1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 #include <asm/fpu/internal.h> 21 22 #include <asm/pkru.h> 23 #include <asm/trapnr.h> 24 25 #include "x86.h" 26 #include "svm.h" 27 #include "svm_ops.h" 28 #include "cpuid.h" 29 #include "trace.h" 30 31 #ifndef CONFIG_KVM_AMD_SEV 32 /* 33 * When this config is not defined, SEV feature is not supported and APIs in 34 * this file are not used but this file still gets compiled into the KVM AMD 35 * module. 36 * 37 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 38 * misc_res_type {} defined in linux/misc_cgroup.h. 39 * 40 * Below macros allow compilation to succeed. 41 */ 42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 44 #endif 45 46 #ifdef CONFIG_KVM_AMD_SEV 47 /* enable/disable SEV support */ 48 static bool sev_enabled = true; 49 module_param_named(sev, sev_enabled, bool, 0444); 50 51 /* enable/disable SEV-ES support */ 52 static bool sev_es_enabled = true; 53 module_param_named(sev_es, sev_es_enabled, bool, 0444); 54 #else 55 #define sev_enabled false 56 #define sev_es_enabled false 57 #endif /* CONFIG_KVM_AMD_SEV */ 58 59 static u8 sev_enc_bit; 60 static DECLARE_RWSEM(sev_deactivate_lock); 61 static DEFINE_MUTEX(sev_bitmap_lock); 62 unsigned int max_sev_asid; 63 static unsigned int min_sev_asid; 64 static unsigned long sev_me_mask; 65 static unsigned int nr_asids; 66 static unsigned long *sev_asid_bitmap; 67 static unsigned long *sev_reclaim_asid_bitmap; 68 69 struct enc_region { 70 struct list_head list; 71 unsigned long npages; 72 struct page **pages; 73 unsigned long uaddr; 74 unsigned long size; 75 }; 76 77 /* Called with the sev_bitmap_lock held, or on shutdown */ 78 static int sev_flush_asids(int min_asid, int max_asid) 79 { 80 int ret, asid, error = 0; 81 82 /* Check if there are any ASIDs to reclaim before performing a flush */ 83 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 84 if (asid > max_asid) 85 return -EBUSY; 86 87 /* 88 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 89 * so it must be guarded. 90 */ 91 down_write(&sev_deactivate_lock); 92 93 wbinvd_on_all_cpus(); 94 ret = sev_guest_df_flush(&error); 95 96 up_write(&sev_deactivate_lock); 97 98 if (ret) 99 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 100 101 return ret; 102 } 103 104 static inline bool is_mirroring_enc_context(struct kvm *kvm) 105 { 106 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 107 } 108 109 /* Must be called with the sev_bitmap_lock held */ 110 static bool __sev_recycle_asids(int min_asid, int max_asid) 111 { 112 if (sev_flush_asids(min_asid, max_asid)) 113 return false; 114 115 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 116 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 117 nr_asids); 118 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 119 120 return true; 121 } 122 123 static int sev_asid_new(struct kvm_sev_info *sev) 124 { 125 int asid, min_asid, max_asid, ret; 126 bool retry = true; 127 enum misc_res_type type; 128 129 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 130 WARN_ON(sev->misc_cg); 131 sev->misc_cg = get_current_misc_cg(); 132 ret = misc_cg_try_charge(type, sev->misc_cg, 1); 133 if (ret) { 134 put_misc_cg(sev->misc_cg); 135 sev->misc_cg = NULL; 136 return ret; 137 } 138 139 mutex_lock(&sev_bitmap_lock); 140 141 /* 142 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 143 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 144 */ 145 min_asid = sev->es_active ? 1 : min_sev_asid; 146 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 147 again: 148 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 149 if (asid > max_asid) { 150 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 151 retry = false; 152 goto again; 153 } 154 mutex_unlock(&sev_bitmap_lock); 155 ret = -EBUSY; 156 goto e_uncharge; 157 } 158 159 __set_bit(asid, sev_asid_bitmap); 160 161 mutex_unlock(&sev_bitmap_lock); 162 163 return asid; 164 e_uncharge: 165 misc_cg_uncharge(type, sev->misc_cg, 1); 166 put_misc_cg(sev->misc_cg); 167 sev->misc_cg = NULL; 168 return ret; 169 } 170 171 static int sev_get_asid(struct kvm *kvm) 172 { 173 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 174 175 return sev->asid; 176 } 177 178 static void sev_asid_free(struct kvm_sev_info *sev) 179 { 180 struct svm_cpu_data *sd; 181 int cpu; 182 enum misc_res_type type; 183 184 mutex_lock(&sev_bitmap_lock); 185 186 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 187 188 for_each_possible_cpu(cpu) { 189 sd = per_cpu(svm_data, cpu); 190 sd->sev_vmcbs[sev->asid] = NULL; 191 } 192 193 mutex_unlock(&sev_bitmap_lock); 194 195 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 196 misc_cg_uncharge(type, sev->misc_cg, 1); 197 put_misc_cg(sev->misc_cg); 198 sev->misc_cg = NULL; 199 } 200 201 static void sev_decommission(unsigned int handle) 202 { 203 struct sev_data_decommission decommission; 204 205 if (!handle) 206 return; 207 208 decommission.handle = handle; 209 sev_guest_decommission(&decommission, NULL); 210 } 211 212 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 213 { 214 struct sev_data_deactivate deactivate; 215 216 if (!handle) 217 return; 218 219 deactivate.handle = handle; 220 221 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 222 down_read(&sev_deactivate_lock); 223 sev_guest_deactivate(&deactivate, NULL); 224 up_read(&sev_deactivate_lock); 225 226 sev_decommission(handle); 227 } 228 229 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 230 { 231 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 232 bool es_active = argp->id == KVM_SEV_ES_INIT; 233 int asid, ret; 234 235 if (kvm->created_vcpus) 236 return -EINVAL; 237 238 ret = -EBUSY; 239 if (unlikely(sev->active)) 240 return ret; 241 242 sev->es_active = es_active; 243 asid = sev_asid_new(sev); 244 if (asid < 0) 245 goto e_no_asid; 246 sev->asid = asid; 247 248 ret = sev_platform_init(&argp->error); 249 if (ret) 250 goto e_free; 251 252 sev->active = true; 253 sev->asid = asid; 254 INIT_LIST_HEAD(&sev->regions_list); 255 256 return 0; 257 258 e_free: 259 sev_asid_free(sev); 260 sev->asid = 0; 261 e_no_asid: 262 sev->es_active = false; 263 return ret; 264 } 265 266 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 267 { 268 struct sev_data_activate activate; 269 int asid = sev_get_asid(kvm); 270 int ret; 271 272 /* activate ASID on the given handle */ 273 activate.handle = handle; 274 activate.asid = asid; 275 ret = sev_guest_activate(&activate, error); 276 277 return ret; 278 } 279 280 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 281 { 282 struct fd f; 283 int ret; 284 285 f = fdget(fd); 286 if (!f.file) 287 return -EBADF; 288 289 ret = sev_issue_cmd_external_user(f.file, id, data, error); 290 291 fdput(f); 292 return ret; 293 } 294 295 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 296 { 297 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 298 299 return __sev_issue_cmd(sev->fd, id, data, error); 300 } 301 302 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 303 { 304 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 305 struct sev_data_launch_start start; 306 struct kvm_sev_launch_start params; 307 void *dh_blob, *session_blob; 308 int *error = &argp->error; 309 int ret; 310 311 if (!sev_guest(kvm)) 312 return -ENOTTY; 313 314 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 315 return -EFAULT; 316 317 memset(&start, 0, sizeof(start)); 318 319 dh_blob = NULL; 320 if (params.dh_uaddr) { 321 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 322 if (IS_ERR(dh_blob)) 323 return PTR_ERR(dh_blob); 324 325 start.dh_cert_address = __sme_set(__pa(dh_blob)); 326 start.dh_cert_len = params.dh_len; 327 } 328 329 session_blob = NULL; 330 if (params.session_uaddr) { 331 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 332 if (IS_ERR(session_blob)) { 333 ret = PTR_ERR(session_blob); 334 goto e_free_dh; 335 } 336 337 start.session_address = __sme_set(__pa(session_blob)); 338 start.session_len = params.session_len; 339 } 340 341 start.handle = params.handle; 342 start.policy = params.policy; 343 344 /* create memory encryption context */ 345 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 346 if (ret) 347 goto e_free_session; 348 349 /* Bind ASID to this guest */ 350 ret = sev_bind_asid(kvm, start.handle, error); 351 if (ret) { 352 sev_decommission(start.handle); 353 goto e_free_session; 354 } 355 356 /* return handle to userspace */ 357 params.handle = start.handle; 358 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 359 sev_unbind_asid(kvm, start.handle); 360 ret = -EFAULT; 361 goto e_free_session; 362 } 363 364 sev->handle = start.handle; 365 sev->fd = argp->sev_fd; 366 367 e_free_session: 368 kfree(session_blob); 369 e_free_dh: 370 kfree(dh_blob); 371 return ret; 372 } 373 374 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 375 unsigned long ulen, unsigned long *n, 376 int write) 377 { 378 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 379 unsigned long npages, size; 380 int npinned; 381 unsigned long locked, lock_limit; 382 struct page **pages; 383 unsigned long first, last; 384 int ret; 385 386 lockdep_assert_held(&kvm->lock); 387 388 if (ulen == 0 || uaddr + ulen < uaddr) 389 return ERR_PTR(-EINVAL); 390 391 /* Calculate number of pages. */ 392 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 393 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 394 npages = (last - first + 1); 395 396 locked = sev->pages_locked + npages; 397 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 398 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 399 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 400 return ERR_PTR(-ENOMEM); 401 } 402 403 if (WARN_ON_ONCE(npages > INT_MAX)) 404 return ERR_PTR(-EINVAL); 405 406 /* Avoid using vmalloc for smaller buffers. */ 407 size = npages * sizeof(struct page *); 408 if (size > PAGE_SIZE) 409 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 410 else 411 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 412 413 if (!pages) 414 return ERR_PTR(-ENOMEM); 415 416 /* Pin the user virtual address. */ 417 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 418 if (npinned != npages) { 419 pr_err("SEV: Failure locking %lu pages.\n", npages); 420 ret = -ENOMEM; 421 goto err; 422 } 423 424 *n = npages; 425 sev->pages_locked = locked; 426 427 return pages; 428 429 err: 430 if (npinned > 0) 431 unpin_user_pages(pages, npinned); 432 433 kvfree(pages); 434 return ERR_PTR(ret); 435 } 436 437 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 438 unsigned long npages) 439 { 440 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 441 442 unpin_user_pages(pages, npages); 443 kvfree(pages); 444 sev->pages_locked -= npages; 445 } 446 447 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 448 { 449 uint8_t *page_virtual; 450 unsigned long i; 451 452 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 453 pages == NULL) 454 return; 455 456 for (i = 0; i < npages; i++) { 457 page_virtual = kmap_atomic(pages[i]); 458 clflush_cache_range(page_virtual, PAGE_SIZE); 459 kunmap_atomic(page_virtual); 460 } 461 } 462 463 static unsigned long get_num_contig_pages(unsigned long idx, 464 struct page **inpages, unsigned long npages) 465 { 466 unsigned long paddr, next_paddr; 467 unsigned long i = idx + 1, pages = 1; 468 469 /* find the number of contiguous pages starting from idx */ 470 paddr = __sme_page_pa(inpages[idx]); 471 while (i < npages) { 472 next_paddr = __sme_page_pa(inpages[i++]); 473 if ((paddr + PAGE_SIZE) == next_paddr) { 474 pages++; 475 paddr = next_paddr; 476 continue; 477 } 478 break; 479 } 480 481 return pages; 482 } 483 484 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 485 { 486 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 487 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 488 struct kvm_sev_launch_update_data params; 489 struct sev_data_launch_update_data data; 490 struct page **inpages; 491 int ret; 492 493 if (!sev_guest(kvm)) 494 return -ENOTTY; 495 496 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 497 return -EFAULT; 498 499 vaddr = params.uaddr; 500 size = params.len; 501 vaddr_end = vaddr + size; 502 503 /* Lock the user memory. */ 504 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 505 if (IS_ERR(inpages)) 506 return PTR_ERR(inpages); 507 508 /* 509 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 510 * place; the cache may contain the data that was written unencrypted. 511 */ 512 sev_clflush_pages(inpages, npages); 513 514 data.reserved = 0; 515 data.handle = sev->handle; 516 517 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 518 int offset, len; 519 520 /* 521 * If the user buffer is not page-aligned, calculate the offset 522 * within the page. 523 */ 524 offset = vaddr & (PAGE_SIZE - 1); 525 526 /* Calculate the number of pages that can be encrypted in one go. */ 527 pages = get_num_contig_pages(i, inpages, npages); 528 529 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 530 531 data.len = len; 532 data.address = __sme_page_pa(inpages[i]) + offset; 533 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 534 if (ret) 535 goto e_unpin; 536 537 size -= len; 538 next_vaddr = vaddr + len; 539 } 540 541 e_unpin: 542 /* content of memory is updated, mark pages dirty */ 543 for (i = 0; i < npages; i++) { 544 set_page_dirty_lock(inpages[i]); 545 mark_page_accessed(inpages[i]); 546 } 547 /* unlock the user pages */ 548 sev_unpin_memory(kvm, inpages, npages); 549 return ret; 550 } 551 552 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 553 { 554 struct vmcb_save_area *save = &svm->vmcb->save; 555 556 /* Check some debug related fields before encrypting the VMSA */ 557 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 558 return -EINVAL; 559 560 /* Sync registgers */ 561 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 562 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 563 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 564 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 565 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 566 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 567 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 568 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 569 #ifdef CONFIG_X86_64 570 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 