 unpin_user_pages(pages, npinned); 683 684 kvfree(pages); 685 return ERR_PTR(ret); 686 } 687 688 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 689 unsigned long npages) 690 { 691 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 692 693 unpin_user_pages(pages, npages); 694 kvfree(pages); 695 sev->pages_locked -= npages; 696 } 697 698 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 699 { 700 uint8_t *page_virtual; 701 unsigned long i; 702 703 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 704 pages == NULL) 705 return; 706 707 for (i = 0; i < npages; i++) { 708 page_virtual = kmap_local_page(pages[i]); 709 clflush_cache_range(page_virtual, PAGE_SIZE); 710 kunmap_local(page_virtual); 711 cond_resched(); 712 } 713 } 714 715 static unsigned long get_num_contig_pages(unsigned long idx, 716 struct page **inpages, unsigned long npages) 717 { 718 unsigned long paddr, next_paddr; 719 unsigned long i = idx + 1, pages = 1; 720 721 /* find the number of contiguous pages starting from idx */ 722 paddr = __sme_page_pa(inpages[idx]); 723 while (i < npages) { 724 next_paddr = __sme_page_pa(inpages[i++]); 725 if ((paddr + PAGE_SIZE) == next_paddr) { 726 pages++; 727 paddr = next_paddr; 728 continue; 729 } 730 break; 731 } 732 733 return pages; 734 } 735 736 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 737 { 738 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 739 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 740 struct kvm_sev_launch_update_data params; 741 struct sev_data_launch_update_data data; 742 struct page **inpages; 743 int ret; 744 745 if (!sev_guest(kvm)) 746 return -ENOTTY; 747 748 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 749 return -EFAULT; 750 751 vaddr = params.uaddr; 752 size = params.len; 753 vaddr_end = vaddr + size; 754 755 /* Lock the user memory. */ 756 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 757 if (IS_ERR(inpages)) 758 return PTR_ERR(inpages); 759 760 /* 761 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 762 * place; the cache may contain the data that was written unencrypted. 763 */ 764 sev_clflush_pages(inpages, npages); 765 766 data.reserved = 0; 767 data.handle = sev->handle; 768 769 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 770 int offset, len; 771 772 /* 773 * If the user buffer is not page-aligned, calculate the offset 774 * within the page. 775 */ 776 offset = vaddr & (PAGE_SIZE - 1); 777 778 /* Calculate the number of pages that can be encrypted in one go. */ 779 pages = get_num_contig_pages(i, inpages, npages); 780 781 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 782 783 data.len = len; 784 data.address = __sme_page_pa(inpages[i]) + offset; 785 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 786 if (ret) 787 goto e_unpin; 788 789 size -= len; 790 next_vaddr = vaddr + len; 791 } 792 793 e_unpin: 794 /* content of memory is updated, mark pages dirty */ 795 for (i = 0; i < npages; i++) { 796 set_page_dirty_lock(inpages[i]); 797 mark_page_accessed(inpages[i]); 798 } 799 /* unlock the user pages */ 800 sev_unpin_memory(kvm, inpages, npages); 801 return ret; 802 } 803 804 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 805 { 806 struct kvm_vcpu *vcpu = &svm->vcpu; 807 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 808 struct sev_es_save_area *save = svm->sev_es.vmsa; 809 struct xregs_state *xsave; 810 const u8 *s; 811 u8 *d; 812 int i; 813 814 /* Check some debug related fields before encrypting the VMSA */ 815 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 816 return -EINVAL; 817 818 /* 819 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 820 * the traditional VMSA that is part of the VMCB. Copy the 821 * traditional VMSA as it has been built so far (in prep 822 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 823 */ 824 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 825 826 /* Sync registgers */ 827 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 828 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 829 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 830 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 831 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 832 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 833 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 834 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 835 #ifdef CONFIG_X86_64 836 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 837 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 838 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 839 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 840 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 841 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 842 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 843 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 844 #endif 845 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 846 847 /* Sync some non-GPR registers before encrypting */ 848 save->xcr0 = svm->vcpu.arch.xcr0; 849 save->pkru = svm->vcpu.arch.pkru; 850 save->xss = svm->vcpu.arch.ia32_xss; 851 save->dr6 = svm->vcpu.arch.dr6; 852 853 save->sev_features = sev->vmsa_features; 854 855 /* 856 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid 857 * breaking older measurements. 858 */ 859 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) { 860 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave; 861 save->x87_dp = xsave->i387.rdp; 862 save->mxcsr = xsave->i387.mxcsr; 863 save->x87_ftw = xsave->i387.twd; 864 save->x87_fsw = xsave->i387.swd; 865 save->x87_fcw = xsave->i387.cwd; 866 save->x87_fop = xsave->i387.fop; 867 save->x87_ds = 0; 868 save->x87_cs = 0; 869 save->x87_rip = xsave->i387.rip; 870 871 for (i = 0; i < 8; i++) { 872 /* 873 * The format of the x87 save area is undocumented and 874 * definitely not what you would expect. It consists of 875 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes 876 * area with bytes 8-9 of each register. 877 */ 878 d = save->fpreg_x87 + i * 8; 879 s = ((u8 *)xsave->i387.st_space) + i * 16; 880 memcpy(d, s, 8); 881 save->fpreg_x87[64 + i * 2] = s[8]; 882 save->fpreg_x87[64 + i * 2 + 1] = s[9]; 883 } 884 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256); 885 886 s = get_xsave_addr(xsave, XFEATURE_YMM); 887 if (s) 888 memcpy(save->fpreg_ymm, s, 256); 889 else 890 memset(save->fpreg_ymm, 0, 256); 891 } 892 893 pr_debug("Virtual Machine Save Area (VMSA):\n"); 894 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 895 896 return 0; 897 } 898 899 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 900 int *error) 901 { 902 struct sev_data_launch_update_vmsa vmsa; 903 struct vcpu_svm *svm = to_svm(vcpu); 904 int ret; 905 906 if (vcpu->guest_debug) { 907 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 908 return -EINVAL; 909 } 910 911 /* Perform some pre-encryption checks against the VMSA */ 912 ret = sev_es_sync_vmsa(svm); 913 if (ret) 914 return ret; 915 916 /* 917 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 918 * the VMSA memory content (i.e it will write the same memory region 919 * with the guest's key), so invalidate it first. 920 */ 921 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 922 923 vmsa.reserved = 0; 924 vmsa.handle = to_kvm_sev_info(kvm)->handle; 925 vmsa.address = __sme_pa(svm->sev_es.vmsa); 926 vmsa.len = PAGE_SIZE; 927 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 928 if (ret) 929 return ret; 930 931 /* 932 * SEV-ES guests maintain an encrypted version of their FPU 933 * state which is restored and saved on VMRUN and VMEXIT. 934 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 935 * do xsave/xrstor on it. 936 */ 937 fpstate_set_confidential(&vcpu->arch.guest_fpu); 938 vcpu->arch.guest_state_protected = true; 939 940 /* 941 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it 942 * only after setting guest_state_protected because KVM_SET_MSRS allows 943 * dynamic toggling of LBRV (for performance reason) on write access to 944 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 945 */ 946 svm_enable_lbrv(vcpu); 947 return 0; 948 } 949 950 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 951 { 952 struct kvm_vcpu *vcpu; 953 unsigned long i; 954 int ret; 955 956 if (!sev_es_guest(kvm)) 957 return -ENOTTY; 958 959 kvm_for_each_vcpu(i, vcpu, kvm) { 960 ret = mutex_lock_killable(&vcpu->mutex); 961 if (ret) 962 return ret; 963 964 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 965 966 mutex_unlock(&vcpu->mutex); 967 if (ret) 968 return ret; 969 } 970 971 return 0; 972 } 973 974 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 975 { 976 void __user *measure = u64_to_user_ptr(argp->data); 977 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 978 struct sev_data_launch_measure data; 979 struct kvm_sev_launch_measure params; 980 void __user *p = NULL; 981 void *blob = NULL; 982 int ret; 983 984 if (!sev_guest(kvm)) 985 return -ENOTTY; 986 987 if (copy_from_user(¶ms, measure, sizeof(params))) 988 return -EFAULT; 989 990 memset(&data, 0, sizeof(data)); 991 992 /* User wants to query the blob length */ 993 if (!params.len) 994 goto cmd; 995 996 p = u64_to_user_ptr(params.uaddr); 997 if (p) { 998 if (params.len > SEV_FW_BLOB_MAX_SIZE) 999 return -EINVAL; 1000 1001 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1002 if (!blob) 1003 return -ENOMEM; 1004 1005 data.address = __psp_pa(blob); 1006 data.len = params.len; 1007 } 1008 1009 cmd: 1010 data.handle = sev->handle; 1011 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 1012 1013 /* 1014 * If we query the session length, FW responded with expected data. 1015 */ 1016 if (!params.len) 1017 goto done; 1018 1019 if (ret) 1020 goto e_free_blob; 1021 1022 if (blob) { 1023 if (copy_to_user(p, blob, params.len)) 1024 ret = -EFAULT; 1025 } 1026 1027 done: 1028 params.len = data.len; 1029 if (copy_to_user(measure, ¶ms, sizeof(params))) 1030 ret = -EFAULT; 1031 e_free_blob: 1032 kfree(blob); 1033 return ret; 1034 } 1035 1036 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1037 { 1038 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1039 struct sev_data_launch_finish data; 1040 1041 if (!sev_guest(kvm)) 1042 return -ENOTTY; 1043 1044 data.handle = sev->handle; 1045 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 1046 } 1047 1048 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 1049 { 1050 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1051 struct kvm_sev_guest_status params; 1052 struct sev_data_guest_status data; 1053 int ret; 1054 1055 if (!sev_guest(kvm)) 1056 return -ENOTTY; 1057 1058 memset(&data, 0, sizeof(data)); 1059 1060 data.handle = sev->handle; 1061 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 1062 if (ret) 1063 return ret; 1064 1065 params.policy = data.policy; 1066 params.state = data.state; 1067 params.handle = data.handle; 1068 1069 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 1070 ret = -EFAULT; 1071 1072 return ret; 1073 } 1074 1075 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 1076 unsigned long dst, int size, 1077 int *error, bool enc) 1078 { 1079 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1080 struct sev_data_dbg data; 1081 1082 data.reserved = 0; 1083 data.handle = sev->handle; 1084 data.dst_addr = dst; 1085 data.src_addr = src; 1086 data.len = size; 1087 1088 return sev_issue_cmd(kvm, 1089 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 1090 &data, error); 1091 } 1092 1093 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 1094 unsigned long dst_paddr, int sz, int *err) 1095 { 1096 int offset; 1097 1098 /* 1099 * Its safe to read more than we are asked, caller should ensure that 1100 * destination has enough space. 1101 */ 1102 offset = src_paddr & 15; 1103 src_paddr = round_down(src_paddr, 16); 1104 sz = round_up(sz + offset, 16); 1105 1106 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 1107 } 1108 1109 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 1110 void __user *dst_uaddr, 1111 unsigned long dst_paddr, 1112 int size, int *err) 1113 { 1114 struct page *tpage = NULL; 1115 int ret, offset; 1116 1117 /* if inputs are not 16-byte then use intermediate buffer */ 1118 if (!IS_ALIGNED(dst_paddr, 16) || 1119 !IS_ALIGNED(paddr, 16) || 1120 !IS_ALIGNED(size, 16)) { 1121 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1122 if (!tpage) 1123 return -ENOMEM; 1124 1125 dst_paddr = __sme_page_pa(tpage); 1126 } 1127 1128 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 1129 if (ret) 1130 goto e_free; 1131 1132 if (tpage) { 1133 offset = paddr & 15; 1134 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 1135 ret = -EFAULT; 1136 } 1137 1138 e_free: 1139 if (tpage) 1140 __free_page(tpage); 1141 1142 return ret; 1143 } 1144 1145 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 1146 void __user *vaddr, 1147 unsigned long dst_paddr, 1148 void __user *dst_vaddr, 1149 int size, int *error) 1150 { 1151 struct page *src_tpage = NULL; 1152 struct page *dst_tpage = NULL; 1153 int ret, len = size; 1154 1155 /* If source buffer is not aligned then use an intermediate buffer */ 1156 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 1157 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1158 if (!src_tpage) 1159 return -ENOMEM; 1160 1161 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 1162 __free_page(src_tpage); 1163 return -EFAULT; 1164 } 1165 1166 paddr = __sme_page_pa(src_tpage); 1167 } 1168 1169 /* 1170 * If destination buffer or length is not aligned then do read-modify-write: 1171 * - decrypt destination in an intermediate buffer 1172 * - copy the source buffer in an intermediate buffer 1173 * - use the intermediate buffer as source buffer 1174 */ 1175 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 1176 int dst_offset; 1177 1178 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1179 if (!dst_tpage) { 1180 ret = -ENOMEM; 1181 goto e_free; 1182 } 1183 1184 ret = __sev_dbg_decrypt(kvm, dst_paddr, 1185 __sme_page_pa(dst_tpage), size, error); 1186 if (ret) 1187 goto e_free; 1188 1189 /* 1190 * If source is kernel buffer then use memcpy() otherwise 1191 * copy_from_user(). 