1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 #include <uapi/linux/sev-guest.h> 23 24 #include <asm/pkru.h> 25 #include <asm/trapnr.h> 26 #include <asm/fpu/xcr.h> 27 #include <asm/fpu/xstate.h> 28 #include <asm/debugreg.h> 29 #include <asm/msr.h> 30 #include <asm/sev.h> 31 32 #include "mmu.h" 33 #include "x86.h" 34 #include "svm.h" 35 #include "svm_ops.h" 36 #include "cpuid.h" 37 #include "trace.h" 38 39 #define GHCB_VERSION_MAX 2ULL 40 #define GHCB_VERSION_MIN 1ULL 41 42 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION) 43 44 /* enable/disable SEV support */ 45 static bool sev_enabled = true; 46 module_param_named(sev, sev_enabled, bool, 0444); 47 48 /* enable/disable SEV-ES support */ 49 static bool sev_es_enabled = true; 50 module_param_named(sev_es, sev_es_enabled, bool, 0444); 51 52 /* enable/disable SEV-SNP support */ 53 static bool sev_snp_enabled = true; 54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444); 55 56 /* enable/disable SEV-ES DebugSwap support */ 57 static bool sev_es_debug_swap_enabled = true; 58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 59 static u64 sev_supported_vmsa_features; 60 61 static unsigned int nr_ciphertext_hiding_asids; 62 module_param_named(ciphertext_hiding_asids, nr_ciphertext_hiding_asids, uint, 0444); 63 64 #define AP_RESET_HOLD_NONE 0 65 #define AP_RESET_HOLD_NAE_EVENT 1 66 #define AP_RESET_HOLD_MSR_PROTO 2 67 68 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */ 69 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0) 70 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8) 71 #define SNP_POLICY_MASK_SMT BIT_ULL(16) 72 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17) 73 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19) 74 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20) 75 76 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \ 77 SNP_POLICY_MASK_API_MAJOR | \ 78 SNP_POLICY_MASK_SMT | \ 79 SNP_POLICY_MASK_RSVD_MBO | \ 80 SNP_POLICY_MASK_DEBUG | \ 81 SNP_POLICY_MASK_SINGLE_SOCKET) 82 83 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000 84 85 static u8 sev_enc_bit; 86 static DECLARE_RWSEM(sev_deactivate_lock); 87 static DEFINE_MUTEX(sev_bitmap_lock); 88 unsigned int max_sev_asid; 89 static unsigned int min_sev_asid; 90 static unsigned int max_sev_es_asid; 91 static unsigned int min_sev_es_asid; 92 static unsigned int max_snp_asid; 93 static unsigned int min_snp_asid; 94 static unsigned long sev_me_mask; 95 static unsigned int nr_asids; 96 static unsigned long *sev_asid_bitmap; 97 static unsigned long *sev_reclaim_asid_bitmap; 98 99 static int snp_decommission_context(struct kvm *kvm); 100 101 struct enc_region { 102 struct list_head list; 103 unsigned long npages; 104 struct page **pages; 105 unsigned long uaddr; 106 unsigned long size; 107 }; 108 109 /* Called with the sev_bitmap_lock held, or on shutdown */ 110 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) 111 { 112 int ret, error = 0; 113 unsigned int asid; 114 115 /* Check if there are any ASIDs to reclaim before performing a flush */ 116 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 117 if (asid > max_asid) 118 return -EBUSY; 119 120 /* 121 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 122 * so it must be guarded. 123 */ 124 down_write(&sev_deactivate_lock); 125 126 /* SNP firmware requires use of WBINVD for ASID recycling. */ 127 wbinvd_on_all_cpus(); 128 129 if (sev_snp_enabled) 130 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error); 131 else 132 ret = sev_guest_df_flush(&error); 133 134 up_write(&sev_deactivate_lock); 135 136 if (ret) 137 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n", 138 sev_snp_enabled ? "-SNP" : "", ret, error); 139 140 return ret; 141 } 142 143 static inline bool is_mirroring_enc_context(struct kvm *kvm) 144 { 145 return !!to_kvm_sev_info(kvm)->enc_context_owner; 146 } 147 148 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm) 149 { 150 struct kvm_vcpu *vcpu = &svm->vcpu; 151 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 152 153 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP; 154 } 155 156 static bool snp_is_secure_tsc_enabled(struct kvm *kvm) 157 { 158 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 159 160 return (sev->vmsa_features & SVM_SEV_FEAT_SECURE_TSC) && 161 !WARN_ON_ONCE(!sev_snp_guest(kvm)); 162 } 163 164 /* Must be called with the sev_bitmap_lock held */ 165 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) 166 { 167 if (sev_flush_asids(min_asid, max_asid)) 168 return false; 169 170 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 171 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 172 nr_asids); 173 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 174 175 return true; 176 } 177 178 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 179 { 180 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 181 return misc_cg_try_charge(type, sev->misc_cg, 1); 182 } 183 184 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 185 { 186 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 187 misc_cg_uncharge(type, sev->misc_cg, 1); 188 } 189 190 static int sev_asid_new(struct kvm_sev_info *sev, unsigned long vm_type) 191 { 192 /* 193 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 194 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 195 */ 196 unsigned int min_asid, max_asid, asid; 197 bool retry = true; 198 int ret; 199 200 if (vm_type == KVM_X86_SNP_VM) { 201 min_asid = min_snp_asid; 202 max_asid = max_snp_asid; 203 } else if (sev->es_active) { 204 min_asid = min_sev_es_asid; 205 max_asid = max_sev_es_asid; 206 } else { 207 min_asid = min_sev_asid; 208 max_asid = max_sev_asid; 209 } 210 211 /* 212 * The min ASID can end up larger than the max if basic SEV support is 213 * effectively disabled by disallowing use of ASIDs for SEV guests. 214 * Similarly for SEV-ES guests the min ASID can end up larger than the 215 * max when ciphertext hiding is enabled, effectively disabling SEV-ES 216 * support. 217 */ 218 if (min_asid > max_asid) 219 return -ENOTTY; 220 221 WARN_ON(sev->misc_cg); 222 sev->misc_cg = get_current_misc_cg(); 223 ret = sev_misc_cg_try_charge(sev); 224 if (ret) { 225 put_misc_cg(sev->misc_cg); 226 sev->misc_cg = NULL; 227 return ret; 228 } 229 230 mutex_lock(&sev_bitmap_lock); 231 232 again: 233 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 234 if (asid > max_asid) { 235 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 236 retry = false; 237 goto again; 238 } 239 mutex_unlock(&sev_bitmap_lock); 240 ret = -EBUSY; 241 goto e_uncharge; 242 } 243 244 __set_bit(asid, sev_asid_bitmap); 245 246 mutex_unlock(&sev_bitmap_lock); 247 248 sev->asid = asid; 249 return 0; 250 e_uncharge: 251 sev_misc_cg_uncharge(sev); 252 put_misc_cg(sev->misc_cg); 253 sev->misc_cg = NULL; 254 return ret; 255 } 256 257 static unsigned int sev_get_asid(struct kvm *kvm) 258 { 259 return to_kvm_sev_info(kvm)->asid; 260 } 261 262 static void sev_asid_free(struct kvm_sev_info *sev) 263 { 264 struct svm_cpu_data *sd; 265 int cpu; 266 267 mutex_lock(&sev_bitmap_lock); 268 269 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 270 271 for_each_possible_cpu(cpu) { 272 sd = per_cpu_ptr(&svm_data, cpu); 273 sd->sev_vmcbs[sev->asid] = NULL; 274 } 275 276 mutex_unlock(&sev_bitmap_lock); 277 278 sev_misc_cg_uncharge(sev); 279 put_misc_cg(sev->misc_cg); 280 sev->misc_cg = NULL; 281 } 282 283 static void sev_decommission(unsigned int handle) 284 { 285 struct sev_data_decommission decommission; 286 287 if (!handle) 288 return; 289 290 decommission.handle = handle; 291 sev_guest_decommission(&decommission, NULL); 292 } 293 294 /* 295 * Transition a page to hypervisor-owned/shared state in the RMP table. This 296 * should not fail under normal conditions, but leak the page should that 297 * happen since it will no longer be usable by the host due to RMP protections. 298 */ 299 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level) 300 { 301 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) { 302 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT); 303 return -EIO; 304 } 305 306 return 0; 307 } 308 309 /* 310 * Certain page-states, such as Pre-Guest and Firmware pages (as documented 311 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be 312 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE 313 * unless they are reclaimed first. 314 * 315 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they 316 * might not be usable by the host due to being set as immutable or still 317 * being associated with a guest ASID. 318 * 319 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be 320 * converted back to shared, as the page is no longer usable due to RMP 321 * protections, and it's infeasible for the guest to continue on. 322 */ 323 static int snp_page_reclaim(struct kvm *kvm, u64 pfn) 324 { 325 struct sev_data_snp_page_reclaim data = {0}; 326 int fw_err, rc; 327 328 data.paddr = __sme_set(pfn << PAGE_SHIFT); 329 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err); 330 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) { 331 snp_leak_pages(pfn, 1); 332 return -EIO; 333 } 334 335 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K)) 336 return -EIO; 337 338 return rc; 339 } 340 341 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 342 { 343 struct sev_data_deactivate deactivate; 344 345 if (!handle) 346 return; 347 348 deactivate.handle = handle; 349 350 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 351 down_read(&sev_deactivate_lock); 352 sev_guest_deactivate(&deactivate, NULL); 353 up_read(&sev_deactivate_lock); 354 355 sev_decommission(handle); 356 } 357 358 /* 359 * This sets up bounce buffers/firmware pages to handle SNP Guest Request 360 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB 361 * 2.0 specification for more details. 362 * 363 * Technically, when an SNP Guest Request is issued, the guest will provide its 364 * own request/response pages, which could in theory be passed along directly 365 * to firmware rather than using bounce pages. However, these pages would need 366 * special care: 367 * 368 * - Both pages are from shared guest memory, so they need to be protected 369 * from migration/etc. occurring while firmware reads/writes to them. At a 370 * minimum, this requires elevating the ref counts and potentially needing 371 * an explicit pinning of the memory. This places additional restrictions 372 * on what type of memory backends userspace can use for shared guest 373 * memory since there is some reliance on using refcounted pages. 374 * 375 * - The response page needs to be switched to Firmware-owned[1] state 376 * before the firmware can write to it, which can lead to potential 377 * host RMP #PFs if the guest is misbehaved and hands the host a 378 * guest page that KVM might write to for other reasons (e.g. virtio 379 * buffers/etc.). 380 * 381 * Both of these issues can be avoided completely by using separately-allocated 382 * bounce pages for both the request/response pages and passing those to 383 * firmware instead. So that's what is being set up here. 384 * 385 * Guest requests rely on message sequence numbers to ensure requests are 386 * issued to firmware in the order the guest issues them, so concurrent guest 387 * requests generally shouldn't happen. But a misbehaved guest could issue 388 * concurrent guest requests in theory, so a mutex is used to serialize 389 * access to the bounce buffers. 390 * 391 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more 392 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks" 393 * in the APM for details on the related RMP restrictions. 394 */ 395 static int snp_guest_req_init(struct kvm *kvm) 396 { 397 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 398 struct page *req_page; 399 400 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 401 if (!req_page) 402 return -ENOMEM; 403 404 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 405 if (!sev->guest_resp_buf) { 406 __free_page(req_page); 407 return -EIO; 408 } 409 410 sev->guest_req_buf = page_address(req_page); 411 mutex_init(&sev->guest_req_mutex); 412 413 return 0; 414 } 415 416 static void snp_guest_req_cleanup(struct kvm *kvm) 417 { 418 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 419 420 if (sev->guest_resp_buf) 421 snp_free_firmware_page(sev->guest_resp_buf); 422 423 if (sev->guest_req_buf) 424 __free_page(virt_to_page(sev->guest_req_buf)); 425 426 sev->guest_req_buf = NULL; 427 sev->guest_resp_buf = NULL; 428 } 429 430 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp, 431 struct kvm_sev_init *data, 432 unsigned long vm_type) 433 { 434 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 435 struct sev_platform_init_args init_args = {0}; 436 bool es_active = vm_type != KVM_X86_SEV_VM; 437 bool snp_active = vm_type == KVM_X86_SNP_VM; 438 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0; 439 int ret; 440 441 if (kvm->created_vcpus) 442 return -EINVAL; 443 444 if (data->flags) 445 return -EINVAL; 446 447 if (!snp_active) 448 valid_vmsa_features &= ~SVM_SEV_FEAT_SECURE_TSC; 449 450 if (data->vmsa_features & ~valid_vmsa_features) 451 return -EINVAL; 452 453 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version)) 454 return -EINVAL; 455 456 /* 457 * KVM supports the full range of mandatory features defined by version 458 * 2 of the GHCB protocol, so default to that for SEV-ES guests created 459 * via KVM_SEV_INIT2 (KVM_SEV_INIT forces version 1). 460 */ 461 if (es_active && !data->ghcb_version) 462 data->ghcb_version = 2; 463 464 if (snp_active && data->ghcb_version < 2) 465 return -EINVAL; 466 467 if (unlikely(sev->active)) 468 return -EINVAL; 469 470 sev->active = true; 471 sev->es_active = es_active; 472 sev->vmsa_features = data->vmsa_features; 473 sev->ghcb_version = data->ghcb_version; 474 475 if (snp_active) 476 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE; 477 478 ret = sev_asid_new(sev, vm_type); 479 if (ret) 480 goto e_no_asid; 481 482 init_args.probe = false; 483 ret = sev_platform_init(&init_args); 484 if (ret) 485 goto e_free_asid; 486 487 if (!zalloc_cpumask_var(&sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) { 488 ret = -ENOMEM; 489 goto e_free_asid; 490 } 491 492 /* This needs to happen after SEV/SNP firmware initialization. */ 493 if (snp_active) { 494 ret = snp_guest_req_init(kvm); 495 if (ret) 496 goto e_free; 497 } 498 499 INIT_LIST_HEAD(&sev->regions_list); 500 INIT_LIST_HEAD(&sev->mirror_vms); 501 sev->need_init = false; 502 503 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 504 505 return 0; 506 507 e_free: 508 free_cpumask_var(sev->have_run_cpus); 509 e_free_asid: 510 argp->error = init_args.error; 511 sev_asid_free(sev); 512 sev->asid = 0; 513 e_no_asid: 514 sev->vmsa_features = 0; 515 sev->es_active = false; 516 sev->active = false; 517 return ret; 518 } 519 520 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 521 { 522 struct kvm_sev_init data = { 523 .vmsa_features = 0, 524 .ghcb_version = 0, 525 }; 526 unsigned long vm_type; 527 528 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM) 529 return -EINVAL; 530 531 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM); 532 533 /* 534 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will 535 * continue to only ever support the minimal GHCB protocol version. 536 */ 537 if (vm_type == KVM_X86_SEV_ES_VM) 538 data.ghcb_version = GHCB_VERSION_MIN; 539 540 return __sev_guest_init(kvm, argp, &data, vm_type); 541 } 542 543 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp) 544 { 545 struct kvm_sev_init data; 546 547 if (!to_kvm_sev_info(kvm)->need_init) 548 return -EINVAL; 549 550 if (kvm->arch.vm_type != KVM_X86_SEV_VM && 551 kvm->arch.vm_type != KVM_X86_SEV_ES_VM && 552 kvm->arch.vm_type != KVM_X86_SNP_VM) 553 return -EINVAL; 554 555 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data))) 556 return -EFAULT; 557 558 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type); 559 } 560 561 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 562 { 563 unsigned int asid = sev_get_asid(kvm); 564 struct sev_data_activate activate; 565 int ret; 566 567 /* activate ASID on the given handle */ 568 activate.handle = handle; 569 activate.asid = asid; 570 ret = sev_guest_activate(&activate, error); 571 572 return ret; 573 } 574 575 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 576 { 577 CLASS(fd, f)(fd); 578 579 if (fd_empty(f)) 580 return -EBADF; 581 582 return sev_issue_cmd_external_user(fd_file(f), id, data, error); 583 } 584 585 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 586 { 587 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 588 589 return __sev_issue_cmd(sev->fd, id, data, error); 590 } 591 592 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 593 { 594 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 595 struct sev_data_launch_start start; 596 struct kvm_sev_launch_start params; 597 void *dh_blob, *session_blob; 598 int *error = &argp->error; 599 int ret; 600 601 if (!sev_guest(kvm)) 602 return -ENOTTY; 603 604 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 605 return -EFAULT; 606 607 memset(&start, 0, sizeof(start)); 608 609 dh_blob = NULL; 610 if (params.dh_uaddr) { 611 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 612 if (IS_ERR(dh_blob)) 613 return PTR_ERR(dh_blob); 614 615 start.dh_cert_address = __sme_set(__pa(dh_blob)); 616 start.dh_cert_len = params.dh_len; 617 } 618 619 session_blob = NULL; 620 if (params.session_uaddr) { 621 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 622 if (IS_ERR(session_blob)) { 623 ret = PTR_ERR(session_blob); 624 goto e_free_dh; 625 } 626 627 start.session_address = __sme_set(__pa(session_blob)); 628 start.session_len = params.session_len; 629 } 630 631 start.handle = params.handle; 632 start.policy = params.policy; 633 634 /* create memory encryption context */ 635 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 636 if (ret) 637 goto e_free_session; 638 639 /* Bind ASID to this guest */ 640 ret = sev_bind_asid(kvm, start.handle, error); 641 if (ret) { 642 sev_decommission(start.handle); 643 goto e_free_session; 644 } 645 646 /* return handle to userspace */ 647 params.handle = start.handle; 648 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) { 649 sev_unbind_asid(kvm, start.handle); 650 ret = -EFAULT; 651 goto e_free_session; 652 } 653 654 sev->policy = params.policy; 655 sev->handle = start.handle; 656 sev->fd = argp->sev_fd; 657 658 e_free_session: 659 kfree(session_blob); 660 e_free_dh: 661 kfree(dh_blob); 662 return ret; 663 } 664 665 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 666 unsigned long ulen, unsigned long *n, 667 unsigned int flags) 668 { 669 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 670 unsigned long npages, size; 671 int npinned; 672 unsigned long locked, lock_limit; 673 struct page **pages; 674 unsigned long first, last; 675 int ret; 676 677 lockdep_assert_held(&kvm->lock); 678 679 if (ulen == 0 || uaddr + ulen < uaddr) 680 return ERR_PTR(-EINVAL); 681 682 /* Calculate number of pages. */ 683 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 684 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 685 npages = (last - first + 1); 686 687 locked = sev->pages_locked + npages; 688 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 689 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 690 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 691 return ERR_PTR(-ENOMEM); 692 } 693 694 if (WARN_ON_ONCE(npages > INT_MAX)) 695 return ERR_PTR(-EINVAL); 696 697 /* Avoid using vmalloc for smaller buffers. */ 698 size = npages * sizeof(struct page *); 699 if (size > PAGE_SIZE) 700 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT); 701 else 702 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 703 704 if (!pages) 705 return ERR_PTR(-ENOMEM); 706 707 /* Pin the user virtual address. */ 708 npinned = pin_user_pages_fast(uaddr, npages, flags, pages); 709 if (npinned != npages) { 710 pr_err("SEV: Failure locking %lu pages.