xref: /linux/arch/x86/kvm/svm/sev.c (revision 65aa371ea52a92dd10826a2ea74bd2c395ee90a8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20 #include <asm/fpu/internal.h>
21 
22 #include <asm/pkru.h>
23 #include <asm/trapnr.h>
24 
25 #include "x86.h"
26 #include "svm.h"
27 #include "svm_ops.h"
28 #include "cpuid.h"
29 #include "trace.h"
30 
31 #ifndef CONFIG_KVM_AMD_SEV
32 /*
33  * When this config is not defined, SEV feature is not supported and APIs in
34  * this file are not used but this file still gets compiled into the KVM AMD
35  * module.
36  *
37  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
38  * misc_res_type {} defined in linux/misc_cgroup.h.
39  *
40  * Below macros allow compilation to succeed.
41  */
42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
44 #endif
45 
46 #ifdef CONFIG_KVM_AMD_SEV
47 /* enable/disable SEV support */
48 static bool sev_enabled = true;
49 module_param_named(sev, sev_enabled, bool, 0444);
50 
51 /* enable/disable SEV-ES support */
52 static bool sev_es_enabled = true;
53 module_param_named(sev_es, sev_es_enabled, bool, 0444);
54 #else
55 #define sev_enabled false
56 #define sev_es_enabled false
57 #endif /* CONFIG_KVM_AMD_SEV */
58 
59 static u8 sev_enc_bit;
60 static DECLARE_RWSEM(sev_deactivate_lock);
61 static DEFINE_MUTEX(sev_bitmap_lock);
62 unsigned int max_sev_asid;
63 static unsigned int min_sev_asid;
64 static unsigned long sev_me_mask;
65 static unsigned int nr_asids;
66 static unsigned long *sev_asid_bitmap;
67 static unsigned long *sev_reclaim_asid_bitmap;
68 
69 struct enc_region {
70 	struct list_head list;
71 	unsigned long npages;
72 	struct page **pages;
73 	unsigned long uaddr;
74 	unsigned long size;
75 };
76 
77 /* Called with the sev_bitmap_lock held, or on shutdown  */
78 static int sev_flush_asids(int min_asid, int max_asid)
79 {
80 	int ret, asid, error = 0;
81 
82 	/* Check if there are any ASIDs to reclaim before performing a flush */
83 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
84 	if (asid > max_asid)
85 		return -EBUSY;
86 
87 	/*
88 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
89 	 * so it must be guarded.
90 	 */
91 	down_write(&sev_deactivate_lock);
92 
93 	wbinvd_on_all_cpus();
94 	ret = sev_guest_df_flush(&error);
95 
96 	up_write(&sev_deactivate_lock);
97 
98 	if (ret)
99 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
100 
101 	return ret;
102 }
103 
104 static inline bool is_mirroring_enc_context(struct kvm *kvm)
105 {
106 	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
107 }
108 
109 /* Must be called with the sev_bitmap_lock held */
110 static bool __sev_recycle_asids(int min_asid, int max_asid)
111 {
112 	if (sev_flush_asids(min_asid, max_asid))
113 		return false;
114 
115 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
116 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
117 		   nr_asids);
118 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
119 
120 	return true;
121 }
122 
123 static int sev_asid_new(struct kvm_sev_info *sev)
124 {
125 	int asid, min_asid, max_asid, ret;
126 	bool retry = true;
127 	enum misc_res_type type;
128 
129 	type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
130 	WARN_ON(sev->misc_cg);
131 	sev->misc_cg = get_current_misc_cg();
132 	ret = misc_cg_try_charge(type, sev->misc_cg, 1);
133 	if (ret) {
134 		put_misc_cg(sev->misc_cg);
135 		sev->misc_cg = NULL;
136 		return ret;
137 	}
138 
139 	mutex_lock(&sev_bitmap_lock);
140 
141 	/*
142 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
143 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
144 	 */
145 	min_asid = sev->es_active ? 1 : min_sev_asid;
146 	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
147 again:
148 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
149 	if (asid > max_asid) {
150 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
151 			retry = false;
152 			goto again;
153 		}
154 		mutex_unlock(&sev_bitmap_lock);
155 		ret = -EBUSY;
156 		goto e_uncharge;
157 	}
158 
159 	__set_bit(asid, sev_asid_bitmap);
160 
161 	mutex_unlock(&sev_bitmap_lock);
162 
163 	return asid;
164 e_uncharge:
165 	misc_cg_uncharge(type, sev->misc_cg, 1);
166 	put_misc_cg(sev->misc_cg);
167 	sev->misc_cg = NULL;
168 	return ret;
169 }
170 
171 static int sev_get_asid(struct kvm *kvm)
172 {
173 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
174 
175 	return sev->asid;
176 }
177 
178 static void sev_asid_free(struct kvm_sev_info *sev)
179 {
180 	struct svm_cpu_data *sd;
181 	int cpu;
182 	enum misc_res_type type;
183 
184 	mutex_lock(&sev_bitmap_lock);
185 
186 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
187 
188 	for_each_possible_cpu(cpu) {
189 		sd = per_cpu(svm_data, cpu);
190 		sd->sev_vmcbs[sev->asid] = NULL;
191 	}
192 
193 	mutex_unlock(&sev_bitmap_lock);
194 
195 	type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
196 	misc_cg_uncharge(type, sev->misc_cg, 1);
197 	put_misc_cg(sev->misc_cg);
198 	sev->misc_cg = NULL;
199 }
200 
201 static void sev_decommission(unsigned int handle)
202 {
203 	struct sev_data_decommission decommission;
204 
205 	if (!handle)
206 		return;
207 
208 	decommission.handle = handle;
209 	sev_guest_decommission(&decommission, NULL);
210 }
211 
212 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
213 {
214 	struct sev_data_deactivate deactivate;
215 
216 	if (!handle)
217 		return;
218 
219 	deactivate.handle = handle;
220 
221 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
222 	down_read(&sev_deactivate_lock);
223 	sev_guest_deactivate(&deactivate, NULL);
224 	up_read(&sev_deactivate_lock);
225 
226 	sev_decommission(handle);
227 }
228 
229 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
230 {
231 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
232 	bool es_active = argp->id == KVM_SEV_ES_INIT;
233 	int asid, ret;
234 
235 	if (kvm->created_vcpus)
236 		return -EINVAL;
237 
238 	ret = -EBUSY;
239 	if (unlikely(sev->active))
240 		return ret;
241 
242 	sev->es_active = es_active;
243 	asid = sev_asid_new(sev);
244 	if (asid < 0)
245 		goto e_no_asid;
246 	sev->asid = asid;
247 
248 	ret = sev_platform_init(&argp->error);
249 	if (ret)
250 		goto e_free;
251 
252 	sev->active = true;
253 	sev->asid = asid;
254 	INIT_LIST_HEAD(&sev->regions_list);
255 
256 	return 0;
257 
258 e_free:
259 	sev_asid_free(sev);
260 	sev->asid = 0;
261 e_no_asid:
262 	sev->es_active = false;
263 	return ret;
264 }
265 
266 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
267 {
268 	struct sev_data_activate activate;
269 	int asid = sev_get_asid(kvm);
270 	int ret;
271 
272 	/* activate ASID on the given handle */
273 	activate.handle = handle;
274 	activate.asid   = asid;
275 	ret = sev_guest_activate(&activate, error);
276 
277 	return ret;
278 }
279 
280 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
281 {
282 	struct fd f;
283 	int ret;
284 
285 	f = fdget(fd);
286 	if (!f.file)
287 		return -EBADF;
288 
289 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
290 
291 	fdput(f);
292 	return ret;
293 }
294 
295 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
296 {
297 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
298 
299 	return __sev_issue_cmd(sev->fd, id, data, error);
300 }
301 
302 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
303 {
304 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
305 	struct sev_data_launch_start start;
306 	struct kvm_sev_launch_start params;
307 	void *dh_blob, *session_blob;
308 	int *error = &argp->error;
309 	int ret;
310 
311 	if (!sev_guest(kvm))
312 		return -ENOTTY;
313 
314 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
315 		return -EFAULT;
316 
317 	memset(&start, 0, sizeof(start));
318 
319 	dh_blob = NULL;
320 	if (params.dh_uaddr) {
321 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
322 		if (IS_ERR(dh_blob))
323 			return PTR_ERR(dh_blob);
324 
325 		start.dh_cert_address = __sme_set(__pa(dh_blob));
326 		start.dh_cert_len = params.dh_len;
327 	}
328 
329 	session_blob = NULL;
330 	if (params.session_uaddr) {
331 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
332 		if (IS_ERR(session_blob)) {
333 			ret = PTR_ERR(session_blob);
334 			goto e_free_dh;
335 		}
336 
337 		start.session_address = __sme_set(__pa(session_blob));
338 		start.session_len = params.session_len;
339 	}
340 
341 	start.handle = params.handle;
342 	start.policy = params.policy;
343 
344 	/* create memory encryption context */
345 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
346 	if (ret)
347 		goto e_free_session;
348 
349 	/* Bind ASID to this guest */
350 	ret = sev_bind_asid(kvm, start.handle, error);
351 	if (ret) {
352 		sev_decommission(start.handle);
353 		goto e_free_session;
354 	}
355 
356 	/* return handle to userspace */
357 	params.handle = start.handle;
358 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
359 		sev_unbind_asid(kvm, start.handle);
360 		ret = -EFAULT;
361 		goto e_free_session;
362 	}
363 
364 	sev->handle = start.handle;
365 	sev->fd = argp->sev_fd;
366 
367 e_free_session:
368 	kfree(session_blob);
369 e_free_dh:
370 	kfree(dh_blob);
371 	return ret;
372 }
373 
374 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
375 				    unsigned long ulen, unsigned long *n,
376 				    int write)
377 {
378 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
379 	unsigned long npages, size;
380 	int npinned;
381 	unsigned long locked, lock_limit;
382 	struct page **pages;
383 	unsigned long first, last;
384 	int ret;
385 
386 	lockdep_assert_held(&kvm->lock);
387 
388 	if (ulen == 0 || uaddr + ulen < uaddr)
389 		return ERR_PTR(-EINVAL);
390 
391 	/* Calculate number of pages. */
392 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
393 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
394 	npages = (last - first + 1);
395 
396 	locked = sev->pages_locked + npages;
397 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
398 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
399 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
400 		return ERR_PTR(-ENOMEM);
401 	}
402 
403 	if (WARN_ON_ONCE(npages > INT_MAX))
404 		return ERR_PTR(-EINVAL);
405 
406 	/* Avoid using vmalloc for smaller buffers. */
407 	size = npages * sizeof(struct page *);
408 	if (size > PAGE_SIZE)