571 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 572 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 573 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 574 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 575 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 576 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 577 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 578 #endif 579 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 580 581 /* Sync some non-GPR registers before encrypting */ 582 save->xcr0 = svm->vcpu.arch.xcr0; 583 save->pkru = svm->vcpu.arch.pkru; 584 save->xss = svm->vcpu.arch.ia32_xss; 585 save->dr6 = svm->vcpu.arch.dr6; 586 587 /* 588 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 589 * the traditional VMSA that is part of the VMCB. Copy the 590 * traditional VMSA as it has been built so far (in prep 591 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 592 */ 593 memcpy(svm->vmsa, save, sizeof(*save)); 594 595 return 0; 596 } 597 598 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 599 int *error) 600 { 601 struct sev_data_launch_update_vmsa vmsa; 602 struct vcpu_svm *svm = to_svm(vcpu); 603 int ret; 604 605 /* Perform some pre-encryption checks against the VMSA */ 606 ret = sev_es_sync_vmsa(svm); 607 if (ret) 608 return ret; 609 610 /* 611 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 612 * the VMSA memory content (i.e it will write the same memory region 613 * with the guest's key), so invalidate it first. 614 */ 615 clflush_cache_range(svm->vmsa, PAGE_SIZE); 616 617 vmsa.reserved = 0; 618 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle; 619 vmsa.address = __sme_pa(svm->vmsa); 620 vmsa.len = PAGE_SIZE; 621 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 622 if (ret) 623 return ret; 624 625 vcpu->arch.guest_state_protected = true; 626 return 0; 627 } 628 629 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 630 { 631 struct kvm_vcpu *vcpu; 632 int i, ret; 633 634 if (!sev_es_guest(kvm)) 635 return -ENOTTY; 636 637 kvm_for_each_vcpu(i, vcpu, kvm) { 638 ret = mutex_lock_killable(&vcpu->mutex); 639 if (ret) 640 return ret; 641 642 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 643 644 mutex_unlock(&vcpu->mutex); 645 if (ret) 646 return ret; 647 } 648 649 return 0; 650 } 651 652 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 653 { 654 void __user *measure = (void __user *)(uintptr_t)argp->data; 655 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 656 struct sev_data_launch_measure data; 657 struct kvm_sev_launch_measure params; 658 void __user *p = NULL; 659 void *blob = NULL; 660 int ret; 661 662 if (!sev_guest(kvm)) 663 return -ENOTTY; 664 665 if (copy_from_user(¶ms, measure, sizeof(params))) 666 return -EFAULT; 667 668 memset(&data, 0, sizeof(data)); 669 670 /* User wants to query the blob length */ 671 if (!params.len) 672 goto cmd; 673 674 p = (void __user *)(uintptr_t)params.uaddr; 675 if (p) { 676 if (params.len > SEV_FW_BLOB_MAX_SIZE) 677 return -EINVAL; 678 679 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 680 if (!blob) 681 return -ENOMEM; 682 683 data.address = __psp_pa(blob); 684 data.len = params.len; 685 } 686 687 cmd: 688 data.handle = sev->handle; 689 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 690 691 /* 692 * If we query the session length, FW responded with expected data. 693 */ 694 if (!params.len) 695 goto done; 696 697 if (ret) 698 goto e_free_blob; 699 700 if (blob) { 701 if (copy_to_user(p, blob, params.len)) 702 ret = -EFAULT; 703 } 704 705 done: 706 params.len = data.len; 707 if (copy_to_user(measure, ¶ms, sizeof(params))) 708 ret = -EFAULT; 709 e_free_blob: 710 kfree(blob); 711 return ret; 712 } 713 714 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 715 { 716 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 717 struct sev_data_launch_finish data; 718 719 if (!sev_guest(kvm)) 720 return -ENOTTY; 721 722 data.handle = sev->handle; 723 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 724 } 725 726 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 727 { 728 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 729 struct kvm_sev_guest_status params; 730 struct sev_data_guest_status data; 731 int ret; 732 733 if (!sev_guest(kvm)) 734 return -ENOTTY; 735 736 memset(&data, 0, sizeof(data)); 737 738 data.handle = sev->handle; 739 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 740 if (ret) 741 return ret; 742 743 params.policy = data.policy; 744 params.state = data.state; 745 params.handle = data.handle; 746 747 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 748 ret = -EFAULT; 749 750 return ret; 751 } 752 753 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 754 unsigned long dst, int size, 755 int *error, bool enc) 756 { 757 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 758 struct sev_data_dbg data; 759 760 data.reserved = 0; 761 data.handle = sev->handle; 762 data.dst_addr = dst; 763 data.src_addr = src; 764 data.len = size; 765 766 return sev_issue_cmd(kvm, 767 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 768 &data, error); 769 } 770 771 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 772 unsigned long dst_paddr, int sz, int *err) 773 { 774 int offset; 775 776 /* 777 * Its safe to read more than we are asked, caller should ensure that 778 * destination has enough space. 779 */ 780 offset = src_paddr & 15; 781 src_paddr = round_down(src_paddr, 16); 782 sz = round_up(sz + offset, 16); 783 784 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 785 } 786 787 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 788 void __user *dst_uaddr, 789 unsigned long dst_paddr, 790 int size, int *err) 791 { 792 struct page *tpage = NULL; 793 int ret, offset; 794 795 /* if inputs are not 16-byte then use intermediate buffer */ 796 if (!IS_ALIGNED(dst_paddr, 16) || 797 !IS_ALIGNED(paddr, 16) || 798 !IS_ALIGNED(size, 16)) { 799 tpage = (void *)alloc_page(GFP_KERNEL); 800 if (!tpage) 801 return -ENOMEM; 802 803 dst_paddr = __sme_page_pa(tpage); 804 } 805 806 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 807 if (ret) 808 goto e_free; 809 810 if (tpage) { 811 offset = paddr & 15; 812 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 813 ret = -EFAULT; 814 } 815 816 e_free: 817 if (tpage) 818 __free_page(tpage); 819 820 return ret; 821 } 822 823 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 824 void __user *vaddr, 825 unsigned long dst_paddr, 826 void __user *dst_vaddr, 827 int size, int *error) 828 { 829 struct page *src_tpage = NULL; 830 struct page *dst_tpage = NULL; 831 int ret, len = size; 832 833 /* If source buffer is not aligned then use an intermediate buffer */ 834 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 835 src_tpage = alloc_page(GFP_KERNEL); 836 if (!src_tpage) 837 return -ENOMEM; 838 839 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 840 __free_page(src_tpage); 841 return -EFAULT; 842 } 843 844 paddr = __sme_page_pa(src_tpage); 845 } 846 847 /* 848 * If destination buffer or length is not aligned then do read-modify-write: 849 * - decrypt destination in an intermediate buffer 850 * - copy the source buffer in an intermediate buffer 851 * - use the intermediate buffer as source buffer 852 */ 853 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 854 int dst_offset; 855 856 dst_tpage = alloc_page(GFP_KERNEL); 857 if (!dst_tpage) { 858 ret = -ENOMEM; 859 goto e_free; 860 } 861 862 ret = __sev_dbg_decrypt(kvm, dst_paddr, 863 __sme_page_pa(dst_tpage), size, error); 864 if (ret) 865 goto e_free; 866 867 /* 868 * If source is kernel buffer then use memcpy() otherwise 869 * copy_from_user(). 