\n", npages); 711 ret = -ENOMEM; 712 goto err; 713 } 714 715 *n = npages; 716 sev->pages_locked = locked; 717 718 return pages; 719 720 err: 721 if (npinned > 0) 722 unpin_user_pages(pages, npinned); 723 724 kvfree(pages); 725 return ERR_PTR(ret); 726 } 727 728 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 729 unsigned long npages) 730 { 731 unpin_user_pages(pages, npages); 732 kvfree(pages); 733 to_kvm_sev_info(kvm)->pages_locked -= npages; 734 } 735 736 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 737 { 738 uint8_t *page_virtual; 739 unsigned long i; 740 741 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 742 pages == NULL) 743 return; 744 745 for (i = 0; i < npages; i++) { 746 page_virtual = kmap_local_page(pages[i]); 747 clflush_cache_range(page_virtual, PAGE_SIZE); 748 kunmap_local(page_virtual); 749 cond_resched(); 750 } 751 } 752 753 static void sev_writeback_caches(struct kvm *kvm) 754 { 755 /* 756 * Ensure that all dirty guest tagged cache entries are written back 757 * before releasing the pages back to the system for use. CLFLUSH will 758 * not do this without SME_COHERENT, and flushing many cache lines 759 * individually is slower than blasting WBINVD for large VMs, so issue 760 * WBNOINVD (or WBINVD if the "no invalidate" variant is unsupported) 761 * on CPUs that have done VMRUN, i.e. may have dirtied data using the 762 * VM's ASID. 763 * 764 * For simplicity, never remove CPUs from the bitmap. Ideally, KVM 765 * would clear the mask when flushing caches, but doing so requires 766 * serializing multiple calls and having responding CPUs (to the IPI) 767 * mark themselves as still running if they are running (or about to 768 * run) a vCPU for the VM. 769 * 770 * Note, the caller is responsible for ensuring correctness if the mask 771 * can be modified, e.g. if a CPU could be doing VMRUN. 772 */ 773 wbnoinvd_on_cpus_mask(to_kvm_sev_info(kvm)->have_run_cpus); 774 } 775 776 static unsigned long get_num_contig_pages(unsigned long idx, 777 struct page **inpages, unsigned long npages) 778 { 779 unsigned long paddr, next_paddr; 780 unsigned long i = idx + 1, pages = 1; 781 782 /* find the number of contiguous pages starting from idx */ 783 paddr = __sme_page_pa(inpages[idx]); 784 while (i < npages) { 785 next_paddr = __sme_page_pa(inpages[i++]); 786 if ((paddr + PAGE_SIZE) == next_paddr) { 787 pages++; 788 paddr = next_paddr; 789 continue; 790 } 791 break; 792 } 793 794 return pages; 795 } 796 797 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 798 { 799 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 800 struct kvm_sev_launch_update_data params; 801 struct sev_data_launch_update_data data; 802 struct page **inpages; 803 int ret; 804 805 if (!sev_guest(kvm)) 806 return -ENOTTY; 807 808 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 809 return -EFAULT; 810 811 vaddr = params.uaddr; 812 size = params.len; 813 vaddr_end = vaddr + size; 814 815 /* Lock the user memory. */ 816 inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE); 817 if (IS_ERR(inpages)) 818 return PTR_ERR(inpages); 819 820 /* 821 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 822 * place; the cache may contain the data that was written unencrypted. 823 */ 824 sev_clflush_pages(inpages, npages); 825 826 data.reserved = 0; 827 data.handle = to_kvm_sev_info(kvm)->handle; 828 829 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 830 int offset, len; 831 832 /* 833 * If the user buffer is not page-aligned, calculate the offset 834 * within the page. 835 */ 836 offset = vaddr & (PAGE_SIZE - 1); 837 838 /* Calculate the number of pages that can be encrypted in one go. */ 839 pages = get_num_contig_pages(i, inpages, npages); 840 841 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 842 843 data.len = len; 844 data.address = __sme_page_pa(inpages[i]) + offset; 845 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 846 if (ret) 847 goto e_unpin; 848 849 size -= len; 850 next_vaddr = vaddr + len; 851 } 852 853 e_unpin: 854 /* content of memory is updated, mark pages dirty */ 855 for (i = 0; i < npages; i++) { 856 set_page_dirty_lock(inpages[i]); 857 mark_page_accessed(inpages[i]); 858 } 859 /* unlock the user pages */ 860 sev_unpin_memory(kvm, inpages, npages); 861 return ret; 862 } 863 864 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 865 { 866 struct kvm_vcpu *vcpu = &svm->vcpu; 867 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 868 struct sev_es_save_area *save = svm->sev_es.vmsa; 869 struct xregs_state *xsave; 870 const u8 *s; 871 u8 *d; 872 int i; 873 874 /* Check some debug related fields before encrypting the VMSA */ 875 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 876 return -EINVAL; 877 878 /* 879 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 880 * the traditional VMSA that is part of the VMCB. Copy the 881 * traditional VMSA as it has been built so far (in prep 882 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 883 */ 884 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 885 886 /* Sync registgers */ 887 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 888 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 889 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 890 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 891 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 892 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 893 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 894 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 895 #ifdef CONFIG_X86_64 896 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 897 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 898 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 899 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 900 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 901 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 902 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 903 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 904 #endif 905 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 906 907 /* Sync some non-GPR registers before encrypting */ 908 save->xcr0 = svm->vcpu.arch.xcr0; 909 save->pkru = svm->vcpu.arch.pkru; 910 save->xss = svm->vcpu.arch.ia32_xss; 911 save->dr6 = svm->vcpu.arch.dr6; 912 913 save->sev_features = sev->vmsa_features; 914 915 /* 916 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid 917 * breaking older measurements. 918 */ 919 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) { 920 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave; 921 save->x87_dp = xsave->i387.rdp; 922 save->mxcsr = xsave->i387.mxcsr; 923 save->x87_ftw = xsave->i387.twd; 924 save->x87_fsw = xsave->i387.swd; 925 save->x87_fcw = xsave->i387.cwd; 926 save->x87_fop = xsave->i387.fop; 927 save->x87_ds = 0; 928 save->x87_cs = 0; 929 save->x87_rip = xsave->i387.rip; 930 931 for (i = 0; i < 8; i++) { 932 /* 933 * The format of the x87 save area is undocumented and 934 * definitely not what you would expect. It consists of 935 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes 936 * area with bytes 8-9 of each register. 937 */ 938 d = save->fpreg_x87 + i * 8; 939 s = ((u8 *)xsave->i387.st_space) + i * 16; 940 memcpy(d, s, 8); 941 save->fpreg_x87[64 + i * 2] = s[8]; 942 save->fpreg_x87[64 + i * 2 + 1] = s[9]; 943 } 944 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256); 945 946 s = get_xsave_addr(xsave, XFEATURE_YMM); 947 if (s) 948 memcpy(save->fpreg_ymm, s, 256); 949 else 950 memset(save->fpreg_ymm, 0, 256); 951 } 952 953 pr_debug("Virtual Machine Save Area (VMSA):\n"); 954 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 955 956 return 0; 957 } 958 959 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 960 int *error) 961 { 962 struct sev_data_launch_update_vmsa vmsa; 963 struct vcpu_svm *svm = to_svm(vcpu); 964 int ret; 965 966 if (vcpu->guest_debug) { 967 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 968 return -EINVAL; 969 } 970 971 /* Perform some pre-encryption checks against the VMSA */ 972 ret = sev_es_sync_vmsa(svm); 973 if (ret) 974 return ret; 975 976 /* 977 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 978 * the VMSA memory content (i.e it will write the same memory region 979 * with the guest's key), so invalidate it first. 980 */ 981 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 982 983 vmsa.reserved = 0; 984 vmsa.handle = to_kvm_sev_info(kvm)->handle; 985 vmsa.address = __sme_pa(svm->sev_es.vmsa); 986 vmsa.len = PAGE_SIZE; 987 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 988 if (ret) 989 return ret; 990 991 /* 992 * SEV-ES guests maintain an encrypted version of their FPU 993 * state which is restored and saved on VMRUN and VMEXIT. 994 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 995 * do xsave/xrstor on it. 996 */ 997 fpstate_set_confidential(&vcpu->arch.guest_fpu); 998 vcpu->arch.guest_state_protected = true; 999 1000 /* 1001 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it 1002 * only after setting guest_state_protected because KVM_SET_MSRS allows 1003 * dynamic toggling of LBRV (for performance reason) on write access to 1004 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 1005 */ 1006 svm_enable_lbrv(vcpu); 1007 return 0; 1008 } 1009 1010 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 1011 { 1012 struct kvm_vcpu *vcpu; 1013 unsigned long i; 1014 int ret; 1015 1016 if (!sev_es_guest(kvm)) 1017 return -ENOTTY; 1018 1019 kvm_for_each_vcpu(i, vcpu, kvm) { 1020 ret = mutex_lock_killable(&vcpu->mutex); 1021 if (ret) 1022 return ret; 1023 1024 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 1025 1026 mutex_unlock(&vcpu->mutex); 1027 if (ret) 1028 return ret; 1029 } 1030 1031 return 0; 1032 } 1033 1034 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 1035 { 1036 void __user *measure = u64_to_user_ptr(argp->data); 1037 struct sev_data_launch_measure data; 1038 struct kvm_sev_launch_measure params; 1039 void __user *p = NULL; 1040 void *blob = NULL; 1041 int ret; 1042 1043 if (!sev_guest(kvm)) 1044 return -ENOTTY; 1045 1046 if (copy_from_user(¶ms, measure, sizeof(params))) 1047 return -EFAULT; 1048 1049 memset(&data, 0, sizeof(data)); 1050 1051 /* User wants to query the blob length */ 1052 if (!params.len) 1053 goto cmd; 1054 1055 p = u64_to_user_ptr(params.uaddr); 1056 if (p) { 1057 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1058 return -EINVAL; 1059 1060 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1061 if (!blob) 1062 return -ENOMEM; 1063 1064 data.address = __psp_pa(blob); 1065 data.len = params.len; 1066 } 1067 1068 cmd: 1069 data.handle = to_kvm_sev_info(kvm)->handle; 1070 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 1071 1072 /* 1073 * If we query the session length, FW responded with expected data. 1074 */ 1075 if (!params.len) 1076 goto done; 1077 1078 if (ret) 1079 goto e_free_blob; 1080 1081 if (blob) { 1082 if (copy_to_user(p, blob, params.len)) 1083 ret = -EFAULT; 1084 } 1085 1086 done: 1087 params.len = data.len; 1088 if (copy_to_user(measure, ¶ms, sizeof(params))) 1089 ret = -EFAULT; 1090 e_free_blob: 1091 kfree(blob); 1092 return ret; 1093 } 1094 1095 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1096 { 1097 struct sev_data_launch_finish data; 1098 1099 if (!sev_guest(kvm)) 1100 return -ENOTTY; 1101 1102 data.handle = to_kvm_sev_info(kvm)->handle; 1103 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 1104 } 1105 1106 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 1107 { 1108 struct kvm_sev_guest_status params; 1109 struct sev_data_guest_status data; 1110 int ret; 1111 1112 if (!sev_guest(kvm)) 1113 return -ENOTTY; 1114 1115 memset(&data, 0, sizeof(data)); 1116 1117 data.handle = to_kvm_sev_info(kvm)->handle; 1118 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 1119 if (ret) 1120 return ret; 1121 1122 params.policy = data.policy; 1123 params.state = data.state; 1124 params.handle = data.handle; 1125 1126 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 1127 ret = -EFAULT; 1128 1129 return ret; 1130 } 1131 1132 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 1133 unsigned long dst, int size, 1134 int *error, bool enc) 1135 { 1136 struct sev_data_dbg data; 1137 1138 data.reserved = 0; 1139 data.handle = to_kvm_sev_info(kvm)->handle; 1140 data.dst_addr = dst; 1141 data.src_addr = src; 1142 data.len = size; 1143 1144 return sev_issue_cmd(kvm, 1145 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 1146 &data, error); 1147 } 1148 1149 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 1150 unsigned long dst_paddr, int sz, int *err) 1151 { 1152 int offset; 1153 1154 /* 1155 * Its safe to read more than we are asked, caller should ensure that 1156 * destination has enough space. 1157 */ 1158 offset = src_paddr & 15; 1159 src_paddr = round_down(src_paddr, 16); 1160 sz = round_up(sz + offset, 16); 1161 1162 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 1163 } 1164 1165 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 1166 void __user *dst_uaddr, 1167 unsigned long dst_paddr, 1168 int size, int *err) 1169 { 1170 struct page *tpage = NULL; 1171 int ret, offset; 1172 1173 /* if inputs are not 16-byte then use intermediate buffer */ 1174 if (!IS_ALIGNED(dst_paddr, 16) || 1175 !IS_ALIGNED(paddr, 16) || 1176 !IS_ALIGNED(size, 16)) { 1177 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1178 if (!tpage) 1179 return -ENOMEM; 1180 1181 dst_paddr = __sme_page_pa(tpage); 1182 } 1183 1184 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 1185 if (ret) 1186 goto e_free; 1187 1188 if (tpage) { 1189 offset = paddr & 15; 1190 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 1191 ret = -EFAULT; 1192 } 1193 1194 e_free: 1195 if (tpage) 1196 __free_page(tpage); 1197 1198 return ret; 1199 } 1200 1201 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 1202 void __user *vaddr, 1203 unsigned long dst_paddr, 1204 void __user *dst_vaddr, 1205 int size, int *error) 1206 { 1207 struct page *src_tpage = NULL; 1208 struct page *dst_tpage = NULL; 1209 int ret, len = size; 1210 1211 /* If source buffer is not aligned then use an intermediate buffer */ 1212 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 1213 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1214 if (!src_tpage) 1215 return -ENOMEM; 1216 1217 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 1218 __free_page(src_tpage); 1219 return -EFAULT; 1220 } 1221 1222 paddr = __sme_page_pa(src_tpage); 1223 } 1224 1225 /* 1226 * If destination buffer or length is not aligned then do read-modify-write: 1227 * - decrypt destination in an intermediate buffer 1228 * - copy the source buffer in an intermediate buffer 1229 * - use the intermediate buffer as source buffer 1230 */ 1231 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 1232 int dst_offset; 1233 1234 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1235 if (!dst_tpage) { 1236 ret = -ENOMEM; 1237 goto e_free; 1238 } 1239 1240 ret = __sev_dbg_decrypt(kvm, dst_paddr, 1241 __sme_page_pa(dst_tpage), size, error); 1242 if (ret) 1243 goto e_free; 1244 1245 /* 1246 * If source is kernel buffer then use memcpy() otherwise 1247 * copy_from_user(). 1248 */ 1249 dst_offset = dst_paddr & 15; 1250 1251 if (src_tpage) 1252 memcpy(page_address(dst_tpage) + dst_offset, 1253 page_address(src_tpage), size); 1254 else { 1255 if (copy_from_user(page_address(dst_tpage) + dst_offset, 1256 vaddr, size)) { 1257 ret = -EFAULT; 1258 goto e_free; 1259 } 1260 } 1261 1262 paddr = __sme_page_pa(dst_tpage); 1263 dst_paddr = round_down(dst_paddr, 16); 1264 len = round_up(size, 16); 1265 } 1266 1267 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 1268 1269 e_free: 1270 if (src_tpage) 1271 __free_page(src_tpage); 1272 if (dst_tpage) 1273 __free_page(dst_tpage); 1274 return ret; 1275 } 1276 1277 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 1278 { 1279 unsigned long vaddr, vaddr_end, next_vaddr; 1280 unsigned long dst_vaddr; 1281 struct page **src_p, **dst_p; 1282 struct kvm_sev_dbg debug; 1283 unsigned long n; 1284 unsigned int size; 1285 int ret; 1286 1287 if (!sev_guest(kvm)) 1288 return -ENOTTY; 1289 1290 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug))) 1291 return -EFAULT; 1292 1293 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 1294 return -EINVAL; 1295 if (!debug.dst_uaddr) 1296 return -EINVAL; 1297 1298 vaddr = debug.src_uaddr; 1299 size = debug.len; 1300 vaddr_end = vaddr + size; 1301 dst_vaddr = debug.dst_uaddr; 1302 1303 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 1304 int len, s_off, d_off; 1305 1306 /* lock userspace source and destination page */ 1307 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 1308 if (IS_ERR(src_p)) 1309 return PTR_ERR(src_p); 1310 1311 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE); 1312 if (IS_ERR(dst_p)) { 1313 sev_unpin_memory(kvm, src_p, n); 1314 return PTR_ERR(dst_p); 1315 } 1316 1317 /* 1318 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 1319 * the pages; flush the destination too so that future accesses do not 1320 * see stale data. 1321 */ 1322 sev_clflush_pages(src_p, 1); 1323 sev_clflush_pages(dst_p, 1); 1324 1325 /* 1326 * Since user buffer may not be page aligned, calculate the 1327 * offset within the page. 1328 */ 1329 s_off = vaddr & ~PAGE_MASK; 1330 d_off = dst_vaddr & ~PAGE_MASK; 1331 len = min_t(size_t, (PAGE_SIZE - s_off), size); 1332 1333 if (dec) 1334 ret = __sev_dbg_decrypt_user(kvm, 1335 __sme_page_pa(src_p[0]) + s_off, 1336 (void __user *)dst_vaddr, 1337 __sme_page_pa(dst_p[0]) + d_off, 1338 len, &argp->error); 1339 else 1340 ret = __sev_dbg_encrypt_user(kvm, 1341 __sme_page_pa(src_p[0]) + s_off, 1342 (void __user *)vaddr, 1343 __sme_page_pa(dst_p[0]) + d_off, 1344 (void __user *)dst_vaddr, 1345 len, &argp->error); 1346 1347 sev_unpin_memory(kvm, src_p, n); 1348 sev_unpin_memory(kvm, dst_p, n); 1349 1350 if (ret) 1351 goto err; 1352 1353 next_vaddr = vaddr + len; 1354 dst_vaddr = dst_vaddr + len; 1355 size -= len; 1356 } 1357 err: 1358 return ret; 1359 } 1360 1361 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1362 { 1363 struct sev_data_launch_secret data; 1364 struct kvm_sev_launch_secret params; 1365 struct page **pages; 1366 void *blob, *hdr; 1367 unsigned long n, i; 1368 int ret, offset; 1369 1370 if (!sev_guest(kvm)) 1371 return -ENOTTY; 1372 1373 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1374 return -EFAULT; 1375 1376 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE); 1377 if (IS_ERR(pages)) 1378 return PTR_ERR(pages); 1379 1380 /* 1381 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1382 * place; the cache may contain the data that was written unencrypted. 