409 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
410 	else
411 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
412 
413 	if (!pages)
414 		return ERR_PTR(-ENOMEM);
415 
416 	/* Pin the user virtual address. */
417 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
418 	if (npinned != npages) {
419 		pr_err("SEV: Failure locking %lu pages.\n", npages);
420 		ret = -ENOMEM;
421 		goto err;
422 	}
423 
424 	*n = npages;
425 	sev->pages_locked = locked;
426 
427 	return pages;
428 
429 err:
430 	if (npinned > 0)
431 		unpin_user_pages(pages, npinned);
432 
433 	kvfree(pages);
434 	return ERR_PTR(ret);
435 }
436 
437 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
438 			     unsigned long npages)
439 {
440 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
441 
442 	unpin_user_pages(pages, npages);
443 	kvfree(pages);
444 	sev->pages_locked -= npages;
445 }
446 
447 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
448 {
449 	uint8_t *page_virtual;
450 	unsigned long i;
451 
452 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
453 	    pages == NULL)
454 		return;
455 
456 	for (i = 0; i < npages; i++) {
457 		page_virtual = kmap_atomic(pages[i]);
458 		clflush_cache_range(page_virtual, PAGE_SIZE);
459 		kunmap_atomic(page_virtual);
460 	}
461 }
462 
463 static unsigned long get_num_contig_pages(unsigned long idx,
464 				struct page **inpages, unsigned long npages)
465 {
466 	unsigned long paddr, next_paddr;
467 	unsigned long i = idx + 1, pages = 1;
468 
469 	/* find the number of contiguous pages starting from idx */
470 	paddr = __sme_page_pa(inpages[idx]);
471 	while (i < npages) {
472 		next_paddr = __sme_page_pa(inpages[i++]);
473 		if ((paddr + PAGE_SIZE) == next_paddr) {
474 			pages++;
475 			paddr = next_paddr;
476 			continue;
477 		}
478 		break;
479 	}
480 
481 	return pages;
482 }
483 
484 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
485 {
486 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
487 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
488 	struct kvm_sev_launch_update_data params;
489 	struct sev_data_launch_update_data data;
490 	struct page **inpages;
491 	int ret;
492 
493 	if (!sev_guest(kvm))
494 		return -ENOTTY;
495 
496 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
497 		return -EFAULT;
498 
499 	vaddr = params.uaddr;
500 	size = params.len;
501 	vaddr_end = vaddr + size;
502 
503 	/* Lock the user memory. */
504 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
505 	if (IS_ERR(inpages))
506 		return PTR_ERR(inpages);
507 
508 	/*
509 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
510 	 * place; the cache may contain the data that was written unencrypted.
511 	 */
512 	sev_clflush_pages(inpages, npages);
513 
514 	data.reserved = 0;
515 	data.handle = sev->handle;
516 
517 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
518 		int offset, len;
519 
520 		/*
521 		 * If the user buffer is not page-aligned, calculate the offset
522 		 * within the page.
523 		 */
524 		offset = vaddr & (PAGE_SIZE - 1);
525 
526 		/* Calculate the number of pages that can be encrypted in one go. */
527 		pages = get_num_contig_pages(i, inpages, npages);
528 
529 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
530 
531 		data.len = len;
532 		data.address = __sme_page_pa(inpages[i]) + offset;
533 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
534 		if (ret)
535 			goto e_unpin;
536 
537 		size -= len;
538 		next_vaddr = vaddr + len;
539 	}
540 
541 e_unpin:
542 	/* content of memory is updated, mark pages dirty */
543 	for (i = 0; i < npages; i++) {
544 		set_page_dirty_lock(inpages[i]);
545 		mark_page_accessed(inpages[i]);
546 	}
547 	/* unlock the user pages */
548 	sev_unpin_memory(kvm, inpages, npages);
549 	return ret;
550 }
551 
552 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
553 {
554 	struct vmcb_save_area *save = &svm->vmcb->save;
555 
556 	/* Check some debug related fields before encrypting the VMSA */
557 	if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
558 		return -EINVAL;
559 
560 	/* Sync registgers */
561 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
562 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
563 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
564 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
565 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
566 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
567 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
568 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
569 #ifdef CONFIG_X86_64
570 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
571 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
572 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
573 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
574 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
575 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
576 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
577 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
578 #endif
579 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
580 
581 	/* Sync some non-GPR registers before encrypting */
582 	save->xcr0 = svm->vcpu.arch.xcr0;
583 	save->pkru = svm->vcpu.arch.pkru;
584 	save->xss  = svm->vcpu.arch.ia32_xss;
585 	save->dr6  = svm->vcpu.arch.dr6;
586 
587 	/*
588 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
589 	 * the traditional VMSA that is part of the VMCB. Copy the
590 	 * traditional VMSA as it has been built so far (in prep
591 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
592 	 */
593 	memcpy(svm->vmsa, save, sizeof(*save));
594 
595 	return 0;
596 }
597 
598 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
599 				    int *error)
600 {
601 	struct sev_data_launch_update_vmsa vmsa;
602 	struct vcpu_svm *svm = to_svm(vcpu);
603 	int ret;
604 
605 	/* Perform some pre-encryption checks against the VMSA */
606 	ret = sev_es_sync_vmsa(svm);
607 	if (ret)
608 		return ret;
609 
610 	/*
611 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
612 	 * the VMSA memory content (i.e it will write the same memory region
613 	 * with the guest's key), so invalidate it first.
614 	 */
615 	clflush_cache_range(svm->vmsa, PAGE_SIZE);
616 
617 	vmsa.reserved = 0;
618 	vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
619 	vmsa.address = __sme_pa(svm->vmsa);
620 	vmsa.len = PAGE_SIZE;
621 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
622 	if (ret)
623 	  return ret;
624 
625 	vcpu->arch.guest_state_protected = true;
626 	return 0;
627 }
628 
629 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
630 {
631 	struct kvm_vcpu *vcpu;
632 	int i, ret;
633 
634 	if (!sev_es_guest(kvm))
635 		return -ENOTTY;
636 
637 	kvm_for_each_vcpu(i, vcpu, kvm) {
638 		ret = mutex_lock_killable(&vcpu->mutex);
639 		if (ret)
640 			return ret;
641 
642 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
643 
644 		mutex_unlock(&vcpu->mutex);
645 		if (ret)
646 			return ret;
647 	}
648 
649 	return 0;
650 }
651 
652 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
653 {
654 	void __user *measure = (void __user *)(uintptr_t)argp->data;
655 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
656 	struct sev_data_launch_measure data;
657 	struct kvm_sev_launch_measure params;
658 	void __user *p = NULL;
659 	void *blob = NULL;
660 	int ret;
661 
662 	if (!sev_guest(kvm))
663 		return -ENOTTY;
664 
665 	if (copy_from_user(&params, measure, sizeof(params)))
666 		return -EFAULT;
667 
668 	memset(&data, 0, sizeof(data));
669 
670 	/* User wants to query the blob length */
671 	if (!params.len)
672 		goto cmd;
673 
674 	p = (void __user *)(uintptr_t)params.uaddr;
675 	if (p) {
676 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
677 			return -EINVAL;
678 
679 		blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
680 		if (!blob)
681 			return -ENOMEM;
682 
683 		data.address = __psp_pa(blob);
684 		data.len = params.len;
685 	}
686 
687 cmd:
688 	data.handle = sev->handle;
689 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
690 
691 	/*
692 	 * If we query the session length, FW responded with expected data.
693 	 */
694 	if (!params.len)
695 		goto done;
696 
697 	if (ret)
698 		goto e_free_blob;
699 
700 	if (blob) {
701 		if (copy_to_user(p, blob, params.len))
702 			ret = -EFAULT;
703 	}
704 
705 done:
706 	params.len = data.len;
707 	if (copy_to_user(measure, &params, sizeof(params)))
708 		ret = -EFAULT;
709 e_free_blob:
710 	kfree(blob);
711 	return ret;
712 }
713 
714 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
715 {
716 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
717 	struct sev_data_launch_finish data;
718 
719 	if (!sev_guest(kvm))
720 		return -ENOTTY;
721 
722 	data.handle = sev->handle;
723 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
724 }
725 
726 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
727 {
728 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
729 	struct kvm_sev_guest_status params;
730 	struct sev_data_guest_status data;
731 	int ret;
732 
733 	if (!sev_guest(kvm))
734 		return -ENOTTY;
735 
736 	memset(&data, 0, sizeof(data));
737 
738 	data.handle = sev->handle;
739 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
740 	if (ret)
741 		return ret;
742 
743 	params.policy = data.policy;
744 	params.state = data.state;
745 	params.handle = data.handle;
746 
747 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
748 		ret = -EFAULT;
749 
750 	return ret;
751 }
752 
753 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
754 			       unsigned long dst, int size,
755 			       int *error, bool enc)
756 {
757 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
758 	struct sev_data_dbg data;
759 
760 	data.reserved = 0;
761 	data.handle = sev->handle;
762 	data.dst_addr = dst;
763 	data.src_addr = src;
764 	data.len = size;
765 
766 	return sev_issue_cmd(kvm,
767 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
768 			     &data, error);
769 }
770 
771 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
772 			     unsigned long dst_paddr, int sz, int *err)
773 {
774 	int offset;
775 
776 	/*
777 	 * Its safe to read more than we are asked, caller should ensure that
778 	 * destination has enough space.