1192 */ 1193 dst_offset = dst_paddr & 15; 1194 1195 if (src_tpage) 1196 memcpy(page_address(dst_tpage) + dst_offset, 1197 page_address(src_tpage), size); 1198 else { 1199 if (copy_from_user(page_address(dst_tpage) + dst_offset, 1200 vaddr, size)) { 1201 ret = -EFAULT; 1202 goto e_free; 1203 } 1204 } 1205 1206 paddr = __sme_page_pa(dst_tpage); 1207 dst_paddr = round_down(dst_paddr, 16); 1208 len = round_up(size, 16); 1209 } 1210 1211 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 1212 1213 e_free: 1214 if (src_tpage) 1215 __free_page(src_tpage); 1216 if (dst_tpage) 1217 __free_page(dst_tpage); 1218 return ret; 1219 } 1220 1221 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 1222 { 1223 unsigned long vaddr, vaddr_end, next_vaddr; 1224 unsigned long dst_vaddr; 1225 struct page **src_p, **dst_p; 1226 struct kvm_sev_dbg debug; 1227 unsigned long n; 1228 unsigned int size; 1229 int ret; 1230 1231 if (!sev_guest(kvm)) 1232 return -ENOTTY; 1233 1234 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug))) 1235 return -EFAULT; 1236 1237 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 1238 return -EINVAL; 1239 if (!debug.dst_uaddr) 1240 return -EINVAL; 1241 1242 vaddr = debug.src_uaddr; 1243 size = debug.len; 1244 vaddr_end = vaddr + size; 1245 dst_vaddr = debug.dst_uaddr; 1246 1247 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 1248 int len, s_off, d_off; 1249 1250 /* lock userspace source and destination page */ 1251 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 1252 if (IS_ERR(src_p)) 1253 return PTR_ERR(src_p); 1254 1255 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 1256 if (IS_ERR(dst_p)) { 1257 sev_unpin_memory(kvm, src_p, n); 1258 return PTR_ERR(dst_p); 1259 } 1260 1261 /* 1262 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 1263 * the pages; flush the destination too so that future accesses do not 1264 * see stale data. 1265 */ 1266 sev_clflush_pages(src_p, 1); 1267 sev_clflush_pages(dst_p, 1); 1268 1269 /* 1270 * Since user buffer may not be page aligned, calculate the 1271 * offset within the page. 1272 */ 1273 s_off = vaddr & ~PAGE_MASK; 1274 d_off = dst_vaddr & ~PAGE_MASK; 1275 len = min_t(size_t, (PAGE_SIZE - s_off), size); 1276 1277 if (dec) 1278 ret = __sev_dbg_decrypt_user(kvm, 1279 __sme_page_pa(src_p[0]) + s_off, 1280 (void __user *)dst_vaddr, 1281 __sme_page_pa(dst_p[0]) + d_off, 1282 len, &argp->error); 1283 else 1284 ret = __sev_dbg_encrypt_user(kvm, 1285 __sme_page_pa(src_p[0]) + s_off, 1286 (void __user *)vaddr, 1287 __sme_page_pa(dst_p[0]) + d_off, 1288 (void __user *)dst_vaddr, 1289 len, &argp->error); 1290 1291 sev_unpin_memory(kvm, src_p, n); 1292 sev_unpin_memory(kvm, dst_p, n); 1293 1294 if (ret) 1295 goto err; 1296 1297 next_vaddr = vaddr + len; 1298 dst_vaddr = dst_vaddr + len; 1299 size -= len; 1300 } 1301 err: 1302 return ret; 1303 } 1304 1305 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1306 { 1307 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1308 struct sev_data_launch_secret data; 1309 struct kvm_sev_launch_secret params; 1310 struct page **pages; 1311 void *blob, *hdr; 1312 unsigned long n, i; 1313 int ret, offset; 1314 1315 if (!sev_guest(kvm)) 1316 return -ENOTTY; 1317 1318 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1319 return -EFAULT; 1320 1321 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1322 if (IS_ERR(pages)) 1323 return PTR_ERR(pages); 1324 1325 /* 1326 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1327 * place; the cache may contain the data that was written unencrypted. 1328 */ 1329 sev_clflush_pages(pages, n); 1330 1331 /* 1332 * The secret must be copied into contiguous memory region, lets verify 1333 * that userspace memory pages are contiguous before we issue command. 1334 */ 1335 if (get_num_contig_pages(0, pages, n) != n) { 1336 ret = -EINVAL; 1337 goto e_unpin_memory; 1338 } 1339 1340 memset(&data, 0, sizeof(data)); 1341 1342 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1343 data.guest_address = __sme_page_pa(pages[0]) + offset; 1344 data.guest_len = params.guest_len; 1345 1346 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1347 if (IS_ERR(blob)) { 1348 ret = PTR_ERR(blob); 1349 goto e_unpin_memory; 1350 } 1351 1352 data.trans_address = __psp_pa(blob); 1353 data.trans_len = params.trans_len; 1354 1355 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1356 if (IS_ERR(hdr)) { 1357 ret = PTR_ERR(hdr); 1358 goto e_free_blob; 1359 } 1360 data.hdr_address = __psp_pa(hdr); 1361 data.hdr_len = params.hdr_len; 1362 1363 data.handle = sev->handle; 1364 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1365 1366 kfree(hdr); 1367 1368 e_free_blob: 1369 kfree(blob); 1370 e_unpin_memory: 1371 /* content of memory is updated, mark pages dirty */ 1372 for (i = 0; i < n; i++) { 1373 set_page_dirty_lock(pages[i]); 1374 mark_page_accessed(pages[i]); 1375 } 1376 sev_unpin_memory(kvm, pages, n); 1377 return ret; 1378 } 1379 1380 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1381 { 1382 void __user *report = u64_to_user_ptr(argp->data); 1383 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1384 struct sev_data_attestation_report data; 1385 struct kvm_sev_attestation_report params; 1386 void __user *p; 1387 void *blob = NULL; 1388 int ret; 1389 1390 if (!sev_guest(kvm)) 1391 return -ENOTTY; 1392 1393 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1394 return -EFAULT; 1395 1396 memset(&data, 0, sizeof(data)); 1397 1398 /* User wants to query the blob length */ 1399 if (!params.len) 1400 goto cmd; 1401 1402 p = u64_to_user_ptr(params.uaddr); 1403 if (p) { 1404 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1405 return -EINVAL; 1406 1407 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1408 if (!blob) 1409 return -ENOMEM; 1410 1411 data.address = __psp_pa(blob); 1412 data.len = params.len; 1413 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1414 } 1415 cmd: 1416 data.handle = sev->handle; 1417 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1418 /* 1419 * If we query the session length, FW responded with expected data. 1420 */ 1421 if (!params.len) 1422 goto done; 1423 1424 if (ret) 1425 goto e_free_blob; 1426 1427 if (blob) { 1428 if (copy_to_user(p, blob, params.len)) 1429 ret = -EFAULT; 1430 } 1431 1432 done: 1433 params.len = data.len; 1434 if (copy_to_user(report, ¶ms, sizeof(params))) 1435 ret = -EFAULT; 1436 e_free_blob: 1437 kfree(blob); 1438 return ret; 1439 } 1440 1441 /* Userspace wants to query session length. */ 1442 static int 1443 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1444 struct kvm_sev_send_start *params) 1445 { 1446 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1447 struct sev_data_send_start data; 1448 int ret; 1449 1450 memset(&data, 0, sizeof(data)); 1451 data.handle = sev->handle; 1452 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1453 1454 params->session_len = data.session_len; 1455 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1456 sizeof(struct kvm_sev_send_start))) 1457 ret = -EFAULT; 1458 1459 return ret; 1460 } 1461 1462 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1463 { 1464 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1465 struct sev_data_send_start data; 1466 struct kvm_sev_send_start params; 1467 void *amd_certs, *session_data; 1468 void *pdh_cert, *plat_certs; 1469 int ret; 1470 1471 if (!sev_guest(kvm)) 1472 return -ENOTTY; 1473 1474 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1475 sizeof(struct kvm_sev_send_start))) 1476 return -EFAULT; 1477 1478 /* if session_len is zero, userspace wants to query the session length */ 1479 if (!params.session_len) 1480 return __sev_send_start_query_session_length(kvm, argp, 1481 ¶ms); 1482 1483 /* some sanity checks */ 1484 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1485 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1486 return -EINVAL; 1487 1488 /* allocate the memory to hold the session data blob */ 1489 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1490 if (!session_data) 1491 return -ENOMEM; 1492 1493 /* copy the certificate blobs from userspace */ 1494 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1495 params.pdh_cert_len); 1496 if (IS_ERR(pdh_cert)) { 1497 ret = PTR_ERR(pdh_cert); 1498 goto e_free_session; 1499 } 1500 1501 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1502 params.plat_certs_len); 1503 if (IS_ERR(plat_certs)) { 1504 ret = PTR_ERR(plat_certs); 1505 goto e_free_pdh; 1506 } 1507 1508 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1509 params.amd_certs_len); 1510 if (IS_ERR(amd_certs)) { 1511 ret = PTR_ERR(amd_certs); 1512 goto e_free_plat_cert; 1513 } 1514 1515 /* populate the FW SEND_START field with system physical address */ 1516 memset(&data, 0, sizeof(data)); 1517 data.pdh_cert_address = __psp_pa(pdh_cert); 1518 data.pdh_cert_len = params.pdh_cert_len; 1519 data.plat_certs_address = __psp_pa(plat_certs); 1520 data.plat_certs_len = params.plat_certs_len; 1521 data.amd_certs_address = __psp_pa(amd_certs); 1522 data.amd_certs_len = params.amd_certs_len; 1523 data.session_address = __psp_pa(session_data); 1524 data.session_len = params.session_len; 1525 data.handle = sev->handle; 1526 1527 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1528 1529 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr), 1530 session_data, params.session_len)) { 1531 ret = -EFAULT; 1532 goto e_free_amd_cert; 1533 } 1534 1535 params.policy = data.policy; 1536 params.session_len = data.session_len; 1537 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, 1538 sizeof(struct kvm_sev_send_start))) 1539 ret = -EFAULT; 1540 1541 e_free_amd_cert: 1542 kfree(amd_certs); 1543 e_free_plat_cert: 1544 kfree(plat_certs); 1545 e_free_pdh: 1546 kfree(pdh_cert); 1547 e_free_session: 1548 kfree(session_data); 1549 return ret; 1550 } 1551 1552 /* Userspace wants to query either header or trans length. */ 1553 static int 1554 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1555 struct kvm_sev_send_update_data *params) 1556 { 1557 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1558 struct sev_data_send_update_data data; 1559 int ret; 1560 1561 memset(&data, 0, sizeof(data)); 1562 data.handle = sev->handle; 1563 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1564 1565 params->hdr_len = data.hdr_len; 1566 params->trans_len = data.trans_len; 1567 1568 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1569 sizeof(struct kvm_sev_send_update_data))) 1570 ret = -EFAULT; 1571 1572 return ret; 1573 } 1574 1575 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1576 { 1577 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1578 struct sev_data_send_update_data data; 1579 struct kvm_sev_send_update_data params; 1580 void *hdr, *trans_data; 1581 struct page **guest_page; 1582 unsigned long n; 1583 int ret, offset; 1584 1585 if (!sev_guest(kvm)) 1586 return -ENOTTY; 1587 1588 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1589 sizeof(struct kvm_sev_send_update_data))) 1590 return -EFAULT; 1591 1592 /* userspace wants to query either header or trans length */ 1593 if (!params.trans_len || !params.hdr_len) 1594 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1595 1596 if (!params.trans_uaddr || !params.guest_uaddr || 1597 !params.guest_len || !params.hdr_uaddr) 1598 return -EINVAL; 1599 1600 /* Check if we are crossing the page boundary */ 1601 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1602 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1603 return -EINVAL; 1604 1605 /* Pin guest memory */ 1606 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1607 PAGE_SIZE, &n, 0); 1608 if (IS_ERR(guest_page)) 1609 return PTR_ERR(guest_page); 1610 1611 /* allocate memory for header and transport buffer */ 1612 ret = -ENOMEM; 1613 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1614 if (!hdr) 1615 goto e_unpin; 1616 1617 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1618 if (!trans_data) 1619 goto e_free_hdr; 1620 1621 memset(&data, 0, sizeof(data)); 1622 data.hdr_address = __psp_pa(hdr); 1623 data.hdr_len = params.hdr_len; 1624 data.trans_address = __psp_pa(trans_data); 1625 data.trans_len = params.trans_len; 1626 1627 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1628 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1629 data.guest_address |= sev_me_mask; 1630 data.guest_len = params.guest_len; 1631 data.handle = sev->handle; 1632 1633 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1634 1635 if (ret) 1636 goto e_free_trans_data; 1637 1638 /* copy transport buffer to user space */ 1639 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr), 1640 trans_data, params.trans_len)) { 1641 ret = -EFAULT; 1642 goto e_free_trans_data; 1643 } 1644 1645 /* Copy packet header to userspace. */ 1646 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr, 1647 params.hdr_len)) 1648 ret = -EFAULT; 1649 1650 e_free_trans_data: 1651 kfree(trans_data); 1652 e_free_hdr: 1653 kfree(hdr); 1654 e_unpin: 1655 sev_unpin_memory(kvm, guest_page, n); 1656 1657 return ret; 1658 } 1659 1660 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1661 { 1662 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1663 struct sev_data_send_finish data; 1664 1665 if (!sev_guest(kvm)) 1666 return -ENOTTY; 1667 1668 data.handle = sev->handle; 1669 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1670 } 1671 1672 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1673 { 1674 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1675 struct sev_data_send_cancel data; 1676 1677 if (!sev_guest(kvm)) 1678 return -ENOTTY; 1679 1680 data.handle = sev->handle; 1681 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1682 } 1683 1684 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1685 { 1686 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1687 struct sev_data_receive_start start; 1688 struct kvm_sev_receive_start params; 1689 int *error = &argp->error; 1690 void *session_data; 1691 void *pdh_data; 1692 int ret; 1693 1694 if (!sev_guest(kvm)) 1695 return -ENOTTY; 1696 1697 /* Get parameter from the userspace */ 1698 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1699 sizeof(struct kvm_sev_receive_start))) 1700 return -EFAULT; 1701 1702 /* some sanity checks */ 1703 if (!params.pdh_uaddr || !params.pdh_len || 1704 !params.session_uaddr || !params.session_len) 1705 return -EINVAL; 1706 1707 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1708 if (IS_ERR(pdh_data)) 1709 return PTR_ERR(pdh_data); 1710 1711 session_data = psp_copy_user_blob(params.session_uaddr, 1712 params.session_len); 1713 if (IS_ERR(session_data)) { 1714 ret = PTR_ERR(session_data); 1715 goto e_free_pdh; 1716 } 1717 1718 memset(&start, 0, sizeof(start)); 1719 start.handle = params.handle; 1720 start.policy = params.policy; 1721 start.pdh_cert_address = __psp_pa(pdh_data); 1722 start.pdh_cert_len = params.pdh_len; 1723 start.session_address = __psp_pa(session_data); 1724 start.session_len = params.session_len; 1725 1726 /* create memory encryption context */ 1727 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1728 error); 1729 if (ret) 1730 goto e_free_session; 1731 1732 /* Bind ASID to this guest */ 1733 ret = sev_bind_asid(kvm, start.handle, error); 1734 if (ret) { 1735 sev_decommission(start.handle); 1736 goto e_free_session; 1737 } 1738 1739 params.handle = start.handle; 1740 if (copy_to_user(u64_to_user_ptr(argp->data), 1741 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1742 ret = -EFAULT; 1743 sev_unbind_asid(kvm, start.handle); 1744 goto e_free_session; 1745 } 1746 1747 sev->handle = start.handle; 1748 sev->fd = argp->sev_fd; 1749 1750 e_free_session: 1751 kfree(session_data); 1752 e_free_pdh: 1753 kfree(pdh_data); 1754 1755 return ret; 1756 } 1757 1758 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1759 { 1760 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1761 struct kvm_sev_receive_update_data params; 1762 struct sev_data_receive_update_data data; 1763 void *hdr = NULL, *trans = NULL; 1764 struct page **guest_page; 1765 unsigned long n; 1766 int ret, offset; 1767 1768 if (!sev_guest(kvm)) 1769 return -EINVAL; 1770 1771 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1772 sizeof(struct kvm_sev_receive_update_data))) 1773 return -EFAULT; 1774 1775 if (!params.hdr_uaddr || !params.hdr_len || 1776 !params.guest_uaddr || !params.guest_len || 1777 !params.trans_uaddr || !params.trans_len) 1778 return -EINVAL; 1779 1780 /* Check if we are crossing the page boundary */ 1781 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1782 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1783 return -EINVAL; 1784 1785 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1786 if (IS_ERR(hdr)) 1787 return PTR_ERR(hdr); 1788 1789 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1790 if (IS_ERR(trans)) { 1791 ret = PTR_ERR(trans); 1792 goto e_free_hdr; 1793 } 1794 1795 memset(&data, 0, sizeof(data)); 1796 data.hdr_address = __psp_pa(hdr); 1797 data.hdr_len = params.hdr_len; 1798 data.trans_address = __psp_pa(trans); 1799 data.trans_len = params.trans_len; 1800 1801 /* Pin guest memory */ 1802 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1803 PAGE_SIZE, &n, 1); 1804 if (IS_ERR(guest_page)) { 1805 ret = PTR_ERR(guest_page); 1806 goto e_free_trans; 1807 } 1808 1809 /* 1810 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1811 * encrypts the written data with the guest's key, and the cache may 1812 * contain dirty, unencrypted data. 1813 */ 1814 sev_clflush_pages(guest_page, n); 1815 1816 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1817 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1818 data.guest_address |= sev_me_mask; 1819 data.guest_len = params.guest_len; 1820 data.handle = sev->handle; 1821 1822 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1823 &argp->error); 1824 1825 sev_unpin_memory(kvm, guest_page, n); 1826 1827 e_free_trans: 1828 kfree(trans); 1829 e_free_hdr: 1830 kfree(hdr); 1831 1832 return ret; 1833 } 1834 1835 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1836 { 1837 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1838 struct sev_data_receive_finish data; 1839 1840 if (!sev_guest(kvm)) 1841 return -ENOTTY; 1842 1843 data.handle = sev->handle; 1844 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1845 } 1846 1847 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1848 { 1849 /* 1850 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1851 * active mirror VMs. Also allow the debugging and status commands. 