1383 */ 1384 sev_clflush_pages(pages, n); 1385 1386 /* 1387 * The secret must be copied into contiguous memory region, lets verify 1388 * that userspace memory pages are contiguous before we issue command. 1389 */ 1390 if (get_num_contig_pages(0, pages, n) != n) { 1391 ret = -EINVAL; 1392 goto e_unpin_memory; 1393 } 1394 1395 memset(&data, 0, sizeof(data)); 1396 1397 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1398 data.guest_address = __sme_page_pa(pages[0]) + offset; 1399 data.guest_len = params.guest_len; 1400 1401 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1402 if (IS_ERR(blob)) { 1403 ret = PTR_ERR(blob); 1404 goto e_unpin_memory; 1405 } 1406 1407 data.trans_address = __psp_pa(blob); 1408 data.trans_len = params.trans_len; 1409 1410 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1411 if (IS_ERR(hdr)) { 1412 ret = PTR_ERR(hdr); 1413 goto e_free_blob; 1414 } 1415 data.hdr_address = __psp_pa(hdr); 1416 data.hdr_len = params.hdr_len; 1417 1418 data.handle = to_kvm_sev_info(kvm)->handle; 1419 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1420 1421 kfree(hdr); 1422 1423 e_free_blob: 1424 kfree(blob); 1425 e_unpin_memory: 1426 /* content of memory is updated, mark pages dirty */ 1427 for (i = 0; i < n; i++) { 1428 set_page_dirty_lock(pages[i]); 1429 mark_page_accessed(pages[i]); 1430 } 1431 sev_unpin_memory(kvm, pages, n); 1432 return ret; 1433 } 1434 1435 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1436 { 1437 void __user *report = u64_to_user_ptr(argp->data); 1438 struct sev_data_attestation_report data; 1439 struct kvm_sev_attestation_report params; 1440 void __user *p; 1441 void *blob = NULL; 1442 int ret; 1443 1444 if (!sev_guest(kvm)) 1445 return -ENOTTY; 1446 1447 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1448 return -EFAULT; 1449 1450 memset(&data, 0, sizeof(data)); 1451 1452 /* User wants to query the blob length */ 1453 if (!params.len) 1454 goto cmd; 1455 1456 p = u64_to_user_ptr(params.uaddr); 1457 if (p) { 1458 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1459 return -EINVAL; 1460 1461 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1462 if (!blob) 1463 return -ENOMEM; 1464 1465 data.address = __psp_pa(blob); 1466 data.len = params.len; 1467 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1468 } 1469 cmd: 1470 data.handle = to_kvm_sev_info(kvm)->handle; 1471 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1472 /* 1473 * If we query the session length, FW responded with expected data. 1474 */ 1475 if (!params.len) 1476 goto done; 1477 1478 if (ret) 1479 goto e_free_blob; 1480 1481 if (blob) { 1482 if (copy_to_user(p, blob, params.len)) 1483 ret = -EFAULT; 1484 } 1485 1486 done: 1487 params.len = data.len; 1488 if (copy_to_user(report, ¶ms, sizeof(params))) 1489 ret = -EFAULT; 1490 e_free_blob: 1491 kfree(blob); 1492 return ret; 1493 } 1494 1495 /* Userspace wants to query session length. */ 1496 static int 1497 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1498 struct kvm_sev_send_start *params) 1499 { 1500 struct sev_data_send_start data; 1501 int ret; 1502 1503 memset(&data, 0, sizeof(data)); 1504 data.handle = to_kvm_sev_info(kvm)->handle; 1505 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1506 1507 params->session_len = data.session_len; 1508 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1509 sizeof(struct kvm_sev_send_start))) 1510 ret = -EFAULT; 1511 1512 return ret; 1513 } 1514 1515 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1516 { 1517 struct sev_data_send_start data; 1518 struct kvm_sev_send_start params; 1519 void *amd_certs, *session_data; 1520 void *pdh_cert, *plat_certs; 1521 int ret; 1522 1523 if (!sev_guest(kvm)) 1524 return -ENOTTY; 1525 1526 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1527 sizeof(struct kvm_sev_send_start))) 1528 return -EFAULT; 1529 1530 /* if session_len is zero, userspace wants to query the session length */ 1531 if (!params.session_len) 1532 return __sev_send_start_query_session_length(kvm, argp, 1533 ¶ms); 1534 1535 /* some sanity checks */ 1536 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1537 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1538 return -EINVAL; 1539 1540 /* allocate the memory to hold the session data blob */ 1541 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1542 if (!session_data) 1543 return -ENOMEM; 1544 1545 /* copy the certificate blobs from userspace */ 1546 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1547 params.pdh_cert_len); 1548 if (IS_ERR(pdh_cert)) { 1549 ret = PTR_ERR(pdh_cert); 1550 goto e_free_session; 1551 } 1552 1553 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1554 params.plat_certs_len); 1555 if (IS_ERR(plat_certs)) { 1556 ret = PTR_ERR(plat_certs); 1557 goto e_free_pdh; 1558 } 1559 1560 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1561 params.amd_certs_len); 1562 if (IS_ERR(amd_certs)) { 1563 ret = PTR_ERR(amd_certs); 1564 goto e_free_plat_cert; 1565 } 1566 1567 /* populate the FW SEND_START field with system physical address */ 1568 memset(&data, 0, sizeof(data)); 1569 data.pdh_cert_address = __psp_pa(pdh_cert); 1570 data.pdh_cert_len = params.pdh_cert_len; 1571 data.plat_certs_address = __psp_pa(plat_certs); 1572 data.plat_certs_len = params.plat_certs_len; 1573 data.amd_certs_address = __psp_pa(amd_certs); 1574 data.amd_certs_len = params.amd_certs_len; 1575 data.session_address = __psp_pa(session_data); 1576 data.session_len = params.session_len; 1577 data.handle = to_kvm_sev_info(kvm)->handle; 1578 1579 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1580 1581 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr), 1582 session_data, params.session_len)) { 1583 ret = -EFAULT; 1584 goto e_free_amd_cert; 1585 } 1586 1587 params.policy = data.policy; 1588 params.session_len = data.session_len; 1589 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, 1590 sizeof(struct kvm_sev_send_start))) 1591 ret = -EFAULT; 1592 1593 e_free_amd_cert: 1594 kfree(amd_certs); 1595 e_free_plat_cert: 1596 kfree(plat_certs); 1597 e_free_pdh: 1598 kfree(pdh_cert); 1599 e_free_session: 1600 kfree(session_data); 1601 return ret; 1602 } 1603 1604 /* Userspace wants to query either header or trans length. */ 1605 static int 1606 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1607 struct kvm_sev_send_update_data *params) 1608 { 1609 struct sev_data_send_update_data data; 1610 int ret; 1611 1612 memset(&data, 0, sizeof(data)); 1613 data.handle = to_kvm_sev_info(kvm)->handle; 1614 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1615 1616 params->hdr_len = data.hdr_len; 1617 params->trans_len = data.trans_len; 1618 1619 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1620 sizeof(struct kvm_sev_send_update_data))) 1621 ret = -EFAULT; 1622 1623 return ret; 1624 } 1625 1626 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1627 { 1628 struct sev_data_send_update_data data; 1629 struct kvm_sev_send_update_data params; 1630 void *hdr, *trans_data; 1631 struct page **guest_page; 1632 unsigned long n; 1633 int ret, offset; 1634 1635 if (!sev_guest(kvm)) 1636 return -ENOTTY; 1637 1638 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1639 sizeof(struct kvm_sev_send_update_data))) 1640 return -EFAULT; 1641 1642 /* userspace wants to query either header or trans length */ 1643 if (!params.trans_len || !params.hdr_len) 1644 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1645 1646 if (!params.trans_uaddr || !params.guest_uaddr || 1647 !params.guest_len || !params.hdr_uaddr) 1648 return -EINVAL; 1649 1650 /* Check if we are crossing the page boundary */ 1651 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1652 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1653 return -EINVAL; 1654 1655 /* Pin guest memory */ 1656 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1657 PAGE_SIZE, &n, 0); 1658 if (IS_ERR(guest_page)) 1659 return PTR_ERR(guest_page); 1660 1661 /* allocate memory for header and transport buffer */ 1662 ret = -ENOMEM; 1663 hdr = kzalloc(params.hdr_len, GFP_KERNEL); 1664 if (!hdr) 1665 goto e_unpin; 1666 1667 trans_data = kzalloc(params.trans_len, GFP_KERNEL); 1668 if (!trans_data) 1669 goto e_free_hdr; 1670 1671 memset(&data, 0, sizeof(data)); 1672 data.hdr_address = __psp_pa(hdr); 1673 data.hdr_len = params.hdr_len; 1674 data.trans_address = __psp_pa(trans_data); 1675 data.trans_len = params.trans_len; 1676 1677 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1678 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1679 data.guest_address |= sev_me_mask; 1680 data.guest_len = params.guest_len; 1681 data.handle = to_kvm_sev_info(kvm)->handle; 1682 1683 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1684 1685 if (ret) 1686 goto e_free_trans_data; 1687 1688 /* copy transport buffer to user space */ 1689 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr), 1690 trans_data, params.trans_len)) { 1691 ret = -EFAULT; 1692 goto e_free_trans_data; 1693 } 1694 1695 /* Copy packet header to userspace. */ 1696 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr, 1697 params.hdr_len)) 1698 ret = -EFAULT; 1699 1700 e_free_trans_data: 1701 kfree(trans_data); 1702 e_free_hdr: 1703 kfree(hdr); 1704 e_unpin: 1705 sev_unpin_memory(kvm, guest_page, n); 1706 1707 return ret; 1708 } 1709 1710 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1711 { 1712 struct sev_data_send_finish data; 1713 1714 if (!sev_guest(kvm)) 1715 return -ENOTTY; 1716 1717 data.handle = to_kvm_sev_info(kvm)->handle; 1718 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1719 } 1720 1721 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1722 { 1723 struct sev_data_send_cancel data; 1724 1725 if (!sev_guest(kvm)) 1726 return -ENOTTY; 1727 1728 data.handle = to_kvm_sev_info(kvm)->handle; 1729 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1730 } 1731 1732 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1733 { 1734 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 1735 struct sev_data_receive_start start; 1736 struct kvm_sev_receive_start params; 1737 int *error = &argp->error; 1738 void *session_data; 1739 void *pdh_data; 1740 int ret; 1741 1742 if (!sev_guest(kvm)) 1743 return -ENOTTY; 1744 1745 /* Get parameter from the userspace */ 1746 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1747 sizeof(struct kvm_sev_receive_start))) 1748 return -EFAULT; 1749 1750 /* some sanity checks */ 1751 if (!params.pdh_uaddr || !params.pdh_len || 1752 !params.session_uaddr || !params.session_len) 1753 return -EINVAL; 1754 1755 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1756 if (IS_ERR(pdh_data)) 1757 return PTR_ERR(pdh_data); 1758 1759 session_data = psp_copy_user_blob(params.session_uaddr, 1760 params.session_len); 1761 if (IS_ERR(session_data)) { 1762 ret = PTR_ERR(session_data); 1763 goto e_free_pdh; 1764 } 1765 1766 memset(&start, 0, sizeof(start)); 1767 start.handle = params.handle; 1768 start.policy = params.policy; 1769 start.pdh_cert_address = __psp_pa(pdh_data); 1770 start.pdh_cert_len = params.pdh_len; 1771 start.session_address = __psp_pa(session_data); 1772 start.session_len = params.session_len; 1773 1774 /* create memory encryption context */ 1775 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1776 error); 1777 if (ret) 1778 goto e_free_session; 1779 1780 /* Bind ASID to this guest */ 1781 ret = sev_bind_asid(kvm, start.handle, error); 1782 if (ret) { 1783 sev_decommission(start.handle); 1784 goto e_free_session; 1785 } 1786 1787 params.handle = start.handle; 1788 if (copy_to_user(u64_to_user_ptr(argp->data), 1789 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1790 ret = -EFAULT; 1791 sev_unbind_asid(kvm, start.handle); 1792 goto e_free_session; 1793 } 1794 1795 sev->handle = start.handle; 1796 sev->fd = argp->sev_fd; 1797 1798 e_free_session: 1799 kfree(session_data); 1800 e_free_pdh: 1801 kfree(pdh_data); 1802 1803 return ret; 1804 } 1805 1806 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1807 { 1808 struct kvm_sev_receive_update_data params; 1809 struct sev_data_receive_update_data data; 1810 void *hdr = NULL, *trans = NULL; 1811 struct page **guest_page; 1812 unsigned long n; 1813 int ret, offset; 1814 1815 if (!sev_guest(kvm)) 1816 return -EINVAL; 1817 1818 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1819 sizeof(struct kvm_sev_receive_update_data))) 1820 return -EFAULT; 1821 1822 if (!params.hdr_uaddr || !params.hdr_len || 1823 !params.guest_uaddr || !params.guest_len || 1824 !params.trans_uaddr || !params.trans_len) 1825 return -EINVAL; 1826 1827 /* Check if we are crossing the page boundary */ 1828 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1829 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1830 return -EINVAL; 1831 1832 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1833 if (IS_ERR(hdr)) 1834 return PTR_ERR(hdr); 1835 1836 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1837 if (IS_ERR(trans)) { 1838 ret = PTR_ERR(trans); 1839 goto e_free_hdr; 1840 } 1841 1842 memset(&data, 0, sizeof(data)); 1843 data.hdr_address = __psp_pa(hdr); 1844 data.hdr_len = params.hdr_len; 1845 data.trans_address = __psp_pa(trans); 1846 data.trans_len = params.trans_len; 1847 1848 /* Pin guest memory */ 1849 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1850 PAGE_SIZE, &n, FOLL_WRITE); 1851 if (IS_ERR(guest_page)) { 1852 ret = PTR_ERR(guest_page); 1853 goto e_free_trans; 1854 } 1855 1856 /* 1857 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1858 * encrypts the written data with the guest's key, and the cache may 1859 * contain dirty, unencrypted data. 1860 */ 1861 sev_clflush_pages(guest_page, n); 1862 1863 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1864 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1865 data.guest_address |= sev_me_mask; 1866 data.guest_len = params.guest_len; 1867 data.handle = to_kvm_sev_info(kvm)->handle; 1868 1869 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1870 &argp->error); 1871 1872 sev_unpin_memory(kvm, guest_page, n); 1873 1874 e_free_trans: 1875 kfree(trans); 1876 e_free_hdr: 1877 kfree(hdr); 1878 1879 return ret; 1880 } 1881 1882 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1883 { 1884 struct sev_data_receive_finish data; 1885 1886 if (!sev_guest(kvm)) 1887 return -ENOTTY; 1888 1889 data.handle = to_kvm_sev_info(kvm)->handle; 1890 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1891 } 1892 1893 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1894 { 1895 /* 1896 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1897 * active mirror VMs. Also allow the debugging and status commands. 1898 */ 1899 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1900 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1901 cmd_id == KVM_SEV_DBG_ENCRYPT) 1902 return true; 1903 1904 return false; 1905 } 1906 1907 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1908 { 1909 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm); 1910 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm); 1911 int r = -EBUSY; 1912 1913 if (dst_kvm == src_kvm) 1914 return -EINVAL; 1915 1916 /* 1917 * Bail if these VMs are already involved in a migration to avoid 1918 * deadlock between two VMs trying to migrate to/from each other. 1919 */ 1920 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1921 return -EBUSY; 1922 1923 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1924 goto release_dst; 1925 1926 r = -EINTR; 1927 if (mutex_lock_killable(&dst_kvm->lock)) 1928 goto release_src; 1929 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1930 goto unlock_dst; 1931 return 0; 1932 1933 unlock_dst: 1934 mutex_unlock(&dst_kvm->lock); 1935 release_src: 1936 atomic_set_release(&src_sev->migration_in_progress, 0); 1937 release_dst: 1938 atomic_set_release(&dst_sev->migration_in_progress, 0); 1939 return r; 1940 } 1941 1942 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1943 { 1944 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm); 1945 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm); 1946 1947 mutex_unlock(&dst_kvm->lock); 1948 mutex_unlock(&src_kvm->lock); 1949 atomic_set_release(&dst_sev->migration_in_progress, 0); 1950 atomic_set_release(&src_sev->migration_in_progress, 0); 1951 } 1952 1953 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1954 { 1955 struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm); 1956 struct kvm_sev_info *src = to_kvm_sev_info(src_kvm); 1957 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1958 struct vcpu_svm *dst_svm, *src_svm; 1959 struct kvm_sev_info *mirror; 1960 unsigned long i; 1961 1962 dst->active = true; 1963 dst->asid = src->asid; 1964 dst->handle = src->handle; 1965 dst->pages_locked = src->pages_locked; 1966 dst->enc_context_owner = src->enc_context_owner; 1967 dst->es_active = src->es_active; 1968 dst->vmsa_features = src->vmsa_features; 1969 1970 src->asid = 0; 1971 src->active = false; 1972 src->handle = 0; 1973 src->pages_locked = 0; 1974 src->enc_context_owner = NULL; 1975 src->es_active = false; 1976 1977 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1978 1979 /* 1980 * If this VM has mirrors, "transfer" each mirror's refcount of the 1981 * source to the destination (this KVM). The caller holds a reference 1982 * to the source, so there's no danger of use-after-free. 1983 */ 1984 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 1985 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 1986 kvm_get_kvm(dst_kvm); 1987 kvm_put_kvm(src_kvm); 1988 mirror->enc_context_owner = dst_kvm; 1989 } 1990 1991 /* 1992 * If this VM is a mirror, remove the old mirror from the owners list 1993 * and add the new mirror to the list. 1994 */ 1995 if (is_mirroring_enc_context(dst_kvm)) { 1996 struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner); 1997 1998 list_del(&src->mirror_entry); 1999 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 2000 } 2001 2002 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 2003 dst_svm = to_svm(dst_vcpu); 2004 2005 sev_init_vmcb(dst_svm, false); 2006 2007 if (!dst->es_active) 2008 continue; 2009 2010 /* 2011 * Note, the source is not required to have the same number of 2012 * vCPUs as the destination when migrating a vanilla SEV VM. 2013 */ 2014 src_vcpu = kvm_get_vcpu(src_kvm, i); 2015 src_svm = to_svm(src_vcpu); 2016 2017 /* 2018 * Transfer VMSA and GHCB state to the destination. Nullify and 2019 * clear source fields as appropriate, the state now belongs to 2020 * the destination. 