779 	 */
780 	offset = src_paddr & 15;
781 	src_paddr = round_down(src_paddr, 16);
782 	sz = round_up(sz + offset, 16);
783 
784 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
785 }
786 
787 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
788 				  void __user *dst_uaddr,
789 				  unsigned long dst_paddr,
790 				  int size, int *err)
791 {
792 	struct page *tpage = NULL;
793 	int ret, offset;
794 
795 	/* if inputs are not 16-byte then use intermediate buffer */
796 	if (!IS_ALIGNED(dst_paddr, 16) ||
797 	    !IS_ALIGNED(paddr,     16) ||
798 	    !IS_ALIGNED(size,      16)) {
799 		tpage = (void *)alloc_page(GFP_KERNEL);
800 		if (!tpage)
801 			return -ENOMEM;
802 
803 		dst_paddr = __sme_page_pa(tpage);
804 	}
805 
806 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
807 	if (ret)
808 		goto e_free;
809 
810 	if (tpage) {
811 		offset = paddr & 15;
812 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
813 			ret = -EFAULT;
814 	}
815 
816 e_free:
817 	if (tpage)
818 		__free_page(tpage);
819 
820 	return ret;
821 }
822 
823 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
824 				  void __user *vaddr,
825 				  unsigned long dst_paddr,
826 				  void __user *dst_vaddr,
827 				  int size, int *error)
828 {
829 	struct page *src_tpage = NULL;
830 	struct page *dst_tpage = NULL;
831 	int ret, len = size;
832 
833 	/* If source buffer is not aligned then use an intermediate buffer */
834 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
835 		src_tpage = alloc_page(GFP_KERNEL);
836 		if (!src_tpage)
837 			return -ENOMEM;
838 
839 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
840 			__free_page(src_tpage);
841 			return -EFAULT;
842 		}
843 
844 		paddr = __sme_page_pa(src_tpage);
845 	}
846 
847 	/*
848 	 *  If destination buffer or length is not aligned then do read-modify-write:
849 	 *   - decrypt destination in an intermediate buffer
850 	 *   - copy the source buffer in an intermediate buffer
851 	 *   - use the intermediate buffer as source buffer
852 	 */
853 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
854 		int dst_offset;
855 
856 		dst_tpage = alloc_page(GFP_KERNEL);
857 		if (!dst_tpage) {
858 			ret = -ENOMEM;
859 			goto e_free;
860 		}
861 
862 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
863 					__sme_page_pa(dst_tpage), size, error);
864 		if (ret)
865 			goto e_free;
866 
867 		/*
868 		 *  If source is kernel buffer then use memcpy() otherwise
869 		 *  copy_from_user().
870 		 */
871 		dst_offset = dst_paddr & 15;
872 
873 		if (src_tpage)
874 			memcpy(page_address(dst_tpage) + dst_offset,
875 			       page_address(src_tpage), size);
876 		else {
877 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
878 					   vaddr, size)) {
879 				ret = -EFAULT;
880 				goto e_free;
881 			}
882 		}
883 
884 		paddr = __sme_page_pa(dst_tpage);
885 		dst_paddr = round_down(dst_paddr, 16);
886 		len = round_up(size, 16);
887 	}
888 
889 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
890 
891 e_free:
892 	if (src_tpage)
893 		__free_page(src_tpage);
894 	if (dst_tpage)
895 		__free_page(dst_tpage);
896 	return ret;
897 }
898 
899 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
900 {
901 	unsigned long vaddr, vaddr_end, next_vaddr;
902 	unsigned long dst_vaddr;
903 	struct page **src_p, **dst_p;
904 	struct kvm_sev_dbg debug;
905 	unsigned long n;
906 	unsigned int size;
907 	int ret;
908 
909 	if (!sev_guest(kvm))
910 		return -ENOTTY;
911 
912 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
913 		return -EFAULT;
914 
915 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
916 		return -EINVAL;
917 	if (!debug.dst_uaddr)
918 		return -EINVAL;
919 
920 	vaddr = debug.src_uaddr;
921 	size = debug.len;
922 	vaddr_end = vaddr + size;
923 	dst_vaddr = debug.dst_uaddr;
924 
925 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
926 		int len, s_off, d_off;
927 
928 		/* lock userspace source and destination page */
929 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
930 		if (IS_ERR(src_p))
931 			return PTR_ERR(src_p);
932 
933 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
934 		if (IS_ERR(dst_p)) {
935 			sev_unpin_memory(kvm, src_p, n);
936 			return PTR_ERR(dst_p);
937 		}
938 
939 		/*
940 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
941 		 * the pages; flush the destination too so that future accesses do not
942 		 * see stale data.
943 		 */
944 		sev_clflush_pages(src_p, 1);
945 		sev_clflush_pages(dst_p, 1);
946 
947 		/*
948 		 * Since user buffer may not be page aligned, calculate the
949 		 * offset within the page.
950 		 */
951 		s_off = vaddr & ~PAGE_MASK;
952 		d_off = dst_vaddr & ~PAGE_MASK;
953 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
954 
955 		if (dec)
956 			ret = __sev_dbg_decrypt_user(kvm,
957 						     __sme_page_pa(src_p[0]) + s_off,
958 						     (void __user *)dst_vaddr,
959 						     __sme_page_pa(dst_p[0]) + d_off,
960 						     len, &argp->error);
961 		else
962 			ret = __sev_dbg_encrypt_user(kvm,
963 						     __sme_page_pa(src_p[0]) + s_off,
964 						     (void __user *)vaddr,
965 						     __sme_page_pa(dst_p[0]) + d_off,
966 						     (void __user *)dst_vaddr,
967 						     len, &argp->error);
968 
969 		sev_unpin_memory(kvm, src_p, n);
970 		sev_unpin_memory(kvm, dst_p, n);
971 
972 		if (ret)
973 			goto err;
974 
975 		next_vaddr = vaddr + len;
976 		dst_vaddr = dst_vaddr + len;
977 		size -= len;
978 	}
979 err:
980 	return ret;
981 }
982 
983 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
984 {
985 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
986 	struct sev_data_launch_secret data;
987 	struct kvm_sev_launch_secret params;
988 	struct page **pages;
989 	void *blob, *hdr;
990 	unsigned long n, i;
991 	int ret, offset;
992 
993 	if (!sev_guest(kvm))
994 		return -ENOTTY;
995 
996 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
997 		return -EFAULT;
998 
999 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1000 	if (IS_ERR(pages))
1001 		return PTR_ERR(pages);
1002 
1003 	/*
1004 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1005 	 * place; the cache may contain the data that was written unencrypted.
1006 	 */
1007 	sev_clflush_pages(pages, n);
1008 
1009 	/*
1010 	 * The secret must be copied into contiguous memory region, lets verify
1011 	 * that userspace memory pages are contiguous before we issue command.
1012 	 */
1013 	if (get_num_contig_pages(0, pages, n) != n) {
1014 		ret = -EINVAL;
1015 		goto e_unpin_memory;
1016 	}
1017 
1018 	memset(&data, 0, sizeof(data));
1019 
1020 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1021 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1022 	data.guest_len = params.guest_len;
1023 
1024 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1025 	if (IS_ERR(blob)) {
1026 		ret = PTR_ERR(blob);
1027 		goto e_unpin_memory;
1028 	}
1029 
1030 	data.trans_address = __psp_pa(blob);
1031 	data.trans_len = params.trans_len;
1032 
1033 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1034 	if (IS_ERR(hdr)) {
1035 		ret = PTR_ERR(hdr);
1036 		goto e_free_blob;
1037 	}
1038 	data.hdr_address = __psp_pa(hdr);
1039 	data.hdr_len = params.hdr_len;
1040 
1041 	data.handle = sev->handle;
1042 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1043 
1044 	kfree(hdr);
1045 
1046 e_free_blob:
1047 	kfree(blob);
1048 e_unpin_memory:
1049 	/* content of memory is updated, mark pages dirty */
1050 	for (i = 0; i < n; i++) {
1051 		set_page_dirty_lock(pages[i]);
1052 		mark_page_accessed(pages[i]);
1053 	}
1054 	sev_unpin_memory(kvm, pages, n);
1055 	return ret;
1056 }
1057 
1058 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1059 {
1060 	void __user *report = (void __user *)(uintptr_t)argp->data;
1061 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1062 	struct sev_data_attestation_report data;
1063 	struct kvm_sev_attestation_report params;
1064 	void __user *p;
1065 	void *blob = NULL;
1066 	int ret;
1067 
1068 	if (!sev_guest(kvm))
1069 		return -ENOTTY;
1070 
1071 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1072 		return -EFAULT;
1073 
1074 	memset(&data, 0, sizeof(data));
1075 
1076 	/* User wants to query the blob length */
1077 	if (!params.len)
1078 		goto cmd;
1079 
1080 	p = (void __user *)(uintptr_t)params.uaddr;
1081 	if (p) {
1082 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1083 			return -EINVAL;
1084 
1085 		blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
1086 		if (!blob)
1087 			return -ENOMEM;
1088 
1089 		data.address = __psp_pa(blob);
1090 		data.len = params.len;
1091 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1092 	}
1093 cmd:
1094 	data.handle = sev->handle;
1095 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1096 	/*
1097 	 * If we query the session length, FW responded with expected data.