870 */ 871 dst_offset = dst_paddr & 15; 872 873 if (src_tpage) 874 memcpy(page_address(dst_tpage) + dst_offset, 875 page_address(src_tpage), size); 876 else { 877 if (copy_from_user(page_address(dst_tpage) + dst_offset, 878 vaddr, size)) { 879 ret = -EFAULT; 880 goto e_free; 881 } 882 } 883 884 paddr = __sme_page_pa(dst_tpage); 885 dst_paddr = round_down(dst_paddr, 16); 886 len = round_up(size, 16); 887 } 888 889 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 890 891 e_free: 892 if (src_tpage) 893 __free_page(src_tpage); 894 if (dst_tpage) 895 __free_page(dst_tpage); 896 return ret; 897 } 898 899 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 900 { 901 unsigned long vaddr, vaddr_end, next_vaddr; 902 unsigned long dst_vaddr; 903 struct page **src_p, **dst_p; 904 struct kvm_sev_dbg debug; 905 unsigned long n; 906 unsigned int size; 907 int ret; 908 909 if (!sev_guest(kvm)) 910 return -ENOTTY; 911 912 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 913 return -EFAULT; 914 915 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 916 return -EINVAL; 917 if (!debug.dst_uaddr) 918 return -EINVAL; 919 920 vaddr = debug.src_uaddr; 921 size = debug.len; 922 vaddr_end = vaddr + size; 923 dst_vaddr = debug.dst_uaddr; 924 925 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 926 int len, s_off, d_off; 927 928 /* lock userspace source and destination page */ 929 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 930 if (IS_ERR(src_p)) 931 return PTR_ERR(src_p); 932 933 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 934 if (IS_ERR(dst_p)) { 935 sev_unpin_memory(kvm, src_p, n); 936 return PTR_ERR(dst_p); 937 } 938 939 /* 940 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 941 * the pages; flush the destination too so that future accesses do not 942 * see stale data. 943 */ 944 sev_clflush_pages(src_p, 1); 945 sev_clflush_pages(dst_p, 1); 946 947 /* 948 * Since user buffer may not be page aligned, calculate the 949 * offset within the page. 950 */ 951 s_off = vaddr & ~PAGE_MASK; 952 d_off = dst_vaddr & ~PAGE_MASK; 953 len = min_t(size_t, (PAGE_SIZE - s_off), size); 954 955 if (dec) 956 ret = __sev_dbg_decrypt_user(kvm, 957 __sme_page_pa(src_p[0]) + s_off, 958 (void __user *)dst_vaddr, 959 __sme_page_pa(dst_p[0]) + d_off, 960 len, &argp->error); 961 else 962 ret = __sev_dbg_encrypt_user(kvm, 963 __sme_page_pa(src_p[0]) + s_off, 964 (void __user *)vaddr, 965 __sme_page_pa(dst_p[0]) + d_off, 966 (void __user *)dst_vaddr, 967 len, &argp->error); 968 969 sev_unpin_memory(kvm, src_p, n); 970 sev_unpin_memory(kvm, dst_p, n); 971 972 if (ret) 973 goto err; 974 975 next_vaddr = vaddr + len; 976 dst_vaddr = dst_vaddr + len; 977 size -= len; 978 } 979 err: 980 return ret; 981 } 982 983 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 984 { 985 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 986 struct sev_data_launch_secret data; 987 struct kvm_sev_launch_secret params; 988 struct page **pages; 989 void *blob, *hdr; 990 unsigned long n, i; 991 int ret, offset; 992 993 if (!sev_guest(kvm)) 994 return -ENOTTY; 995 996 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 997 return -EFAULT; 998 999 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1000 if (IS_ERR(pages)) 1001 return PTR_ERR(pages); 1002 1003 /* 1004 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1005 * place; the cache may contain the data that was written unencrypted. 1006 */ 1007 sev_clflush_pages(pages, n); 1008 1009 /* 1010 * The secret must be copied into contiguous memory region, lets verify 1011 * that userspace memory pages are contiguous before we issue command. 1012 */ 1013 if (get_num_contig_pages(0, pages, n) != n) { 1014 ret = -EINVAL; 1015 goto e_unpin_memory; 1016 } 1017 1018 memset(&data, 0, sizeof(data)); 1019 1020 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1021 data.guest_address = __sme_page_pa(pages[0]) + offset; 1022 data.guest_len = params.guest_len; 1023 1024 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1025 if (IS_ERR(blob)) { 1026 ret = PTR_ERR(blob); 1027 goto e_unpin_memory; 1028 } 1029 1030 data.trans_address = __psp_pa(blob); 1031 data.trans_len = params.trans_len; 1032 1033 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1034 if (IS_ERR(hdr)) { 1035 ret = PTR_ERR(hdr); 1036 goto e_free_blob; 1037 } 1038 data.hdr_address = __psp_pa(hdr); 1039 data.hdr_len = params.hdr_len; 1040 1041 data.handle = sev->handle; 1042 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1043 1044 kfree(hdr); 1045 1046 e_free_blob: 1047 kfree(blob); 1048 e_unpin_memory: 1049 /* content of memory is updated, mark pages dirty */ 1050 for (i = 0; i < n; i++) { 1051 set_page_dirty_lock(pages[i]); 1052 mark_page_accessed(pages[i]); 1053 } 1054 sev_unpin_memory(kvm, pages, n); 1055 return ret; 1056 } 1057 1058 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1059 { 1060 void __user *report = (void __user *)(uintptr_t)argp->data; 1061 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1062 struct sev_data_attestation_report data; 1063 struct kvm_sev_attestation_report params; 1064 void __user *p; 1065 void *blob = NULL; 1066 int ret; 1067 1068 if (!sev_guest(kvm)) 1069 return -ENOTTY; 1070 1071 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1072 return -EFAULT; 1073 1074 memset(&data, 0, sizeof(data)); 1075 1076 /* User wants to query the blob length */ 1077 if (!params.len) 1078 goto cmd; 1079 1080 p = (void __user *)(uintptr_t)params.uaddr; 1081 if (p) { 1082 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1083 return -EINVAL; 1084 1085 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 1086 if (!blob) 1087 return -ENOMEM; 1088 1089 data.address = __psp_pa(blob); 1090 data.len = params.len; 1091 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1092 } 1093 cmd: 1094 data.handle = sev->handle; 1095 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1096 /* 1097 * If we query the session length, FW responded with expected data. 1098 */ 1099 if (!params.len) 1100 goto done; 1101 1102 if (ret) 1103 goto e_free_blob; 1104 1105 if (blob) { 1106 if (copy_to_user(p, blob, params.len)) 1107 ret = -EFAULT; 1108 } 1109 1110 done: 1111 params.len = data.len; 1112 if (copy_to_user(report, ¶ms, sizeof(params))) 1113 ret = -EFAULT; 1114 e_free_blob: 1115 kfree(blob); 1116 return ret; 1117 } 1118 1119 /* Userspace wants to query session length. */ 1120 static int 1121 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1122 struct kvm_sev_send_start *params) 1123 { 1124 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1125 struct sev_data_send_start data; 