1852 */ 1853 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1854 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1855 cmd_id == KVM_SEV_DBG_ENCRYPT) 1856 return true; 1857 1858 return false; 1859 } 1860 1861 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1862 { 1863 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1864 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1865 int r = -EBUSY; 1866 1867 if (dst_kvm == src_kvm) 1868 return -EINVAL; 1869 1870 /* 1871 * Bail if these VMs are already involved in a migration to avoid 1872 * deadlock between two VMs trying to migrate to/from each other. 1873 */ 1874 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1875 return -EBUSY; 1876 1877 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1878 goto release_dst; 1879 1880 r = -EINTR; 1881 if (mutex_lock_killable(&dst_kvm->lock)) 1882 goto release_src; 1883 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1884 goto unlock_dst; 1885 return 0; 1886 1887 unlock_dst: 1888 mutex_unlock(&dst_kvm->lock); 1889 release_src: 1890 atomic_set_release(&src_sev->migration_in_progress, 0); 1891 release_dst: 1892 atomic_set_release(&dst_sev->migration_in_progress, 0); 1893 return r; 1894 } 1895 1896 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1897 { 1898 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1899 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1900 1901 mutex_unlock(&dst_kvm->lock); 1902 mutex_unlock(&src_kvm->lock); 1903 atomic_set_release(&dst_sev->migration_in_progress, 0); 1904 atomic_set_release(&src_sev->migration_in_progress, 0); 1905 } 1906 1907 /* vCPU mutex subclasses. */ 1908 enum sev_migration_role { 1909 SEV_MIGRATION_SOURCE = 0, 1910 SEV_MIGRATION_TARGET, 1911 SEV_NR_MIGRATION_ROLES, 1912 }; 1913 1914 static int sev_lock_vcpus_for_migration(struct kvm *kvm, 1915 enum sev_migration_role role) 1916 { 1917 struct kvm_vcpu *vcpu; 1918 unsigned long i, j; 1919 1920 kvm_for_each_vcpu(i, vcpu, kvm) { 1921 if (mutex_lock_killable_nested(&vcpu->mutex, role)) 1922 goto out_unlock; 1923 1924 #ifdef CONFIG_PROVE_LOCKING 1925 if (!i) 1926 /* 1927 * Reset the role to one that avoids colliding with 1928 * the role used for the first vcpu mutex. 1929 */ 1930 role = SEV_NR_MIGRATION_ROLES; 1931 else 1932 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_); 1933 #endif 1934 } 1935 1936 return 0; 1937 1938 out_unlock: 1939 1940 kvm_for_each_vcpu(j, vcpu, kvm) { 1941 if (i == j) 1942 break; 1943 1944 #ifdef CONFIG_PROVE_LOCKING 1945 if (j) 1946 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_); 1947 #endif 1948 1949 mutex_unlock(&vcpu->mutex); 1950 } 1951 return -EINTR; 1952 } 1953 1954 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1955 { 1956 struct kvm_vcpu *vcpu; 1957 unsigned long i; 1958 bool first = true; 1959 1960 kvm_for_each_vcpu(i, vcpu, kvm) { 1961 if (first) 1962 first = false; 1963 else 1964 mutex_acquire(&vcpu->mutex.dep_map, 1965 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_); 1966 1967 mutex_unlock(&vcpu->mutex); 1968 } 1969 } 1970 1971 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1972 { 1973 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info; 1974 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info; 1975 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1976 struct vcpu_svm *dst_svm, *src_svm; 1977 struct kvm_sev_info *mirror; 1978 unsigned long i; 1979 1980 dst->active = true; 1981 dst->asid = src->asid; 1982 dst->handle = src->handle; 1983 dst->pages_locked = src->pages_locked; 1984 dst->enc_context_owner = src->enc_context_owner; 1985 dst->es_active = src->es_active; 1986 dst->vmsa_features = src->vmsa_features; 1987 1988 src->asid = 0; 1989 src->active = false; 1990 src->handle = 0; 1991 src->pages_locked = 0; 1992 src->enc_context_owner = NULL; 1993 src->es_active = false; 1994 1995 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1996 1997 /* 1998 * If this VM has mirrors, "transfer" each mirror's refcount of the 1999 * source to the destination (this KVM). The caller holds a reference 2000 * to the source, so there's no danger of use-after-free. 2001 */ 2002 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 2003 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 2004 kvm_get_kvm(dst_kvm); 2005 kvm_put_kvm(src_kvm); 2006 mirror->enc_context_owner = dst_kvm; 2007 } 2008 2009 /* 2010 * If this VM is a mirror, remove the old mirror from the owners list 2011 * and add the new mirror to the list. 2012 */ 2013 if (is_mirroring_enc_context(dst_kvm)) { 2014 struct kvm_sev_info *owner_sev_info = 2015 &to_kvm_svm(dst->enc_context_owner)->sev_info; 2016 2017 list_del(&src->mirror_entry); 2018 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 2019 } 2020 2021 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 2022 dst_svm = to_svm(dst_vcpu); 2023 2024 sev_init_vmcb(dst_svm); 2025 2026 if (!dst->es_active) 2027 continue; 2028 2029 /* 2030 * Note, the source is not required to have the same number of 2031 * vCPUs as the destination when migrating a vanilla SEV VM. 2032 */ 2033 src_vcpu = kvm_get_vcpu(src_kvm, i); 2034 src_svm = to_svm(src_vcpu); 2035 2036 /* 2037 * Transfer VMSA and GHCB state to the destination. Nullify and 2038 * clear source fields as appropriate, the state now belongs to 2039 * the destination. 2040 */ 2041 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 2042 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 2043 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 2044 dst_vcpu->arch.guest_state_protected = true; 2045 2046 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 2047 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 2048 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 2049 src_vcpu->arch.guest_state_protected = false; 2050 } 2051 } 2052 2053 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 2054 { 2055 struct kvm_vcpu *src_vcpu; 2056 unsigned long i; 2057 2058 if (!sev_es_guest(src)) 2059 return 0; 2060 2061 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 2062 return -EINVAL; 2063 2064 kvm_for_each_vcpu(i, src_vcpu, src) { 2065 if (!src_vcpu->arch.guest_state_protected) 2066 return -EINVAL; 2067 } 2068 2069 return 0; 2070 } 2071 2072 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2073 { 2074 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 2075 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 2076 struct fd f = fdget(source_fd); 2077 struct kvm *source_kvm; 2078 bool charged = false; 2079 int ret; 2080 2081 if (!f.file) 2082 return -EBADF; 2083 2084 if (!file_is_kvm(f.file)) { 2085 ret = -EBADF; 2086 goto out_fput; 2087 } 2088 2089 source_kvm = f.file->private_data; 2090 ret = sev_lock_two_vms(kvm, source_kvm); 2091 if (ret) 2092 goto out_fput; 2093 2094 if (kvm->arch.vm_type != source_kvm->arch.vm_type || 2095 sev_guest(kvm) || !sev_guest(source_kvm)) { 2096 ret = -EINVAL; 2097 goto out_unlock; 2098 } 2099 2100 src_sev = &to_kvm_svm(source_kvm)->sev_info; 2101 2102 dst_sev->misc_cg = get_current_misc_cg(); 2103 cg_cleanup_sev = dst_sev; 2104 if (dst_sev->misc_cg != src_sev->misc_cg) { 2105 ret = sev_misc_cg_try_charge(dst_sev); 2106 if (ret) 2107 goto out_dst_cgroup; 2108 charged = true; 2109 } 2110 2111 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE); 2112 if (ret) 2113 goto out_dst_cgroup; 2114 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET); 2115 if (ret) 2116 goto out_dst_vcpu; 2117 2118 ret = sev_check_source_vcpus(kvm, source_kvm); 2119 if (ret) 2120 goto out_source_vcpu; 2121 2122 sev_migrate_from(kvm, source_kvm); 2123 kvm_vm_dead(source_kvm); 2124 cg_cleanup_sev = src_sev; 2125 ret = 0; 2126 2127 out_source_vcpu: 2128 sev_unlock_vcpus_for_migration(source_kvm); 2129 out_dst_vcpu: 2130 sev_unlock_vcpus_for_migration(kvm); 2131 out_dst_cgroup: 2132 /* Operates on the source on success, on the destination on failure. */ 2133 if (charged) 2134 sev_misc_cg_uncharge(cg_cleanup_sev); 2135 put_misc_cg(cg_cleanup_sev->misc_cg); 2136 cg_cleanup_sev->misc_cg = NULL; 2137 out_unlock: 2138 sev_unlock_two_vms(kvm, source_kvm); 2139 out_fput: 2140 fdput(f); 2141 return ret; 2142 } 2143 2144 int sev_dev_get_attr(u32 group, u64 attr, u64 *val) 2145 { 2146 if (group != KVM_X86_GRP_SEV) 2147 return -ENXIO; 2148 2149 switch (attr) { 2150 case KVM_X86_SEV_VMSA_FEATURES: 2151 *val = sev_supported_vmsa_features; 2152 return 0; 2153 2154 default: 2155 return -ENXIO; 2156 } 2157 } 2158 2159 /* 2160 * The guest context contains all the information, keys and metadata 2161 * associated with the guest that the firmware tracks to implement SEV 2162 * and SNP features. The firmware stores the guest context in hypervisor 2163 * provide page via the SNP_GCTX_CREATE command. 2164 */ 2165 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp) 2166 { 2167 struct sev_data_snp_addr data = {}; 2168 void *context; 2169 int rc; 2170 2171 /* Allocate memory for context page */ 2172 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT); 2173 if (!context) 2174 return NULL; 2175 2176 data.address = __psp_pa(context); 2177 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error); 2178 if (rc) { 2179 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d", 2180 rc, argp->error); 2181 snp_free_firmware_page(context); 2182 return NULL; 2183 } 2184 2185 return context; 2186 } 2187 2188 static int snp_bind_asid(struct kvm *kvm, int *error) 2189 { 2190 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2191 struct sev_data_snp_activate data = {0}; 2192 2193 data.gctx_paddr = __psp_pa(sev->snp_context); 2194 data.asid = sev_get_asid(kvm); 2195 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error); 2196 } 2197 2198 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 2199 { 2200 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2201 struct sev_data_snp_launch_start start = {0}; 2202 struct kvm_sev_snp_launch_start params; 2203 int rc; 2204 2205 if (!sev_snp_guest(kvm)) 2206 return -ENOTTY; 2207 2208 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2209 return -EFAULT; 2210 2211 /* Don't allow userspace to allocate memory for more than 1 SNP context. */ 2212 if (sev->snp_context) 2213 return -EINVAL; 2214 2215 sev->snp_context = snp_context_create(kvm, argp); 2216 if (!sev->snp_context) 2217 return -ENOTTY; 2218 2219 if (params.flags) 2220 return -EINVAL; 2221 2222 if (params.policy & ~SNP_POLICY_MASK_VALID) 2223 return -EINVAL; 2224 2225 /* Check for policy bits that must be set */ 2226 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) || 2227 !(params.policy & SNP_POLICY_MASK_SMT)) 2228 return -EINVAL; 2229 2230 if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET) 2231 return -EINVAL; 2232 2233 start.gctx_paddr = __psp_pa(sev->snp_context); 2234 start.policy = params.policy; 2235 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw)); 2236 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error); 2237 if (rc) { 2238 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n", 2239 __func__, rc); 2240 goto e_free_context; 2241 } 2242 2243 sev->fd = argp->sev_fd; 2244 rc = snp_bind_asid(kvm, &argp->error); 2245 if (rc) { 2246 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n", 2247 __func__, rc); 2248 goto e_free_context; 2249 } 2250 2251 return 0; 2252 2253 e_free_context: 2254 snp_decommission_context(kvm); 2255 2256 return rc; 2257 } 2258 2259 struct sev_gmem_populate_args { 2260 __u8 type; 2261 int sev_fd; 2262 int fw_error; 2263 }; 2264 2265 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn, 2266 void __user *src, int order, void *opaque) 2267 { 2268 struct sev_gmem_populate_args *sev_populate_args = opaque; 2269 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2270 int n_private = 0, ret, i; 2271 int npages = (1 << order); 2272 gfn_t gfn; 2273 2274 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src)) 2275 return -EINVAL; 2276 2277 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) { 2278 struct sev_data_snp_launch_update fw_args = {0}; 2279 bool assigned; 2280 int level; 2281 2282 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level); 2283 if (ret || assigned) { 2284 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n", 2285 __func__, gfn, ret, assigned); 2286 ret = ret ? -EINVAL : -EEXIST; 2287 goto err; 2288 } 2289 2290 if (src) { 2291 void *vaddr = kmap_local_pfn(pfn + i); 2292 2293 ret = copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE); 2294 if (ret) 2295 goto err; 2296 kunmap_local(vaddr); 2297 } 2298 2299 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K, 2300 sev_get_asid(kvm), true); 2301 if (ret) 2302 goto err; 2303 2304 n_private++; 2305 2306 fw_args.gctx_paddr = __psp_pa(sev->snp_context); 2307 fw_args.address = __sme_set(pfn_to_hpa(pfn + i)); 2308 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K); 2309 fw_args.page_type = sev_populate_args->type; 2310 2311 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2312 &fw_args, &sev_populate_args->fw_error); 2313 if (ret) 2314 goto fw_err; 2315 } 2316 2317 return 0; 2318 2319 fw_err: 2320 /* 2321 * If the firmware command failed handle the reclaim and cleanup of that 2322 * PFN specially vs. prior pages which can be cleaned up below without 2323 * needing to reclaim in advance. 2324 * 2325 * Additionally, when invalid CPUID function entries are detected, 2326 * firmware writes the expected values into the page and leaves it 2327 * unencrypted so it can be used for debugging and error-reporting. 2328 * 2329 * Copy this page back into the source buffer so userspace can use this 2330 * information to provide information on which CPUID leaves/fields 2331 * failed CPUID validation. 2332 */ 2333 if (!snp_page_reclaim(kvm, pfn + i) && 2334 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID && 2335 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) { 2336 void *vaddr = kmap_local_pfn(pfn + i); 2337 2338 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE)) 2339 pr_debug("Failed to write CPUID page back to userspace\n"); 2340 2341 kunmap_local(vaddr); 2342 } 2343 2344 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */ 2345 n_private--; 2346 2347 err: 2348 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n", 2349 __func__, ret, sev_populate_args->fw_error, n_private); 2350 for (i = 0; i < n_private; i++) 2351 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K); 2352 2353 return ret; 2354 } 2355 2356 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp) 2357 { 2358 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2359 struct sev_gmem_populate_args sev_populate_args = {0}; 2360 struct kvm_sev_snp_launch_update params; 2361 struct kvm_memory_slot *memslot; 2362 long npages, count; 2363 void __user *src; 2364 int ret = 0; 2365 2366 if (!sev_snp_guest(kvm) || !sev->snp_context) 2367 return -EINVAL; 2368 2369 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2370 return -EFAULT; 2371 2372 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__, 2373 params.gfn_start, params.len, params.type, params.flags); 2374 2375 if (!PAGE_ALIGNED(params.len) || params.flags || 2376 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL && 2377 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO && 2378 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED && 2379 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS && 2380 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID)) 2381 return -EINVAL; 2382 2383 npages = params.len / PAGE_SIZE; 2384 2385 /* 2386 * For each GFN that's being prepared as part of the initial guest 2387 * state, the following pre-conditions are verified: 2388 * 2389 * 1) The backing memslot is a valid private memslot. 