1098 	 */
1099 	if (!params.len)
1100 		goto done;
1101 
1102 	if (ret)
1103 		goto e_free_blob;
1104 
1105 	if (blob) {
1106 		if (copy_to_user(p, blob, params.len))
1107 			ret = -EFAULT;
1108 	}
1109 
1110 done:
1111 	params.len = data.len;
1112 	if (copy_to_user(report, &params, sizeof(params)))
1113 		ret = -EFAULT;
1114 e_free_blob:
1115 	kfree(blob);
1116 	return ret;
1117 }
1118 
1119 /* Userspace wants to query session length. */
1120 static int
1121 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1122 				      struct kvm_sev_send_start *params)
1123 {
1124 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1125 	struct sev_data_send_start data;
1126 	int ret;
1127 
1128 	memset(&data, 0, sizeof(data));
1129 	data.handle = sev->handle;
1130 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1131 
1132 	params->session_len = data.session_len;
1133 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1134 				sizeof(struct kvm_sev_send_start)))
1135 		ret = -EFAULT;
1136 
1137 	return ret;
1138 }
1139 
1140 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1141 {
1142 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1143 	struct sev_data_send_start data;
1144 	struct kvm_sev_send_start params;
1145 	void *amd_certs, *session_data;
1146 	void *pdh_cert, *plat_certs;
1147 	int ret;
1148 
1149 	if (!sev_guest(kvm))
1150 		return -ENOTTY;
1151 
1152 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1153 				sizeof(struct kvm_sev_send_start)))
1154 		return -EFAULT;
1155 
1156 	/* if session_len is zero, userspace wants to query the session length */
1157 	if (!params.session_len)
1158 		return __sev_send_start_query_session_length(kvm, argp,
1159 				&params);
1160 
1161 	/* some sanity checks */
1162 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1163 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1164 		return -EINVAL;
1165 
1166 	/* allocate the memory to hold the session data blob */
1167 	session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1168 	if (!session_data)
1169 		return -ENOMEM;
1170 
1171 	/* copy the certificate blobs from userspace */
1172 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1173 				params.pdh_cert_len);
1174 	if (IS_ERR(pdh_cert)) {
1175 		ret = PTR_ERR(pdh_cert);
1176 		goto e_free_session;
1177 	}
1178 
1179 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1180 				params.plat_certs_len);
1181 	if (IS_ERR(plat_certs)) {
1182 		ret = PTR_ERR(plat_certs);
1183 		goto e_free_pdh;
1184 	}
1185 
1186 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1187 				params.amd_certs_len);
1188 	if (IS_ERR(amd_certs)) {
1189 		ret = PTR_ERR(amd_certs);
1190 		goto e_free_plat_cert;
1191 	}
1192 
1193 	/* populate the FW SEND_START field with system physical address */
1194 	memset(&data, 0, sizeof(data));
1195 	data.pdh_cert_address = __psp_pa(pdh_cert);
1196 	data.pdh_cert_len = params.pdh_cert_len;
1197 	data.plat_certs_address = __psp_pa(plat_certs);
1198 	data.plat_certs_len = params.plat_certs_len;
1199 	data.amd_certs_address = __psp_pa(amd_certs);
1200 	data.amd_certs_len = params.amd_certs_len;
1201 	data.session_address = __psp_pa(session_data);
1202 	data.session_len = params.session_len;
1203 	data.handle = sev->handle;
1204 
1205 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1206 
1207 	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1208 			session_data, params.session_len)) {
1209 		ret = -EFAULT;
1210 		goto e_free_amd_cert;
1211 	}
1212 
1213 	params.policy = data.policy;
1214 	params.session_len = data.session_len;
1215 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1216 				sizeof(struct kvm_sev_send_start)))
1217 		ret = -EFAULT;
1218 
1219 e_free_amd_cert:
1220 	kfree(amd_certs);
1221 e_free_plat_cert:
1222 	kfree(plat_certs);
1223 e_free_pdh:
1224 	kfree(pdh_cert);
1225 e_free_session:
1226 	kfree(session_data);
1227 	return ret;
1228 }
1229 
1230 /* Userspace wants to query either header or trans length. */
1231 static int
1232 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1233 				     struct kvm_sev_send_update_data *params)
1234 {
1235 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1236 	struct sev_data_send_update_data data;
1237 	int ret;
1238 
1239 	memset(&data, 0, sizeof(data));
1240 	data.handle = sev->handle;
1241 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1242 
1243 	params->hdr_len = data.hdr_len;
1244 	params->trans_len = data.trans_len;
1245 
1246 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1247 			 sizeof(struct kvm_sev_send_update_data)))
1248 		ret = -EFAULT;
1249 
1250 	return ret;
1251 }
1252 
1253 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1254 {
1255 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1256 	struct sev_data_send_update_data data;
1257 	struct kvm_sev_send_update_data params;
1258 	void *hdr, *trans_data;
1259 	struct page **guest_page;
1260 	unsigned long n;
1261 	int ret, offset;
1262 
1263 	if (!sev_guest(kvm))
1264 		return -ENOTTY;
1265 
1266 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1267 			sizeof(struct kvm_sev_send_update_data)))
1268 		return -EFAULT;
1269 
1270 	/* userspace wants to query either header or trans length */
1271 	if (!params.trans_len || !params.hdr_len)
1272 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1273 
1274 	if (!params.trans_uaddr || !params.guest_uaddr ||
1275 	    !params.guest_len || !params.hdr_uaddr)
1276 		return -EINVAL;
1277 
1278 	/* Check if we are crossing the page boundary */
1279 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1280 	if ((params.guest_len + offset > PAGE_SIZE))
1281 		return -EINVAL;
1282 
1283 	/* Pin guest memory */
1284 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1285 				    PAGE_SIZE, &n, 0);
1286 	if (IS_ERR(guest_page))
1287 		return PTR_ERR(guest_page);
1288 
1289 	/* allocate memory for header and transport buffer */
1290 	ret = -ENOMEM;
1291 	hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1292 	if (!hdr)
1293 		goto e_unpin;
1294 
1295 	trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1296 	if (!trans_data)
1297 		goto e_free_hdr;
1298 
1299 	memset(&data, 0, sizeof(data));
1300 	data.hdr_address = __psp_pa(hdr);
1301 	data.hdr_len = params.hdr_len;
1302 	data.trans_address = __psp_pa(trans_data);
1303 	data.trans_len = params.trans_len;
1304 
1305 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1306 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1307 	data.guest_address |= sev_me_mask;
1308 	data.guest_len = params.guest_len;
1309 	data.handle = sev->handle;
1310 
1311 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1312 
1313 	if (ret)
1314 		goto e_free_trans_data;
1315 
1316 	/* copy transport buffer to user space */
1317 	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1318 			 trans_data, params.trans_len)) {
1319 		ret = -EFAULT;
1320 		goto e_free_trans_data;
1321 	}
1322 
1323 	/* Copy packet header to userspace. */
1324 	if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1325 			 params.hdr_len))
1326 		ret = -EFAULT;
1327 
1328 e_free_trans_data:
1329 	kfree(trans_data);
1330 e_free_hdr:
1331 	kfree(hdr);
1332 e_unpin:
1333 	sev_unpin_memory(kvm, guest_page, n);
1334 
1335 	return ret;
1336 }
1337 
1338 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1339 {
1340 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1341 	struct sev_data_send_finish data;
1342 
1343 	if (!sev_guest(kvm))
1344 		return -ENOTTY;
1345 
1346 	data.handle = sev->handle;
1347 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1348 }
1349 
1350 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1351 {
1352 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1353 	struct sev_data_send_cancel data;
1354 
1355 	if (!sev_guest(kvm))
1356 		return -ENOTTY;
1357 
1358 	data.handle = sev->handle;
1359 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1360 }
1361 
1362 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1363 {
1364 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1365 	struct sev_data_receive_start start;
1366 	struct kvm_sev_receive_start params;
1367 	int *error = &argp->error;
1368 	void *session_data;
1369 	void *pdh_data;
1370 	int ret;
1371 
1372 	if (!sev_guest(kvm))
1373 		return -ENOTTY;
1374 
1375 	/* Get parameter from the userspace */
1376 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1377 			sizeof(struct kvm_sev_receive_start)))
1378 		return -EFAULT;
1379 
1380 	/* some sanity checks */
1381 	if (!params.pdh_uaddr || !params.pdh_len ||
1382 	    !params.session_uaddr || !params.session_len)
1383 		return -EINVAL;
1384 
1385 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1386 	if (IS_ERR(pdh_data))
1387 		return PTR_ERR(pdh_data);
1388 
1389 	session_data = psp_copy_user_blob(params.session_uaddr,
1390 			params.session_len);
1391 	if (IS_ERR(session_data)) {
1392 		ret = PTR_ERR(session_data);
1393 		goto e_free_pdh;
1394 	}
1395 
1396 	memset(&start, 0, sizeof(start));
1397 	start.handle = params.handle;
1398 	start.policy = params.policy;
1399 	start.pdh_cert_address = __psp_pa(pdh_data);
1400 	start.pdh_cert_len = params.pdh_len;
1401 	start.session_address = __psp_pa(session_data);
1402 	start.session_len = params.session_len;
1403 
1404 	/* create memory encryption context */
1405 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1406 				error);
1407 	if (ret)
1408 		goto e_free_session;
1409 
1410 	/* Bind ASID to this guest */
1411 	ret = sev_bind_asid(kvm, start.handle, error);
1412 	if (ret) {
1413 		sev_decommission(start.handle);
1414 		goto e_free_session;
1415 	}
1416 
1417 	params.handle = start.handle;
1418 	if (copy_to_user((void __user *)(uintptr_t)argp->data,
1419 			 &params, sizeof(struct kvm_sev_receive_start))) {
1420 		ret = -EFAULT;
1421 		sev_unbind_asid(kvm, start.handle);
1422 		goto e_free_session;
1423 	}
1424 
1425     	sev->handle = start.handle;
1426 	sev->fd = argp->sev_fd;
1427 
1428 e_free_session:
1429 	kfree(session_data);
1430 e_free_pdh:
1431 	kfree(pdh_data);
1432 
1433 	return ret;
1434 }
1435 
1436 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1437 {
1438 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1439 	struct kvm_sev_receive_update_data params;
1440 	struct sev_data_receive_update_data data;
1441 	void *hdr = NULL, *trans = NULL;
1442 	struct page **guest_page;
1443 	unsigned long n;
1444 	int ret, offset;
1445 
1446 	if (!sev_guest(kvm))
1447 		return -EINVAL;
1448 
1449 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1450 			sizeof(struct kvm_sev_receive_update_data)))
1451 		return -EFAULT;
1452 
1453 	if (!params.hdr_uaddr || !params.hdr_len ||
1454 	    !params.guest_uaddr || !params.guest_len ||
1455 	    !params.trans_uaddr || !params.trans_len)
1456 		return -EINVAL;
1457 
1458 	/* Check if we are crossing the page boundary */
1459 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1460 	if ((params.guest_len + offset > PAGE_SIZE))
1461 		return -EINVAL;
1462 
1463 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1464 	if (IS_ERR(hdr))
1465 		return PTR_ERR(hdr);
1466 
1467 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1468 	if (IS_ERR(trans)) {
1469 		ret = PTR_ERR(trans);
1470 		goto e_free_hdr;
1471 	}
1472 
1473 	memset(&data, 0, sizeof(data));
1474 	data.hdr_address = __psp_pa(hdr);
1475 	data.hdr_len = params.hdr_len;
1476 	data.trans_address = __psp_pa(trans);
1477 	data.trans_len = params.trans_len;
1478 
1479 	/* Pin guest memory */
1480 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1481 				    PAGE_SIZE, &n, 1);
1482 	if (IS_ERR(guest_page)) {
1483 		ret = PTR_ERR(guest_page);
1484 		goto e_free_trans;
1485 	}
1486 
1487 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1488 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1489 	data.guest_address |= sev_me_mask;
1490 	data.guest_len = params.guest_len;
1491 	data.handle = sev->handle;
1492 
1493 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1494 				&argp->error);
1495 
1496 	sev_unpin_memory(kvm, guest_page, n);
1497 
1498 e_free_trans:
1499 	kfree(trans);
1500 e_free_hdr:
1501 	kfree(hdr);
1502 
1503 	return ret;
1504 }
1505 
1506 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1507 {
1508 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1509 	struct sev_data_receive_finish data;
1510 
1511 	if (!sev_guest(kvm))
1512 		return -ENOTTY;
1513 
1514 	data.handle = sev->handle;
1515 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1516 }
1517 
1518 static bool cmd_allowed_from_miror(u32 cmd_id)
1519 {
1520 	/*
1521 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1522 	 * active mirror VMs. Also allow the debugging and status commands.