1126 int ret; 1127 1128 memset(&data, 0, sizeof(data)); 1129 data.handle = sev->handle; 1130 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1131 1132 params->session_len = data.session_len; 1133 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1134 sizeof(struct kvm_sev_send_start))) 1135 ret = -EFAULT; 1136 1137 return ret; 1138 } 1139 1140 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1141 { 1142 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1143 struct sev_data_send_start data; 1144 struct kvm_sev_send_start params; 1145 void *amd_certs, *session_data; 1146 void *pdh_cert, *plat_certs; 1147 int ret; 1148 1149 if (!sev_guest(kvm)) 1150 return -ENOTTY; 1151 1152 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1153 sizeof(struct kvm_sev_send_start))) 1154 return -EFAULT; 1155 1156 /* if session_len is zero, userspace wants to query the session length */ 1157 if (!params.session_len) 1158 return __sev_send_start_query_session_length(kvm, argp, 1159 ¶ms); 1160 1161 /* some sanity checks */ 1162 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1163 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1164 return -EINVAL; 1165 1166 /* allocate the memory to hold the session data blob */ 1167 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1168 if (!session_data) 1169 return -ENOMEM; 1170 1171 /* copy the certificate blobs from userspace */ 1172 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1173 params.pdh_cert_len); 1174 if (IS_ERR(pdh_cert)) { 1175 ret = PTR_ERR(pdh_cert); 1176 goto e_free_session; 1177 } 1178 1179 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1180 params.plat_certs_len); 1181 if (IS_ERR(plat_certs)) { 1182 ret = PTR_ERR(plat_certs); 1183 goto e_free_pdh; 1184 } 1185 1186 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1187 params.amd_certs_len); 1188 if (IS_ERR(amd_certs)) { 1189 ret = PTR_ERR(amd_certs); 1190 goto e_free_plat_cert; 1191 } 1192 1193 /* populate the FW SEND_START field with system physical address */ 1194 memset(&data, 0, sizeof(data)); 1195 data.pdh_cert_address = __psp_pa(pdh_cert); 1196 data.pdh_cert_len = params.pdh_cert_len; 1197 data.plat_certs_address = __psp_pa(plat_certs); 1198 data.plat_certs_len = params.plat_certs_len; 1199 data.amd_certs_address = __psp_pa(amd_certs); 1200 data.amd_certs_len = params.amd_certs_len; 1201 data.session_address = __psp_pa(session_data); 1202 data.session_len = params.session_len; 1203 data.handle = sev->handle; 1204 1205 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1206 1207 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1208 session_data, params.session_len)) { 1209 ret = -EFAULT; 1210 goto e_free_amd_cert; 1211 } 1212 1213 params.policy = data.policy; 1214 params.session_len = data.session_len; 1215 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1216 sizeof(struct kvm_sev_send_start))) 1217 ret = -EFAULT; 1218 1219 e_free_amd_cert: 1220 kfree(amd_certs); 1221 e_free_plat_cert: 1222 kfree(plat_certs); 1223 e_free_pdh: 1224 kfree(pdh_cert); 1225 e_free_session: 1226 kfree(session_data); 1227 return ret; 1228 } 1229 1230 /* Userspace wants to query either header or trans length. */ 1231 static int 1232 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1233 struct kvm_sev_send_update_data *params) 1234 { 1235 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1236 struct sev_data_send_update_data data; 1237 int ret; 1238 1239 memset(&data, 0, sizeof(data)); 1240 data.handle = sev->handle; 1241 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1242 1243 params->hdr_len = data.hdr_len; 1244 params->trans_len = data.trans_len; 1245 1246 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1247 sizeof(struct kvm_sev_send_update_data))) 1248 ret = -EFAULT; 1249 1250 return ret; 1251 } 1252 1253 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1254 { 1255 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1256 struct sev_data_send_update_data data; 1257 struct kvm_sev_send_update_data params; 1258 void *hdr, *trans_data; 1259 struct page **guest_page; 1260 unsigned long n; 1261 int ret, offset; 1262 1263 if (!sev_guest(kvm)) 1264 return -ENOTTY; 1265 1266 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1267 sizeof(struct kvm_sev_send_update_data))) 1268 return -EFAULT; 1269 1270 /* userspace wants to query either header or trans length */ 1271 if (!params.trans_len || !params.hdr_len) 1272 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1273 1274 if (!params.trans_uaddr || !params.guest_uaddr || 1275 !params.guest_len || !params.hdr_uaddr) 1276 return -EINVAL; 1277 1278 /* Check if we are crossing the page boundary */ 1279 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1280 if ((params.guest_len + offset > PAGE_SIZE)) 1281 return -EINVAL; 1282 1283 /* Pin guest memory */ 1284 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1285 PAGE_SIZE, &n, 0); 1286 if (IS_ERR(guest_page)) 1287 return PTR_ERR(guest_page); 1288 1289 /* allocate memory for header and transport buffer */ 1290 ret = -ENOMEM; 1291 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1292 if (!hdr) 1293 goto e_unpin; 1294 1295 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1296 if (!trans_data) 1297 goto e_free_hdr; 1298 1299 memset(&data, 0, sizeof(data)); 1300 data.hdr_address = __psp_pa(hdr); 1301 data.hdr_len = params.hdr_len; 1302 data.trans_address = __psp_pa(trans_data); 1303 data.trans_len = params.trans_len; 1304 1305 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1306 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1307 data.guest_address |= sev_me_mask; 1308 data.guest_len = params.guest_len; 1309 data.handle = sev->handle; 1310 1311 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1312 1313 if (ret) 1314 goto e_free_trans_data; 1315 1316 /* copy transport buffer to user space */ 1317 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1318 trans_data, params.trans_len)) { 1319 ret = -EFAULT; 1320 goto e_free_trans_data; 1321 } 1322 1323 /* Copy packet header to userspace. */ 1324 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1325 params.hdr_len)) 1326 ret = -EFAULT; 1327 1328 e_free_trans_data: 1329 kfree(trans_data); 1330 e_free_hdr: 1331 kfree(hdr); 1332 e_unpin: 1333 sev_unpin_memory(kvm, guest_page, n); 1334 1335 return ret; 1336 } 1337 1338 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1339 { 1340 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1341 struct sev_data_send_finish data; 1342 1343 if (!sev_guest(kvm)) 1344 return -ENOTTY; 1345 1346 data.handle = sev->handle; 1347 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1348 } 1349 1350 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1351 { 1352 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1353 struct sev_data_send_cancel data; 1354 1355 if (!sev_guest(kvm)) 1356 return -ENOTTY; 1357 1358 data.handle = sev->handle; 1359 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1360 } 1361 1362 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1363 { 1364 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1365 struct sev_data_receive_start start; 1366 struct