2021 */ 2022 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 2023 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 2024 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 2025 dst_vcpu->arch.guest_state_protected = true; 2026 2027 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 2028 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 2029 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 2030 src_vcpu->arch.guest_state_protected = false; 2031 } 2032 } 2033 2034 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 2035 { 2036 struct kvm_vcpu *src_vcpu; 2037 unsigned long i; 2038 2039 if (src->created_vcpus != atomic_read(&src->online_vcpus) || 2040 dst->created_vcpus != atomic_read(&dst->online_vcpus)) 2041 return -EBUSY; 2042 2043 if (!sev_es_guest(src)) 2044 return 0; 2045 2046 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 2047 return -EINVAL; 2048 2049 kvm_for_each_vcpu(i, src_vcpu, src) { 2050 if (!src_vcpu->arch.guest_state_protected) 2051 return -EINVAL; 2052 } 2053 2054 return 0; 2055 } 2056 2057 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2058 { 2059 struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm); 2060 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 2061 CLASS(fd, f)(source_fd); 2062 struct kvm *source_kvm; 2063 bool charged = false; 2064 int ret; 2065 2066 if (fd_empty(f)) 2067 return -EBADF; 2068 2069 if (!file_is_kvm(fd_file(f))) 2070 return -EBADF; 2071 2072 source_kvm = fd_file(f)->private_data; 2073 ret = sev_lock_two_vms(kvm, source_kvm); 2074 if (ret) 2075 return ret; 2076 2077 if (kvm->arch.vm_type != source_kvm->arch.vm_type || 2078 sev_guest(kvm) || !sev_guest(source_kvm)) { 2079 ret = -EINVAL; 2080 goto out_unlock; 2081 } 2082 2083 src_sev = to_kvm_sev_info(source_kvm); 2084 2085 dst_sev->misc_cg = get_current_misc_cg(); 2086 cg_cleanup_sev = dst_sev; 2087 if (dst_sev->misc_cg != src_sev->misc_cg) { 2088 ret = sev_misc_cg_try_charge(dst_sev); 2089 if (ret) 2090 goto out_dst_cgroup; 2091 charged = true; 2092 } 2093 2094 ret = kvm_lock_all_vcpus(kvm); 2095 if (ret) 2096 goto out_dst_cgroup; 2097 ret = kvm_lock_all_vcpus(source_kvm); 2098 if (ret) 2099 goto out_dst_vcpu; 2100 2101 ret = sev_check_source_vcpus(kvm, source_kvm); 2102 if (ret) 2103 goto out_source_vcpu; 2104 2105 /* 2106 * Allocate a new have_run_cpus for the destination, i.e. don't copy 2107 * the set of CPUs from the source. If a CPU was used to run a vCPU in 2108 * the source VM but is never used for the destination VM, then the CPU 2109 * can only have cached memory that was accessible to the source VM. 2110 */ 2111 if (!zalloc_cpumask_var(&dst_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) { 2112 ret = -ENOMEM; 2113 goto out_source_vcpu; 2114 } 2115 2116 sev_migrate_from(kvm, source_kvm); 2117 kvm_vm_dead(source_kvm); 2118 cg_cleanup_sev = src_sev; 2119 ret = 0; 2120 2121 out_source_vcpu: 2122 kvm_unlock_all_vcpus(source_kvm); 2123 out_dst_vcpu: 2124 kvm_unlock_all_vcpus(kvm); 2125 out_dst_cgroup: 2126 /* Operates on the source on success, on the destination on failure. */ 2127 if (charged) 2128 sev_misc_cg_uncharge(cg_cleanup_sev); 2129 put_misc_cg(cg_cleanup_sev->misc_cg); 2130 cg_cleanup_sev->misc_cg = NULL; 2131 out_unlock: 2132 sev_unlock_two_vms(kvm, source_kvm); 2133 return ret; 2134 } 2135 2136 int sev_dev_get_attr(u32 group, u64 attr, u64 *val) 2137 { 2138 if (group != KVM_X86_GRP_SEV) 2139 return -ENXIO; 2140 2141 switch (attr) { 2142 case KVM_X86_SEV_VMSA_FEATURES: 2143 *val = sev_supported_vmsa_features; 2144 return 0; 2145 2146 default: 2147 return -ENXIO; 2148 } 2149 } 2150 2151 /* 2152 * The guest context contains all the information, keys and metadata 2153 * associated with the guest that the firmware tracks to implement SEV 2154 * and SNP features. The firmware stores the guest context in hypervisor 2155 * provide page via the SNP_GCTX_CREATE command. 2156 */ 2157 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp) 2158 { 2159 struct sev_data_snp_addr data = {}; 2160 void *context; 2161 int rc; 2162 2163 /* Allocate memory for context page */ 2164 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT); 2165 if (!context) 2166 return NULL; 2167 2168 data.address = __psp_pa(context); 2169 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error); 2170 if (rc) { 2171 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d", 2172 rc, argp->error); 2173 snp_free_firmware_page(context); 2174 return NULL; 2175 } 2176 2177 return context; 2178 } 2179 2180 static int snp_bind_asid(struct kvm *kvm, int *error) 2181 { 2182 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2183 struct sev_data_snp_activate data = {0}; 2184 2185 data.gctx_paddr = __psp_pa(sev->snp_context); 2186 data.asid = sev_get_asid(kvm); 2187 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error); 2188 } 2189 2190 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 2191 { 2192 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2193 struct sev_data_snp_launch_start start = {0}; 2194 struct kvm_sev_snp_launch_start params; 2195 int rc; 2196 2197 if (!sev_snp_guest(kvm)) 2198 return -ENOTTY; 2199 2200 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2201 return -EFAULT; 2202 2203 /* Don't allow userspace to allocate memory for more than 1 SNP context. */ 2204 if (sev->snp_context) 2205 return -EINVAL; 2206 2207 if (params.flags) 2208 return -EINVAL; 2209 2210 if (params.policy & ~SNP_POLICY_MASK_VALID) 2211 return -EINVAL; 2212 2213 /* Check for policy bits that must be set */ 2214 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO)) 2215 return -EINVAL; 2216 2217 if (snp_is_secure_tsc_enabled(kvm)) { 2218 if (WARN_ON_ONCE(!kvm->arch.default_tsc_khz)) 2219 return -EINVAL; 2220 2221 start.desired_tsc_khz = kvm->arch.default_tsc_khz; 2222 } 2223 2224 sev->snp_context = snp_context_create(kvm, argp); 2225 if (!sev->snp_context) 2226 return -ENOTTY; 2227 2228 start.gctx_paddr = __psp_pa(sev->snp_context); 2229 start.policy = params.policy; 2230 2231 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw)); 2232 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error); 2233 if (rc) { 2234 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n", 2235 __func__, rc); 2236 goto e_free_context; 2237 } 2238 2239 sev->policy = params.policy; 2240 sev->fd = argp->sev_fd; 2241 rc = snp_bind_asid(kvm, &argp->error); 2242 if (rc) { 2243 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n", 2244 __func__, rc); 2245 goto e_free_context; 2246 } 2247 2248 return 0; 2249 2250 e_free_context: 2251 snp_decommission_context(kvm); 2252 2253 return rc; 2254 } 2255 2256 struct sev_gmem_populate_args { 2257 __u8 type; 2258 int sev_fd; 2259 int fw_error; 2260 }; 2261 2262 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn, 2263 void __user *src, int order, void *opaque) 2264 { 2265 struct sev_gmem_populate_args *sev_populate_args = opaque; 2266 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2267 int n_private = 0, ret, i; 2268 int npages = (1 << order); 2269 gfn_t gfn; 2270 2271 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src)) 2272 return -EINVAL; 2273 2274 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) { 2275 struct sev_data_snp_launch_update fw_args = {0}; 2276 bool assigned = false; 2277 int level; 2278 2279 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level); 2280 if (ret || assigned) { 2281 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n", 2282 __func__, gfn, ret, assigned); 2283 ret = ret ? -EINVAL : -EEXIST; 2284 goto err; 2285 } 2286 2287 if (src) { 2288 void *vaddr = kmap_local_pfn(pfn + i); 2289 2290 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) { 2291 ret = -EFAULT; 2292 goto err; 2293 } 2294 kunmap_local(vaddr); 2295 } 2296 2297 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K, 2298 sev_get_asid(kvm), true); 2299 if (ret) 2300 goto err; 2301 2302 n_private++; 2303 2304 fw_args.gctx_paddr = __psp_pa(sev->snp_context); 2305 fw_args.address = __sme_set(pfn_to_hpa(pfn + i)); 2306 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K); 2307 fw_args.page_type = sev_populate_args->type; 2308 2309 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2310 &fw_args, &sev_populate_args->fw_error); 2311 if (ret) 2312 goto fw_err; 2313 } 2314 2315 return 0; 2316 2317 fw_err: 2318 /* 2319 * If the firmware command failed handle the reclaim and cleanup of that 2320 * PFN specially vs. prior pages which can be cleaned up below without 2321 * needing to reclaim in advance. 2322 * 2323 * Additionally, when invalid CPUID function entries are detected, 2324 * firmware writes the expected values into the page and leaves it 2325 * unencrypted so it can be used for debugging and error-reporting. 2326 * 2327 * Copy this page back into the source buffer so userspace can use this 2328 * information to provide information on which CPUID leaves/fields 2329 * failed CPUID validation. 2330 */ 2331 if (!snp_page_reclaim(kvm, pfn + i) && 2332 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID && 2333 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) { 2334 void *vaddr = kmap_local_pfn(pfn + i); 2335 2336 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE)) 2337 pr_debug("Failed to write CPUID page back to userspace\n"); 2338 2339 kunmap_local(vaddr); 2340 } 2341 2342 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */ 2343 n_private--; 2344 2345 err: 2346 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n", 2347 __func__, ret, sev_populate_args->fw_error, n_private); 2348 for (i = 0; i < n_private; i++) 2349 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K); 2350 2351 return ret; 2352 } 2353 2354 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp) 2355 { 2356 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2357 struct sev_gmem_populate_args sev_populate_args = {0}; 2358 struct kvm_sev_snp_launch_update params; 2359 struct kvm_memory_slot *memslot; 2360 long npages, count; 2361 void __user *src; 2362 int ret = 0; 2363 2364 if (!sev_snp_guest(kvm) || !sev->snp_context) 2365 return -EINVAL; 2366 2367 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2368 return -EFAULT; 2369 2370 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__, 2371 params.gfn_start, params.len, params.type, params.flags); 2372 2373 if (!params.len || !PAGE_ALIGNED(params.len) || params.flags || 2374 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL && 2375 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO && 2376 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED && 2377 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS && 2378 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID)) 2379 return -EINVAL; 2380 2381 npages = params.len / PAGE_SIZE; 2382 2383 /* 2384 * For each GFN that's being prepared as part of the initial guest 2385 * state, the following pre-conditions are verified: 2386 * 2387 * 1) The backing memslot is a valid private memslot. 2388 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES 2389 * beforehand. 2390 * 3) The PFN of the guest_memfd has not already been set to private 2391 * in the RMP table. 2392 * 2393 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page 2394 * faults if there's a race between a fault and an attribute update via 2395 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized 2396 * here. However, kvm->slots_lock guards against both this as well as 2397 * concurrent memslot updates occurring while these checks are being 2398 * performed, so use that here to make it easier to reason about the 2399 * initial expected state and better guard against unexpected 2400 * situations. 2401 */ 2402 mutex_lock(&kvm->slots_lock); 2403 2404 memslot = gfn_to_memslot(kvm, params.gfn_start); 2405 if (!kvm_slot_has_gmem(memslot)) { 2406 ret = -EINVAL; 2407 goto out; 2408 } 2409 2410 sev_populate_args.sev_fd = argp->sev_fd; 2411 sev_populate_args.type = params.type; 2412 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr); 2413 2414 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages, 2415 sev_gmem_post_populate, &sev_populate_args); 2416 if (count < 0) { 2417 argp->error = sev_populate_args.fw_error; 2418 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n", 2419 __func__, count, argp->error); 2420 ret = -EIO; 2421 } else { 2422 params.gfn_start += count; 2423 params.len -= count * PAGE_SIZE; 2424 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO) 2425 params.uaddr += count * PAGE_SIZE; 2426 2427 ret = 0; 2428 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 2429 ret = -EFAULT; 2430 } 2431 2432 out: 2433 mutex_unlock(&kvm->slots_lock); 2434 2435 return ret; 2436 } 2437 2438 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 2439 { 2440 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2441 struct sev_data_snp_launch_update data = {}; 2442 struct kvm_vcpu *vcpu; 2443 unsigned long i; 2444 int ret; 2445 2446 data.gctx_paddr = __psp_pa(sev->snp_context); 2447 data.page_type = SNP_PAGE_TYPE_VMSA; 2448 2449 kvm_for_each_vcpu(i, vcpu, kvm) { 2450 struct vcpu_svm *svm = to_svm(vcpu); 2451 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 2452 2453 ret = sev_es_sync_vmsa(svm); 2454 if (ret) 2455 return ret; 2456 2457 /* Transition the VMSA page to a firmware state. */ 2458 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true); 2459 if (ret) 2460 return ret; 2461 2462 /* Issue the SNP command to encrypt the VMSA */ 2463 data.address = __sme_pa(svm->sev_es.vmsa); 2464 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2465 &data, &argp->error); 2466 if (ret) { 2467 snp_page_reclaim(kvm, pfn); 2468 2469 return ret; 2470 } 2471 2472 svm->vcpu.arch.guest_state_protected = true; 2473 /* 2474 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to 2475 * be _always_ ON. Enable it only after setting 2476 * guest_state_protected because KVM_SET_MSRS allows dynamic 2477 * toggling of LBRV (for performance reason) on write access to 2478 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 2479 */ 2480 svm_enable_lbrv(vcpu); 2481 } 2482 2483 return 0; 2484 } 2485 2486 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 2487 { 2488 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2489 struct kvm_sev_snp_launch_finish params; 2490 struct sev_data_snp_launch_finish *data; 2491 void *id_block = NULL, *id_auth = NULL; 2492 int ret; 2493 2494 if (!sev_snp_guest(kvm)) 2495 return -ENOTTY; 2496 2497 if (!sev->snp_context) 2498 return -EINVAL; 2499 2500 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2501 return -EFAULT; 2502 2503 if (params.flags) 2504 return -EINVAL; 2505 2506 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */ 2507 ret = snp_launch_update_vmsa(kvm, argp); 2508 if (ret) 2509 return ret; 2510 2511 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 2512 if (!data) 2513 return -ENOMEM; 2514 2515 if (params.id_block_en) { 2516 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE); 2517 if (IS_ERR(id_block)) { 2518 ret = PTR_ERR(id_block); 2519 goto e_free; 2520 } 2521 2522 data->id_block_en = 1; 2523 data->id_block_paddr = __sme_pa(id_block); 2524 2525 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE); 2526 if (IS_ERR(id_auth)) { 2527 ret = PTR_ERR(id_auth); 2528 goto e_free_id_block; 2529 } 2530 2531 data->id_auth_paddr = __sme_pa(id_auth); 2532 2533 if (params.auth_key_en) 2534 data->auth_key_en = 1; 2535 } 2536 2537 data->vcek_disabled = params.vcek_disabled; 2538 2539 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE); 2540 data->gctx_paddr = __psp_pa(sev->snp_context); 2541 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error); 2542 2543 /* 2544 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages 2545 * can be given to the guest simply by marking the RMP entry as private. 2546 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY. 2547 */ 2548 if (!ret) 2549 kvm->arch.pre_fault_allowed = true; 2550 2551 kfree(id_auth); 2552 2553 e_free_id_block: 2554 kfree(id_block); 2555 2556 e_free: 2557 kfree(data); 2558 2559 return ret; 2560 } 2561 2562 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 2563 { 2564 struct kvm_sev_cmd sev_cmd; 2565 int r; 2566 2567 if (!sev_enabled) 2568 return -ENOTTY; 2569 2570 if (!argp) 2571 return 0; 2572 2573 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 2574 return -EFAULT; 2575 2576 mutex_lock(&kvm->lock); 2577 2578 /* Only the enc_context_owner handles some memory enc operations. */ 2579 if (is_mirroring_enc_context(kvm) && 2580 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 2581 r = -EINVAL; 2582 goto out; 2583 } 2584 2585 /* 2586 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only 2587 * allow the use of SNP-specific commands. 2588 */ 2589 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) { 2590 r = -EPERM; 2591 goto out; 2592 } 2593 2594 switch (sev_cmd.id) { 2595 case KVM_SEV_ES_INIT: 2596 if (!sev_es_enabled) { 2597 r = -ENOTTY; 2598 goto out; 2599 } 2600 fallthrough; 2601 case KVM_SEV_INIT: 2602 r = sev_guest_init(kvm, &sev_cmd); 2603 break; 2604 case KVM_SEV_INIT2: 2605 r = sev_guest_init2(kvm, &sev_cmd); 2606 break; 2607 case KVM_SEV_LAUNCH_START: 2608 r = sev_launch_start(kvm, &sev_cmd); 2609 break; 2610 case KVM_SEV_LAUNCH_UPDATE_DATA: 2611 r = sev_launch_update_data(kvm, &sev_cmd); 2612 break; 2613 case KVM_SEV_LAUNCH_UPDATE_VMSA: 2614 r = sev_launch_update_vmsa(kvm, &sev_cmd); 2615 break; 2616 case KVM_SEV_LAUNCH_MEASURE: 2617 r = sev_launch_measure(kvm, &sev_cmd); 2618 break; 2619 case KVM_SEV_LAUNCH_FINISH: 2620 r = sev_launch_finish(kvm, &sev_cmd); 2621 break; 2622 case KVM_SEV_GUEST_STATUS: 2623 r = sev_guest_status(kvm, &sev_cmd); 2624 break; 2625 case KVM_SEV_DBG_DECRYPT: 2626 r = sev_dbg_crypt(kvm, &sev_cmd, true); 2627 break; 2628 case KVM_SEV_DBG_ENCRYPT: 2629 r = sev_dbg_crypt(kvm, &sev_cmd, false); 2630 break; 2631 case KVM_SEV_LAUNCH_SECRET: 2632 r = sev_launch_secret(kvm, &sev_cmd); 2633 break; 2634 case KVM_SEV_GET_ATTESTATION_REPORT: 2635 r = sev_get_attestation_report(kvm, &sev_cmd); 2636 break; 2637 case KVM_SEV_SEND_START: 2638 r = sev_send_start(kvm, &sev_cmd); 2639 break; 2640 case KVM_SEV_SEND_UPDATE_DATA: 2641 r = sev_send_update_data(kvm, &sev_cmd); 2642 break; 2643 case KVM_SEV_SEND_FINISH: 2644 r = sev_send_finish(kvm, &sev_cmd); 2645 break; 2646 case KVM_SEV_SEND_CANCEL: 2647 r = sev_send_cancel(kvm, &sev_cmd); 2648 break; 2649 case KVM_SEV_RECEIVE_START: 2650 r = sev_receive_start(kvm, &sev_cmd); 2651 break; 2652 case KVM_SEV_RECEIVE_UPDATE_DATA: 2653 r = sev_receive_update_data(kvm, &sev_cmd); 2654 break; 2655 case KVM_SEV_RECEIVE_FINISH: 2656 r = sev_receive_finish(kvm, &sev_cmd); 2657 break; 2658 case KVM_SEV_SNP_LAUNCH_START: 2659 r = snp_launch_start(kvm, &sev_cmd); 2660 break; 2661 case KVM_SEV_SNP_LAUNCH_UPDATE: 2662 r = snp_launch_update(kvm, &sev_cmd); 2663 break; 2664 case KVM_SEV_SNP_LAUNCH_FINISH: 2665 r = snp_launch_finish(kvm, &sev_cmd); 2666 break; 2667 default: 2668 r = -EINVAL; 2669 goto out; 2670 } 2671 2672 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 2673 r = -EFAULT; 2674 2675 out: 2676 mutex_unlock(&kvm->lock); 2677 return r; 2678 } 2679 2680 int sev_mem_enc_register_region(struct kvm *kvm, 2681 struct kvm_enc_region *range) 2682 { 2683 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2684 struct enc_region *region; 2685 int ret = 0; 2686 2687 if (!sev_guest(kvm)) 2688 return -ENOTTY; 2689 2690 /* If kvm is mirroring encryption context it isn't responsible for it */ 2691 if (is_mirroring_enc_context(kvm)) 2692 return -EINVAL; 2693 2694 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 2695 return -EINVAL; 2696 2697 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 2698 if (!region) 2699 return -ENOMEM; 2700 2701 mutex_lock(&kvm->lock); 2702 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 2703 FOLL_WRITE | FOLL_LONGTERM); 2704 if (IS_ERR(region->pages)) { 2705 ret = PTR_ERR(region->pages); 2706 mutex_unlock(&kvm->lock); 2707 goto e_free; 2708 } 2709 2710 /* 2711 * The guest may change the memory encryption attribute from C=0 -> C=1 2712 * or vice versa for this memory range. Lets make sure caches are 2713 * flushed to ensure that guest data gets written into memory with 2714 * correct C-bit. Note, this must be done before dropping kvm->lock, 2715 * as region and its array of pages can be freed by a different task 2716 * once kvm->lock is released. 