1523 	 */
1524 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1525 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1526 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1527 		return true;
1528 
1529 	return false;
1530 }
1531 
1532 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1533 {
1534 	struct kvm_sev_cmd sev_cmd;
1535 	int r;
1536 
1537 	if (!sev_enabled)
1538 		return -ENOTTY;
1539 
1540 	if (!argp)
1541 		return 0;
1542 
1543 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1544 		return -EFAULT;
1545 
1546 	mutex_lock(&kvm->lock);
1547 
1548 	/* Only the enc_context_owner handles some memory enc operations. */
1549 	if (is_mirroring_enc_context(kvm) &&
1550 	    !cmd_allowed_from_miror(sev_cmd.id)) {
1551 		r = -EINVAL;
1552 		goto out;
1553 	}
1554 
1555 	switch (sev_cmd.id) {
1556 	case KVM_SEV_ES_INIT:
1557 		if (!sev_es_enabled) {
1558 			r = -ENOTTY;
1559 			goto out;
1560 		}
1561 		fallthrough;
1562 	case KVM_SEV_INIT:
1563 		r = sev_guest_init(kvm, &sev_cmd);
1564 		break;
1565 	case KVM_SEV_LAUNCH_START:
1566 		r = sev_launch_start(kvm, &sev_cmd);
1567 		break;
1568 	case KVM_SEV_LAUNCH_UPDATE_DATA:
1569 		r = sev_launch_update_data(kvm, &sev_cmd);
1570 		break;
1571 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1572 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1573 		break;
1574 	case KVM_SEV_LAUNCH_MEASURE:
1575 		r = sev_launch_measure(kvm, &sev_cmd);
1576 		break;
1577 	case KVM_SEV_LAUNCH_FINISH:
1578 		r = sev_launch_finish(kvm, &sev_cmd);
1579 		break;
1580 	case KVM_SEV_GUEST_STATUS:
1581 		r = sev_guest_status(kvm, &sev_cmd);
1582 		break;
1583 	case KVM_SEV_DBG_DECRYPT:
1584 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1585 		break;
1586 	case KVM_SEV_DBG_ENCRYPT:
1587 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1588 		break;
1589 	case KVM_SEV_LAUNCH_SECRET:
1590 		r = sev_launch_secret(kvm, &sev_cmd);
1591 		break;
1592 	case KVM_SEV_GET_ATTESTATION_REPORT:
1593 		r = sev_get_attestation_report(kvm, &sev_cmd);
1594 		break;
1595 	case KVM_SEV_SEND_START:
1596 		r = sev_send_start(kvm, &sev_cmd);
1597 		break;
1598 	case KVM_SEV_SEND_UPDATE_DATA:
1599 		r = sev_send_update_data(kvm, &sev_cmd);
1600 		break;
1601 	case KVM_SEV_SEND_FINISH:
1602 		r = sev_send_finish(kvm, &sev_cmd);
1603 		break;
1604 	case KVM_SEV_SEND_CANCEL:
1605 		r = sev_send_cancel(kvm, &sev_cmd);
1606 		break;
1607 	case KVM_SEV_RECEIVE_START:
1608 		r = sev_receive_start(kvm, &sev_cmd);
1609 		break;
1610 	case KVM_SEV_RECEIVE_UPDATE_DATA:
1611 		r = sev_receive_update_data(kvm, &sev_cmd);
1612 		break;
1613 	case KVM_SEV_RECEIVE_FINISH:
1614 		r = sev_receive_finish(kvm, &sev_cmd);
1615 		break;
1616 	default:
1617 		r = -EINVAL;
1618 		goto out;
1619 	}
1620 
1621 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1622 		r = -EFAULT;
1623 
1624 out:
1625 	mutex_unlock(&kvm->lock);
1626 	return r;
1627 }
1628 
1629 int svm_register_enc_region(struct kvm *kvm,
1630 			    struct kvm_enc_region *range)
1631 {
1632 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1633 	struct enc_region *region;
1634 	int ret = 0;
1635 
1636 	if (!sev_guest(kvm))
1637 		return -ENOTTY;
1638 
1639 	/* If kvm is mirroring encryption context it isn't responsible for it */
1640 	if (is_mirroring_enc_context(kvm))
1641 		return -EINVAL;
1642 
1643 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1644 		return -EINVAL;
1645 
1646 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1647 	if (!region)
1648 		return -ENOMEM;
1649 
1650 	mutex_lock(&kvm->lock);
1651 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1652 	if (IS_ERR(region->pages)) {
1653 		ret = PTR_ERR(region->pages);
1654 		mutex_unlock(&kvm->lock);
1655 		goto e_free;
1656 	}
1657 
1658 	region->uaddr = range->addr;
1659 	region->size = range->size;
1660 
1661 	list_add_tail(&region->list, &sev->regions_list);
1662 	mutex_unlock(&kvm->lock);
1663 
1664 	/*
1665 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1666 	 * or vice versa for this memory range. Lets make sure caches are
1667 	 * flushed to ensure that guest data gets written into memory with
1668 	 * correct C-bit.
1669 	 */
1670 	sev_clflush_pages(region->pages, region->npages);
1671 
1672 	return ret;
1673 
1674 e_free:
1675 	kfree(region);
1676 	return ret;
1677 }
1678 
1679 static struct enc_region *
1680 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1681 {
1682 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1683 	struct list_head *head = &sev->regions_list;
1684 	struct enc_region *i;
1685 
1686 	list_for_each_entry(i, head, list) {
1687 		if (i->uaddr == range->addr &&
1688 		    i->size == range->size)
1689 			return i;
1690 	}
1691 
1692 	return NULL;
1693 }
1694 
1695 static void __unregister_enc_region_locked(struct kvm *kvm,
1696 					   struct enc_region *region)
1697 {
1698 	sev_unpin_memory(kvm, region->pages, region->npages);
1699 	list_del(&region->list);
1700 	kfree(region);
1701 }
1702 
1703 int svm_unregister_enc_region(struct kvm *kvm,
1704 			      struct kvm_enc_region *range)
1705 {
1706 	struct enc_region *region;
1707 	int ret;
1708 
1709 	/* If kvm is mirroring encryption context it isn't responsible for it */
1710 	if (is_mirroring_enc_context(kvm))
1711 		return -EINVAL;
1712 
1713 	mutex_lock(&kvm->lock);
1714 
1715 	if (!sev_guest(kvm)) {
1716 		ret = -ENOTTY;
1717 		goto failed;
1718 	}
1719 
1720 	region = find_enc_region(kvm, range);
1721 	if (!region) {
1722 		ret = -EINVAL;
1723 		goto failed;
1724 	}
1725 
1726 	/*
1727 	 * Ensure that all guest tagged cache entries are flushed before
1728 	 * releasing the pages back to the system for use. CLFLUSH will
1729 	 * not do this, so issue a WBINVD.