kvm_sev_receive_start params; 1367 int *error = &argp->error; 1368 void *session_data; 1369 void *pdh_data; 1370 int ret; 1371 1372 if (!sev_guest(kvm)) 1373 return -ENOTTY; 1374 1375 /* Get parameter from the userspace */ 1376 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1377 sizeof(struct kvm_sev_receive_start))) 1378 return -EFAULT; 1379 1380 /* some sanity checks */ 1381 if (!params.pdh_uaddr || !params.pdh_len || 1382 !params.session_uaddr || !params.session_len) 1383 return -EINVAL; 1384 1385 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1386 if (IS_ERR(pdh_data)) 1387 return PTR_ERR(pdh_data); 1388 1389 session_data = psp_copy_user_blob(params.session_uaddr, 1390 params.session_len); 1391 if (IS_ERR(session_data)) { 1392 ret = PTR_ERR(session_data); 1393 goto e_free_pdh; 1394 } 1395 1396 memset(&start, 0, sizeof(start)); 1397 start.handle = params.handle; 1398 start.policy = params.policy; 1399 start.pdh_cert_address = __psp_pa(pdh_data); 1400 start.pdh_cert_len = params.pdh_len; 1401 start.session_address = __psp_pa(session_data); 1402 start.session_len = params.session_len; 1403 1404 /* create memory encryption context */ 1405 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1406 error); 1407 if (ret) 1408 goto e_free_session; 1409 1410 /* Bind ASID to this guest */ 1411 ret = sev_bind_asid(kvm, start.handle, error); 1412 if (ret) { 1413 sev_decommission(start.handle); 1414 goto e_free_session; 1415 } 1416 1417 params.handle = start.handle; 1418 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1419 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1420 ret = -EFAULT; 1421 sev_unbind_asid(kvm, start.handle); 1422 goto e_free_session; 1423 } 1424 1425 sev->handle = start.handle; 1426 sev->fd = argp->sev_fd; 1427 1428 e_free_session: 1429 kfree(session_data); 1430 e_free_pdh: 1431 kfree(pdh_data); 1432 1433 return ret; 1434 } 1435 1436 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1437 { 1438 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1439 struct kvm_sev_receive_update_data params; 1440 struct sev_data_receive_update_data data; 1441 void *hdr = NULL, *trans = NULL; 1442 struct page **guest_page; 1443 unsigned long n; 1444 int ret, offset; 1445 1446 if (!sev_guest(kvm)) 1447 return -EINVAL; 1448 1449 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1450 sizeof(struct kvm_sev_receive_update_data))) 1451 return -EFAULT; 1452 1453 if (!params.hdr_uaddr || !params.hdr_len || 1454 !params.guest_uaddr || !params.guest_len || 1455 !params.trans_uaddr || !params.trans_len) 1456 return -EINVAL; 1457 1458 /* Check if we are crossing the page boundary */ 1459 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1460 if ((params.guest_len + offset > PAGE_SIZE)) 1461 return -EINVAL; 1462 1463 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1464 if (IS_ERR(hdr)) 1465 return PTR_ERR(hdr); 1466 1467 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1468 if (IS_ERR(trans)) { 1469 ret = PTR_ERR(trans); 1470 goto e_free_hdr; 1471 } 1472 1473 memset(&data, 0, sizeof(data)); 1474 data.hdr_address = __psp_pa(hdr); 1475 data.hdr_len = params.hdr_len; 1476 data.trans_address = __psp_pa(trans); 1477 data.trans_len = params.trans_len; 1478 1479 /* Pin guest memory */ 1480 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1481 PAGE_SIZE, &n, 1); 1482 if (IS_ERR(guest_page)) { 1483 ret = PTR_ERR(guest_page); 1484 goto e_free_trans; 1485 } 1486 1487 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1488 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1489 data.guest_address |= sev_me_mask; 1490 data.guest_len = params.guest_len; 1491 data.handle = sev->handle; 1492 1493 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1494 &argp->error); 1495 1496 sev_unpin_memory(kvm, guest_page, n); 1497 1498 e_free_trans: 1499 kfree(trans); 1500 e_free_hdr: 1501 kfree(hdr); 1502 1503 return ret; 1504 } 1505 1506 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1507 { 1508 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1509 struct sev_data_receive_finish data; 1510 1511 if (!sev_guest(kvm)) 1512 return -ENOTTY; 1513 1514 data.handle = sev->handle; 1515 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1516 } 1517 1518 static bool cmd_allowed_from_miror(u32 cmd_id) 1519 { 1520 /* 1521 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1522 * active mirror VMs. Also allow the debugging and status commands. 1523 */ 1524 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1525 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1526 cmd_id == KVM_SEV_DBG_ENCRYPT) 1527 return true; 1528 1529 return false; 1530 } 1531 1532 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 1533 { 1534 struct kvm_sev_cmd sev_cmd; 1535 int r; 1536 1537 if (!sev_enabled) 1538 return -ENOTTY; 1539 1540 if (!argp) 1541 return 0; 1542 1543 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1544 return -EFAULT; 1545 1546 mutex_lock(&kvm->lock); 1547 1548 /* Only the enc_context_owner handles some memory enc operations. */ 1549 if (is_mirroring_enc_context(kvm) && 1550 !cmd_allowed_from_miror(sev_cmd.id)) { 1551 r = -EINVAL; 1552 goto out; 1553 } 1554 1555 switch (sev_cmd.id) { 1556 case KVM_SEV_ES_INIT: 1557 if (!sev_es_enabled) { 1558 r = -ENOTTY; 1559 goto out; 1560 } 1561 fallthrough; 1562 case KVM_SEV_INIT: 1563 r = sev_guest_init(kvm, &sev_cmd); 1564 break; 1565 case KVM_SEV_LAUNCH_START: 1566 r = sev_launch_start(kvm, &sev_cmd); 1567 break; 1568 case KVM_SEV_LAUNCH_UPDATE_DATA: 1569 r = sev_launch_update_data(kvm, &sev_cmd); 1570 break; 1571 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1572 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1573 break; 1574 case KVM_SEV_LAUNCH_MEASURE: 1575 r = sev_launch_measure(kvm, &sev_cmd); 1576 break; 1577 case KVM_SEV_LAUNCH_FINISH: 1578 r = sev_launch_finish(kvm, &sev_cmd); 1579 break; 1580 case KVM_SEV_GUEST_STATUS: 1581 r = sev_guest_status(kvm, &sev_cmd); 1582 break; 1583 case KVM_SEV_DBG_DECRYPT: 1584 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1585 break; 1586 case KVM_SEV_DBG_ENCRYPT: 1587 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1588 break; 1589 case KVM_SEV_LAUNCH_SECRET: 1590 r = sev_launch_secret(kvm, &sev_cmd); 1591 break; 1592 case KVM_SEV_GET_ATTESTATION_REPORT: 1593 r = sev_get_attestation_report(kvm, &sev_cmd); 1594 break; 1595 case KVM_SEV_SEND_START: 1596 r = sev_send_start(kvm, &sev_cmd); 1597 break; 1598 case KVM_SEV_SEND_UPDATE_DATA: 1599 r = sev_send_update_data(kvm, &sev_cmd); 1600 break; 1601 case KVM_SEV_SEND_FINISH: 1602 r = sev_send_finish(kvm, &sev_cmd); 1603 break; 1604 case KVM_SEV_SEND_CANCEL: 1605 r = sev_send_cancel(kvm, &sev_cmd); 1606 break; 1607 case KVM_SEV_RECEIVE_START: 1608 r = sev_receive_start(kvm, &sev_cmd); 1609 break; 1610 case KVM_SEV_RECEIVE_UPDATE_DATA: 1611 r = sev_receive_update_data(kvm, &sev_cmd); 1612 break; 1613 case KVM_SEV_RECEIVE_FINISH: 1614 r = sev_receive_finish(kvm, &sev_cmd); 1615 break; 1616 default: 1617 r = -EINVAL; 1618 goto out; 1619 } 1620 1621 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1622 r = -EFAULT; 1623 1624 out: 1625 mutex_unlock(&kvm->lock); 