2717 */ 2718 sev_clflush_pages(region->pages, region->npages); 2719 2720 region->uaddr = range->addr; 2721 region->size = range->size; 2722 2723 list_add_tail(®ion->list, &sev->regions_list); 2724 mutex_unlock(&kvm->lock); 2725 2726 return ret; 2727 2728 e_free: 2729 kfree(region); 2730 return ret; 2731 } 2732 2733 static struct enc_region * 2734 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2735 { 2736 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2737 struct list_head *head = &sev->regions_list; 2738 struct enc_region *i; 2739 2740 list_for_each_entry(i, head, list) { 2741 if (i->uaddr == range->addr && 2742 i->size == range->size) 2743 return i; 2744 } 2745 2746 return NULL; 2747 } 2748 2749 static void __unregister_enc_region_locked(struct kvm *kvm, 2750 struct enc_region *region) 2751 { 2752 sev_unpin_memory(kvm, region->pages, region->npages); 2753 list_del(®ion->list); 2754 kfree(region); 2755 } 2756 2757 int sev_mem_enc_unregister_region(struct kvm *kvm, 2758 struct kvm_enc_region *range) 2759 { 2760 struct enc_region *region; 2761 int ret; 2762 2763 /* If kvm is mirroring encryption context it isn't responsible for it */ 2764 if (is_mirroring_enc_context(kvm)) 2765 return -EINVAL; 2766 2767 mutex_lock(&kvm->lock); 2768 2769 if (!sev_guest(kvm)) { 2770 ret = -ENOTTY; 2771 goto failed; 2772 } 2773 2774 region = find_enc_region(kvm, range); 2775 if (!region) { 2776 ret = -EINVAL; 2777 goto failed; 2778 } 2779 2780 sev_writeback_caches(kvm); 2781 2782 __unregister_enc_region_locked(kvm, region); 2783 2784 mutex_unlock(&kvm->lock); 2785 return 0; 2786 2787 failed: 2788 mutex_unlock(&kvm->lock); 2789 return ret; 2790 } 2791 2792 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2793 { 2794 CLASS(fd, f)(source_fd); 2795 struct kvm *source_kvm; 2796 struct kvm_sev_info *source_sev, *mirror_sev; 2797 int ret; 2798 2799 if (fd_empty(f)) 2800 return -EBADF; 2801 2802 if (!file_is_kvm(fd_file(f))) 2803 return -EBADF; 2804 2805 source_kvm = fd_file(f)->private_data; 2806 ret = sev_lock_two_vms(kvm, source_kvm); 2807 if (ret) 2808 return ret; 2809 2810 /* 2811 * Mirrors of mirrors should work, but let's not get silly. Also 2812 * disallow out-of-band SEV/SEV-ES init if the target is already an 2813 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2814 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2815 */ 2816 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2817 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2818 ret = -EINVAL; 2819 goto e_unlock; 2820 } 2821 2822 mirror_sev = to_kvm_sev_info(kvm); 2823 if (!zalloc_cpumask_var(&mirror_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) { 2824 ret = -ENOMEM; 2825 goto e_unlock; 2826 } 2827 2828 /* 2829 * The mirror kvm holds an enc_context_owner ref so its asid can't 2830 * disappear until we're done with it 2831 */ 2832 source_sev = to_kvm_sev_info(source_kvm); 2833 kvm_get_kvm(source_kvm); 2834 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2835 2836 /* Set enc_context_owner and copy its encryption context over */ 2837 mirror_sev->enc_context_owner = source_kvm; 2838 mirror_sev->active = true; 2839 mirror_sev->asid = source_sev->asid; 2840 mirror_sev->fd = source_sev->fd; 2841 mirror_sev->es_active = source_sev->es_active; 2842 mirror_sev->need_init = false; 2843 mirror_sev->handle = source_sev->handle; 2844 INIT_LIST_HEAD(&mirror_sev->regions_list); 2845 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2846 ret = 0; 2847 2848 /* 2849 * Do not copy ap_jump_table. Since the mirror does not share the same 2850 * KVM contexts as the original, and they may have different 2851 * memory-views. 2852 */ 2853 2854 e_unlock: 2855 sev_unlock_two_vms(kvm, source_kvm); 2856 return ret; 2857 } 2858 2859 static int snp_decommission_context(struct kvm *kvm) 2860 { 2861 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2862 struct sev_data_snp_addr data = {}; 2863 int ret; 2864 2865 /* If context is not created then do nothing */ 2866 if (!sev->snp_context) 2867 return 0; 2868 2869 /* Do the decommision, which will unbind the ASID from the SNP context */ 2870 data.address = __sme_pa(sev->snp_context); 2871 down_write(&sev_deactivate_lock); 2872 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL); 2873 up_write(&sev_deactivate_lock); 2874 2875 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret)) 2876 return ret; 2877 2878 snp_free_firmware_page(sev->snp_context); 2879 sev->snp_context = NULL; 2880 2881 return 0; 2882 } 2883 2884 void sev_vm_destroy(struct kvm *kvm) 2885 { 2886 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2887 struct list_head *head = &sev->regions_list; 2888 struct list_head *pos, *q; 2889 2890 if (!sev_guest(kvm)) 2891 return; 2892 2893 WARN_ON(!list_empty(&sev->mirror_vms)); 2894 2895 free_cpumask_var(sev->have_run_cpus); 2896 2897 /* 2898 * If this is a mirror VM, remove it from the owner's list of a mirrors 2899 * and skip ASID cleanup (the ASID is tied to the lifetime of the owner). 2900 * Note, mirror VMs don't support registering encrypted regions. 2901 */ 2902 if (is_mirroring_enc_context(kvm)) { 2903 struct kvm *owner_kvm = sev->enc_context_owner; 2904 2905 mutex_lock(&owner_kvm->lock); 2906 list_del(&sev->mirror_entry); 2907 mutex_unlock(&owner_kvm->lock); 2908 kvm_put_kvm(owner_kvm); 2909 return; 2910 } 2911 2912 2913 /* 2914 * if userspace was terminated before unregistering the memory regions 2915 * then lets unpin all the registered memory. 2916 */ 2917 if (!list_empty(head)) { 2918 list_for_each_safe(pos, q, head) { 2919 __unregister_enc_region_locked(kvm, 2920 list_entry(pos, struct enc_region, list)); 2921 cond_resched(); 2922 } 2923 } 2924 2925 if (sev_snp_guest(kvm)) { 2926 snp_guest_req_cleanup(kvm); 2927 2928 /* 2929 * Decomission handles unbinding of the ASID. If it fails for 2930 * some unexpected reason, just leak the ASID. 2931 */ 2932 if (snp_decommission_context(kvm)) 2933 return; 2934 } else { 2935 sev_unbind_asid(kvm, sev->handle); 2936 } 2937 2938 sev_asid_free(sev); 2939 } 2940 2941 void __init sev_set_cpu_caps(void) 2942 { 2943 if (sev_enabled) { 2944 kvm_cpu_cap_set(X86_FEATURE_SEV); 2945 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM); 2946 } 2947 if (sev_es_enabled) { 2948 kvm_cpu_cap_set(X86_FEATURE_SEV_ES); 2949 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM); 2950 } 2951 if (sev_snp_enabled) { 2952 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP); 2953 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM); 2954 } 2955 } 2956 2957 static bool is_sev_snp_initialized(void) 2958 { 2959 struct sev_user_data_snp_status *status; 2960 struct sev_data_snp_addr buf; 2961 bool initialized = false; 2962 int ret, error = 0; 2963 2964 status = snp_alloc_firmware_page(GFP_KERNEL | __GFP_ZERO); 2965 if (!status) 2966 return false; 2967 2968 buf.address = __psp_pa(status); 2969 ret = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &error); 2970 if (ret) { 2971 pr_err("SEV: SNP_PLATFORM_STATUS failed ret=%d, fw_error=%d (%#x)\n", 2972 ret, error, error); 2973 goto out; 2974 } 2975 2976 initialized = !!status->state; 2977 2978 out: 2979 snp_free_firmware_page(status); 2980 2981 return initialized; 2982 } 2983 2984 void __init sev_hardware_setup(void) 2985 { 2986 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2987 struct sev_platform_init_args init_args = {0}; 2988 bool sev_snp_supported = false; 2989 bool sev_es_supported = false; 2990 bool sev_supported = false; 2991 2992 if (!sev_enabled || !npt_enabled || !nrips) 2993 goto out; 2994 2995 /* 2996 * SEV must obviously be supported in hardware. Sanity check that the 2997 * CPU supports decode assists, which is mandatory for SEV guests to 2998 * support instruction emulation. Ditto for flushing by ASID, as SEV 2999 * guests are bound to a single ASID, i.e. KVM can't rotate to a new 3000 * ASID to effect a TLB flush. 3001 */ 3002 if (!boot_cpu_has(X86_FEATURE_SEV) || 3003 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || 3004 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) 3005 goto out; 3006 3007 /* 3008 * The kernel's initcall infrastructure lacks the ability to express 3009 * dependencies between initcalls, whereas the modules infrastructure 3010 * automatically handles dependencies via symbol loading. Ensure the 3011 * PSP SEV driver is initialized before proceeding if KVM is built-in, 3012 * as the dependency isn't handled by the initcall infrastructure. 3013 */ 3014 if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init()) 3015 goto out; 3016 3017 /* Retrieve SEV CPUID information */ 3018 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 3019 3020 /* Set encryption bit location for SEV-ES guests */ 3021 sev_enc_bit = ebx & 0x3f; 3022 3023 /* Maximum number of encrypted guests supported simultaneously */ 3024 max_sev_asid = ecx; 3025 if (!max_sev_asid) 3026 goto out; 3027 3028 /* Minimum ASID value that should be used for SEV guest */ 3029 min_sev_asid = edx; 3030 sev_me_mask = 1UL << (ebx & 0x3f); 3031 3032 /* 3033 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 3034 * even though it's never used, so that the bitmap is indexed by the 3035 * actual ASID. 3036 */ 3037 nr_asids = max_sev_asid + 1; 3038 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 3039 if (!sev_asid_bitmap) 3040 goto out; 3041 3042 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 3043 if (!sev_reclaim_asid_bitmap) { 3044 bitmap_free(sev_asid_bitmap); 3045 sev_asid_bitmap = NULL; 3046 goto out; 3047 } 3048 3049 if (min_sev_asid <= max_sev_asid) { 3050 sev_asid_count = max_sev_asid - min_sev_asid + 1; 3051 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 3052 } 3053 sev_supported = true; 3054 3055 /* SEV-ES support requested? */ 3056 if (!sev_es_enabled) 3057 goto out; 3058 3059 /* 3060 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 3061 * instruction stream, i.e. can't emulate in response to a #NPF and 3062 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 3063 * (the guest can then do a #VMGEXIT to request MMIO emulation). 3064 */ 3065 if (!enable_mmio_caching) 3066 goto out; 3067 3068 /* Does the CPU support SEV-ES? */ 3069 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 3070 goto out; 3071 3072 if (!lbrv) { 3073 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV), 3074 "LBRV must be present for SEV-ES support"); 3075 goto out; 3076 } 3077 3078 /* Has the system been allocated ASIDs for SEV-ES? */ 3079 if (min_sev_asid == 1) 3080 goto out; 3081 3082 min_sev_es_asid = min_snp_asid = 1; 3083 max_sev_es_asid = max_snp_asid = min_sev_asid - 1; 3084 3085 sev_es_asid_count = min_sev_asid - 1; 3086 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 3087 sev_es_supported = true; 3088 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP); 3089 3090 out: 3091 if (sev_enabled) { 3092 init_args.probe = true; 3093 3094 if (sev_is_snp_ciphertext_hiding_supported()) 3095 init_args.max_snp_asid = min(nr_ciphertext_hiding_asids, 3096 min_sev_asid - 1); 3097 3098 if (sev_platform_init(&init_args)) 3099 sev_supported = sev_es_supported = sev_snp_supported = false; 3100 else if (sev_snp_supported) 3101 sev_snp_supported = is_sev_snp_initialized(); 3102 3103 if (sev_snp_supported) 3104 nr_ciphertext_hiding_asids = init_args.max_snp_asid; 3105 3106 /* 3107 * If ciphertext hiding is enabled, the joint SEV-ES/SEV-SNP 3108 * ASID range is partitioned into separate SEV-ES and SEV-SNP 3109 * ASID ranges, with the SEV-SNP range being [1..max_snp_asid] 3110 * and the SEV-ES range being (max_snp_asid..max_sev_es_asid]. 3111 * Note, SEV-ES may effectively be disabled if all ASIDs from 3112 * the joint range are assigned to SEV-SNP. 3113 */ 3114 if (nr_ciphertext_hiding_asids) { 3115 max_snp_asid = nr_ciphertext_hiding_asids; 3116 min_sev_es_asid = max_snp_asid + 1; 3117 pr_info("SEV-SNP ciphertext hiding enabled\n"); 3118 } 3119 } 3120 3121 if (boot_cpu_has(X86_FEATURE_SEV)) 3122 pr_info("SEV %s (ASIDs %u - %u)\n", 3123 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : 3124 "unusable" : 3125 "disabled", 3126 min_sev_asid, max_sev_asid); 3127 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 3128 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 3129 sev_es_supported ? min_sev_es_asid <= max_sev_es_asid ? "enabled" : 3130 "unusable" : 3131 "disabled", 3132 min_sev_es_asid, max_sev_es_asid); 3133 if (boot_cpu_has(X86_FEATURE_SEV_SNP)) 3134 pr_info("SEV-SNP %s (ASIDs %u - %u)\n", 3135 str_enabled_disabled(sev_snp_supported), 3136 min_snp_asid, max_snp_asid); 3137 3138 sev_enabled = sev_supported; 3139 sev_es_enabled = sev_es_supported; 3140 sev_snp_enabled = sev_snp_supported; 3141 3142 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 3143 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 3144 sev_es_debug_swap_enabled = false; 3145 3146 sev_supported_vmsa_features = 0; 3147 if (sev_es_debug_swap_enabled) 3148 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP; 3149 3150 if (sev_snp_enabled && tsc_khz && cpu_feature_enabled(X86_FEATURE_SNP_SECURE_TSC)) 3151 sev_supported_vmsa_features |= SVM_SEV_FEAT_SECURE_TSC; 3152 } 3153 3154 void sev_hardware_unsetup(void) 3155 { 3156 if (!sev_enabled) 3157 return; 3158 3159 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 3160 sev_flush_asids(1, max_sev_asid); 3161 3162 bitmap_free(sev_asid_bitmap); 3163 bitmap_free(sev_reclaim_asid_bitmap); 3164 3165 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 3166 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 3167 3168 sev_platform_shutdown(); 3169 } 3170 3171 int sev_cpu_init(struct svm_cpu_data *sd) 3172 { 3173 if (!sev_enabled) 3174 return 0; 3175 3176 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 3177 if (!sd->sev_vmcbs) 3178 return -ENOMEM; 3179 3180 return 0; 3181 } 3182 3183 /* 3184 * Pages used by hardware to hold guest encrypted state must be flushed before 3185 * returning them to the system. 3186 */ 3187 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 3188 { 3189 unsigned int asid = sev_get_asid(vcpu->kvm); 3190 3191 /* 3192 * Note! The address must be a kernel address, as regular page walk 3193 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 3194 * address is non-deterministic and unsafe. This function deliberately 3195 * takes a pointer to deter passing in a user address. 3196 */ 3197 unsigned long addr = (unsigned long)va; 3198 3199 /* 3200 * If CPU enforced cache coherency for encrypted mappings of the 3201 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 3202 * flush is still needed in order to work properly with DMA devices. 3203 */ 3204 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 3205 clflush_cache_range(va, PAGE_SIZE); 3206 return; 3207 } 3208 3209 /* 3210 * VM Page Flush takes a host virtual address and a guest ASID. Fall 3211 * back to full writeback of caches if this faults so as not to make 3212 * any problems worse by leaving stale encrypted data in the cache. 3213 */ 3214 if (WARN_ON_ONCE(wrmsrq_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 3215 goto do_sev_writeback_caches; 3216 3217 return; 3218 3219 do_sev_writeback_caches: 3220 sev_writeback_caches(vcpu->kvm); 3221 } 3222 3223 void sev_guest_memory_reclaimed(struct kvm *kvm) 3224 { 3225 /* 3226 * With SNP+gmem, private/encrypted memory is unreachable via the 3227 * hva-based mmu notifiers, i.e. these events are explicitly scoped to 3228 * shared pages, where there's no need to flush caches. 3229 */ 3230 if (!sev_guest(kvm) || sev_snp_guest(kvm)) 3231 return; 3232 3233 sev_writeback_caches(kvm); 3234 } 3235 3236 void sev_free_vcpu(struct kvm_vcpu *vcpu) 3237 { 3238 struct vcpu_svm *svm; 3239 3240 if (!sev_es_guest(vcpu->kvm)) 3241 return; 3242 3243 svm = to_svm(vcpu); 3244 3245 /* 3246 * If it's an SNP guest, then the VMSA was marked in the RMP table as 3247 * a guest-owned page. Transition the page to hypervisor state before 3248 * releasing it back to the system. 3249 */ 3250 if (sev_snp_guest(vcpu->kvm)) { 3251 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 3252 3253 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K)) 3254 goto skip_vmsa_free; 3255 } 3256 3257 if (vcpu->arch.guest_state_protected) 3258 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 3259 3260 __free_page(virt_to_page(svm->sev_es.vmsa)); 3261 3262 skip_vmsa_free: 3263 if (svm->sev_es.ghcb_sa_free) 3264 kvfree(svm->sev_es.ghcb_sa); 3265 } 3266 3267 static u64 kvm_get_cached_sw_exit_code(struct vmcb_control_area *control) 3268 { 3269 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 3270 } 3271 3272 static void dump_ghcb(struct vcpu_svm *svm) 3273 { 3274 struct vmcb_control_area *control = &svm->vmcb->control; 3275 unsigned int nbits; 3276 3277 /* Re-use the dump_invalid_vmcb module parameter */ 3278 if (!dump_invalid_vmcb) { 3279 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3280 return; 3281 } 3282 3283 nbits = sizeof(svm->sev_es.valid_bitmap) * 8; 3284 3285 /* 3286 * Print KVM's snapshot of the GHCB values that were (unsuccessfully) 3287 * used to handle the exit. If the guest has since modified the GHCB 3288 * itself, dumping the raw GHCB won't help debug why KVM was unable to 3289 * handle the VMGEXIT that KVM observed. 3290 */ 3291 pr_err("GHCB (GPA=%016llx) snapshot:\n", svm->vmcb->control.ghcb_gpa); 3292 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 3293 kvm_get_cached_sw_exit_code(control), kvm_ghcb_sw_exit_code_is_valid(svm)); 3294 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 3295 control->exit_info_1, kvm_ghcb_sw_exit_info_1_is_valid(svm)); 3296 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 3297 control->exit_info_2, kvm_ghcb_sw_exit_info_2_is_valid(svm)); 3298 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 3299 svm->sev_es.sw_scratch, kvm_ghcb_sw_scratch_is_valid(svm)); 3300 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, svm->sev_es.valid_bitmap); 3301 } 3302 3303 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 3304 { 3305 struct kvm_vcpu *vcpu = &svm->vcpu; 3306 struct ghcb *ghcb = svm->sev_es.ghcb; 3307 3308 /* 3309 * The GHCB protocol so far allows for the following data 3310 * to be returned: 3311 * GPRs RAX, RBX, RCX, RDX 3312 * 3313 * Copy their values, even if they may not have been written during the 3314 * VM-Exit. It's the guest's responsibility to not consume random data. 3315 */ 3316 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 3317 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 3318 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 3319 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 3320 } 3321 3322 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 3323 { 3324 struct vmcb_control_area *control = &svm->vmcb->control; 3325 struct kvm_vcpu *vcpu = &svm->vcpu; 3326 struct ghcb *ghcb = svm->sev_es.ghcb; 3327 u64 exit_code; 3328 3329 /* 3330 * The GHCB protocol so far allows for the following data 3331 * to be supplied: 3332 * GPRs RAX, RBX, RCX, RDX 3333 * XCR0 3334 * CPL 3335 * 3336 * VMMCALL allows the guest to provide extra registers. KVM also 3337 * expects RSI for hypercalls, so include that, too. 3338 * 3339 * Copy their values to the appropriate location if supplied. 