2390 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES 2391 * beforehand. 2392 * 3) The PFN of the guest_memfd has not already been set to private 2393 * in the RMP table. 2394 * 2395 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page 2396 * faults if there's a race between a fault and an attribute update via 2397 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized 2398 * here. However, kvm->slots_lock guards against both this as well as 2399 * concurrent memslot updates occurring while these checks are being 2400 * performed, so use that here to make it easier to reason about the 2401 * initial expected state and better guard against unexpected 2402 * situations. 2403 */ 2404 mutex_lock(&kvm->slots_lock); 2405 2406 memslot = gfn_to_memslot(kvm, params.gfn_start); 2407 if (!kvm_slot_can_be_private(memslot)) { 2408 ret = -EINVAL; 2409 goto out; 2410 } 2411 2412 sev_populate_args.sev_fd = argp->sev_fd; 2413 sev_populate_args.type = params.type; 2414 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr); 2415 2416 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages, 2417 sev_gmem_post_populate, &sev_populate_args); 2418 if (count < 0) { 2419 argp->error = sev_populate_args.fw_error; 2420 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n", 2421 __func__, count, argp->error); 2422 ret = -EIO; 2423 } else { 2424 params.gfn_start += count; 2425 params.len -= count * PAGE_SIZE; 2426 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO) 2427 params.uaddr += count * PAGE_SIZE; 2428 2429 ret = 0; 2430 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 2431 ret = -EFAULT; 2432 } 2433 2434 out: 2435 mutex_unlock(&kvm->slots_lock); 2436 2437 return ret; 2438 } 2439 2440 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 2441 { 2442 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2443 struct sev_data_snp_launch_update data = {}; 2444 struct kvm_vcpu *vcpu; 2445 unsigned long i; 2446 int ret; 2447 2448 data.gctx_paddr = __psp_pa(sev->snp_context); 2449 data.page_type = SNP_PAGE_TYPE_VMSA; 2450 2451 kvm_for_each_vcpu(i, vcpu, kvm) { 2452 struct vcpu_svm *svm = to_svm(vcpu); 2453 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 2454 2455 ret = sev_es_sync_vmsa(svm); 2456 if (ret) 2457 return ret; 2458 2459 /* Transition the VMSA page to a firmware state. */ 2460 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true); 2461 if (ret) 2462 return ret; 2463 2464 /* Issue the SNP command to encrypt the VMSA */ 2465 data.address = __sme_pa(svm->sev_es.vmsa); 2466 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2467 &data, &argp->error); 2468 if (ret) { 2469 snp_page_reclaim(kvm, pfn); 2470 2471 return ret; 2472 } 2473 2474 svm->vcpu.arch.guest_state_protected = true; 2475 /* 2476 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to 2477 * be _always_ ON. Enable it only after setting 2478 * guest_state_protected because KVM_SET_MSRS allows dynamic 2479 * toggling of LBRV (for performance reason) on write access to 2480 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 2481 */ 2482 svm_enable_lbrv(vcpu); 2483 } 2484 2485 return 0; 2486 } 2487 2488 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 2489 { 2490 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2491 struct kvm_sev_snp_launch_finish params; 2492 struct sev_data_snp_launch_finish *data; 2493 void *id_block = NULL, *id_auth = NULL; 2494 int ret; 2495 2496 if (!sev_snp_guest(kvm)) 2497 return -ENOTTY; 2498 2499 if (!sev->snp_context) 2500 return -EINVAL; 2501 2502 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2503 return -EFAULT; 2504 2505 if (params.flags) 2506 return -EINVAL; 2507 2508 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */ 2509 ret = snp_launch_update_vmsa(kvm, argp); 2510 if (ret) 2511 return ret; 2512 2513 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 2514 if (!data) 2515 return -ENOMEM; 2516 2517 if (params.id_block_en) { 2518 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE); 2519 if (IS_ERR(id_block)) { 2520 ret = PTR_ERR(id_block); 2521 goto e_free; 2522 } 2523 2524 data->id_block_en = 1; 2525 data->id_block_paddr = __sme_pa(id_block); 2526 2527 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE); 2528 if (IS_ERR(id_auth)) { 2529 ret = PTR_ERR(id_auth); 2530 goto e_free_id_block; 2531 } 2532 2533 data->id_auth_paddr = __sme_pa(id_auth); 2534 2535 if (params.auth_key_en) 2536 data->auth_key_en = 1; 2537 } 2538 2539 data->vcek_disabled = params.vcek_disabled; 2540 2541 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE); 2542 data->gctx_paddr = __psp_pa(sev->snp_context); 2543 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error); 2544 2545 /* 2546 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages 2547 * can be given to the guest simply by marking the RMP entry as private. 2548 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY. 2549 */ 2550 if (!ret) 2551 kvm->arch.pre_fault_allowed = true; 2552 2553 kfree(id_auth); 2554 2555 e_free_id_block: 2556 kfree(id_block); 2557 2558 e_free: 2559 kfree(data); 2560 2561 return ret; 2562 } 2563 2564 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 2565 { 2566 struct kvm_sev_cmd sev_cmd; 2567 int r; 2568 2569 if (!sev_enabled) 2570 return -ENOTTY; 2571 2572 if (!argp) 2573 return 0; 2574 2575 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 2576 return -EFAULT; 2577 2578 mutex_lock(&kvm->lock); 2579 2580 /* Only the enc_context_owner handles some memory enc operations. */ 2581 if (is_mirroring_enc_context(kvm) && 2582 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 2583 r = -EINVAL; 2584 goto out; 2585 } 2586 2587 /* 2588 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only 2589 * allow the use of SNP-specific commands. 2590 */ 2591 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) { 2592 r = -EPERM; 2593 goto out; 2594 } 2595 2596 switch (sev_cmd.id) { 2597 case KVM_SEV_ES_INIT: 2598 if (!sev_es_enabled) { 2599 r = -ENOTTY; 2600 goto out; 2601 } 2602 fallthrough; 2603 case KVM_SEV_INIT: 2604 r = sev_guest_init(kvm, &sev_cmd); 2605 break; 2606 case KVM_SEV_INIT2: 2607 r = sev_guest_init2(kvm, &sev_cmd); 2608 break; 2609 case KVM_SEV_LAUNCH_START: 2610 r = sev_launch_start(kvm, &sev_cmd); 2611 break; 2612 case KVM_SEV_LAUNCH_UPDATE_DATA: 2613 r = sev_launch_update_data(kvm, &sev_cmd); 2614 break; 2615 case KVM_SEV_LAUNCH_UPDATE_VMSA: 2616 r = sev_launch_update_vmsa(kvm, &sev_cmd); 2617 break; 2618 case KVM_SEV_LAUNCH_MEASURE: 2619 r = sev_launch_measure(kvm, &sev_cmd); 2620 break; 2621 case KVM_SEV_LAUNCH_FINISH: 2622 r = sev_launch_finish(kvm, &sev_cmd); 2623 break; 2624 case KVM_SEV_GUEST_STATUS: 2625 r = sev_guest_status(kvm, &sev_cmd); 2626 break; 2627 case KVM_SEV_DBG_DECRYPT: 2628 r = sev_dbg_crypt(kvm, &sev_cmd, true); 2629 break; 2630 case KVM_SEV_DBG_ENCRYPT: 2631 r = sev_dbg_crypt(kvm, &sev_cmd, false); 2632 break; 2633 case KVM_SEV_LAUNCH_SECRET: 2634 r = sev_launch_secret(kvm, &sev_cmd); 2635 break; 2636 case KVM_SEV_GET_ATTESTATION_REPORT: 2637 r = sev_get_attestation_report(kvm, &sev_cmd); 2638 break; 2639 case KVM_SEV_SEND_START: 2640 r = sev_send_start(kvm, &sev_cmd); 2641 break; 2642 case KVM_SEV_SEND_UPDATE_DATA: 2643 r = sev_send_update_data(kvm, &sev_cmd); 2644 break; 2645 case KVM_SEV_SEND_FINISH: 2646 r = sev_send_finish(kvm, &sev_cmd); 2647 break; 2648 case KVM_SEV_SEND_CANCEL: 2649 r = sev_send_cancel(kvm, &sev_cmd); 2650 break; 2651 case KVM_SEV_RECEIVE_START: 2652 r = sev_receive_start(kvm, &sev_cmd); 2653 break; 2654 case KVM_SEV_RECEIVE_UPDATE_DATA: 2655 r = sev_receive_update_data(kvm, &sev_cmd); 2656 break; 2657 case KVM_SEV_RECEIVE_FINISH: 2658 r = sev_receive_finish(kvm, &sev_cmd); 2659 break; 2660 case KVM_SEV_SNP_LAUNCH_START: 2661 r = snp_launch_start(kvm, &sev_cmd); 2662 break; 2663 case KVM_SEV_SNP_LAUNCH_UPDATE: 2664 r = snp_launch_update(kvm, &sev_cmd); 2665 break; 2666 case KVM_SEV_SNP_LAUNCH_FINISH: 2667 r = snp_launch_finish(kvm, &sev_cmd); 2668 break; 2669 default: 2670 r = -EINVAL; 2671 goto out; 2672 } 2673 2674 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 2675 r = -EFAULT; 2676 2677 out: 2678 mutex_unlock(&kvm->lock); 2679 return r; 2680 } 2681 2682 int sev_mem_enc_register_region(struct kvm *kvm, 2683 struct kvm_enc_region *range) 2684 { 2685 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2686 struct enc_region *region; 2687 int ret = 0; 2688 2689 if (!sev_guest(kvm)) 2690 return -ENOTTY; 2691 2692 /* If kvm is mirroring encryption context it isn't responsible for it */ 2693 if (is_mirroring_enc_context(kvm)) 2694 return -EINVAL; 2695 2696 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 2697 return -EINVAL; 2698 2699 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 2700 if (!region) 2701 return -ENOMEM; 2702 2703 mutex_lock(&kvm->lock); 2704 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 2705 if (IS_ERR(region->pages)) { 2706 ret = PTR_ERR(region->pages); 2707 mutex_unlock(&kvm->lock); 2708 goto e_free; 2709 } 2710 2711 /* 2712 * The guest may change the memory encryption attribute from C=0 -> C=1 2713 * or vice versa for this memory range. Lets make sure caches are 2714 * flushed to ensure that guest data gets written into memory with 2715 * correct C-bit. Note, this must be done before dropping kvm->lock, 2716 * as region and its array of pages can be freed by a different task 2717 * once kvm->lock is released. 2718 */ 2719 sev_clflush_pages(region->pages, region->npages); 2720 2721 region->uaddr = range->addr; 2722 region->size = range->size; 2723 2724 list_add_tail(®ion->list, &sev->regions_list); 2725 mutex_unlock(&kvm->lock); 2726 2727 return ret; 2728 2729 e_free: 2730 kfree(region); 2731 return ret; 2732 } 2733 2734 static struct enc_region * 2735 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2736 { 2737 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2738 struct list_head *head = &sev->regions_list; 2739 struct enc_region *i; 2740 2741 list_for_each_entry(i, head, list) { 2742 if (i->uaddr == range->addr && 2743 i->size == range->size) 2744 return i; 2745 } 2746 2747 return NULL; 2748 } 2749 2750 static void __unregister_enc_region_locked(struct kvm *kvm, 2751 struct enc_region *region) 2752 { 2753 sev_unpin_memory(kvm, region->pages, region->npages); 2754 list_del(®ion->list); 2755 kfree(region); 2756 } 2757 2758 int sev_mem_enc_unregister_region(struct kvm *kvm, 2759 struct kvm_enc_region *range) 2760 { 2761 struct enc_region *region; 2762 int ret; 2763 2764 /* If kvm is mirroring encryption context it isn't responsible for it */ 2765 if (is_mirroring_enc_context(kvm)) 2766 return -EINVAL; 2767 2768 mutex_lock(&kvm->lock); 2769 2770 if (!sev_guest(kvm)) { 2771 ret = -ENOTTY; 2772 goto failed; 2773 } 2774 2775 region = find_enc_region(kvm, range); 2776 if (!region) { 2777 ret = -EINVAL; 2778 goto failed; 2779 } 2780 2781 /* 2782 * Ensure that all guest tagged cache entries are flushed before 2783 * releasing the pages back to the system for use. CLFLUSH will 2784 * not do this, so issue a WBINVD. 2785 */ 2786 wbinvd_on_all_cpus(); 2787 2788 __unregister_enc_region_locked(kvm, region); 2789 2790 mutex_unlock(&kvm->lock); 2791 return 0; 2792 2793 failed: 2794 mutex_unlock(&kvm->lock); 2795 return ret; 2796 } 2797 2798 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2799 { 2800 struct fd f = fdget(source_fd); 2801 struct kvm *source_kvm; 2802 struct kvm_sev_info *source_sev, *mirror_sev; 2803 int ret; 2804 2805 if (!f.file) 2806 return -EBADF; 2807 2808 if (!file_is_kvm(f.file)) { 2809 ret = -EBADF; 2810 goto e_source_fput; 2811 } 2812 2813 source_kvm = f.file->private_data; 2814 ret = sev_lock_two_vms(kvm, source_kvm); 2815 if (ret) 2816 goto e_source_fput; 2817 2818 /* 2819 * Mirrors of mirrors should work, but let's not get silly. Also 2820 * disallow out-of-band SEV/SEV-ES init if the target is already an 2821 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2822 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2823 */ 2824 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2825 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2826 ret = -EINVAL; 2827 goto e_unlock; 2828 } 2829 2830 /* 2831 * The mirror kvm holds an enc_context_owner ref so its asid can't 2832 * disappear until we're done with it 2833 */ 2834 source_sev = &to_kvm_svm(source_kvm)->sev_info; 2835 kvm_get_kvm(source_kvm); 2836 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2837 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2838 2839 /* Set enc_context_owner and copy its encryption context over */ 2840 mirror_sev->enc_context_owner = source_kvm; 2841 mirror_sev->active = true; 2842 mirror_sev->asid = source_sev->asid; 2843 mirror_sev->fd = source_sev->fd; 2844 mirror_sev->es_active = source_sev->es_active; 2845 mirror_sev->need_init = false; 2846 mirror_sev->handle = source_sev->handle; 2847 INIT_LIST_HEAD(&mirror_sev->regions_list); 2848 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2849 ret = 0; 2850 2851 /* 2852 * Do not copy ap_jump_table. Since the mirror does not share the same 2853 * KVM contexts as the original, and they may have different 2854 * memory-views. 2855 */ 2856 2857 e_unlock: 2858 sev_unlock_two_vms(kvm, source_kvm); 2859 e_source_fput: 2860 fdput(f); 2861 return ret; 2862 } 2863 2864 static int snp_decommission_context(struct kvm *kvm) 2865 { 2866 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2867 struct sev_data_snp_addr data = {}; 2868 int ret; 2869 2870 /* If context is not created then do nothing */ 2871 if (!sev->snp_context) 2872 return 0; 2873 2874 /* Do the decommision, which will unbind the ASID from the SNP context */ 2875 data.address = __sme_pa(sev->snp_context); 2876 down_write(&sev_deactivate_lock); 2877 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL); 2878 up_write(&sev_deactivate_lock); 2879 2880 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret)) 2881 return ret; 2882 2883 snp_free_firmware_page(sev->snp_context); 2884 sev->snp_context = NULL; 2885 2886 return 0; 2887 } 2888 2889 void sev_vm_destroy(struct kvm *kvm) 2890 { 2891 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2892 struct list_head *head = &sev->regions_list; 2893 struct list_head *pos, *q; 2894 2895 if (!sev_guest(kvm)) 2896 return; 2897 2898 WARN_ON(!list_empty(&sev->mirror_vms)); 2899 2900 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2901 if (is_mirroring_enc_context(kvm)) { 2902 struct kvm *owner_kvm = sev->enc_context_owner; 2903 2904 mutex_lock(&owner_kvm->lock); 2905 list_del(&sev->mirror_entry); 2906 mutex_unlock(&owner_kvm->lock); 2907 kvm_put_kvm(owner_kvm); 2908 return; 2909 } 2910 2911 /* 2912 * Ensure that all guest tagged cache entries are flushed before 2913 * releasing the pages back to the system for use. CLFLUSH will 2914 * not do this, so issue a WBINVD. 2915 */ 2916 wbinvd_on_all_cpus(); 2917 2918 /* 2919 * if userspace was terminated before unregistering the memory regions 2920 * then lets unpin all the registered memory. 