1730 	 */
1731 	wbinvd_on_all_cpus();
1732 
1733 	__unregister_enc_region_locked(kvm, region);
1734 
1735 	mutex_unlock(&kvm->lock);
1736 	return 0;
1737 
1738 failed:
1739 	mutex_unlock(&kvm->lock);
1740 	return ret;
1741 }
1742 
1743 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
1744 {
1745 	struct file *source_kvm_file;
1746 	struct kvm *source_kvm;
1747 	struct kvm_sev_info source_sev, *mirror_sev;
1748 	int ret;
1749 
1750 	source_kvm_file = fget(source_fd);
1751 	if (!file_is_kvm(source_kvm_file)) {
1752 		ret = -EBADF;
1753 		goto e_source_put;
1754 	}
1755 
1756 	source_kvm = source_kvm_file->private_data;
1757 	mutex_lock(&source_kvm->lock);
1758 
1759 	if (!sev_guest(source_kvm)) {
1760 		ret = -EINVAL;
1761 		goto e_source_unlock;
1762 	}
1763 
1764 	/* Mirrors of mirrors should work, but let's not get silly */
1765 	if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) {
1766 		ret = -EINVAL;
1767 		goto e_source_unlock;
1768 	}
1769 
1770 	memcpy(&source_sev, &to_kvm_svm(source_kvm)->sev_info,
1771 	       sizeof(source_sev));
1772 
1773 	/*
1774 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
1775 	 * disappear until we're done with it
1776 	 */
1777 	kvm_get_kvm(source_kvm);
1778 
1779 	fput(source_kvm_file);
1780 	mutex_unlock(&source_kvm->lock);
1781 	mutex_lock(&kvm->lock);
1782 
1783 	if (sev_guest(kvm)) {
1784 		ret = -EINVAL;
1785 		goto e_mirror_unlock;
1786 	}
1787 
1788 	/* Set enc_context_owner and copy its encryption context over */
1789 	mirror_sev = &to_kvm_svm(kvm)->sev_info;
1790 	mirror_sev->enc_context_owner = source_kvm;
1791 	mirror_sev->active = true;
1792 	mirror_sev->asid = source_sev.asid;
1793 	mirror_sev->fd = source_sev.fd;
1794 	mirror_sev->es_active = source_sev.es_active;
1795 	mirror_sev->handle = source_sev.handle;
1796 	/*
1797 	 * Do not copy ap_jump_table. Since the mirror does not share the same
1798 	 * KVM contexts as the original, and they may have different
1799 	 * memory-views.
1800 	 */
1801 
1802 	mutex_unlock(&kvm->lock);
1803 	return 0;
1804 
1805 e_mirror_unlock:
1806 	mutex_unlock(&kvm->lock);
1807 	kvm_put_kvm(source_kvm);
1808 	return ret;
1809 e_source_unlock:
1810 	mutex_unlock(&source_kvm->lock);
1811 e_source_put:
1812 	if (source_kvm_file)
1813 		fput(source_kvm_file);
1814 	return ret;
1815 }
1816 
1817 void sev_vm_destroy(struct kvm *kvm)
1818 {
1819 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1820 	struct list_head *head = &sev->regions_list;
1821 	struct list_head *pos, *q;
1822 
1823 	if (!sev_guest(kvm))
1824 		return;
1825 
1826 	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
1827 	if (is_mirroring_enc_context(kvm)) {
1828 		kvm_put_kvm(sev->enc_context_owner);
1829 		return;
1830 	}
1831 
1832 	mutex_lock(&kvm->lock);
1833 
1834 	/*
1835 	 * Ensure that all guest tagged cache entries are flushed before
1836 	 * releasing the pages back to the system for use. CLFLUSH will
1837 	 * not do this, so issue a WBINVD.
1838 	 */
1839 	wbinvd_on_all_cpus();
1840 
1841 	/*
1842 	 * if userspace was terminated before unregistering the memory regions
1843 	 * then lets unpin all the registered memory.
1844 	 */
1845 	if (!list_empty(head)) {
1846 		list_for_each_safe(pos, q, head) {
1847 			__unregister_enc_region_locked(kvm,
1848 				list_entry(pos, struct enc_region, list));
1849 			cond_resched();
1850 		}
1851 	}
1852 
1853 	mutex_unlock(&kvm->lock);
1854 
1855 	sev_unbind_asid(kvm, sev->handle);
1856 	sev_asid_free(sev);
1857 }
1858 
1859 void __init sev_set_cpu_caps(void)
1860 {
1861 	if (!sev_enabled)
1862 		kvm_cpu_cap_clear(X86_FEATURE_SEV);
1863 	if (!sev_es_enabled)
1864 		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
1865 }
1866 
1867 void __init sev_hardware_setup(void)
1868 {
1869 #ifdef CONFIG_KVM_AMD_SEV
1870 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
1871 	bool sev_es_supported = false;
1872 	bool sev_supported = false;
1873 
1874 	if (!sev_enabled || !npt_enabled)
1875 		goto out;
1876 
1877 	/* Does the CPU support SEV? */
1878 	if (!boot_cpu_has(X86_FEATURE_SEV))
1879 		goto out;
1880 
1881 	/* Retrieve SEV CPUID information */
1882 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1883 
1884 	/* Set encryption bit location for SEV-ES guests */
1885 	sev_enc_bit = ebx & 0x3f;
1886 
1887 	/* Maximum number of encrypted guests supported simultaneously */
1888 	max_sev_asid = ecx;
1889 	if (!max_sev_asid)
1890 		goto out;
1891 
1892 	/* Minimum ASID value that should be used for SEV guest */
1893 	min_sev_asid = edx;
1894 	sev_me_mask = 1UL << (ebx & 0x3f);
1895 
1896 	/*
1897 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
1898 	 * even though it's never used, so that the bitmap is indexed by the
1899 	 * actual ASID.
1900 	 */
1901 	nr_asids = max_sev_asid + 1;
1902 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
1903 	if (!sev_asid_bitmap)
1904 		goto out;
1905 
1906 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
1907 	if (!sev_reclaim_asid_bitmap) {
1908 		bitmap_free(sev_asid_bitmap);
1909 		sev_asid_bitmap = NULL;
1910 		goto out;
1911 	}
1912 
1913 	sev_asid_count = max_sev_asid - min_sev_asid + 1;
1914 	if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
1915 		goto out;
1916 
1917 	pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
1918 	sev_supported = true;
1919 
1920 	/* SEV-ES support requested? */
1921 	if (!sev_es_enabled)
1922 		goto out;
1923 
1924 	/* Does the CPU support SEV-ES? */
1925 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
1926 		goto out;
1927 
1928 	/* Has the system been allocated ASIDs for SEV-ES? */
1929 	if (min_sev_asid == 1)
1930 		goto out;
1931 
1932 	sev_es_asid_count = min_sev_asid - 1;
1933 	if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
1934 		goto out;
1935 
1936 	pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
1937 	sev_es_supported = true;
1938 
1939 out:
1940 	sev_enabled = sev_supported;
1941 	sev_es_enabled = sev_es_supported;
1942 #endif
1943 }
1944 
1945 void sev_hardware_teardown(void)
1946 {
1947 	if (!sev_enabled)
1948 		return;
1949 
1950 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
1951 	sev_flush_asids(1, max_sev_asid);
1952 
1953 	bitmap_free(sev_asid_bitmap);
1954 	bitmap_free(sev_reclaim_asid_bitmap);
1955 
1956 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
1957 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
1958 }
1959 
1960 int sev_cpu_init(struct svm_cpu_data *sd)
1961 {
1962 	if (!sev_enabled)
1963 		return 0;
1964 
1965 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
1966 	if (!sd->sev_vmcbs)
1967 		return -ENOMEM;
1968 
1969 	return 0;
1970 }
1971 
1972 /*
1973  * Pages used by hardware to hold guest encrypted state must be flushed before
1974  * returning them to the system.
1975  */
1976 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
1977 				   unsigned long len)
1978 {
1979 	/*
1980 	 * If hardware enforced cache coherency for encrypted mappings of the
1981 	 * same physical page is supported, nothing to do.
1982 	 */
1983 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
1984 		return;
1985 
1986 	/*
1987 	 * If the VM Page Flush MSR is supported, use it to flush the page
1988 	 * (using the page virtual address and the guest ASID).
1989 	 */
1990 	if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
1991 		struct kvm_sev_info *sev;
1992 		unsigned long va_start;
1993 		u64 start, stop;
1994 
1995 		/* Align start and stop to page boundaries. */
1996 		va_start = (unsigned long)va;
1997 		start = (u64)va_start & PAGE_MASK;
1998 		stop = PAGE_ALIGN((u64)va_start + len);
1999 
2000 		if (start < stop) {
2001 			sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
2002 
2003 			while (start < stop) {
2004 				wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
2005 				       start | sev->asid);
2006 
2007 				start += PAGE_SIZE;
2008 			}
2009 
2010 			return;
2011 		}
2012 
2013 		WARN(1, "Address overflow, using WBINVD\n");
2014 	}
2015 
2016 	/*
2017 	 * Hardware should always have one of the above features,
2018 	 * but if not, use WBINVD and issue a warning.
2019 	 */
2020 	WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
2021 	wbinvd_on_all_cpus();
2022 }
2023 
2024 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2025 {
2026 	struct vcpu_svm *svm;
2027 
2028 	if (!sev_es_guest(vcpu->kvm))
2029 		return;
2030 
2031 	svm = to_svm(vcpu);
2032 
2033 	if (vcpu->arch.guest_state_protected)
2034 		sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
2035 	__free_page(virt_to_page(svm->vmsa));
2036 
2037 	if (svm->ghcb_sa_free)
2038 		kfree(svm->ghcb_sa);
2039 }
2040 
2041 static void dump_ghcb(struct vcpu_svm *svm)
2042 {
2043 	struct ghcb *ghcb = svm->ghcb;
2044 	unsigned int nbits;
2045 
2046 	/* Re-use the dump_invalid_vmcb module parameter */
2047 	if (!dump_invalid_vmcb) {
2048 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2049 		return;
2050 	}
2051 
2052 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2053 
2054 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2055 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2056 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2057 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2058 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2059 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2060 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2061 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2062 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2063 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2064 }
2065 
2066 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2067 {
2068 	struct kvm_vcpu *vcpu = &svm->vcpu;
2069 	struct ghcb *ghcb = svm->ghcb;
2070 
2071 	/*
2072 	 * The GHCB protocol so far allows for the following data
2073 	 * to be returned:
2074 	 *   GPRs RAX, RBX, RCX, RDX
2075 	 *
2076 	 * Copy their values, even if they may not have been written during the
2077 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2078 	 */
2079 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2080 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2081 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2082 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2083 }
2084 
2085 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2086 {
2087 	struct vmcb_control_area *control = &svm->vmcb->control;
2088 	struct kvm_vcpu *vcpu = &svm->vcpu;
2089 	struct ghcb *ghcb = svm->ghcb;
2090 	u64 exit_code;
2091 
2092 	/*
2093 	 * The GHCB protocol so far allows for the following data
2094 	 * to be supplied:
2095 	 *   GPRs RAX, RBX, RCX, RDX
2096 	 *   XCR0
2097 	 *   CPL
2098 	 *
2099 	 * VMMCALL allows the guest to provide extra registers. KVM also
2100 	 * expects RSI for hypercalls, so include that, too.