3340 */ 3341 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 3342 3343 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 3344 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 3345 3346 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm); 3347 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm); 3348 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm); 3349 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm); 3350 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm); 3351 3352 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm); 3353 3354 if (kvm_ghcb_xcr0_is_valid(svm)) 3355 __kvm_set_xcr(vcpu, 0, kvm_ghcb_get_xcr0(svm)); 3356 3357 if (kvm_ghcb_xss_is_valid(svm)) 3358 __kvm_emulate_msr_write(vcpu, MSR_IA32_XSS, kvm_ghcb_get_xss(svm)); 3359 3360 /* Copy the GHCB exit information into the VMCB fields */ 3361 exit_code = kvm_ghcb_get_sw_exit_code(svm); 3362 control->exit_code = lower_32_bits(exit_code); 3363 control->exit_code_hi = upper_32_bits(exit_code); 3364 control->exit_info_1 = kvm_ghcb_get_sw_exit_info_1(svm); 3365 control->exit_info_2 = kvm_ghcb_get_sw_exit_info_2(svm); 3366 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm); 3367 3368 /* Clear the valid entries fields */ 3369 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 3370 } 3371 3372 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 3373 { 3374 struct vmcb_control_area *control = &svm->vmcb->control; 3375 struct kvm_vcpu *vcpu = &svm->vcpu; 3376 u64 exit_code; 3377 u64 reason; 3378 3379 /* 3380 * Retrieve the exit code now even though it may not be marked valid 3381 * as it could help with debugging. 3382 */ 3383 exit_code = kvm_get_cached_sw_exit_code(control); 3384 3385 /* Only GHCB Usage code 0 is supported */ 3386 if (svm->sev_es.ghcb->ghcb_usage) { 3387 reason = GHCB_ERR_INVALID_USAGE; 3388 goto vmgexit_err; 3389 } 3390 3391 reason = GHCB_ERR_MISSING_INPUT; 3392 3393 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 3394 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 3395 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 3396 goto vmgexit_err; 3397 3398 switch (exit_code) { 3399 case SVM_EXIT_READ_DR7: 3400 break; 3401 case SVM_EXIT_WRITE_DR7: 3402 if (!kvm_ghcb_rax_is_valid(svm)) 3403 goto vmgexit_err; 3404 break; 3405 case SVM_EXIT_RDTSC: 3406 break; 3407 case SVM_EXIT_RDPMC: 3408 if (!kvm_ghcb_rcx_is_valid(svm)) 3409 goto vmgexit_err; 3410 break; 3411 case SVM_EXIT_CPUID: 3412 if (!kvm_ghcb_rax_is_valid(svm) || 3413 !kvm_ghcb_rcx_is_valid(svm)) 3414 goto vmgexit_err; 3415 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 3416 if (!kvm_ghcb_xcr0_is_valid(svm)) 3417 goto vmgexit_err; 3418 break; 3419 case SVM_EXIT_INVD: 3420 break; 3421 case SVM_EXIT_IOIO: 3422 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 3423 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3424 goto vmgexit_err; 3425 } else { 3426 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 3427 if (!kvm_ghcb_rax_is_valid(svm)) 3428 goto vmgexit_err; 3429 } 3430 break; 3431 case SVM_EXIT_MSR: 3432 if (!kvm_ghcb_rcx_is_valid(svm)) 3433 goto vmgexit_err; 3434 if (control->exit_info_1) { 3435 if (!kvm_ghcb_rax_is_valid(svm) || 3436 !kvm_ghcb_rdx_is_valid(svm)) 3437 goto vmgexit_err; 3438 } 3439 break; 3440 case SVM_EXIT_VMMCALL: 3441 if (!kvm_ghcb_rax_is_valid(svm) || 3442 !kvm_ghcb_cpl_is_valid(svm)) 3443 goto vmgexit_err; 3444 break; 3445 case SVM_EXIT_RDTSCP: 3446 break; 3447 case SVM_EXIT_WBINVD: 3448 break; 3449 case SVM_EXIT_MONITOR: 3450 if (!kvm_ghcb_rax_is_valid(svm) || 3451 !kvm_ghcb_rcx_is_valid(svm) || 3452 !kvm_ghcb_rdx_is_valid(svm)) 3453 goto vmgexit_err; 3454 break; 3455 case SVM_EXIT_MWAIT: 3456 if (!kvm_ghcb_rax_is_valid(svm) || 3457 !kvm_ghcb_rcx_is_valid(svm)) 3458 goto vmgexit_err; 3459 break; 3460 case SVM_VMGEXIT_MMIO_READ: 3461 case SVM_VMGEXIT_MMIO_WRITE: 3462 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3463 goto vmgexit_err; 3464 break; 3465 case SVM_VMGEXIT_AP_CREATION: 3466 if (!sev_snp_guest(vcpu->kvm)) 3467 goto vmgexit_err; 3468 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY) 3469 if (!kvm_ghcb_rax_is_valid(svm)) 3470 goto vmgexit_err; 3471 break; 3472 case SVM_VMGEXIT_NMI_COMPLETE: 3473 case SVM_VMGEXIT_AP_HLT_LOOP: 3474 case SVM_VMGEXIT_AP_JUMP_TABLE: 3475 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 3476 case SVM_VMGEXIT_HV_FEATURES: 3477 case SVM_VMGEXIT_TERM_REQUEST: 3478 break; 3479 case SVM_VMGEXIT_PSC: 3480 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm)) 3481 goto vmgexit_err; 3482 break; 3483 case SVM_VMGEXIT_GUEST_REQUEST: 3484 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 3485 if (!sev_snp_guest(vcpu->kvm) || 3486 !PAGE_ALIGNED(control->exit_info_1) || 3487 !PAGE_ALIGNED(control->exit_info_2) || 3488 control->exit_info_1 == control->exit_info_2) 3489 goto vmgexit_err; 3490 break; 3491 default: 3492 reason = GHCB_ERR_INVALID_EVENT; 3493 goto vmgexit_err; 3494 } 3495 3496 return 0; 3497 3498 vmgexit_err: 3499 if (reason == GHCB_ERR_INVALID_USAGE) { 3500 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 3501 svm->sev_es.ghcb->ghcb_usage); 3502 } else if (reason == GHCB_ERR_INVALID_EVENT) { 3503 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 3504 exit_code); 3505 } else { 3506 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 3507 exit_code); 3508 dump_ghcb(svm); 3509 } 3510 3511 svm_vmgexit_bad_input(svm, reason); 3512 3513 /* Resume the guest to "return" the error code. */ 3514 return 1; 3515 } 3516 3517 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 3518 { 3519 /* Clear any indication that the vCPU is in a type of AP Reset Hold */ 3520 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE; 3521 3522 if (!svm->sev_es.ghcb) 3523 return; 3524 3525 if (svm->sev_es.ghcb_sa_free) { 3526 /* 3527 * The scratch area lives outside the GHCB, so there is a 3528 * buffer that, depending on the operation performed, may 3529 * need to be synced, then freed. 3530 */ 3531 if (svm->sev_es.ghcb_sa_sync) { 3532 kvm_write_guest(svm->vcpu.kvm, 3533 svm->sev_es.sw_scratch, 3534 svm->sev_es.ghcb_sa, 3535 svm->sev_es.ghcb_sa_len); 3536 svm->sev_es.ghcb_sa_sync = false; 3537 } 3538 3539 kvfree(svm->sev_es.ghcb_sa); 3540 svm->sev_es.ghcb_sa = NULL; 3541 svm->sev_es.ghcb_sa_free = false; 3542 } 3543 3544 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 3545 3546 sev_es_sync_to_ghcb(svm); 3547 3548 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map); 3549 svm->sev_es.ghcb = NULL; 3550 } 3551 3552 int pre_sev_run(struct vcpu_svm *svm, int cpu) 3553 { 3554 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 3555 struct kvm *kvm = svm->vcpu.kvm; 3556 unsigned int asid = sev_get_asid(kvm); 3557 3558 /* 3559 * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid 3560 * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP 3561 * AP Destroy event. 3562 */ 3563 if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa)) 3564 return -EINVAL; 3565 3566 /* 3567 * To optimize cache flushes when memory is reclaimed from an SEV VM, 3568 * track physical CPUs that enter the guest for SEV VMs and thus can 3569 * have encrypted, dirty data in the cache, and flush caches only for 3570 * CPUs that have entered the guest. 3571 */ 3572 if (!cpumask_test_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus)) 3573 cpumask_set_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus); 3574 3575 /* Assign the asid allocated with this SEV guest */ 3576 svm->asid = asid; 3577 3578 /* 3579 * Flush guest TLB: 3580 * 3581 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 3582 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 3583 */ 3584 if (sd->sev_vmcbs[asid] == svm->vmcb && 3585 svm->vcpu.arch.last_vmentry_cpu == cpu) 3586 return 0; 3587 3588 sd->sev_vmcbs[asid] = svm->vmcb; 3589 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3590 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3591 return 0; 3592 } 3593 3594 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 3595 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 3596 { 3597 struct vmcb_control_area *control = &svm->vmcb->control; 3598 u64 ghcb_scratch_beg, ghcb_scratch_end; 3599 u64 scratch_gpa_beg, scratch_gpa_end; 3600 void *scratch_va; 3601 3602 scratch_gpa_beg = svm->sev_es.sw_scratch; 3603 if (!scratch_gpa_beg) { 3604 pr_err("vmgexit: scratch gpa not provided\n"); 3605 goto e_scratch; 3606 } 3607 3608 scratch_gpa_end = scratch_gpa_beg + len; 3609 if (scratch_gpa_end < scratch_gpa_beg) { 3610 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 3611 len, scratch_gpa_beg); 3612 goto e_scratch; 3613 } 3614 3615 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 3616 /* Scratch area begins within GHCB */ 3617 ghcb_scratch_beg = control->ghcb_gpa + 3618 offsetof(struct ghcb, shared_buffer); 3619 ghcb_scratch_end = control->ghcb_gpa + 3620 offsetof(struct ghcb, reserved_0xff0); 3621 3622 /* 3623 * If the scratch area begins within the GHCB, it must be 3624 * completely contained in the GHCB shared buffer area. 3625 */ 3626 if (scratch_gpa_beg < ghcb_scratch_beg || 3627 scratch_gpa_end > ghcb_scratch_end) { 3628 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 3629 scratch_gpa_beg, scratch_gpa_end); 3630 goto e_scratch; 3631 } 3632 3633 scratch_va = (void *)svm->sev_es.ghcb; 3634 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 3635 } else { 3636 /* 3637 * The guest memory must be read into a kernel buffer, so 3638 * limit the size 3639 */ 3640 if (len > GHCB_SCRATCH_AREA_LIMIT) { 3641 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 3642 len, GHCB_SCRATCH_AREA_LIMIT); 3643 goto e_scratch; 3644 } 3645 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 3646 if (!scratch_va) 3647 return -ENOMEM; 3648 3649 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 3650 /* Unable to copy scratch area from guest */ 3651 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 3652 3653 kvfree(scratch_va); 3654 return -EFAULT; 3655 } 3656 3657 /* 3658 * The scratch area is outside the GHCB. The operation will 3659 * dictate whether the buffer needs to be synced before running 3660 * the vCPU next time (i.e. a read was requested so the data 3661 * must be written back to the guest memory). 3662 */ 3663 svm->sev_es.ghcb_sa_sync = sync; 3664 svm->sev_es.ghcb_sa_free = true; 3665 } 3666 3667 svm->sev_es.ghcb_sa = scratch_va; 3668 svm->sev_es.ghcb_sa_len = len; 3669 3670 return 0; 3671 3672 e_scratch: 3673 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA); 3674 3675 return 1; 3676 } 3677 3678 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 3679 unsigned int pos) 3680 { 3681 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 3682 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 3683 } 3684 3685 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 3686 { 3687 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 3688 } 3689 3690 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 3691 { 3692 svm->vmcb->control.ghcb_gpa = value; 3693 } 3694 3695 static int snp_rmptable_psmash(kvm_pfn_t pfn) 3696 { 3697 int ret; 3698 3699 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1); 3700 3701 /* 3702 * PSMASH_FAIL_INUSE indicates another processor is modifying the 3703 * entry, so retry until that's no longer the case. 3704 */ 3705 do { 3706 ret = psmash(pfn); 3707 } while (ret == PSMASH_FAIL_INUSE); 3708 3709 return ret; 3710 } 3711 3712 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu) 3713 { 3714 struct vcpu_svm *svm = to_svm(vcpu); 3715 3716 if (vcpu->run->hypercall.ret) 3717 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3718 else 3719 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP); 3720 3721 return 1; /* resume guest */ 3722 } 3723 3724 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) 3725 { 3726 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr)); 3727 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr); 3728 struct kvm_vcpu *vcpu = &svm->vcpu; 3729 3730 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) { 3731 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3732 return 1; /* resume guest */ 3733 } 3734 3735 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { 3736 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3737 return 1; /* resume guest */ 3738 } 3739 3740 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3741 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3742 /* 3743 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 3744 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 3745 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 3746 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 3747 */ 3748 vcpu->run->hypercall.ret = 0; 3749 vcpu->run->hypercall.args[0] = gpa; 3750 vcpu->run->hypercall.args[1] = 1; 3751 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) 3752 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3753 : KVM_MAP_GPA_RANGE_DECRYPTED; 3754 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3755 3756 vcpu->arch.complete_userspace_io = snp_complete_psc_msr; 3757 3758 return 0; /* forward request to userspace */ 3759 } 3760 3761 struct psc_buffer { 3762 struct psc_hdr hdr; 3763 struct psc_entry entries[]; 3764 } __packed; 3765 3766 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc); 3767 3768 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret) 3769 { 3770 svm->sev_es.psc_inflight = 0; 3771 svm->sev_es.psc_idx = 0; 3772 svm->sev_es.psc_2m = false; 3773 3774 /* 3775 * PSC requests always get a "no action" response in SW_EXITINFO1, with 3776 * a PSC-specific return code in SW_EXITINFO2 that provides the "real" 3777 * return code. E.g. if the PSC request was interrupted, the need to 3778 * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1. 3779 */ 3780 svm_vmgexit_no_action(svm, psc_ret); 3781 } 3782 3783 static void __snp_complete_one_psc(struct vcpu_svm *svm) 3784 { 3785 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3786 struct psc_entry *entries = psc->entries; 3787 struct psc_hdr *hdr = &psc->hdr; 3788 __u16 idx; 3789 3790 /* 3791 * Everything in-flight has been processed successfully. Update the 3792 * corresponding entries in the guest's PSC buffer and zero out the 3793 * count of in-flight PSC entries. 3794 */ 3795 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight; 3796 svm->sev_es.psc_inflight--, idx++) { 3797 struct psc_entry *entry = &entries[idx]; 3798 3799 entry->cur_page = entry->pagesize ? 512 : 1; 3800 } 3801 3802 hdr->cur_entry = idx; 3803 } 3804 3805 static int snp_complete_one_psc(struct kvm_vcpu *vcpu) 3806 { 3807 struct vcpu_svm *svm = to_svm(vcpu); 3808 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3809 3810 if (vcpu->run->hypercall.ret) { 3811 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3812 return 1; /* resume guest */ 3813 } 3814 3815 __snp_complete_one_psc(svm); 3816 3817 /* Handle the next range (if any). */ 3818 return snp_begin_psc(svm, psc); 3819 } 3820 3821 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) 3822 { 3823 struct psc_entry *entries = psc->entries; 3824 struct kvm_vcpu *vcpu = &svm->vcpu; 3825 struct psc_hdr *hdr = &psc->hdr; 3826 struct psc_entry entry_start; 3827 u16 idx, idx_start, idx_end; 3828 int npages; 3829 bool huge; 3830 u64 gfn; 3831 3832 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { 3833 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3834 return 1; 3835 } 3836 3837 next_range: 3838 /* There should be no other PSCs in-flight at this point. */ 3839 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) { 3840 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3841 return 1; 3842 } 3843 3844 /* 3845 * The PSC descriptor buffer can be modified by a misbehaved guest after 3846 * validation, so take care to only use validated copies of values used 3847 * for things like array indexing. 3848 */ 3849 idx_start = hdr->cur_entry; 3850 idx_end = hdr->end_entry; 3851 3852 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) { 3853 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR); 3854 return 1; 3855 } 3856 3857 /* Find the start of the next range which needs processing. */ 3858 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) { 3859 entry_start = entries[idx]; 3860 3861 gfn = entry_start.gfn; 3862 huge = entry_start.pagesize; 3863 npages = huge ? 512 : 1; 3864 3865 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) { 3866 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY); 3867 return 1; 3868 } 3869 3870 if (entry_start.cur_page) { 3871 /* 3872 * If this is a partially-completed 2M range, force 4K handling 3873 * for the remaining pages since they're effectively split at 3874 * this point. Subsequent code should ensure this doesn't get 3875 * combined with adjacent PSC entries where 2M handling is still 3876 * possible. 3877 */ 3878 npages -= entry_start.cur_page; 3879 gfn += entry_start.cur_page; 3880 huge = false; 3881 } 3882 3883 if (npages) 3884 break; 3885 } 3886 3887 if (idx > idx_end) { 3888 /* Nothing more to process. */ 3889 snp_complete_psc(svm, 0); 3890 return 1; 3891 } 3892 3893 svm->sev_es.psc_2m = huge; 3894 svm->sev_es.psc_idx = idx; 3895 svm->sev_es.psc_inflight = 1; 3896 3897 /* 3898 * Find all subsequent PSC entries that contain adjacent GPA 3899 * ranges/operations and can be combined into a single 3900 * KVM_HC_MAP_GPA_RANGE exit. 3901 */ 3902 while (++idx <= idx_end) { 3903 struct psc_entry entry = entries[idx]; 3904 3905 if (entry.operation != entry_start.operation || 3906 entry.gfn != entry_start.gfn + npages || 3907 entry.cur_page || !!entry.pagesize != huge) 3908 break; 3909 3910 svm->sev_es.psc_inflight++; 3911 npages += huge ? 512 : 1; 3912 } 3913 3914 switch (entry_start.operation) { 3915 case VMGEXIT_PSC_OP_PRIVATE: 3916 case VMGEXIT_PSC_OP_SHARED: 3917 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3918 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3919 /* 3920 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 3921 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 3922 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 3923 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 3924 */ 3925 vcpu->run->hypercall.ret = 0; 3926 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); 3927 vcpu->run->hypercall.args[1] = npages; 3928 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE 3929 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3930 : KVM_MAP_GPA_RANGE_DECRYPTED; 3931 vcpu->run->hypercall.args[2] |= entry_start.pagesize 3932 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M 3933 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3934 vcpu->arch.complete_userspace_io = snp_complete_one_psc; 3935 return 0; /* forward request to userspace */ 3936 default: 3937 /* 3938 * Only shared/private PSC operations are currently supported, so if the 3939 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH), 3940 * then consider the entire range completed and avoid exiting to 3941 * userspace. In theory snp_complete_psc() can always be called directly 3942 * at this point to complete the current range and start the next one, 3943 * but that could lead to unexpected levels of recursion. 