2921 */ 2922 if (!list_empty(head)) { 2923 list_for_each_safe(pos, q, head) { 2924 __unregister_enc_region_locked(kvm, 2925 list_entry(pos, struct enc_region, list)); 2926 cond_resched(); 2927 } 2928 } 2929 2930 if (sev_snp_guest(kvm)) { 2931 snp_guest_req_cleanup(kvm); 2932 2933 /* 2934 * Decomission handles unbinding of the ASID. If it fails for 2935 * some unexpected reason, just leak the ASID. 2936 */ 2937 if (snp_decommission_context(kvm)) 2938 return; 2939 } else { 2940 sev_unbind_asid(kvm, sev->handle); 2941 } 2942 2943 sev_asid_free(sev); 2944 } 2945 2946 void __init sev_set_cpu_caps(void) 2947 { 2948 if (sev_enabled) { 2949 kvm_cpu_cap_set(X86_FEATURE_SEV); 2950 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM); 2951 } 2952 if (sev_es_enabled) { 2953 kvm_cpu_cap_set(X86_FEATURE_SEV_ES); 2954 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM); 2955 } 2956 if (sev_snp_enabled) { 2957 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP); 2958 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM); 2959 } 2960 } 2961 2962 void __init sev_hardware_setup(void) 2963 { 2964 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2965 bool sev_snp_supported = false; 2966 bool sev_es_supported = false; 2967 bool sev_supported = false; 2968 2969 if (!sev_enabled || !npt_enabled || !nrips) 2970 goto out; 2971 2972 /* 2973 * SEV must obviously be supported in hardware. Sanity check that the 2974 * CPU supports decode assists, which is mandatory for SEV guests to 2975 * support instruction emulation. Ditto for flushing by ASID, as SEV 2976 * guests are bound to a single ASID, i.e. KVM can't rotate to a new 2977 * ASID to effect a TLB flush. 2978 */ 2979 if (!boot_cpu_has(X86_FEATURE_SEV) || 2980 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || 2981 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) 2982 goto out; 2983 2984 /* Retrieve SEV CPUID information */ 2985 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2986 2987 /* Set encryption bit location for SEV-ES guests */ 2988 sev_enc_bit = ebx & 0x3f; 2989 2990 /* Maximum number of encrypted guests supported simultaneously */ 2991 max_sev_asid = ecx; 2992 if (!max_sev_asid) 2993 goto out; 2994 2995 /* Minimum ASID value that should be used for SEV guest */ 2996 min_sev_asid = edx; 2997 sev_me_mask = 1UL << (ebx & 0x3f); 2998 2999 /* 3000 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 3001 * even though it's never used, so that the bitmap is indexed by the 3002 * actual ASID. 3003 */ 3004 nr_asids = max_sev_asid + 1; 3005 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 3006 if (!sev_asid_bitmap) 3007 goto out; 3008 3009 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 3010 if (!sev_reclaim_asid_bitmap) { 3011 bitmap_free(sev_asid_bitmap); 3012 sev_asid_bitmap = NULL; 3013 goto out; 3014 } 3015 3016 if (min_sev_asid <= max_sev_asid) { 3017 sev_asid_count = max_sev_asid - min_sev_asid + 1; 3018 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 3019 } 3020 sev_supported = true; 3021 3022 /* SEV-ES support requested? */ 3023 if (!sev_es_enabled) 3024 goto out; 3025 3026 /* 3027 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 3028 * instruction stream, i.e. can't emulate in response to a #NPF and 3029 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 3030 * (the guest can then do a #VMGEXIT to request MMIO emulation). 3031 */ 3032 if (!enable_mmio_caching) 3033 goto out; 3034 3035 /* Does the CPU support SEV-ES? */ 3036 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 3037 goto out; 3038 3039 if (!lbrv) { 3040 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV), 3041 "LBRV must be present for SEV-ES support"); 3042 goto out; 3043 } 3044 3045 /* Has the system been allocated ASIDs for SEV-ES? */ 3046 if (min_sev_asid == 1) 3047 goto out; 3048 3049 sev_es_asid_count = min_sev_asid - 1; 3050 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 3051 sev_es_supported = true; 3052 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP); 3053 3054 out: 3055 if (boot_cpu_has(X86_FEATURE_SEV)) 3056 pr_info("SEV %s (ASIDs %u - %u)\n", 3057 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : 3058 "unusable" : 3059 "disabled", 3060 min_sev_asid, max_sev_asid); 3061 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 3062 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 3063 sev_es_supported ? "enabled" : "disabled", 3064 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3065 if (boot_cpu_has(X86_FEATURE_SEV_SNP)) 3066 pr_info("SEV-SNP %s (ASIDs %u - %u)\n", 3067 sev_snp_supported ? "enabled" : "disabled", 3068 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3069 3070 sev_enabled = sev_supported; 3071 sev_es_enabled = sev_es_supported; 3072 sev_snp_enabled = sev_snp_supported; 3073 3074 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 3075 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 3076 sev_es_debug_swap_enabled = false; 3077 3078 sev_supported_vmsa_features = 0; 3079 if (sev_es_debug_swap_enabled) 3080 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP; 3081 } 3082 3083 void sev_hardware_unsetup(void) 3084 { 3085 if (!sev_enabled) 3086 return; 3087 3088 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 3089 sev_flush_asids(1, max_sev_asid); 3090 3091 bitmap_free(sev_asid_bitmap); 3092 bitmap_free(sev_reclaim_asid_bitmap); 3093 3094 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 3095 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 3096 } 3097 3098 int sev_cpu_init(struct svm_cpu_data *sd) 3099 { 3100 if (!sev_enabled) 3101 return 0; 3102 3103 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 3104 if (!sd->sev_vmcbs) 3105 return -ENOMEM; 3106 3107 return 0; 3108 } 3109 3110 /* 3111 * Pages used by hardware to hold guest encrypted state must be flushed before 3112 * returning them to the system. 3113 */ 3114 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 3115 { 3116 unsigned int asid = sev_get_asid(vcpu->kvm); 3117 3118 /* 3119 * Note! The address must be a kernel address, as regular page walk 3120 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 3121 * address is non-deterministic and unsafe. This function deliberately 3122 * takes a pointer to deter passing in a user address. 3123 */ 3124 unsigned long addr = (unsigned long)va; 3125 3126 /* 3127 * If CPU enforced cache coherency for encrypted mappings of the 3128 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 3129 * flush is still needed in order to work properly with DMA devices. 3130 */ 3131 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 3132 clflush_cache_range(va, PAGE_SIZE); 3133 return; 3134 } 3135 3136 /* 3137 * VM Page Flush takes a host virtual address and a guest ASID. Fall 3138 * back to WBINVD if this faults so as not to make any problems worse 3139 * by leaving stale encrypted data in the cache. 3140 */ 3141 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 3142 goto do_wbinvd; 3143 3144 return; 3145 3146 do_wbinvd: 3147 wbinvd_on_all_cpus(); 3148 } 3149 3150 void sev_guest_memory_reclaimed(struct kvm *kvm) 3151 { 3152 /* 3153 * With SNP+gmem, private/encrypted memory is unreachable via the 3154 * hva-based mmu notifiers, so these events are only actually 3155 * pertaining to shared pages where there is no need to perform 3156 * the WBINVD to flush associated caches. 3157 */ 3158 if (!sev_guest(kvm) || sev_snp_guest(kvm)) 3159 return; 3160 3161 wbinvd_on_all_cpus(); 3162 } 3163 3164 void sev_free_vcpu(struct kvm_vcpu *vcpu) 3165 { 3166 struct vcpu_svm *svm; 3167 3168 if (!sev_es_guest(vcpu->kvm)) 3169 return; 3170 3171 svm = to_svm(vcpu); 3172 3173 /* 3174 * If it's an SNP guest, then the VMSA was marked in the RMP table as 3175 * a guest-owned page. Transition the page to hypervisor state before 3176 * releasing it back to the system. 3177 */ 3178 if (sev_snp_guest(vcpu->kvm)) { 3179 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 3180 3181 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K)) 3182 goto skip_vmsa_free; 3183 } 3184 3185 if (vcpu->arch.guest_state_protected) 3186 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 3187 3188 __free_page(virt_to_page(svm->sev_es.vmsa)); 3189 3190 skip_vmsa_free: 3191 if (svm->sev_es.ghcb_sa_free) 3192 kvfree(svm->sev_es.ghcb_sa); 3193 } 3194 3195 static void dump_ghcb(struct vcpu_svm *svm) 3196 { 3197 struct ghcb *ghcb = svm->sev_es.ghcb; 3198 unsigned int nbits; 3199 3200 /* Re-use the dump_invalid_vmcb module parameter */ 3201 if (!dump_invalid_vmcb) { 3202 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3203 return; 3204 } 3205 3206 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 3207 3208 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 3209 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 3210 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 3211 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 3212 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 3213 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 3214 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 3215 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 3216 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 3217 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 3218 } 3219 3220 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 3221 { 3222 struct kvm_vcpu *vcpu = &svm->vcpu; 3223 struct ghcb *ghcb = svm->sev_es.ghcb; 3224 3225 /* 3226 * The GHCB protocol so far allows for the following data 3227 * to be returned: 3228 * GPRs RAX, RBX, RCX, RDX 3229 * 3230 * Copy their values, even if they may not have been written during the 3231 * VM-Exit. It's the guest's responsibility to not consume random data. 3232 */ 3233 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 3234 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 3235 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 3236 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 3237 } 3238 3239 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 3240 { 3241 struct vmcb_control_area *control = &svm->vmcb->control; 3242 struct kvm_vcpu *vcpu = &svm->vcpu; 3243 struct ghcb *ghcb = svm->sev_es.ghcb; 3244 u64 exit_code; 3245 3246 /* 3247 * The GHCB protocol so far allows for the following data 3248 * to be supplied: 3249 * GPRs RAX, RBX, RCX, RDX 3250 * XCR0 3251 * CPL 3252 * 3253 * VMMCALL allows the guest to provide extra registers. KVM also 3254 * expects RSI for hypercalls, so include that, too. 3255 * 3256 * Copy their values to the appropriate location if supplied. 3257 */ 3258 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 3259 3260 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 3261 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 3262 3263 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); 3264 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); 3265 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); 3266 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); 3267 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); 3268 3269 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); 3270 3271 if (kvm_ghcb_xcr0_is_valid(svm)) { 3272 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 3273 kvm_update_cpuid_runtime(vcpu); 3274 } 3275 3276 /* Copy the GHCB exit information into the VMCB fields */ 3277 exit_code = ghcb_get_sw_exit_code(ghcb); 3278 control->exit_code = lower_32_bits(exit_code); 3279 control->exit_code_hi = upper_32_bits(exit_code); 3280 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 3281 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 3282 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); 3283 3284 /* Clear the valid entries fields */ 3285 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 3286 } 3287 3288 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) 3289 { 3290 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 3291 } 3292 3293 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 3294 { 3295 struct vmcb_control_area *control = &svm->vmcb->control; 3296 struct kvm_vcpu *vcpu = &svm->vcpu; 3297 u64 exit_code; 3298 u64 reason; 3299 3300 /* 3301 * Retrieve the exit code now even though it may not be marked valid 3302 * as it could help with debugging. 3303 */ 3304 exit_code = kvm_ghcb_get_sw_exit_code(control); 3305 3306 /* Only GHCB Usage code 0 is supported */ 3307 if (svm->sev_es.ghcb->ghcb_usage) { 3308 reason = GHCB_ERR_INVALID_USAGE; 3309 goto vmgexit_err; 3310 } 3311 3312 reason = GHCB_ERR_MISSING_INPUT; 3313 3314 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 3315 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 3316 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 3317 goto vmgexit_err; 3318 3319 switch (exit_code) { 3320 case SVM_EXIT_READ_DR7: 3321 break; 3322 case SVM_EXIT_WRITE_DR7: 3323 if (!kvm_ghcb_rax_is_valid(svm)) 3324 goto vmgexit_err; 3325 break; 3326 case SVM_EXIT_RDTSC: 3327 break; 3328 case SVM_EXIT_RDPMC: 3329 if (!kvm_ghcb_rcx_is_valid(svm)) 3330 goto vmgexit_err; 3331 break; 3332 case SVM_EXIT_CPUID: 3333 if (!kvm_ghcb_rax_is_valid(svm) || 3334 !kvm_ghcb_rcx_is_valid(svm)) 3335 goto vmgexit_err; 3336 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 3337 if (!kvm_ghcb_xcr0_is_valid(svm)) 3338 goto vmgexit_err; 3339 break; 3340 case SVM_EXIT_INVD: 3341 break; 3342 case SVM_EXIT_IOIO: 3343 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 3344 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3345 goto vmgexit_err; 3346 } else { 3347 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 3348 if (!kvm_ghcb_rax_is_valid(svm)) 3349 goto vmgexit_err; 3350 } 3351 break; 3352 case SVM_EXIT_MSR: 3353 if (!kvm_ghcb_rcx_is_valid(svm)) 3354 goto vmgexit_err; 3355 if (control->exit_info_1) { 3356 if (!kvm_ghcb_rax_is_valid(svm) || 3357 !kvm_ghcb_rdx_is_valid(svm)) 3358 goto vmgexit_err; 3359 } 3360 break; 3361 case SVM_EXIT_VMMCALL: 3362 if (!kvm_ghcb_rax_is_valid(svm) || 3363 !kvm_ghcb_cpl_is_valid(svm)) 3364 goto vmgexit_err; 3365 break; 3366 case SVM_EXIT_RDTSCP: 3367 break; 3368 case SVM_EXIT_WBINVD: 3369 break; 3370 case SVM_EXIT_MONITOR: 3371 if (!kvm_ghcb_rax_is_valid(svm) || 3372 !kvm_ghcb_rcx_is_valid(svm) || 3373 !kvm_ghcb_rdx_is_valid(svm)) 3374 goto vmgexit_err; 3375 break; 3376 case SVM_EXIT_MWAIT: 3377 if (!kvm_ghcb_rax_is_valid(svm) || 3378 !kvm_ghcb_rcx_is_valid(svm)) 3379 goto vmgexit_err; 3380 break; 3381 case SVM_VMGEXIT_MMIO_READ: 3382 case SVM_VMGEXIT_MMIO_WRITE: 3383 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3384 goto vmgexit_err; 3385 break; 3386 case SVM_VMGEXIT_AP_CREATION: 3387 if (!sev_snp_guest(vcpu->kvm)) 3388 goto vmgexit_err; 3389 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY) 3390 if (!kvm_ghcb_rax_is_valid(svm)) 3391 goto vmgexit_err; 3392 break; 3393 case SVM_VMGEXIT_NMI_COMPLETE: 3394 case SVM_VMGEXIT_AP_HLT_LOOP: 3395 case SVM_VMGEXIT_AP_JUMP_TABLE: 3396 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 3397 case SVM_VMGEXIT_HV_FEATURES: 3398 case SVM_VMGEXIT_TERM_REQUEST: 3399 break; 3400 case SVM_VMGEXIT_PSC: 3401 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm)) 3402 goto vmgexit_err; 3403 break; 3404 case SVM_VMGEXIT_GUEST_REQUEST: 3405 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 3406 if (!sev_snp_guest(vcpu->kvm) || 3407 !PAGE_ALIGNED(control->exit_info_1) || 3408 !PAGE_ALIGNED(control->exit_info_2) || 3409 control->exit_info_1 == control->exit_info_2) 3410 goto vmgexit_err; 3411 break; 3412 default: 3413 reason = GHCB_ERR_INVALID_EVENT; 3414 goto vmgexit_err; 3415 } 3416 3417 return 0; 3418 3419 vmgexit_err: 3420 if (reason == GHCB_ERR_INVALID_USAGE) { 3421 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 3422 svm->sev_es.ghcb->ghcb_usage); 3423 } else if (reason == GHCB_ERR_INVALID_EVENT) { 3424 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 3425 exit_code); 3426 } else { 3427 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 3428 exit_code); 3429 dump_ghcb(svm); 3430 } 3431 3432 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 3433 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason); 3434 3435 /* Resume the guest to "return" the error code. */ 3436 return 1; 3437 } 3438 3439 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 3440 { 3441 /* Clear any indication that the vCPU is in a type of AP Reset Hold */ 3442 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE; 3443 3444 if (!svm->sev_es.ghcb) 3445 return; 3446 3447 if (svm->sev_es.ghcb_sa_free) { 3448 /* 3449 * The scratch area lives outside the GHCB, so there is a 3450 * buffer that, depending on the operation performed, may 3451 * need to be synced, then freed. 