1626 return r; 1627 } 1628 1629 int svm_register_enc_region(struct kvm *kvm, 1630 struct kvm_enc_region *range) 1631 { 1632 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1633 struct enc_region *region; 1634 int ret = 0; 1635 1636 if (!sev_guest(kvm)) 1637 return -ENOTTY; 1638 1639 /* If kvm is mirroring encryption context it isn't responsible for it */ 1640 if (is_mirroring_enc_context(kvm)) 1641 return -EINVAL; 1642 1643 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1644 return -EINVAL; 1645 1646 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1647 if (!region) 1648 return -ENOMEM; 1649 1650 mutex_lock(&kvm->lock); 1651 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1652 if (IS_ERR(region->pages)) { 1653 ret = PTR_ERR(region->pages); 1654 mutex_unlock(&kvm->lock); 1655 goto e_free; 1656 } 1657 1658 region->uaddr = range->addr; 1659 region->size = range->size; 1660 1661 list_add_tail(®ion->list, &sev->regions_list); 1662 mutex_unlock(&kvm->lock); 1663 1664 /* 1665 * The guest may change the memory encryption attribute from C=0 -> C=1 1666 * or vice versa for this memory range. Lets make sure caches are 1667 * flushed to ensure that guest data gets written into memory with 1668 * correct C-bit. 1669 */ 1670 sev_clflush_pages(region->pages, region->npages); 1671 1672 return ret; 1673 1674 e_free: 1675 kfree(region); 1676 return ret; 1677 } 1678 1679 static struct enc_region * 1680 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1681 { 1682 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1683 struct list_head *head = &sev->regions_list; 1684 struct enc_region *i; 1685 1686 list_for_each_entry(i, head, list) { 1687 if (i->uaddr == range->addr && 1688 i->size == range->size) 1689 return i; 1690 } 1691 1692 return NULL; 1693 } 1694 1695 static void __unregister_enc_region_locked(struct kvm *kvm, 1696 struct enc_region *region) 1697 { 1698 sev_unpin_memory(kvm, region->pages, region->npages); 1699 list_del(®ion->list); 1700 kfree(region); 1701 } 1702 1703 int svm_unregister_enc_region(struct kvm *kvm, 1704 struct kvm_enc_region *range) 1705 { 1706 struct enc_region *region; 1707 int ret; 1708 1709 /* If kvm is mirroring encryption context it isn't responsible for it */ 1710 if (is_mirroring_enc_context(kvm)) 1711 return -EINVAL; 1712 1713 mutex_lock(&kvm->lock); 1714 1715 if (!sev_guest(kvm)) { 1716 ret = -ENOTTY; 1717 goto failed; 1718 } 1719 1720 region = find_enc_region(kvm, range); 1721 if (!region) { 1722 ret = -EINVAL; 1723 goto failed; 1724 } 1725 1726 /* 1727 * Ensure that all guest tagged cache entries are flushed before 1728 * releasing the pages back to the system for use. CLFLUSH will 1729 * not do this, so issue a WBINVD. 1730 */ 1731 wbinvd_on_all_cpus(); 1732 1733 __unregister_enc_region_locked(kvm, region); 1734 1735 mutex_unlock(&kvm->lock); 1736 return 0; 1737 1738 failed: 1739 mutex_unlock(&kvm->lock); 1740 return ret; 1741 } 1742 1743 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd) 1744 { 1745 struct file *source_kvm_file; 1746 struct kvm *source_kvm; 1747 struct kvm_sev_info source_sev, *mirror_sev; 1748 int ret; 1749 1750 source_kvm_file = fget(source_fd); 1751 if (!file_is_kvm(source_kvm_file)) { 1752 ret = -EBADF; 1753 goto e_source_put; 1754 } 1755 1756 source_kvm = source_kvm_file->private_data; 1757 mutex_lock(&source_kvm->lock); 1758 1759 if (!sev_guest(source_kvm)) { 1760 ret = -EINVAL; 1761 goto e_source_unlock; 1762 } 1763 1764 /* Mirrors of mirrors should work, but let's not get silly */ 1765 if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) { 1766 ret = -EINVAL; 1767 goto e_source_unlock; 1768 } 1769 1770 memcpy(&source_sev, &to_kvm_svm(source_kvm)->sev_info, 1771 sizeof(source_sev)); 1772 1773 /* 1774 * The mirror kvm holds an enc_context_owner ref so its asid can't 1775 * disappear until we're done with it 1776 */ 1777 kvm_get_kvm(source_kvm); 1778 1779 fput(source_kvm_file); 1780 mutex_unlock(&source_kvm->lock); 1781 mutex_lock(&kvm->lock); 1782 1783 if (sev_guest(kvm)) { 1784 ret = -EINVAL; 1785 goto e_mirror_unlock; 1786 } 1787 1788 /* Set enc_context_owner and copy its encryption context over */ 1789 mirror_sev = &to_kvm_svm(kvm)->sev_info; 1790 mirror_sev->enc_context_owner = source_kvm; 1791 mirror_sev->active = true; 1792 mirror_sev->asid = source_sev.asid; 1793 mirror_sev->fd = source_sev.fd; 1794 mirror_sev->es_active = source_sev.es_active; 1795 mirror_sev->handle = source_sev.handle; 1796 /* 1797 * Do not copy ap_jump_table. Since the mirror does not share the same 1798 * KVM contexts as the original, and they may have different 1799 * memory-views. 1800 */ 1801 1802 mutex_unlock(&kvm->lock); 1803 return 0; 1804 1805 e_mirror_unlock: 1806 mutex_unlock(&kvm->lock); 1807 kvm_put_kvm(source_kvm); 1808 return ret; 1809 e_source_unlock: 1810 mutex_unlock(&source_kvm->lock); 1811 e_source_put: 1812 if (source_kvm_file) 1813 fput(source_kvm_file); 1814 return ret; 1815 } 1816 1817 void sev_vm_destroy(struct kvm *kvm) 1818 { 1819 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1820 struct list_head *head = &sev->regions_list; 1821 struct list_head *pos, *q; 1822 1823 if (!sev_guest(kvm)) 1824 return; 1825 1826 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 1827 if (is_mirroring_enc_context(kvm)) { 1828 kvm_put_kvm(sev->enc_context_owner); 1829 return; 1830 } 1831 1832 mutex_lock(&kvm->lock); 1833 1834 /* 1835 * Ensure that all guest tagged cache entries are flushed before 1836 * releasing the pages back to the system for use. CLFLUSH will 1837 * not do this, so issue a WBINVD. 1838 */ 1839 wbinvd_on_all_cpus(); 1840 1841 /* 1842 * if userspace was terminated before unregistering the memory regions 1843 * then lets unpin all the registered memory. 1844 */ 1845 if (!list_empty(head)) { 1846 list_for_each_safe(pos, q, head) { 1847 __unregister_enc_region_locked(kvm, 1848 list_entry(pos, struct enc_region, list)); 1849 cond_resched(); 1850 } 1851 } 1852 1853 mutex_unlock(&kvm->lock); 1854 1855 sev_unbind_asid(kvm, sev->handle); 1856 sev_asid_free(sev); 1857 } 1858 1859 void __init sev_set_cpu_caps(void) 1860 { 1861 if (!sev_enabled) 1862 kvm_cpu_cap_clear(X86_FEATURE_SEV); 1863 if (!sev_es_enabled) 1864 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 1865 } 1866 1867 void __init sev_hardware_setup(void) 1868 { 1869 #ifdef CONFIG_KVM_AMD_SEV 1870 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 1871 bool sev_es_supported = false; 1872 bool sev_supported = false; 1873 1874 if (!sev_enabled || !npt_enabled) 1875 goto out; 1876 1877 /* Does the CPU support SEV? */ 1878 if (!boot_cpu_has(X86_FEATURE_SEV)) 1879 goto out; 1880 1881 /* Retrieve SEV CPUID information */ 1882 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 1883 1884 /* Set encryption bit location for SEV-ES guests */ 1885 sev_enc_bit = ebx & 0x3f; 1886 1887 /* Maximum number of encrypted guests supported simultaneously */ 1888 max_sev_asid = ecx; 1889 if (!max_sev_asid) 1890 goto out; 1891 1892 /* Minimum ASID value that should be used for SEV guest */ 1893 min_sev_asid = edx; 1894 sev_me_mask = 1UL << (ebx & 0x3f); 1895 1896 /* 1897 