2101 	 *
2102 	 * Copy their values to the appropriate location if supplied.
2103 	 */
2104 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2105 
2106 	vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2107 	vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2108 	vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2109 	vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2110 	vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2111 
2112 	svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2113 
2114 	if (ghcb_xcr0_is_valid(ghcb)) {
2115 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2116 		kvm_update_cpuid_runtime(vcpu);
2117 	}
2118 
2119 	/* Copy the GHCB exit information into the VMCB fields */
2120 	exit_code = ghcb_get_sw_exit_code(ghcb);
2121 	control->exit_code = lower_32_bits(exit_code);
2122 	control->exit_code_hi = upper_32_bits(exit_code);
2123 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2124 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2125 
2126 	/* Clear the valid entries fields */
2127 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2128 }
2129 
2130 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2131 {
2132 	struct kvm_vcpu *vcpu;
2133 	struct ghcb *ghcb;
2134 	u64 exit_code = 0;
2135 
2136 	ghcb = svm->ghcb;
2137 
2138 	/* Only GHCB Usage code 0 is supported */
2139 	if (ghcb->ghcb_usage)
2140 		goto vmgexit_err;
2141 
2142 	/*
2143 	 * Retrieve the exit code now even though is may not be marked valid
2144 	 * as it could help with debugging.
2145 	 */
2146 	exit_code = ghcb_get_sw_exit_code(ghcb);
2147 
2148 	if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2149 	    !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2150 	    !ghcb_sw_exit_info_2_is_valid(ghcb))
2151 		goto vmgexit_err;
2152 
2153 	switch (ghcb_get_sw_exit_code(ghcb)) {
2154 	case SVM_EXIT_READ_DR7:
2155 		break;
2156 	case SVM_EXIT_WRITE_DR7:
2157 		if (!ghcb_rax_is_valid(ghcb))
2158 			goto vmgexit_err;
2159 		break;
2160 	case SVM_EXIT_RDTSC:
2161 		break;
2162 	case SVM_EXIT_RDPMC:
2163 		if (!ghcb_rcx_is_valid(ghcb))
2164 			goto vmgexit_err;
2165 		break;
2166 	case SVM_EXIT_CPUID:
2167 		if (!ghcb_rax_is_valid(ghcb) ||
2168 		    !ghcb_rcx_is_valid(ghcb))
2169 			goto vmgexit_err;
2170 		if (ghcb_get_rax(ghcb) == 0xd)
2171 			if (!ghcb_xcr0_is_valid(ghcb))
2172 				goto vmgexit_err;
2173 		break;
2174 	case SVM_EXIT_INVD:
2175 		break;
2176 	case SVM_EXIT_IOIO:
2177 		if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2178 			if (!ghcb_sw_scratch_is_valid(ghcb))
2179 				goto vmgexit_err;
2180 		} else {
2181 			if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2182 				if (!ghcb_rax_is_valid(ghcb))
2183 					goto vmgexit_err;
2184 		}
2185 		break;
2186 	case SVM_EXIT_MSR:
2187 		if (!ghcb_rcx_is_valid(ghcb))
2188 			goto vmgexit_err;
2189 		if (ghcb_get_sw_exit_info_1(ghcb)) {
2190 			if (!ghcb_rax_is_valid(ghcb) ||
2191 			    !ghcb_rdx_is_valid(ghcb))
2192 				goto vmgexit_err;
2193 		}
2194 		break;
2195 	case SVM_EXIT_VMMCALL:
2196 		if (!ghcb_rax_is_valid(ghcb) ||
2197 		    !ghcb_cpl_is_valid(ghcb))
2198 			goto vmgexit_err;
2199 		break;
2200 	case SVM_EXIT_RDTSCP:
2201 		break;
2202 	case SVM_EXIT_WBINVD:
2203 		break;
2204 	case SVM_EXIT_MONITOR:
2205 		if (!ghcb_rax_is_valid(ghcb) ||
2206 		    !ghcb_rcx_is_valid(ghcb) ||
2207 		    !ghcb_rdx_is_valid(ghcb))
2208 			goto vmgexit_err;
2209 		break;
2210 	case SVM_EXIT_MWAIT:
2211 		if (!ghcb_rax_is_valid(ghcb) ||
2212 		    !ghcb_rcx_is_valid(ghcb))
2213 			goto vmgexit_err;
2214 		break;
2215 	case SVM_VMGEXIT_MMIO_READ:
2216 	case SVM_VMGEXIT_MMIO_WRITE:
2217 		if (!ghcb_sw_scratch_is_valid(ghcb))
2218 			goto vmgexit_err;
2219 		break;
2220 	case SVM_VMGEXIT_NMI_COMPLETE:
2221 	case SVM_VMGEXIT_AP_HLT_LOOP:
2222 	case SVM_VMGEXIT_AP_JUMP_TABLE:
2223 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2224 		break;
2225 	default:
2226 		goto vmgexit_err;
2227 	}
2228 
2229 	return 0;
2230 
2231 vmgexit_err:
2232 	vcpu = &svm->vcpu;
2233 
2234 	if (ghcb->ghcb_usage) {
2235 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2236 			    ghcb->ghcb_usage);
2237 	} else {
2238 		vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
2239 			    exit_code);
2240 		dump_ghcb(svm);
2241 	}
2242 
2243 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2244 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2245 	vcpu->run->internal.ndata = 2;
2246 	vcpu->run->internal.data[0] = exit_code;
2247 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2248 
2249 	return -EINVAL;
2250 }
2251 
2252 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2253 {
2254 	if (!svm->ghcb)
2255 		return;
2256 
2257 	if (svm->ghcb_sa_free) {
2258 		/*
2259 		 * The scratch area lives outside the GHCB, so there is a
2260 		 * buffer that, depending on the operation performed, may
2261 		 * need to be synced, then freed.
2262 		 */
2263 		if (svm->ghcb_sa_sync) {
2264 			kvm_write_guest(svm->vcpu.kvm,
2265 					ghcb_get_sw_scratch(svm->ghcb),
2266 					svm->ghcb_sa, svm->ghcb_sa_len);
2267 			svm->ghcb_sa_sync = false;
2268 		}
2269 
2270 		kfree(svm->ghcb_sa);
2271 		svm->ghcb_sa = NULL;
2272 		svm->ghcb_sa_free = false;
2273 	}
2274 
2275 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
2276 
2277 	sev_es_sync_to_ghcb(svm);
2278 
2279 	kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
2280 	svm->ghcb = NULL;
2281 }
2282 
2283 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2284 {
2285 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2286 	int asid = sev_get_asid(svm->vcpu.kvm);
2287 
2288 	/* Assign the asid allocated with this SEV guest */
2289 	svm->asid = asid;
2290 
2291 	/*
2292 	 * Flush guest TLB:
2293 	 *
2294 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2295 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2296 	 */
2297 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2298 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2299 		return;
2300 
2301 	sd->sev_vmcbs[asid] = svm->vmcb;
2302 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2303 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2304 }
2305 
2306 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
2307 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2308 {
2309 	struct vmcb_control_area *control = &svm->vmcb->control;
2310 	struct ghcb *ghcb = svm->ghcb;
2311 	u64 ghcb_scratch_beg, ghcb_scratch_end;
2312 	u64 scratch_gpa_beg, scratch_gpa_end;
2313 	void *scratch_va;
2314 
2315 	scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2316 	if (!scratch_gpa_beg) {
2317 		pr_err("vmgexit: scratch gpa not provided\n");
2318 		return false;
2319 	}
2320 
2321 	scratch_gpa_end = scratch_gpa_beg + len;
2322 	if (scratch_gpa_end < scratch_gpa_beg) {
2323 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2324 		       len, scratch_gpa_beg);
2325 		return false;
2326 	}
2327 
2328 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2329 		/* Scratch area begins within GHCB */
2330 		ghcb_scratch_beg = control->ghcb_gpa +
2331 				   offsetof(struct ghcb, shared_buffer);
2332 		ghcb_scratch_end = control->ghcb_gpa +
2333 				   offsetof(struct ghcb, reserved_1);
2334 
2335 		/*
2336 		 * If the scratch area begins within the GHCB, it must be
2337 		 * completely contained in the GHCB shared buffer area.
2338 		 */
2339 		if (scratch_gpa_beg < ghcb_scratch_beg ||
2340 		    scratch_gpa_end > ghcb_scratch_end) {
2341 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2342 			       scratch_gpa_beg, scratch_gpa_end);
2343 			return false;
2344 		}
2345 
2346 		scratch_va = (void *)svm->ghcb;
2347 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2348 	} else {
2349 		/*
2350 		 * The guest memory must be read into a kernel buffer, so
2351 		 * limit the size
2352 		 */
2353 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2354 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2355 			       len, GHCB_SCRATCH_AREA_LIMIT);
2356 			return false;
2357 		}
2358 		scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT);
2359 		if (!scratch_va)
2360 			return false;
2361 
2362 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2363 			/* Unable to copy scratch area from guest */
2364 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2365 
2366 			kfree(scratch_va);
2367 			return false;
2368 		}
2369 
2370 		/*
2371 		 * The scratch area is outside the GHCB. The operation will
2372 		 * dictate whether the buffer needs to be synced before running
2373 		 * the vCPU next time (i.e. a read was requested so the data
2374 		 * must be written back to the guest memory).