3944 */ 3945 __snp_complete_one_psc(svm); 3946 goto next_range; 3947 } 3948 3949 BUG(); 3950 } 3951 3952 /* 3953 * Invoked as part of svm_vcpu_reset() processing of an init event. 3954 */ 3955 static void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) 3956 { 3957 struct vcpu_svm *svm = to_svm(vcpu); 3958 struct kvm_memory_slot *slot; 3959 struct page *page; 3960 kvm_pfn_t pfn; 3961 gfn_t gfn; 3962 3963 guard(mutex)(&svm->sev_es.snp_vmsa_mutex); 3964 3965 if (!svm->sev_es.snp_ap_waiting_for_reset) 3966 return; 3967 3968 svm->sev_es.snp_ap_waiting_for_reset = false; 3969 3970 /* Mark the vCPU as offline and not runnable */ 3971 vcpu->arch.pv.pv_unhalted = false; 3972 kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED); 3973 3974 /* Clear use of the VMSA */ 3975 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 3976 3977 /* 3978 * When replacing the VMSA during SEV-SNP AP creation, 3979 * mark the VMCB dirty so that full state is always reloaded. 3980 */ 3981 vmcb_mark_all_dirty(svm->vmcb); 3982 3983 if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) 3984 return; 3985 3986 gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa); 3987 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3988 3989 slot = gfn_to_memslot(vcpu->kvm, gfn); 3990 if (!slot) 3991 return; 3992 3993 /* 3994 * The new VMSA will be private memory guest memory, so retrieve the 3995 * PFN from the gmem backend. 3996 */ 3997 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL)) 3998 return; 3999 4000 /* 4001 * From this point forward, the VMSA will always be a guest-mapped page 4002 * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In 4003 * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but 4004 * that involves cleanups like flushing caches, which would ideally be 4005 * handled during teardown rather than guest boot. Deferring that also 4006 * allows the existing logic for SEV-ES VMSAs to be re-used with 4007 * minimal SNP-specific changes. 4008 */ 4009 svm->sev_es.snp_has_guest_vmsa = true; 4010 4011 /* Use the new VMSA */ 4012 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn); 4013 4014 /* Mark the vCPU as runnable */ 4015 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 4016 4017 /* 4018 * gmem pages aren't currently migratable, but if this ever changes 4019 * then care should be taken to ensure svm->sev_es.vmsa is pinned 4020 * through some other means. 4021 */ 4022 kvm_release_page_clean(page); 4023 } 4024 4025 static int sev_snp_ap_creation(struct vcpu_svm *svm) 4026 { 4027 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm); 4028 struct kvm_vcpu *vcpu = &svm->vcpu; 4029 struct kvm_vcpu *target_vcpu; 4030 struct vcpu_svm *target_svm; 4031 unsigned int request; 4032 unsigned int apic_id; 4033 4034 request = lower_32_bits(svm->vmcb->control.exit_info_1); 4035 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1); 4036 4037 /* Validate the APIC ID */ 4038 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id); 4039 if (!target_vcpu) { 4040 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n", 4041 apic_id); 4042 return -EINVAL; 4043 } 4044 4045 target_svm = to_svm(target_vcpu); 4046 4047 guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex); 4048 4049 switch (request) { 4050 case SVM_VMGEXIT_AP_CREATE_ON_INIT: 4051 case SVM_VMGEXIT_AP_CREATE: 4052 if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) { 4053 vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n", 4054 vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features); 4055 return -EINVAL; 4056 } 4057 4058 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) { 4059 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n", 4060 svm->vmcb->control.exit_info_2); 4061 return -EINVAL; 4062 } 4063 4064 /* 4065 * Malicious guest can RMPADJUST a large page into VMSA which 4066 * will hit the SNP erratum where the CPU will incorrectly signal 4067 * an RMP violation #PF if a hugepage collides with the RMP entry 4068 * of VMSA page, reject the AP CREATE request if VMSA address from 4069 * guest is 2M aligned. 4070 */ 4071 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) { 4072 vcpu_unimpl(vcpu, 4073 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n", 4074 svm->vmcb->control.exit_info_2); 4075 return -EINVAL; 4076 } 4077 4078 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; 4079 break; 4080 case SVM_VMGEXIT_AP_DESTROY: 4081 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 4082 break; 4083 default: 4084 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", 4085 request); 4086 return -EINVAL; 4087 } 4088 4089 target_svm->sev_es.snp_ap_waiting_for_reset = true; 4090 4091 /* 4092 * Unless Creation is deferred until INIT, signal the vCPU to update 4093 * its state. 4094 */ 4095 if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT) 4096 kvm_make_request_and_kick(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); 4097 4098 return 0; 4099 } 4100 4101 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4102 { 4103 struct sev_data_snp_guest_request data = {0}; 4104 struct kvm *kvm = svm->vcpu.kvm; 4105 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4106 sev_ret_code fw_err = 0; 4107 int ret; 4108 4109 if (!sev_snp_guest(kvm)) 4110 return -EINVAL; 4111 4112 mutex_lock(&sev->guest_req_mutex); 4113 4114 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) { 4115 ret = -EIO; 4116 goto out_unlock; 4117 } 4118 4119 data.gctx_paddr = __psp_pa(sev->snp_context); 4120 data.req_paddr = __psp_pa(sev->guest_req_buf); 4121 data.res_paddr = __psp_pa(sev->guest_resp_buf); 4122 4123 /* 4124 * Firmware failures are propagated on to guest, but any other failure 4125 * condition along the way should be reported to userspace. E.g. if 4126 * the PSP is dead and commands are timing out. 4127 */ 4128 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err); 4129 if (ret && !fw_err) 4130 goto out_unlock; 4131 4132 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) { 4133 ret = -EIO; 4134 goto out_unlock; 4135 } 4136 4137 /* No action is requested *from KVM* if there was a firmware error. */ 4138 svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err)); 4139 4140 ret = 1; /* resume guest */ 4141 4142 out_unlock: 4143 mutex_unlock(&sev->guest_req_mutex); 4144 return ret; 4145 } 4146 4147 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4148 { 4149 struct kvm *kvm = svm->vcpu.kvm; 4150 u8 msg_type; 4151 4152 if (!sev_snp_guest(kvm)) 4153 return -EINVAL; 4154 4155 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type), 4156 &msg_type, 1)) 4157 return -EIO; 4158 4159 /* 4160 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for 4161 * additional certificate data to be provided alongside the attestation 4162 * report via the guest-provided data pages indicated by RAX/RBX. The 4163 * certificate data is optional and requires additional KVM enablement 4164 * to provide an interface for userspace to provide it, but KVM still 4165 * needs to be able to handle extended guest requests either way. So 4166 * provide a stub implementation that will always return an empty 4167 * certificate table in the guest-provided data pages. 4168 */ 4169 if (msg_type == SNP_MSG_REPORT_REQ) { 4170 struct kvm_vcpu *vcpu = &svm->vcpu; 4171 u64 data_npages; 4172 gpa_t data_gpa; 4173 4174 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm)) 4175 goto request_invalid; 4176 4177 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX]; 4178 data_npages = vcpu->arch.regs[VCPU_REGS_RBX]; 4179 4180 if (!PAGE_ALIGNED(data_gpa)) 4181 goto request_invalid; 4182 4183 /* 4184 * As per GHCB spec (see "SNP Extended Guest Request"), the 4185 * certificate table is terminated by 24-bytes of zeroes. 4186 */ 4187 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24)) 4188 return -EIO; 4189 } 4190 4191 return snp_handle_guest_req(svm, req_gpa, resp_gpa); 4192 4193 request_invalid: 4194 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4195 return 1; /* resume guest */ 4196 } 4197 4198 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 4199 { 4200 struct vmcb_control_area *control = &svm->vmcb->control; 4201 struct kvm_vcpu *vcpu = &svm->vcpu; 4202 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4203 u64 ghcb_info; 4204 int ret = 1; 4205 4206 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 4207 4208 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 4209 control->ghcb_gpa); 4210 4211 switch (ghcb_info) { 4212 case GHCB_MSR_SEV_INFO_REQ: 4213 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4214 GHCB_VERSION_MIN, 4215 sev_enc_bit)); 4216 break; 4217 case GHCB_MSR_CPUID_REQ: { 4218 u64 cpuid_fn, cpuid_reg, cpuid_value; 4219 4220 cpuid_fn = get_ghcb_msr_bits(svm, 4221 GHCB_MSR_CPUID_FUNC_MASK, 4222 GHCB_MSR_CPUID_FUNC_POS); 4223 4224 /* Initialize the registers needed by the CPUID intercept */ 4225 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 4226 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 4227 4228 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 4229 if (!ret) { 4230 /* Error, keep GHCB MSR value as-is */ 4231 break; 4232 } 4233 4234 cpuid_reg = get_ghcb_msr_bits(svm, 4235 GHCB_MSR_CPUID_REG_MASK, 4236 GHCB_MSR_CPUID_REG_POS); 4237 if (cpuid_reg == 0) 4238 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 4239 else if (cpuid_reg == 1) 4240 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 4241 else if (cpuid_reg == 2) 4242 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 4243 else 4244 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 4245 4246 set_ghcb_msr_bits(svm, cpuid_value, 4247 GHCB_MSR_CPUID_VALUE_MASK, 4248 GHCB_MSR_CPUID_VALUE_POS); 4249 4250 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 4251 GHCB_MSR_INFO_MASK, 4252 GHCB_MSR_INFO_POS); 4253 break; 4254 } 4255 case GHCB_MSR_AP_RESET_HOLD_REQ: 4256 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO; 4257 ret = kvm_emulate_ap_reset_hold(&svm->vcpu); 4258 4259 /* 4260 * Preset the result to a non-SIPI return and then only set 4261 * the result to non-zero when delivering a SIPI. 4262 */ 4263 set_ghcb_msr_bits(svm, 0, 4264 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4265 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4266 4267 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4268 GHCB_MSR_INFO_MASK, 4269 GHCB_MSR_INFO_POS); 4270 break; 4271 case GHCB_MSR_HV_FT_REQ: 4272 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED, 4273 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS); 4274 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP, 4275 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); 4276 break; 4277 case GHCB_MSR_PREF_GPA_REQ: 4278 if (!sev_snp_guest(vcpu->kvm)) 4279 goto out_terminate; 4280 4281 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK, 4282 GHCB_MSR_GPA_VALUE_POS); 4283 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK, 4284 GHCB_MSR_INFO_POS); 4285 break; 4286 case GHCB_MSR_REG_GPA_REQ: { 4287 u64 gfn; 4288 4289 if (!sev_snp_guest(vcpu->kvm)) 4290 goto out_terminate; 4291 4292 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK, 4293 GHCB_MSR_GPA_VALUE_POS); 4294 4295 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn); 4296 4297 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK, 4298 GHCB_MSR_GPA_VALUE_POS); 4299 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK, 4300 GHCB_MSR_INFO_POS); 4301 break; 4302 } 4303 case GHCB_MSR_PSC_REQ: 4304 if (!sev_snp_guest(vcpu->kvm)) 4305 goto out_terminate; 4306 4307 ret = snp_begin_psc_msr(svm, control->ghcb_gpa); 4308 break; 4309 case GHCB_MSR_TERM_REQ: { 4310 u64 reason_set, reason_code; 4311 4312 reason_set = get_ghcb_msr_bits(svm, 4313 GHCB_MSR_TERM_REASON_SET_MASK, 4314 GHCB_MSR_TERM_REASON_SET_POS); 4315 reason_code = get_ghcb_msr_bits(svm, 4316 GHCB_MSR_TERM_REASON_MASK, 4317 GHCB_MSR_TERM_REASON_POS); 4318 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 4319 reason_set, reason_code); 4320 4321 goto out_terminate; 4322 } 4323 default: 4324 /* Error, keep GHCB MSR value as-is */ 4325 break; 4326 } 4327 4328 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 4329 control->ghcb_gpa, ret); 4330 4331 return ret; 4332 4333 out_terminate: 4334 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4335 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4336 vcpu->run->system_event.ndata = 1; 4337 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4338 4339 return 0; 4340 } 4341 4342 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 4343 { 4344 struct vcpu_svm *svm = to_svm(vcpu); 4345 struct vmcb_control_area *control = &svm->vmcb->control; 4346 u64 ghcb_gpa, exit_code; 4347 int ret; 4348 4349 /* Validate the GHCB */ 4350 ghcb_gpa = control->ghcb_gpa; 4351 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 4352 return sev_handle_vmgexit_msr_protocol(svm); 4353 4354 if (!ghcb_gpa) { 4355 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 4356 4357 /* Without a GHCB, just return right back to the guest */ 4358 return 1; 4359 } 4360 4361 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 4362 /* Unable to map GHCB from guest */ 4363 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 4364 ghcb_gpa); 4365 4366 /* Without a GHCB, just return right back to the guest */ 4367 return 1; 4368 } 4369 4370 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 4371 4372 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 4373 4374 sev_es_sync_from_ghcb(svm); 4375 4376 /* SEV-SNP guest requires that the GHCB GPA must be registered */ 4377 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) { 4378 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa); 4379 return -EINVAL; 4380 } 4381 4382 ret = sev_es_validate_vmgexit(svm); 4383 if (ret) 4384 return ret; 4385 4386 svm_vmgexit_success(svm, 0); 4387 4388 exit_code = kvm_get_cached_sw_exit_code(control); 4389 switch (exit_code) { 4390 case SVM_VMGEXIT_MMIO_READ: 4391 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4392 if (ret) 4393 break; 4394 4395 ret = kvm_sev_es_mmio_read(vcpu, 4396 control->exit_info_1, 4397 control->exit_info_2, 4398 svm->sev_es.ghcb_sa); 4399 break; 4400 case SVM_VMGEXIT_MMIO_WRITE: 4401 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 4402 if (ret) 4403 break; 4404 4405 ret = kvm_sev_es_mmio_write(vcpu, 4406 control->exit_info_1, 4407 control->exit_info_2, 4408 svm->sev_es.ghcb_sa); 4409 break; 4410 case SVM_VMGEXIT_NMI_COMPLETE: 4411 ++vcpu->stat.nmi_window_exits; 4412 svm->nmi_masked = false; 4413 kvm_make_request(KVM_REQ_EVENT, vcpu); 4414 ret = 1; 4415 break; 4416 case SVM_VMGEXIT_AP_HLT_LOOP: 4417 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT; 4418 ret = kvm_emulate_ap_reset_hold(vcpu); 4419 break; 4420 case SVM_VMGEXIT_AP_JUMP_TABLE: { 4421 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4422 4423 switch (control->exit_info_1) { 4424 case 0: 4425 /* Set AP jump table address */ 4426 sev->ap_jump_table = control->exit_info_2; 4427 break; 4428 case 1: 4429 /* Get AP jump table address */ 4430 svm_vmgexit_success(svm, sev->ap_jump_table); 4431 break; 4432 default: 4433 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 4434 control->exit_info_1); 4435 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4436 } 4437 4438 ret = 1; 4439 break; 4440 } 4441 case SVM_VMGEXIT_HV_FEATURES: 4442 svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED); 4443 ret = 1; 4444 break; 4445 case SVM_VMGEXIT_TERM_REQUEST: 4446 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n", 4447 control->exit_info_1, control->exit_info_2); 4448 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4449 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4450 vcpu->run->system_event.ndata = 1; 4451 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4452 break; 4453 case SVM_VMGEXIT_PSC: 4454 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4455 if (ret) 4456 break; 4457 4458 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa); 4459 break; 4460 case SVM_VMGEXIT_AP_CREATION: 4461 ret = sev_snp_ap_creation(svm); 4462 if (ret) { 4463 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4464 } 4465 4466 ret = 1; 4467 break; 4468 case SVM_VMGEXIT_GUEST_REQUEST: 4469 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2); 4470 break; 4471 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 4472 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2); 4473 break; 4474 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 4475 vcpu_unimpl(vcpu, 4476 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 4477 control->exit_info_1, control->exit_info_2); 4478 ret = -EINVAL; 4479 break; 4480 default: 4481 ret = svm_invoke_exit_handler(vcpu, exit_code); 4482 } 4483 4484 return ret; 4485 } 4486 4487 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 4488 { 4489 int count; 4490 int bytes; 4491 int r; 4492 4493 if (svm->vmcb->control.exit_info_2 > INT_MAX) 4494 return -EINVAL; 4495 4496 count = svm->vmcb->control.exit_info_2; 4497 if (unlikely(check_mul_overflow(count, size, &bytes))) 4498 return -EINVAL; 4499 4500 r = setup_vmgexit_scratch(svm, in, bytes); 4501 if (r) 4502 return r; 4503 4504 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 4505 count, in); 4506 } 4507 4508 void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu) 4509 { 4510 /* Clear intercepts on MSRs that are context switched by hardware. */ 4511 svm_disable_intercept_for_msr(vcpu, MSR_AMD64_SEV_ES_GHCB, MSR_TYPE_RW); 4512 svm_disable_intercept_for_msr(vcpu, MSR_EFER, MSR_TYPE_RW); 4513 svm_disable_intercept_for_msr(vcpu, MSR_IA32_CR_PAT, MSR_TYPE_RW); 4514 4515 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) 4516 svm_set_intercept_for_msr(vcpu, MSR_TSC_AUX, MSR_TYPE_RW, 4517 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && 4518 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)); 4519 4520 svm_set_intercept_for_msr(vcpu, MSR_AMD64_GUEST_TSC_FREQ, MSR_TYPE_R, 4521 !snp_is_secure_tsc_enabled(vcpu->kvm)); 4522 4523 /* 4524 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if 4525 * the host/guest supports its use. 4526 * 4527 * KVM treats the guest as being capable of using XSAVES even if XSAVES 4528 * isn't enabled in guest CPUID as there is no intercept for XSAVES, 4529 * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is 4530 * exposed to the guest and XSAVES is supported in hardware. Condition 4531 * full XSS passthrough on the guest being able to use XSAVES *and* 4532 * XSAVES being exposed to the guest so that KVM can at least honor 4533 * guest CPUID for RDMSR and WRMSR. 4534 */ 4535 svm_set_intercept_for_msr(vcpu, MSR_IA32_XSS, MSR_TYPE_RW, 4536 !guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) || 4537 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)); 4538 } 4539 4540 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4541 { 4542 struct kvm_vcpu *vcpu = &svm->vcpu; 4543 struct kvm_cpuid_entry2 *best; 4544 4545 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4546 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4547 if (best) 4548 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4549 } 4550 4551 static void sev_es_init_vmcb(struct vcpu_svm *svm, bool init_event) 4552 { 4553 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm); 4554 struct vmcb *vmcb = svm->vmcb01.ptr; 4555 4556 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 4557 4558 /* 4559 * An SEV-ES guest requires a VMSA area that is a separate from the 4560 * VMCB page. Do not include the encryption mask on the VMSA physical 4561 * address since hardware will access it using the guest key. Note, 4562 * the VMSA will be NULL if this vCPU is the destination for intrahost 4563 * migration, and will be copied later. 