3452 */ 3453 if (svm->sev_es.ghcb_sa_sync) { 3454 kvm_write_guest(svm->vcpu.kvm, 3455 svm->sev_es.sw_scratch, 3456 svm->sev_es.ghcb_sa, 3457 svm->sev_es.ghcb_sa_len); 3458 svm->sev_es.ghcb_sa_sync = false; 3459 } 3460 3461 kvfree(svm->sev_es.ghcb_sa); 3462 svm->sev_es.ghcb_sa = NULL; 3463 svm->sev_es.ghcb_sa_free = false; 3464 } 3465 3466 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 3467 3468 sev_es_sync_to_ghcb(svm); 3469 3470 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); 3471 svm->sev_es.ghcb = NULL; 3472 } 3473 3474 void pre_sev_run(struct vcpu_svm *svm, int cpu) 3475 { 3476 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 3477 unsigned int asid = sev_get_asid(svm->vcpu.kvm); 3478 3479 /* Assign the asid allocated with this SEV guest */ 3480 svm->asid = asid; 3481 3482 /* 3483 * Flush guest TLB: 3484 * 3485 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 3486 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 3487 */ 3488 if (sd->sev_vmcbs[asid] == svm->vmcb && 3489 svm->vcpu.arch.last_vmentry_cpu == cpu) 3490 return; 3491 3492 sd->sev_vmcbs[asid] = svm->vmcb; 3493 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3494 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3495 } 3496 3497 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 3498 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 3499 { 3500 struct vmcb_control_area *control = &svm->vmcb->control; 3501 u64 ghcb_scratch_beg, ghcb_scratch_end; 3502 u64 scratch_gpa_beg, scratch_gpa_end; 3503 void *scratch_va; 3504 3505 scratch_gpa_beg = svm->sev_es.sw_scratch; 3506 if (!scratch_gpa_beg) { 3507 pr_err("vmgexit: scratch gpa not provided\n"); 3508 goto e_scratch; 3509 } 3510 3511 scratch_gpa_end = scratch_gpa_beg + len; 3512 if (scratch_gpa_end < scratch_gpa_beg) { 3513 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 3514 len, scratch_gpa_beg); 3515 goto e_scratch; 3516 } 3517 3518 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 3519 /* Scratch area begins within GHCB */ 3520 ghcb_scratch_beg = control->ghcb_gpa + 3521 offsetof(struct ghcb, shared_buffer); 3522 ghcb_scratch_end = control->ghcb_gpa + 3523 offsetof(struct ghcb, reserved_0xff0); 3524 3525 /* 3526 * If the scratch area begins within the GHCB, it must be 3527 * completely contained in the GHCB shared buffer area. 3528 */ 3529 if (scratch_gpa_beg < ghcb_scratch_beg || 3530 scratch_gpa_end > ghcb_scratch_end) { 3531 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 3532 scratch_gpa_beg, scratch_gpa_end); 3533 goto e_scratch; 3534 } 3535 3536 scratch_va = (void *)svm->sev_es.ghcb; 3537 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 3538 } else { 3539 /* 3540 * The guest memory must be read into a kernel buffer, so 3541 * limit the size 3542 */ 3543 if (len > GHCB_SCRATCH_AREA_LIMIT) { 3544 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 3545 len, GHCB_SCRATCH_AREA_LIMIT); 3546 goto e_scratch; 3547 } 3548 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 3549 if (!scratch_va) 3550 return -ENOMEM; 3551 3552 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 3553 /* Unable to copy scratch area from guest */ 3554 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 3555 3556 kvfree(scratch_va); 3557 return -EFAULT; 3558 } 3559 3560 /* 3561 * The scratch area is outside the GHCB. The operation will 3562 * dictate whether the buffer needs to be synced before running 3563 * the vCPU next time (i.e. a read was requested so the data 3564 * must be written back to the guest memory). 3565 */ 3566 svm->sev_es.ghcb_sa_sync = sync; 3567 svm->sev_es.ghcb_sa_free = true; 3568 } 3569 3570 svm->sev_es.ghcb_sa = scratch_va; 3571 svm->sev_es.ghcb_sa_len = len; 3572 3573 return 0; 3574 3575 e_scratch: 3576 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 3577 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); 3578 3579 return 1; 3580 } 3581 3582 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 3583 unsigned int pos) 3584 { 3585 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 3586 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 3587 } 3588 3589 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 3590 { 3591 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 3592 } 3593 3594 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 3595 { 3596 svm->vmcb->control.ghcb_gpa = value; 3597 } 3598 3599 static int snp_rmptable_psmash(kvm_pfn_t pfn) 3600 { 3601 int ret; 3602 3603 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1); 3604 3605 /* 3606 * PSMASH_FAIL_INUSE indicates another processor is modifying the 3607 * entry, so retry until that's no longer the case. 3608 */ 3609 do { 3610 ret = psmash(pfn); 3611 } while (ret == PSMASH_FAIL_INUSE); 3612 3613 return ret; 3614 } 3615 3616 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu) 3617 { 3618 struct vcpu_svm *svm = to_svm(vcpu); 3619 3620 if (vcpu->run->hypercall.ret) 3621 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3622 else 3623 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP); 3624 3625 return 1; /* resume guest */ 3626 } 3627 3628 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) 3629 { 3630 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr)); 3631 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr); 3632 struct kvm_vcpu *vcpu = &svm->vcpu; 3633 3634 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) { 3635 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3636 return 1; /* resume guest */ 3637 } 3638 3639 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { 3640 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3641 return 1; /* resume guest */ 3642 } 3643 3644 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3645 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3646 vcpu->run->hypercall.args[0] = gpa; 3647 vcpu->run->hypercall.args[1] = 1; 3648 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) 3649 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3650 : KVM_MAP_GPA_RANGE_DECRYPTED; 3651 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3652 3653 vcpu->arch.complete_userspace_io = snp_complete_psc_msr; 3654 3655 return 0; /* forward request to userspace */ 3656 } 3657 3658 struct psc_buffer { 3659 struct psc_hdr hdr; 3660 struct psc_entry entries[]; 3661 } __packed; 3662 3663 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc); 3664 3665 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret) 3666 { 3667 svm->sev_es.psc_inflight = 0; 3668 svm->sev_es.psc_idx = 0; 3669 svm->sev_es.psc_2m = false; 3670 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret); 3671 } 3672 3673 static void __snp_complete_one_psc(struct vcpu_svm *svm) 3674 { 3675 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3676 struct psc_entry *entries = psc->entries; 3677 struct psc_hdr *hdr = &psc->hdr; 3678 __u16 idx; 3679 3680 /* 3681 * Everything in-flight has been processed successfully. Update the 3682 * corresponding entries in the guest's PSC buffer and zero out the 3683 * count of in-flight PSC entries. 3684 */ 3685 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight; 3686 svm->sev_es.psc_inflight--, idx++) { 3687 struct psc_entry *entry = &entries[idx]; 3688 3689 entry->cur_page = entry->pagesize ? 512 : 1; 3690 } 3691 3692 hdr->cur_entry = idx; 3693 } 3694 3695 static int snp_complete_one_psc(struct kvm_vcpu *vcpu) 3696 { 3697 struct vcpu_svm *svm = to_svm(vcpu); 3698 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3699 3700 if (vcpu->run->hypercall.ret) { 3701 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3702 return 1; /* resume guest */ 3703 } 3704 3705 __snp_complete_one_psc(svm); 3706 3707 /* Handle the next range (if any). */ 3708 return snp_begin_psc(svm, psc); 3709 } 3710 3711 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) 3712 { 3713 struct psc_entry *entries = psc->entries; 3714 struct kvm_vcpu *vcpu = &svm->vcpu; 3715 struct psc_hdr *hdr = &psc->hdr; 3716 struct psc_entry entry_start; 3717 u16 idx, idx_start, idx_end; 3718 int npages; 3719 bool huge; 3720 u64 gfn; 3721 3722 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { 3723 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3724 return 1; 3725 } 3726 3727 next_range: 3728 /* There should be no other PSCs in-flight at this point. */ 3729 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) { 3730 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3731 return 1; 3732 } 3733 3734 /* 3735 * The PSC descriptor buffer can be modified by a misbehaved guest after 3736 * validation, so take care to only use validated copies of values used 3737 * for things like array indexing. 3738 */ 3739 idx_start = hdr->cur_entry; 3740 idx_end = hdr->end_entry; 3741 3742 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) { 3743 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR); 3744 return 1; 3745 } 3746 3747 /* Find the start of the next range which needs processing. */ 3748 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) { 3749 entry_start = entries[idx]; 3750 3751 gfn = entry_start.gfn; 3752 huge = entry_start.pagesize; 3753 npages = huge ? 512 : 1; 3754 3755 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) { 3756 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY); 3757 return 1; 3758 } 3759 3760 if (entry_start.cur_page) { 3761 /* 3762 * If this is a partially-completed 2M range, force 4K handling 3763 * for the remaining pages since they're effectively split at 3764 * this point. Subsequent code should ensure this doesn't get 3765 * combined with adjacent PSC entries where 2M handling is still 3766 * possible. 3767 */ 3768 npages -= entry_start.cur_page; 3769 gfn += entry_start.cur_page; 3770 huge = false; 3771 } 3772 3773 if (npages) 3774 break; 3775 } 3776 3777 if (idx > idx_end) { 3778 /* Nothing more to process. */ 3779 snp_complete_psc(svm, 0); 3780 return 1; 3781 } 3782 3783 svm->sev_es.psc_2m = huge; 3784 svm->sev_es.psc_idx = idx; 3785 svm->sev_es.psc_inflight = 1; 3786 3787 /* 3788 * Find all subsequent PSC entries that contain adjacent GPA 3789 * ranges/operations and can be combined into a single 3790 * KVM_HC_MAP_GPA_RANGE exit. 3791 */ 3792 while (++idx <= idx_end) { 3793 struct psc_entry entry = entries[idx]; 3794 3795 if (entry.operation != entry_start.operation || 3796 entry.gfn != entry_start.gfn + npages || 3797 entry.cur_page || !!entry.pagesize != huge) 3798 break; 3799 3800 svm->sev_es.psc_inflight++; 3801 npages += huge ? 512 : 1; 3802 } 3803 3804 switch (entry_start.operation) { 3805 case VMGEXIT_PSC_OP_PRIVATE: 3806 case VMGEXIT_PSC_OP_SHARED: 3807 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3808 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3809 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); 3810 vcpu->run->hypercall.args[1] = npages; 3811 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE 3812 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3813 : KVM_MAP_GPA_RANGE_DECRYPTED; 3814 vcpu->run->hypercall.args[2] |= entry_start.pagesize 3815 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M 3816 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3817 vcpu->arch.complete_userspace_io = snp_complete_one_psc; 3818 return 0; /* forward request to userspace */ 3819 default: 3820 /* 3821 * Only shared/private PSC operations are currently supported, so if the 3822 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH), 3823 * then consider the entire range completed and avoid exiting to 3824 * userspace. In theory snp_complete_psc() can always be called directly 3825 * at this point to complete the current range and start the next one, 3826 * but that could lead to unexpected levels of recursion. 3827 */ 3828 __snp_complete_one_psc(svm); 3829 goto next_range; 3830 } 3831 3832 unreachable(); 3833 } 3834 3835 static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu) 3836 { 3837 struct vcpu_svm *svm = to_svm(vcpu); 3838 3839 WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex)); 3840 3841 /* Mark the vCPU as offline and not runnable */ 3842 vcpu->arch.pv.pv_unhalted = false; 3843 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 3844 3845 /* Clear use of the VMSA */ 3846 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 3847 3848 if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) { 3849 gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa); 3850 struct kvm_memory_slot *slot; 3851 kvm_pfn_t pfn; 3852 3853 slot = gfn_to_memslot(vcpu->kvm, gfn); 3854 if (!slot) 3855 return -EINVAL; 3856 3857 /* 3858 * The new VMSA will be private memory guest memory, so 3859 * retrieve the PFN from the gmem backend. 3860 */ 3861 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, NULL)) 3862 return -EINVAL; 3863 3864 /* 3865 * From this point forward, the VMSA will always be a 3866 * guest-mapped page rather than the initial one allocated 3867 * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa 3868 * could be free'd and cleaned up here, but that involves 3869 * cleanups like wbinvd_on_all_cpus() which would ideally 3870 * be handled during teardown rather than guest boot. 3871 * Deferring that also allows the existing logic for SEV-ES 3872 * VMSAs to be re-used with minimal SNP-specific changes. 3873 */ 3874 svm->sev_es.snp_has_guest_vmsa = true; 3875 3876 /* Use the new VMSA */ 3877 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn); 3878 3879 /* Mark the vCPU as runnable */ 3880 vcpu->arch.pv.pv_unhalted = false; 3881 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3882 3883 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3884 3885 /* 3886 * gmem pages aren't currently migratable, but if this ever 3887 * changes then care should be taken to ensure 3888 * svm->sev_es.vmsa is pinned through some other means. 3889 */ 3890 kvm_release_pfn_clean(pfn); 3891 } 3892 3893 /* 3894 * When replacing the VMSA during SEV-SNP AP creation, 3895 * mark the VMCB dirty so that full state is always reloaded. 3896 */ 3897 vmcb_mark_all_dirty(svm->vmcb); 3898 3899 return 0; 3900 } 3901 3902 /* 3903 * Invoked as part of svm_vcpu_reset() processing of an init event. 3904 */ 3905 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) 3906 { 3907 struct vcpu_svm *svm = to_svm(vcpu); 3908 int ret; 3909 3910 if (!sev_snp_guest(vcpu->kvm)) 3911 return; 3912 3913 mutex_lock(&svm->sev_es.snp_vmsa_mutex); 3914 3915 if (!svm->sev_es.snp_ap_waiting_for_reset) 3916 goto unlock; 3917 3918 svm->sev_es.snp_ap_waiting_for_reset = false; 3919 3920 ret = __sev_snp_update_protected_guest_state(vcpu); 3921 if (ret) 3922 vcpu_unimpl(vcpu, "snp: AP state update on init failed\n"); 3923 3924 unlock: 3925 mutex_unlock(&svm->sev_es.snp_vmsa_mutex); 3926 } 3927 3928 static int sev_snp_ap_creation(struct vcpu_svm *svm) 3929 { 3930 struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 3931 struct kvm_vcpu *vcpu = &svm->vcpu; 3932 struct kvm_vcpu *target_vcpu; 3933 struct vcpu_svm *target_svm; 3934 unsigned int request; 3935 unsigned int apic_id; 3936 bool kick; 3937 int ret; 3938 3939 request = lower_32_bits(svm->vmcb->control.exit_info_1); 3940 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1); 3941 3942 /* Validate the APIC ID */ 3943 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id); 3944 if (!target_vcpu) { 3945 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n", 3946 apic_id); 3947 return -EINVAL; 3948 } 3949 3950 ret = 0; 3951 3952 target_svm = to_svm(target_vcpu); 3953 3954 /* 3955 * The target vCPU is valid, so the vCPU will be kicked unless the 3956 * request is for CREATE_ON_INIT. For any errors at this stage, the 3957 * kick will place the vCPU in an non-runnable state. 