2375 		 */
2376 		svm->ghcb_sa_sync = sync;
2377 		svm->ghcb_sa_free = true;
2378 	}
2379 
2380 	svm->ghcb_sa = scratch_va;
2381 	svm->ghcb_sa_len = len;
2382 
2383 	return true;
2384 }
2385 
2386 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2387 			      unsigned int pos)
2388 {
2389 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2390 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2391 }
2392 
2393 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2394 {
2395 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2396 }
2397 
2398 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2399 {
2400 	svm->vmcb->control.ghcb_gpa = value;
2401 }
2402 
2403 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2404 {
2405 	struct vmcb_control_area *control = &svm->vmcb->control;
2406 	struct kvm_vcpu *vcpu = &svm->vcpu;
2407 	u64 ghcb_info;
2408 	int ret = 1;
2409 
2410 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2411 
2412 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2413 					     control->ghcb_gpa);
2414 
2415 	switch (ghcb_info) {
2416 	case GHCB_MSR_SEV_INFO_REQ:
2417 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2418 						    GHCB_VERSION_MIN,
2419 						    sev_enc_bit));
2420 		break;
2421 	case GHCB_MSR_CPUID_REQ: {
2422 		u64 cpuid_fn, cpuid_reg, cpuid_value;
2423 
2424 		cpuid_fn = get_ghcb_msr_bits(svm,
2425 					     GHCB_MSR_CPUID_FUNC_MASK,
2426 					     GHCB_MSR_CPUID_FUNC_POS);
2427 
2428 		/* Initialize the registers needed by the CPUID intercept */
2429 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2430 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2431 
2432 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2433 		if (!ret) {
2434 			ret = -EINVAL;
2435 			break;
2436 		}
2437 
2438 		cpuid_reg = get_ghcb_msr_bits(svm,
2439 					      GHCB_MSR_CPUID_REG_MASK,
2440 					      GHCB_MSR_CPUID_REG_POS);
2441 		if (cpuid_reg == 0)
2442 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2443 		else if (cpuid_reg == 1)
2444 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2445 		else if (cpuid_reg == 2)
2446 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2447 		else
2448 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2449 
2450 		set_ghcb_msr_bits(svm, cpuid_value,
2451 				  GHCB_MSR_CPUID_VALUE_MASK,
2452 				  GHCB_MSR_CPUID_VALUE_POS);
2453 
2454 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2455 				  GHCB_MSR_INFO_MASK,
2456 				  GHCB_MSR_INFO_POS);
2457 		break;
2458 	}
2459 	case GHCB_MSR_TERM_REQ: {
2460 		u64 reason_set, reason_code;
2461 
2462 		reason_set = get_ghcb_msr_bits(svm,
2463 					       GHCB_MSR_TERM_REASON_SET_MASK,
2464 					       GHCB_MSR_TERM_REASON_SET_POS);
2465 		reason_code = get_ghcb_msr_bits(svm,
2466 						GHCB_MSR_TERM_REASON_MASK,
2467 						GHCB_MSR_TERM_REASON_POS);
2468 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2469 			reason_set, reason_code);
2470 		fallthrough;
2471 	}
2472 	default:
2473 		ret = -EINVAL;
2474 	}
2475 
2476 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2477 					    control->ghcb_gpa, ret);
2478 
2479 	return ret;
2480 }
2481 
2482 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2483 {
2484 	struct vcpu_svm *svm = to_svm(vcpu);
2485 	struct vmcb_control_area *control = &svm->vmcb->control;
2486 	u64 ghcb_gpa, exit_code;
2487 	struct ghcb *ghcb;
2488 	int ret;
2489 
2490 	/* Validate the GHCB */
2491 	ghcb_gpa = control->ghcb_gpa;
2492 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2493 		return sev_handle_vmgexit_msr_protocol(svm);
2494 
2495 	if (!ghcb_gpa) {
2496 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2497 		return -EINVAL;
2498 	}
2499 
2500 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
2501 		/* Unable to map GHCB from guest */
2502 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2503 			    ghcb_gpa);
2504 		return -EINVAL;
2505 	}
2506 
2507 	svm->ghcb = svm->ghcb_map.hva;
2508 	ghcb = svm->ghcb_map.hva;
2509 
2510 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2511 
2512 	exit_code = ghcb_get_sw_exit_code(ghcb);
2513 
2514 	ret = sev_es_validate_vmgexit(svm);
2515 	if (ret)
2516 		return ret;
2517 
2518 	sev_es_sync_from_ghcb(svm);
2519 	ghcb_set_sw_exit_info_1(ghcb, 0);
2520 	ghcb_set_sw_exit_info_2(ghcb, 0);
2521 
2522 	ret = -EINVAL;
2523 	switch (exit_code) {
2524 	case SVM_VMGEXIT_MMIO_READ:
2525 		if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
2526 			break;
2527 
2528 		ret = kvm_sev_es_mmio_read(vcpu,
2529 					   control->exit_info_1,
2530 					   control->exit_info_2,
2531 					   svm->ghcb_sa);
2532 		break;
2533 	case SVM_VMGEXIT_MMIO_WRITE:
2534 		if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
2535 			break;
2536 
2537 		ret = kvm_sev_es_mmio_write(vcpu,
2538 					    control->exit_info_1,
2539 					    control->exit_info_2,
2540 					    svm->ghcb_sa);
2541 		break;
2542 	case SVM_VMGEXIT_NMI_COMPLETE:
2543 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2544 		break;
2545 	case SVM_VMGEXIT_AP_HLT_LOOP:
2546 		ret = kvm_emulate_ap_reset_hold(vcpu);
2547 		break;
2548 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
2549 		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2550 
2551 		switch (control->exit_info_1) {
2552 		case 0:
2553 			/* Set AP jump table address */
2554 			sev->ap_jump_table = control->exit_info_2;
2555 			break;
2556 		case 1:
2557 			/* Get AP jump table address */
2558 			ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2559 			break;
2560 		default:
2561 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2562 			       control->exit_info_1);
2563 			ghcb_set_sw_exit_info_1(ghcb, 1);
2564 			ghcb_set_sw_exit_info_2(ghcb,
2565 						X86_TRAP_UD |
2566 						SVM_EVTINJ_TYPE_EXEPT |
2567 						SVM_EVTINJ_VALID);
2568 		}
2569 
2570 		ret = 1;
2571 		break;
2572 	}
2573 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2574 		vcpu_unimpl(vcpu,
2575 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2576 			    control->exit_info_1, control->exit_info_2);
2577 		break;
2578 	default:
2579 		ret = svm_invoke_exit_handler(vcpu, exit_code);
2580 	}
2581 
2582 	return ret;
2583 }
2584 
2585 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2586 {
2587 	if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
2588 		return -EINVAL;
2589 
2590 	return kvm_sev_es_string_io(&svm->vcpu, size, port,
2591 				    svm->ghcb_sa, svm->ghcb_sa_len / size, in);
2592 }
2593 
2594 void sev_es_init_vmcb(struct vcpu_svm *svm)
2595 {
2596 	struct kvm_vcpu *vcpu = &svm->vcpu;
2597 
2598 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2599 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2600 
2601 	/*
2602 	 * An SEV-ES guest requires a VMSA area that is a separate from the
2603 	 * VMCB page. Do not include the encryption mask on the VMSA physical
2604 	 * address since hardware will access it using the guest key.
2605 	 */
2606 	svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
2607 
2608 	/* Can't intercept CR register access, HV can't modify CR registers */
2609 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2610 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2611 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2612 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2613 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2614 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2615 
2616 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2617 
2618 	/* Track EFER/CR register changes */
2619 	svm_set_intercept(svm, TRAP_EFER_WRITE);
2620 	svm_set_intercept(svm, TRAP_CR0_WRITE);
2621 	svm_set_intercept(svm, TRAP_CR4_WRITE);
2622 	svm_set_intercept(svm, TRAP_CR8_WRITE);
2623 
2624 	/* No support for enable_vmware_backdoor */
2625 	clr_exception_intercept(svm, GP_VECTOR);
2626 
2627 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
2628 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
2629 
2630 	/* Clear intercepts on selected MSRs */
2631 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2632 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2633 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2634 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2635 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2636 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2637 }
2638 
2639 void sev_es_create_vcpu(struct vcpu_svm *svm)
2640 {
2641 	/*
2642 	 * Set the GHCB MSR value as per the GHCB specification when creating
2643 	 * a vCPU for an SEV-ES guest.
2644 	 */
2645 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2646 					    GHCB_VERSION_MIN,
2647 					    sev_enc_bit));
2648 }
2649 
2650 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2651 {
2652 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2653 	struct vmcb_save_area *hostsa;
2654 
2655 	/*
2656 	 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2657 	 * of which one step is to perform a VMLOAD. Since hardware does not
2658 	 * perform a VMSAVE on VMRUN, the host savearea must be updated.
2659 	 */
2660 	vmsave(__sme_page_pa(sd->save_area));
2661 
2662 	/* XCR0 is restored on VMEXIT, save the current host value */
2663 	hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2664 	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2665 
2666 	/* PKRU is restored on VMEXIT, save the current host value */
2667 	hostsa->pkru = read_pkru();
2668 
2669 	/* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2670 	hostsa->xss = host_xss;
2671 }
2672 
2673 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2674 {
2675 	struct vcpu_svm *svm = to_svm(vcpu);
2676 
2677 	/* First SIPI: Use the values as initially set by the VMM */
2678 	if (!svm->received_first_sipi) {
2679 		svm->received_first_sipi = true;
2680 		return;
2681 	}
2682 
2683 	/*
2684 	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2685 	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2686 	 * non-zero value.
2687 	 */
2688 	if (!svm->ghcb)
2689 		return;
2690 
2691 	ghcb_set_sw_exit_info_2(svm->ghcb, 1);
2692 }
2693