4564 */ 4565 if (!svm->sev_es.snp_has_guest_vmsa) { 4566 if (svm->sev_es.vmsa) 4567 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 4568 else 4569 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 4570 } 4571 4572 if (cpu_feature_enabled(X86_FEATURE_ALLOWED_SEV_FEATURES)) 4573 svm->vmcb->control.allowed_sev_features = sev->vmsa_features | 4574 VMCB_ALLOWED_SEV_FEATURES_VALID; 4575 4576 /* Can't intercept CR register access, HV can't modify CR registers */ 4577 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 4578 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 4579 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 4580 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 4581 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 4582 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 4583 4584 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 4585 4586 /* Track EFER/CR register changes */ 4587 svm_set_intercept(svm, TRAP_EFER_WRITE); 4588 svm_set_intercept(svm, TRAP_CR0_WRITE); 4589 svm_set_intercept(svm, TRAP_CR4_WRITE); 4590 svm_set_intercept(svm, TRAP_CR8_WRITE); 4591 4592 vmcb->control.intercepts[INTERCEPT_DR] = 0; 4593 if (!sev_vcpu_has_debug_swap(svm)) { 4594 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 4595 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 4596 recalc_intercepts(svm); 4597 } else { 4598 /* 4599 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 4600 * allow debugging SEV-ES guests, and enables DebugSwap iff 4601 * NO_NESTED_DATA_BP is supported, so there's no reason to 4602 * intercept #DB when DebugSwap is enabled. For simplicity 4603 * with respect to guest debug, intercept #DB for other VMs 4604 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 4605 * guest can't DoS the CPU with infinite #DB vectoring. 4606 */ 4607 clr_exception_intercept(svm, DB_VECTOR); 4608 } 4609 4610 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 4611 svm_clr_intercept(svm, INTERCEPT_XSETBV); 4612 4613 /* 4614 * Set the GHCB MSR value as per the GHCB specification when emulating 4615 * vCPU RESET for an SEV-ES guest. 4616 */ 4617 if (!init_event) 4618 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4619 GHCB_VERSION_MIN, 4620 sev_enc_bit)); 4621 } 4622 4623 void sev_init_vmcb(struct vcpu_svm *svm, bool init_event) 4624 { 4625 struct kvm_vcpu *vcpu = &svm->vcpu; 4626 4627 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 4628 clr_exception_intercept(svm, UD_VECTOR); 4629 4630 /* 4631 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 4632 * KVM can't decrypt guest memory to decode the faulting instruction. 4633 */ 4634 clr_exception_intercept(svm, GP_VECTOR); 4635 4636 if (init_event && sev_snp_guest(vcpu->kvm)) 4637 sev_snp_init_protected_guest_state(vcpu); 4638 4639 if (sev_es_guest(vcpu->kvm)) 4640 sev_es_init_vmcb(svm, init_event); 4641 } 4642 4643 int sev_vcpu_create(struct kvm_vcpu *vcpu) 4644 { 4645 struct vcpu_svm *svm = to_svm(vcpu); 4646 struct page *vmsa_page; 4647 4648 mutex_init(&svm->sev_es.snp_vmsa_mutex); 4649 4650 if (!sev_es_guest(vcpu->kvm)) 4651 return 0; 4652 4653 /* 4654 * SEV-ES guests require a separate (from the VMCB) VMSA page used to 4655 * contain the encrypted register state of the guest. 4656 */ 4657 vmsa_page = snp_safe_alloc_page(); 4658 if (!vmsa_page) 4659 return -ENOMEM; 4660 4661 svm->sev_es.vmsa = page_address(vmsa_page); 4662 4663 vcpu->arch.guest_tsc_protected = snp_is_secure_tsc_enabled(vcpu->kvm); 4664 4665 return 0; 4666 } 4667 4668 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa) 4669 { 4670 struct kvm *kvm = svm->vcpu.kvm; 4671 4672 /* 4673 * All host state for SEV-ES guests is categorized into three swap types 4674 * based on how it is handled by hardware during a world switch: 4675 * 4676 * A: VMRUN: Host state saved in host save area 4677 * VMEXIT: Host state loaded from host save area 4678 * 4679 * B: VMRUN: Host state _NOT_ saved in host save area 4680 * VMEXIT: Host state loaded from host save area 4681 * 4682 * C: VMRUN: Host state _NOT_ saved in host save area 4683 * VMEXIT: Host state initialized to default(reset) values 4684 * 4685 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 4686 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 4687 * by common SVM code). 4688 */ 4689 hostsa->xcr0 = kvm_host.xcr0; 4690 hostsa->pkru = read_pkru(); 4691 hostsa->xss = kvm_host.xss; 4692 4693 /* 4694 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 4695 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does 4696 * not save or load debug registers. Sadly, KVM can't prevent SNP 4697 * guests from lying about DebugSwap on secondary vCPUs, i.e. the 4698 * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what 4699 * the guest has actually enabled (or not!) in the VMSA. 4700 * 4701 * If DebugSwap is *possible*, save the masks so that they're restored 4702 * if the guest enables DebugSwap. But for the DRs themselves, do NOT 4703 * rely on the CPU to restore the host values; KVM will restore them as 4704 * needed in common code, via hw_breakpoint_restore(). Note, KVM does 4705 * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs 4706 * don't need to be restored per se, KVM just needs to ensure they are 4707 * loaded with the correct values *if* the CPU writes the MSRs. 4708 */ 4709 if (sev_vcpu_has_debug_swap(svm) || 4710 (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) { 4711 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 4712 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 4713 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 4714 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 4715 } 4716 4717 /* 4718 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 4719 * available, i.e. TSC_AUX is loaded on #VMEXIT from the host save area. 4720 * Set the save area to the current hardware value, i.e. the current 4721 * user return value, so that the correct value is restored on #VMEXIT. 4722 */ 4723 if (cpu_feature_enabled(X86_FEATURE_V_TSC_AUX) && 4724 !WARN_ON_ONCE(tsc_aux_uret_slot < 0)) 4725 hostsa->tsc_aux = kvm_get_user_return_msr(tsc_aux_uret_slot); 4726 } 4727 4728 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4729 { 4730 struct vcpu_svm *svm = to_svm(vcpu); 4731 4732 /* First SIPI: Use the values as initially set by the VMM */ 4733 if (!svm->sev_es.received_first_sipi) { 4734 svm->sev_es.received_first_sipi = true; 4735 return; 4736 } 4737 4738 /* Subsequent SIPI */ 4739 switch (svm->sev_es.ap_reset_hold_type) { 4740 case AP_RESET_HOLD_NAE_EVENT: 4741 /* 4742 * Return from an AP Reset Hold VMGEXIT, where the guest will 4743 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value. 4744 */ 4745 svm_vmgexit_success(svm, 1); 4746 break; 4747 case AP_RESET_HOLD_MSR_PROTO: 4748 /* 4749 * Return from an AP Reset Hold VMGEXIT, where the guest will 4750 * set the CS and RIP. Set GHCB data field to a non-zero value. 4751 */ 4752 set_ghcb_msr_bits(svm, 1, 4753 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4754 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4755 4756 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4757 GHCB_MSR_INFO_MASK, 4758 GHCB_MSR_INFO_POS); 4759 break; 4760 default: 4761 break; 4762 } 4763 } 4764 4765 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) 4766 { 4767 unsigned long pfn; 4768 struct page *p; 4769 4770 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4771 return alloc_pages_node(node, gfp | __GFP_ZERO, 0); 4772 4773 /* 4774 * Allocate an SNP-safe page to workaround the SNP erratum where 4775 * the CPU will incorrectly signal an RMP violation #PF if a 4776 * hugepage (2MB or 1GB) collides with the RMP entry of a 4777 * 2MB-aligned VMCB, VMSA, or AVIC backing page. 4778 * 4779 * Allocate one extra page, choose a page which is not 4780 * 2MB-aligned, and free the other. 4781 */ 4782 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1); 4783 if (!p) 4784 return NULL; 4785 4786 split_page(p, 1); 4787 4788 pfn = page_to_pfn(p); 4789 if (IS_ALIGNED(pfn, PTRS_PER_PMD)) 4790 __free_page(p++); 4791 else 4792 __free_page(p + 1); 4793 4794 return p; 4795 } 4796 4797 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) 4798 { 4799 struct kvm_memory_slot *slot; 4800 struct kvm *kvm = vcpu->kvm; 4801 int order, rmp_level, ret; 4802 struct page *page; 4803 bool assigned; 4804 kvm_pfn_t pfn; 4805 gfn_t gfn; 4806 4807 gfn = gpa >> PAGE_SHIFT; 4808 4809 /* 4810 * The only time RMP faults occur for shared pages is when the guest is 4811 * triggering an RMP fault for an implicit page-state change from 4812 * shared->private. Implicit page-state changes are forwarded to 4813 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults 4814 * for shared pages should not end up here. 4815 */ 4816 if (!kvm_mem_is_private(kvm, gfn)) { 4817 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n", 4818 gpa); 4819 return; 4820 } 4821 4822 slot = gfn_to_memslot(kvm, gfn); 4823 if (!kvm_slot_has_gmem(slot)) { 4824 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n", 4825 gpa); 4826 return; 4827 } 4828 4829 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order); 4830 if (ret) { 4831 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n", 4832 gpa); 4833 return; 4834 } 4835 4836 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4837 if (ret || !assigned) { 4838 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n", 4839 gpa, pfn, ret); 4840 goto out_no_trace; 4841 } 4842 4843 /* 4844 * There are 2 cases where a PSMASH may be needed to resolve an #NPF 4845 * with PFERR_GUEST_RMP_BIT set: 4846 * 4847 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM 4848 * bit set if the guest issues them with a smaller granularity than 4849 * what is indicated by the page-size bit in the 2MB RMP entry for 4850 * the PFN that backs the GPA. 4851 * 4852 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is 4853 * smaller than what is indicated by the 2MB RMP entry for the PFN 4854 * that backs the GPA. 4855 * 4856 * In both these cases, the corresponding 2M RMP entry needs to 4857 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already 4858 * split into 4K RMP entries, then this is likely a spurious case which 4859 * can occur when there are concurrent accesses by the guest to a 2MB 4860 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in 4861 * the process of being PMASH'd into 4K entries. These cases should 4862 * resolve automatically on subsequent accesses, so just ignore them 4863 * here. 4864 */ 4865 if (rmp_level == PG_LEVEL_4K) 4866 goto out; 4867 4868 ret = snp_rmptable_psmash(pfn); 4869 if (ret) { 4870 /* 4871 * Look it up again. If it's 4K now then the PSMASH may have 4872 * raced with another process and the issue has already resolved 4873 * itself. 4874 */ 4875 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) && 4876 assigned && rmp_level == PG_LEVEL_4K) 4877 goto out; 4878 4879 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n", 4880 gpa, pfn, ret); 4881 } 4882 4883 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD); 4884 out: 4885 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret); 4886 out_no_trace: 4887 kvm_release_page_unused(page); 4888 } 4889 4890 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end) 4891 { 4892 kvm_pfn_t pfn = start; 4893 4894 while (pfn < end) { 4895 int ret, rmp_level; 4896 bool assigned; 4897 4898 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4899 if (ret) { 4900 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n", 4901 pfn, start, end, rmp_level, ret); 4902 return false; 4903 } 4904 4905 if (assigned) { 4906 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n", 4907 __func__, pfn, start, end, rmp_level); 4908 return false; 4909 } 4910 4911 pfn++; 4912 } 4913 4914 return true; 4915 } 4916 4917 static u8 max_level_for_order(int order) 4918 { 4919 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4920 return PG_LEVEL_2M; 4921 4922 return PG_LEVEL_4K; 4923 } 4924 4925 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order) 4926 { 4927 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4928 4929 /* 4930 * If this is a large folio, and the entire 2M range containing the 4931 * PFN is currently shared, then the entire 2M-aligned range can be 4932 * set to private via a single 2M RMP entry. 4933 */ 4934 if (max_level_for_order(order) > PG_LEVEL_4K && 4935 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD)) 4936 return true; 4937 4938 return false; 4939 } 4940 4941 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) 4942 { 4943 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4944 kvm_pfn_t pfn_aligned; 4945 gfn_t gfn_aligned; 4946 int level, rc; 4947 bool assigned; 4948 4949 if (!sev_snp_guest(kvm)) 4950 return 0; 4951 4952 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4953 if (rc) { 4954 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n", 4955 gfn, pfn, rc); 4956 return -ENOENT; 4957 } 4958 4959 if (assigned) { 4960 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n", 4961 __func__, gfn, pfn, max_order, level); 4962 return 0; 4963 } 4964 4965 if (is_large_rmp_possible(kvm, pfn, max_order)) { 4966 level = PG_LEVEL_2M; 4967 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4968 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD); 4969 } else { 4970 level = PG_LEVEL_4K; 4971 pfn_aligned = pfn; 4972 gfn_aligned = gfn; 4973 } 4974 4975 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false); 4976 if (rc) { 4977 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n", 4978 gfn, pfn, level, rc); 4979 return -EINVAL; 4980 } 4981 4982 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n", 4983 __func__, gfn, pfn, pfn_aligned, max_order, level); 4984 4985 return 0; 4986 } 4987 4988 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 4989 { 4990 kvm_pfn_t pfn; 4991 4992 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4993 return; 4994 4995 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end); 4996 4997 for (pfn = start; pfn < end;) { 4998 bool use_2m_update = false; 4999 int rc, rmp_level; 5000 bool assigned; 5001 5002 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 5003 if (rc || !assigned) 5004 goto next_pfn; 5005 5006 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) && 5007 end >= (pfn + PTRS_PER_PMD) && 5008 rmp_level > PG_LEVEL_4K; 5009 5010 /* 5011 * If an unaligned PFN corresponds to a 2M region assigned as a 5012 * large page in the RMP table, PSMASH the region into individual 5013 * 4K RMP entries before attempting to convert a 4K sub-page. 5014 */ 5015 if (!use_2m_update && rmp_level > PG_LEVEL_4K) { 5016 /* 5017 * This shouldn't fail, but if it does, report it, but 5018 * still try to update RMP entry to shared and pray this 5019 * was a spurious error that can be addressed later. 5020 */ 5021 rc = snp_rmptable_psmash(pfn); 5022 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n", 5023 pfn, rc); 5024 } 5025 5026 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K); 5027 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n", 5028 pfn, rc)) 5029 goto next_pfn; 5030 5031 /* 5032 * SEV-ES avoids host/guest cache coherency issues through 5033 * WBNOINVD hooks issued via MMU notifiers during run-time, and 5034 * KVM's VM destroy path at shutdown. Those MMU notifier events 5035 * don't cover gmem since there is no requirement to map pages 5036 * to a HVA in order to use them for a running guest. While the 5037 * shutdown path would still likely cover things for SNP guests, 5038 * userspace may also free gmem pages during run-time via 5039 * hole-punching operations on the guest_memfd, so flush the 5040 * cache entries for these pages before free'ing them back to 5041 * the host. 5042 */ 5043 clflush_cache_range(__va(pfn_to_hpa(pfn)), 5044 use_2m_update ? PMD_SIZE : PAGE_SIZE); 5045 next_pfn: 5046 pfn += use_2m_update ? PTRS_PER_PMD : 1; 5047 cond_resched(); 5048 } 5049 } 5050 5051 int sev_gmem_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, bool is_private) 5052 { 5053 int level, rc; 5054 bool assigned; 5055 5056 if (!sev_snp_guest(kvm)) 5057 return 0; 5058 5059 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 5060 if (rc || !assigned) 5061 return PG_LEVEL_4K; 5062 5063 return level; 5064 } 5065 5066 struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu) 5067 { 5068 struct vcpu_svm *svm = to_svm(vcpu); 5069 struct vmcb_save_area *vmsa; 5070 struct kvm_sev_info *sev; 5071 int error = 0; 5072 int ret; 5073 5074 if (!sev_es_guest(vcpu->kvm)) 5075 return NULL; 5076 5077 /* 5078 * If the VMSA has not yet been encrypted, return a pointer to the 5079 * current un-encrypted VMSA. 5080 */ 5081 if (!vcpu->arch.guest_state_protected) 5082 return (struct vmcb_save_area *)svm->sev_es.vmsa; 5083 5084 sev = to_kvm_sev_info(vcpu->kvm); 5085 5086 /* Check if the SEV policy allows debugging */ 5087 if (sev_snp_guest(vcpu->kvm)) { 5088 if (!(sev->policy & SNP_POLICY_DEBUG)) 5089 return NULL; 5090 } else { 5091 if (sev->policy & SEV_POLICY_NODBG) 5092 return NULL; 5093 } 5094 5095 if (sev_snp_guest(vcpu->kvm)) { 5096 struct sev_data_snp_dbg dbg = {0}; 5097 5098 vmsa = snp_alloc_firmware_page(__GFP_ZERO); 5099 if (!vmsa) 5100 return NULL; 5101 5102 dbg.gctx_paddr = __psp_pa(sev->snp_context); 5103 dbg.src_addr = svm->vmcb->control.vmsa_pa; 5104 dbg.dst_addr = __psp_pa(vmsa); 5105 5106 ret = sev_do_cmd(SEV_CMD_SNP_DBG_DECRYPT, &dbg, &error); 5107 5108 /* 5109 * Return the target page to a hypervisor page no matter what. 5110 * If this fails, the page can't be used, so leak it and don't 5111 * try to use it. 5112 */ 5113 if (snp_page_reclaim(vcpu->kvm, PHYS_PFN(__pa(vmsa)))) 5114 return NULL; 5115 5116 if (ret) { 5117 pr_err("SEV: SNP_DBG_DECRYPT failed ret=%d, fw_error=%d (%#x)\n", 5118 ret, error, error); 5119 free_page((unsigned long)vmsa); 5120 5121 return NULL; 5122 } 5123 } else { 5124 struct sev_data_dbg dbg = {0}; 5125 struct page *vmsa_page; 5126 5127 vmsa_page = alloc_page(GFP_KERNEL); 5128 if (!vmsa_page) 5129 return NULL; 5130 5131 vmsa = page_address(vmsa_page); 5132 5133 dbg.handle = sev->handle; 5134 dbg.src_addr = svm->vmcb->control.vmsa_pa; 5135 dbg.dst_addr = __psp_pa(vmsa); 5136 dbg.len = PAGE_SIZE; 5137 5138 ret = sev_do_cmd(SEV_CMD_DBG_DECRYPT, &dbg, &error); 5139 if (ret) { 5140 pr_err("SEV: SEV_CMD_DBG_DECRYPT failed ret=%d, fw_error=%d (0x%x)\n", 5141 ret, error, error); 5142 __free_page(vmsa_page); 5143 5144 return NULL; 5145 } 5146 } 5147 5148 return vmsa; 5149 } 5150 5151 void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa) 5152 { 5153 /* If the VMSA has not yet been encrypted, nothing was allocated */ 5154 if (!vcpu->arch.guest_state_protected || !vmsa) 5155 return; 5156 5157 free_page((unsigned long)vmsa); 5158 } 5159