3958 */ 3959 kick = true; 3960 3961 mutex_lock(&target_svm->sev_es.snp_vmsa_mutex); 3962 3963 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3964 target_svm->sev_es.snp_ap_waiting_for_reset = true; 3965 3966 /* Interrupt injection mode shouldn't change for AP creation */ 3967 if (request < SVM_VMGEXIT_AP_DESTROY) { 3968 u64 sev_features; 3969 3970 sev_features = vcpu->arch.regs[VCPU_REGS_RAX]; 3971 sev_features ^= sev->vmsa_features; 3972 3973 if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) { 3974 vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n", 3975 vcpu->arch.regs[VCPU_REGS_RAX]); 3976 ret = -EINVAL; 3977 goto out; 3978 } 3979 } 3980 3981 switch (request) { 3982 case SVM_VMGEXIT_AP_CREATE_ON_INIT: 3983 kick = false; 3984 fallthrough; 3985 case SVM_VMGEXIT_AP_CREATE: 3986 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) { 3987 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n", 3988 svm->vmcb->control.exit_info_2); 3989 ret = -EINVAL; 3990 goto out; 3991 } 3992 3993 /* 3994 * Malicious guest can RMPADJUST a large page into VMSA which 3995 * will hit the SNP erratum where the CPU will incorrectly signal 3996 * an RMP violation #PF if a hugepage collides with the RMP entry 3997 * of VMSA page, reject the AP CREATE request if VMSA address from 3998 * guest is 2M aligned. 3999 */ 4000 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) { 4001 vcpu_unimpl(vcpu, 4002 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n", 4003 svm->vmcb->control.exit_info_2); 4004 ret = -EINVAL; 4005 goto out; 4006 } 4007 4008 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; 4009 break; 4010 case SVM_VMGEXIT_AP_DESTROY: 4011 break; 4012 default: 4013 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", 4014 request); 4015 ret = -EINVAL; 4016 break; 4017 } 4018 4019 out: 4020 if (kick) { 4021 kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); 4022 kvm_vcpu_kick(target_vcpu); 4023 } 4024 4025 mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex); 4026 4027 return ret; 4028 } 4029 4030 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4031 { 4032 struct sev_data_snp_guest_request data = {0}; 4033 struct kvm *kvm = svm->vcpu.kvm; 4034 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4035 sev_ret_code fw_err = 0; 4036 int ret; 4037 4038 if (!sev_snp_guest(kvm)) 4039 return -EINVAL; 4040 4041 mutex_lock(&sev->guest_req_mutex); 4042 4043 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) { 4044 ret = -EIO; 4045 goto out_unlock; 4046 } 4047 4048 data.gctx_paddr = __psp_pa(sev->snp_context); 4049 data.req_paddr = __psp_pa(sev->guest_req_buf); 4050 data.res_paddr = __psp_pa(sev->guest_resp_buf); 4051 4052 /* 4053 * Firmware failures are propagated on to guest, but any other failure 4054 * condition along the way should be reported to userspace. E.g. if 4055 * the PSP is dead and commands are timing out. 4056 */ 4057 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err); 4058 if (ret && !fw_err) 4059 goto out_unlock; 4060 4061 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) { 4062 ret = -EIO; 4063 goto out_unlock; 4064 } 4065 4066 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err)); 4067 4068 ret = 1; /* resume guest */ 4069 4070 out_unlock: 4071 mutex_unlock(&sev->guest_req_mutex); 4072 return ret; 4073 } 4074 4075 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4076 { 4077 struct kvm *kvm = svm->vcpu.kvm; 4078 u8 msg_type; 4079 4080 if (!sev_snp_guest(kvm)) 4081 return -EINVAL; 4082 4083 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type), 4084 &msg_type, 1)) 4085 return -EIO; 4086 4087 /* 4088 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for 4089 * additional certificate data to be provided alongside the attestation 4090 * report via the guest-provided data pages indicated by RAX/RBX. The 4091 * certificate data is optional and requires additional KVM enablement 4092 * to provide an interface for userspace to provide it, but KVM still 4093 * needs to be able to handle extended guest requests either way. So 4094 * provide a stub implementation that will always return an empty 4095 * certificate table in the guest-provided data pages. 4096 */ 4097 if (msg_type == SNP_MSG_REPORT_REQ) { 4098 struct kvm_vcpu *vcpu = &svm->vcpu; 4099 u64 data_npages; 4100 gpa_t data_gpa; 4101 4102 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm)) 4103 goto request_invalid; 4104 4105 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX]; 4106 data_npages = vcpu->arch.regs[VCPU_REGS_RBX]; 4107 4108 if (!PAGE_ALIGNED(data_gpa)) 4109 goto request_invalid; 4110 4111 /* 4112 * As per GHCB spec (see "SNP Extended Guest Request"), the 4113 * certificate table is terminated by 24-bytes of zeroes. 4114 */ 4115 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24)) 4116 return -EIO; 4117 } 4118 4119 return snp_handle_guest_req(svm, req_gpa, resp_gpa); 4120 4121 request_invalid: 4122 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4123 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4124 return 1; /* resume guest */ 4125 } 4126 4127 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 4128 { 4129 struct vmcb_control_area *control = &svm->vmcb->control; 4130 struct kvm_vcpu *vcpu = &svm->vcpu; 4131 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4132 u64 ghcb_info; 4133 int ret = 1; 4134 4135 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 4136 4137 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 4138 control->ghcb_gpa); 4139 4140 switch (ghcb_info) { 4141 case GHCB_MSR_SEV_INFO_REQ: 4142 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4143 GHCB_VERSION_MIN, 4144 sev_enc_bit)); 4145 break; 4146 case GHCB_MSR_CPUID_REQ: { 4147 u64 cpuid_fn, cpuid_reg, cpuid_value; 4148 4149 cpuid_fn = get_ghcb_msr_bits(svm, 4150 GHCB_MSR_CPUID_FUNC_MASK, 4151 GHCB_MSR_CPUID_FUNC_POS); 4152 4153 /* Initialize the registers needed by the CPUID intercept */ 4154 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 4155 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 4156 4157 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 4158 if (!ret) { 4159 /* Error, keep GHCB MSR value as-is */ 4160 break; 4161 } 4162 4163 cpuid_reg = get_ghcb_msr_bits(svm, 4164 GHCB_MSR_CPUID_REG_MASK, 4165 GHCB_MSR_CPUID_REG_POS); 4166 if (cpuid_reg == 0) 4167 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 4168 else if (cpuid_reg == 1) 4169 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 4170 else if (cpuid_reg == 2) 4171 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 4172 else 4173 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 4174 4175 set_ghcb_msr_bits(svm, cpuid_value, 4176 GHCB_MSR_CPUID_VALUE_MASK, 4177 GHCB_MSR_CPUID_VALUE_POS); 4178 4179 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 4180 GHCB_MSR_INFO_MASK, 4181 GHCB_MSR_INFO_POS); 4182 break; 4183 } 4184 case GHCB_MSR_AP_RESET_HOLD_REQ: 4185 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO; 4186 ret = kvm_emulate_ap_reset_hold(&svm->vcpu); 4187 4188 /* 4189 * Preset the result to a non-SIPI return and then only set 4190 * the result to non-zero when delivering a SIPI. 4191 */ 4192 set_ghcb_msr_bits(svm, 0, 4193 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4194 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4195 4196 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4197 GHCB_MSR_INFO_MASK, 4198 GHCB_MSR_INFO_POS); 4199 break; 4200 case GHCB_MSR_HV_FT_REQ: 4201 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED, 4202 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS); 4203 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP, 4204 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); 4205 break; 4206 case GHCB_MSR_PREF_GPA_REQ: 4207 if (!sev_snp_guest(vcpu->kvm)) 4208 goto out_terminate; 4209 4210 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK, 4211 GHCB_MSR_GPA_VALUE_POS); 4212 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK, 4213 GHCB_MSR_INFO_POS); 4214 break; 4215 case GHCB_MSR_REG_GPA_REQ: { 4216 u64 gfn; 4217 4218 if (!sev_snp_guest(vcpu->kvm)) 4219 goto out_terminate; 4220 4221 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK, 4222 GHCB_MSR_GPA_VALUE_POS); 4223 4224 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn); 4225 4226 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK, 4227 GHCB_MSR_GPA_VALUE_POS); 4228 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK, 4229 GHCB_MSR_INFO_POS); 4230 break; 4231 } 4232 case GHCB_MSR_PSC_REQ: 4233 if (!sev_snp_guest(vcpu->kvm)) 4234 goto out_terminate; 4235 4236 ret = snp_begin_psc_msr(svm, control->ghcb_gpa); 4237 break; 4238 case GHCB_MSR_TERM_REQ: { 4239 u64 reason_set, reason_code; 4240 4241 reason_set = get_ghcb_msr_bits(svm, 4242 GHCB_MSR_TERM_REASON_SET_MASK, 4243 GHCB_MSR_TERM_REASON_SET_POS); 4244 reason_code = get_ghcb_msr_bits(svm, 4245 GHCB_MSR_TERM_REASON_MASK, 4246 GHCB_MSR_TERM_REASON_POS); 4247 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 4248 reason_set, reason_code); 4249 4250 goto out_terminate; 4251 } 4252 default: 4253 /* Error, keep GHCB MSR value as-is */ 4254 break; 4255 } 4256 4257 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 4258 control->ghcb_gpa, ret); 4259 4260 return ret; 4261 4262 out_terminate: 4263 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4264 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4265 vcpu->run->system_event.ndata = 1; 4266 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4267 4268 return 0; 4269 } 4270 4271 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 4272 { 4273 struct vcpu_svm *svm = to_svm(vcpu); 4274 struct vmcb_control_area *control = &svm->vmcb->control; 4275 u64 ghcb_gpa, exit_code; 4276 int ret; 4277 4278 /* Validate the GHCB */ 4279 ghcb_gpa = control->ghcb_gpa; 4280 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 4281 return sev_handle_vmgexit_msr_protocol(svm); 4282 4283 if (!ghcb_gpa) { 4284 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 4285 4286 /* Without a GHCB, just return right back to the guest */ 4287 return 1; 4288 } 4289 4290 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 4291 /* Unable to map GHCB from guest */ 4292 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 4293 ghcb_gpa); 4294 4295 /* Without a GHCB, just return right back to the guest */ 4296 return 1; 4297 } 4298 4299 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 4300 4301 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 4302 4303 sev_es_sync_from_ghcb(svm); 4304 4305 /* SEV-SNP guest requires that the GHCB GPA must be registered */ 4306 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) { 4307 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa); 4308 return -EINVAL; 4309 } 4310 4311 ret = sev_es_validate_vmgexit(svm); 4312 if (ret) 4313 return ret; 4314 4315 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0); 4316 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0); 4317 4318 exit_code = kvm_ghcb_get_sw_exit_code(control); 4319 switch (exit_code) { 4320 case SVM_VMGEXIT_MMIO_READ: 4321 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4322 if (ret) 4323 break; 4324 4325 ret = kvm_sev_es_mmio_read(vcpu, 4326 control->exit_info_1, 4327 control->exit_info_2, 4328 svm->sev_es.ghcb_sa); 4329 break; 4330 case SVM_VMGEXIT_MMIO_WRITE: 4331 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 4332 if (ret) 4333 break; 4334 4335 ret = kvm_sev_es_mmio_write(vcpu, 4336 control->exit_info_1, 4337 control->exit_info_2, 4338 svm->sev_es.ghcb_sa); 4339 break; 4340 case SVM_VMGEXIT_NMI_COMPLETE: 4341 ++vcpu->stat.nmi_window_exits; 4342 svm->nmi_masked = false; 4343 kvm_make_request(KVM_REQ_EVENT, vcpu); 4344 ret = 1; 4345 break; 4346 case SVM_VMGEXIT_AP_HLT_LOOP: 4347 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT; 4348 ret = kvm_emulate_ap_reset_hold(vcpu); 4349 break; 4350 case SVM_VMGEXIT_AP_JUMP_TABLE: { 4351 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4352 4353 switch (control->exit_info_1) { 4354 case 0: 4355 /* Set AP jump table address */ 4356 sev->ap_jump_table = control->exit_info_2; 4357 break; 4358 case 1: 4359 /* Get AP jump table address */ 4360 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table); 4361 break; 4362 default: 4363 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 4364 control->exit_info_1); 4365 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4366 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4367 } 4368 4369 ret = 1; 4370 break; 4371 } 4372 case SVM_VMGEXIT_HV_FEATURES: 4373 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED); 4374 4375 ret = 1; 4376 break; 4377 case SVM_VMGEXIT_TERM_REQUEST: 4378 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n", 4379 control->exit_info_1, control->exit_info_2); 4380 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4381 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4382 vcpu->run->system_event.ndata = 1; 4383 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4384 break; 4385 case SVM_VMGEXIT_PSC: 4386 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4387 if (ret) 4388 break; 4389 4390 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa); 4391 break; 4392 case SVM_VMGEXIT_AP_CREATION: 4393 ret = sev_snp_ap_creation(svm); 4394 if (ret) { 4395 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4396 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4397 } 4398 4399 ret = 1; 4400 break; 4401 case SVM_VMGEXIT_GUEST_REQUEST: 4402 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2); 4403 break; 4404 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 4405 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2); 4406 break; 4407 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 4408 vcpu_unimpl(vcpu, 4409 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 4410 control->exit_info_1, control->exit_info_2); 4411 ret = -EINVAL; 4412 break; 4413 default: 4414 ret = svm_invoke_exit_handler(vcpu, exit_code); 4415 } 4416 4417 return ret; 4418 } 4419 4420 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 4421 { 4422 int count; 4423 int bytes; 4424 int r; 4425 4426 if (svm->vmcb->control.exit_info_2 > INT_MAX) 4427 return -EINVAL; 4428 4429 count = svm->vmcb->control.exit_info_2; 4430 if (unlikely(check_mul_overflow(count, size, &bytes))) 4431 return -EINVAL; 4432 4433 r = setup_vmgexit_scratch(svm, in, bytes); 4434 if (r) 4435 return r; 4436 4437 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 4438 count, in); 4439 } 4440 4441 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4442 { 4443 struct kvm_vcpu *vcpu = &svm->vcpu; 4444 4445 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 4446 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4447 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4448 4449 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); 4450 } 4451 4452 /* 4453 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if 4454 * the host/guest supports its use. 4455 * 4456 * guest_can_use() checks a number of requirements on the host/guest to 4457 * ensure that MSR_IA32_XSS is available, but it might report true even 4458 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host 4459 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better 4460 * to further check that the guest CPUID actually supports 4461 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved 4462 * guests will still get intercepted and caught in the normal 4463 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths. 4464 */ 4465 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 4466 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4467 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); 4468 else 4469 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0); 4470 } 4471 4472 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4473 { 4474 struct kvm_vcpu *vcpu = &svm->vcpu; 4475 struct kvm_cpuid_entry2 *best; 4476 4477 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4478 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4479 if (best) 4480 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4481 4482 if (sev_es_guest(svm->vcpu.kvm)) 4483 sev_es_vcpu_after_set_cpuid(svm); 4484 } 4485 4486 static void sev_es_init_vmcb(struct vcpu_svm *svm) 4487 { 4488 struct vmcb *vmcb = svm->vmcb01.ptr; 4489 struct kvm_vcpu *vcpu = &svm->vcpu; 4490 4491 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 4492 4493 /* 4494 * An SEV-ES guest requires a VMSA area that is a separate from the 4495 * VMCB page. Do not include the encryption mask on the VMSA physical 4496 * address since hardware will access it using the guest key. Note, 4497 * the VMSA will be NULL if this vCPU is the destination for intrahost 4498 * migration, and will be copied later. 4499 */ 4500 if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa) 4501 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 4502 4503 /* Can't intercept CR register access, HV can't modify CR registers */ 4504 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 4505 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 4506 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 4507 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 4508 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 4509 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 4510 4511 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 4512 4513 /* Track EFER/CR register changes */ 4514 svm_set_intercept(svm, TRAP_EFER_WRITE); 4515 svm_set_intercept(svm, TRAP_CR0_WRITE); 4516 svm_set_intercept(svm, TRAP_CR4_WRITE); 4517 svm_set_intercept(svm, TRAP_CR8_WRITE); 4518 4519 vmcb->control.intercepts[INTERCEPT_DR] = 0; 4520 if (!sev_vcpu_has_debug_swap(svm)) { 4521 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 4522 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 4523 recalc_intercepts(svm); 4524 } else { 4525 /* 4526 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 4527 * allow debugging SEV-ES guests, and enables DebugSwap iff 4528 * NO_NESTED_DATA_BP is supported, so there's no reason to 4529 * intercept #DB when DebugSwap is enabled. For simplicity 4530 * with respect to guest debug, intercept #DB for other VMs 4531 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 4532 * guest can't DoS the CPU with infinite #DB vectoring. 4533 */ 4534 clr_exception_intercept(svm, DB_VECTOR); 4535 } 4536 4537 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 4538 svm_clr_intercept(svm, INTERCEPT_XSETBV); 4539 4540 /* Clear intercepts on selected MSRs */ 4541 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 4542 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 4543 } 4544 4545 void sev_init_vmcb(struct vcpu_svm *svm) 4546 { 4547 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 4548 clr_exception_intercept(svm, UD_VECTOR); 4549 4550 /* 4551 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 4552 * KVM can't decrypt guest memory to decode the faulting instruction. 4553 */ 4554 clr_exception_intercept(svm, GP_VECTOR); 4555 4556 if (sev_es_guest(svm->vcpu.kvm)) 4557 sev_es_init_vmcb(svm); 4558 } 4559 4560 void sev_es_vcpu_reset(struct vcpu_svm *svm) 4561 { 4562 struct kvm_vcpu *vcpu = &svm->vcpu; 4563 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4564 4565 /* 4566 * Set the GHCB MSR value as per the GHCB specification when emulating 4567 * vCPU RESET for an SEV-ES guest. 4568 */ 4569 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4570 GHCB_VERSION_MIN, 4571 sev_enc_bit)); 4572 4573 mutex_init(&svm->sev_es.snp_vmsa_mutex); 4574 } 4575 4576 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa) 4577 { 4578 /* 4579 * All host state for SEV-ES guests is categorized into three swap types 4580 * based on how it is handled by hardware during a world switch: 4581 * 4582 * A: VMRUN: Host state saved in host save area 4583 * VMEXIT: Host state loaded from host save area 4584 * 4585 * B: VMRUN: Host state _NOT_ saved in host save area 4586 * VMEXIT: Host state loaded from host save area 4587 * 4588 * C: VMRUN: Host state _NOT_ saved in host save area 4589 * VMEXIT: Host state initialized to default(reset) values 4590 * 4591 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 4592 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 4593 * by common SVM code). 4594 */ 4595 hostsa->xcr0 = kvm_host.xcr0; 4596 hostsa->pkru = read_pkru(); 4597 hostsa->xss = kvm_host.xss; 4598 4599 /* 4600 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 4601 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both 4602 * saves and loads debug registers (Type-A). 4603 */ 4604 if (sev_vcpu_has_debug_swap(svm)) { 4605 hostsa->dr0 = native_get_debugreg(0); 4606 hostsa->dr1 = native_get_debugreg(1); 4607 hostsa->dr2 = native_get_debugreg(2); 4608 hostsa->dr3 = native_get_debugreg(3); 4609 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 4610 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 4611 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 4612 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 4613 } 4614 } 4615 4616 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4617 { 4618 struct vcpu_svm *svm = to_svm(vcpu); 4619 4620 /* First SIPI: Use the values as initially set by the VMM */ 4621 if (!svm->sev_es.received_first_sipi) { 4622 svm->sev_es.received_first_sipi = true; 4623 return; 4624 } 4625 4626 /* Subsequent SIPI */ 4627 switch (svm->sev_es.ap_reset_hold_type) { 4628 case AP_RESET_HOLD_NAE_EVENT: 4629 /* 4630 * Return from an AP Reset Hold VMGEXIT, where the guest will 4631 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value. 4632 */ 4633 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 4634 break; 4635 case AP_RESET_HOLD_MSR_PROTO: 4636 /* 4637 * Return from an AP Reset Hold VMGEXIT, where the guest will 4638 * set the CS and RIP. Set GHCB data field to a non-zero value. 4639 */ 4640 set_ghcb_msr_bits(svm, 1, 4641 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4642 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4643 4644 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4645 GHCB_MSR_INFO_MASK, 4646 GHCB_MSR_INFO_POS); 4647 break; 4648 default: 4649 break; 4650 } 4651 } 4652 4653 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) 4654 { 4655 unsigned long pfn; 4656 struct page *p; 4657 4658 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4659 return alloc_pages_node(node, gfp | __GFP_ZERO, 0); 4660 4661 /* 4662 * Allocate an SNP-safe page to workaround the SNP erratum where 4663 * the CPU will incorrectly signal an RMP violation #PF if a 4664 * hugepage (2MB or 1GB) collides with the RMP entry of a 4665 * 2MB-aligned VMCB, VMSA, or AVIC backing page. 4666 * 4667 * Allocate one extra page, choose a page which is not 4668 * 2MB-aligned, and free the other. 4669 */ 4670 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1); 4671 if (!p) 4672 return NULL; 4673 4674 split_page(p, 1); 4675 4676 pfn = page_to_pfn(p); 4677 if (IS_ALIGNED(pfn, PTRS_PER_PMD)) 4678 __free_page(p++); 4679 else 4680 __free_page(p + 1); 4681 4682 return p; 4683 } 4684 4685 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) 4686 { 4687 struct kvm_memory_slot *slot; 4688 struct kvm *kvm = vcpu->kvm; 4689 int order, rmp_level, ret; 4690 bool assigned; 4691 kvm_pfn_t pfn; 4692 gfn_t gfn; 4693 4694 gfn = gpa >> PAGE_SHIFT; 4695 4696 /* 4697 * The only time RMP faults occur for shared pages is when the guest is 4698 * triggering an RMP fault for an implicit page-state change from 4699 * shared->private. Implicit page-state changes are forwarded to 4700 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults 4701 * for shared pages should not end up here. 4702 */ 4703 if (!kvm_mem_is_private(kvm, gfn)) { 4704 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n", 4705 gpa); 4706 return; 4707 } 4708 4709 slot = gfn_to_memslot(kvm, gfn); 4710 if (!kvm_slot_can_be_private(slot)) { 4711 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n", 4712 gpa); 4713 return; 4714 } 4715 4716 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &order); 4717 if (ret) { 4718 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n", 4719 gpa); 4720 return; 4721 } 4722 4723 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4724 if (ret || !assigned) { 4725 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n", 4726 gpa, pfn, ret); 4727 goto out_no_trace; 4728 } 4729 4730 /* 4731 * There are 2 cases where a PSMASH may be needed to resolve an #NPF 4732 * with PFERR_GUEST_RMP_BIT set: 4733 * 4734 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM 4735 * bit set if the guest issues them with a smaller granularity than 4736 * what is indicated by the page-size bit in the 2MB RMP entry for 4737 * the PFN that backs the GPA. 4738 * 4739 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is 4740 * smaller than what is indicated by the 2MB RMP entry for the PFN 4741 * that backs the GPA. 4742 * 4743 * In both these cases, the corresponding 2M RMP entry needs to 4744 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already 4745 * split into 4K RMP entries, then this is likely a spurious case which 4746 * can occur when there are concurrent accesses by the guest to a 2MB 4747 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in 4748 * the process of being PMASH'd into 4K entries. These cases should 4749 * resolve automatically on subsequent accesses, so just ignore them 4750 * here. 4751 */ 4752 if (rmp_level == PG_LEVEL_4K) 4753 goto out; 4754 4755 ret = snp_rmptable_psmash(pfn); 4756 if (ret) { 4757 /* 4758 * Look it up again. If it's 4K now then the PSMASH may have 4759 * raced with another process and the issue has already resolved 4760 * itself. 4761 */ 4762 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) && 4763 assigned && rmp_level == PG_LEVEL_4K) 4764 goto out; 4765 4766 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n", 4767 gpa, pfn, ret); 4768 } 4769 4770 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD); 4771 out: 4772 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret); 4773 out_no_trace: 4774 put_page(pfn_to_page(pfn)); 4775 } 4776 4777 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end) 4778 { 4779 kvm_pfn_t pfn = start; 4780 4781 while (pfn < end) { 4782 int ret, rmp_level; 4783 bool assigned; 4784 4785 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4786 if (ret) { 4787 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n", 4788 pfn, start, end, rmp_level, ret); 4789 return false; 4790 } 4791 4792 if (assigned) { 4793 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n", 4794 __func__, pfn, start, end, rmp_level); 4795 return false; 4796 } 4797 4798 pfn++; 4799 } 4800 4801 return true; 4802 } 4803 4804 static u8 max_level_for_order(int order) 4805 { 4806 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4807 return PG_LEVEL_2M; 4808 4809 return PG_LEVEL_4K; 4810 } 4811 4812 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order) 4813 { 4814 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4815 4816 /* 4817 * If this is a large folio, and the entire 2M range containing the 4818 * PFN is currently shared, then the entire 2M-aligned range can be 4819 * set to private via a single 2M RMP entry. 4820 */ 4821 if (max_level_for_order(order) > PG_LEVEL_4K && 4822 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD)) 4823 return true; 4824 4825 return false; 4826 } 4827 4828 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) 4829 { 4830 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 4831 kvm_pfn_t pfn_aligned; 4832 gfn_t gfn_aligned; 4833 int level, rc; 4834 bool assigned; 4835 4836 if (!sev_snp_guest(kvm)) 4837 return 0; 4838 4839 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4840 if (rc) { 4841 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n", 4842 gfn, pfn, rc); 4843 return -ENOENT; 4844 } 4845 4846 if (assigned) { 4847 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n", 4848 __func__, gfn, pfn, max_order, level); 4849 return 0; 4850 } 4851 4852 if (is_large_rmp_possible(kvm, pfn, max_order)) { 4853 level = PG_LEVEL_2M; 4854 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4855 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD); 4856 } else { 4857 level = PG_LEVEL_4K; 4858 pfn_aligned = pfn; 4859 gfn_aligned = gfn; 4860 } 4861 4862 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false); 4863 if (rc) { 4864 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n", 4865 gfn, pfn, level, rc); 4866 return -EINVAL; 4867 } 4868 4869 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n", 4870 __func__, gfn, pfn, pfn_aligned, max_order, level); 4871 4872 return 0; 4873 } 4874 4875 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 4876 { 4877 kvm_pfn_t pfn; 4878 4879 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4880 return; 4881 4882 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end); 4883 4884 for (pfn = start; pfn < end;) { 4885 bool use_2m_update = false; 4886 int rc, rmp_level; 4887 bool assigned; 4888 4889 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4890 if (rc || !assigned) 4891 goto next_pfn; 4892 4893 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) && 4894 end >= (pfn + PTRS_PER_PMD) && 4895 rmp_level > PG_LEVEL_4K; 4896 4897 /* 4898 * If an unaligned PFN corresponds to a 2M region assigned as a 4899 * large page in the RMP table, PSMASH the region into individual 4900 * 4K RMP entries before attempting to convert a 4K sub-page. 4901 */ 4902 if (!use_2m_update && rmp_level > PG_LEVEL_4K) { 4903 /* 4904 * This shouldn't fail, but if it does, report it, but 4905 * still try to update RMP entry to shared and pray this 4906 * was a spurious error that can be addressed later. 4907 */ 4908 rc = snp_rmptable_psmash(pfn); 4909 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n", 4910 pfn, rc); 4911 } 4912 4913 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K); 4914 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n", 4915 pfn, rc)) 4916 goto next_pfn; 4917 4918 /* 4919 * SEV-ES avoids host/guest cache coherency issues through 4920 * WBINVD hooks issued via MMU notifiers during run-time, and 4921 * KVM's VM destroy path at shutdown. Those MMU notifier events 4922 * don't cover gmem since there is no requirement to map pages 4923 * to a HVA in order to use them for a running guest. While the 4924 * shutdown path would still likely cover things for SNP guests, 4925 * userspace may also free gmem pages during run-time via 4926 * hole-punching operations on the guest_memfd, so flush the 4927 * cache entries for these pages before free'ing them back to 4928 * the host. 4929 */ 4930 clflush_cache_range(__va(pfn_to_hpa(pfn)), 4931 use_2m_update ? PMD_SIZE : PAGE_SIZE); 4932 next_pfn: 4933 pfn += use_2m_update ? PTRS_PER_PMD : 1; 4934 cond_resched(); 4935 } 4936 } 4937 4938 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn) 4939 { 4940 int level, rc; 4941 bool assigned; 4942 4943 if (!sev_snp_guest(kvm)) 4944 return 0; 4945 4946 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4947 if (rc || !assigned) 4948 return PG_LEVEL_4K; 4949 4950 return level; 4951 } 4952