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 1898 * even though it's never used, so that the bitmap is indexed by the 1899 * actual ASID. 1900 */ 1901 nr_asids = max_sev_asid + 1; 1902 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 1903 if (!sev_asid_bitmap) 1904 goto out; 1905 1906 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 1907 if (!sev_reclaim_asid_bitmap) { 1908 bitmap_free(sev_asid_bitmap); 1909 sev_asid_bitmap = NULL; 1910 goto out; 1911 } 1912 1913 sev_asid_count = max_sev_asid - min_sev_asid + 1; 1914 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 1915 goto out; 1916 1917 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 1918 sev_supported = true; 1919 1920 /* SEV-ES support requested? */ 1921 if (!sev_es_enabled) 1922 goto out; 1923 1924 /* Does the CPU support SEV-ES? */ 1925 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 1926 goto out; 1927 1928 /* Has the system been allocated ASIDs for SEV-ES? */ 1929 if (min_sev_asid == 1) 1930 goto out; 1931 1932 sev_es_asid_count = min_sev_asid - 1; 1933 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 1934 goto out; 1935 1936 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 1937 sev_es_supported = true; 1938 1939 out: 1940 sev_enabled = sev_supported; 1941 sev_es_enabled = sev_es_supported; 1942 #endif 1943 } 1944 1945 void sev_hardware_teardown(void) 1946 { 1947 if (!sev_enabled) 1948 return; 1949 1950 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 1951 sev_flush_asids(1, max_sev_asid); 1952 1953 bitmap_free(sev_asid_bitmap); 1954 bitmap_free(sev_reclaim_asid_bitmap); 1955 1956 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 1957 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 1958 } 1959 1960 int sev_cpu_init(struct svm_cpu_data *sd) 1961 { 1962 if (!sev_enabled) 1963 return 0; 1964 1965 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 1966 if (!sd->sev_vmcbs) 1967 return -ENOMEM; 1968 1969 return 0; 1970 } 1971 1972 /* 1973 * Pages used by hardware to hold guest encrypted state must be flushed before 1974 * returning them to the system. 1975 */ 1976 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 1977 unsigned long len) 1978 { 1979 /* 1980 * If hardware enforced cache coherency for encrypted mappings of the 1981 * same physical page is supported, nothing to do. 1982 */ 1983 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 1984 return; 1985 1986 /* 1987 * If the VM Page Flush MSR is supported, use it to flush the page 1988 * (using the page virtual address and the guest ASID). 1989 */ 1990 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 1991 struct kvm_sev_info *sev; 1992 unsigned long va_start; 1993 u64 start, stop; 1994 1995 /* Align start and stop to page boundaries. */ 1996 va_start = (unsigned long)va; 1997 start = (u64)va_start & PAGE_MASK; 1998 stop = PAGE_ALIGN((u64)va_start + len); 1999 2000 if (start < stop) { 2001 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 2002 2003 while (start < stop) { 2004 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 2005 start | sev->asid); 2006 2007 start += PAGE_SIZE; 2008 } 2009 2010 return; 2011 } 2012 2013 WARN(1, "Address overflow, using WBINVD\n"); 2014 } 2015 2016 /* 2017 * Hardware should always have one of the above features, 2018 * but if not, use WBINVD and issue a warning. 2019 */ 2020 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 2021 wbinvd_on_all_cpus(); 2022 } 2023 2024 void sev_free_vcpu(struct kvm_vcpu *vcpu) 2025 { 2026 struct vcpu_svm *svm; 2027 2028 if (!sev_es_guest(vcpu->kvm)) 2029 return; 2030 2031 svm = to_svm(vcpu); 2032 2033 if (vcpu->arch.guest_state_protected) 2034 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE); 2035 __free_page(virt_to_page(svm->vmsa)); 2036 2037 if (svm->ghcb_sa_free) 2038 kfree(svm->ghcb_sa); 2039 } 2040 2041 static void dump_ghcb(struct vcpu_svm *svm) 2042 { 2043 struct ghcb *ghcb = svm->ghcb; 2044 unsigned int nbits; 2045 2046 /* Re-use the dump_invalid_vmcb module parameter */ 2047 if (!dump_invalid_vmcb) { 2048 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2049 return; 2050 } 2051 2052 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2053 2054 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2055 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2056 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2057 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2058 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2059 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2060 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2061 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2062 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2063 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2064 } 2065 2066 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2067 { 2068 struct kvm_vcpu *vcpu = &svm->vcpu; 2069 struct ghcb *ghcb = svm->ghcb; 2070 2071 /* 2072 * The GHCB protocol so far allows for the following data 2073 * to be returned: 2074 * GPRs RAX, RBX, RCX, RDX 2075 * 2076 * Copy their values, even if they may not have been written during the 2077 * VM-Exit. It's the guest's responsibility to not consume random data. 2078 */ 2079 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2080 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2081 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2082 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2083 } 2084 2085 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2086 { 2087 struct vmcb_control_area *control = &svm->vmcb->control; 2088 struct kvm_vcpu *vcpu = &svm->vcpu; 2089 struct ghcb *ghcb = svm->ghcb; 2090 u64 exit_code; 2091 2092 /* 2093 * The GHCB protocol so far allows for the following data 2094 * to be supplied: 2095 * GPRs RAX, RBX, RCX, RDX 2096 * XCR0 2097 * CPL 2098 * 2099 * VMMCALL allows the guest to provide extra registers. KVM also 2100 * expects RSI for hypercalls, so include that, too. 2101 * 2102 * Copy their values to the appropriate location if supplied. 2103 */ 2104 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2105 2106 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 2107 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 2108 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 2109 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 2110 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 2111 2112 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 2113 2114 if (ghcb_xcr0_is_valid(ghcb)) { 2115 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2116 kvm_update_cpuid_runtime(vcpu); 2117 } 2118 2119 /* Copy the GHCB exit information into the VMCB fields */ 2120 exit_code = ghcb_get_sw_exit_code(ghcb); 2121 control->exit_code = lower_32_bits(exit_code); 2122 control->exit_code_hi = upper_32_bits(exit_code); 2123 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2124 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2125 2126 /* Clear the valid entries fields */ 2127 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2128 } 2129 2130 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2131 { 2132 struct kvm_vcpu *vcpu; 2133 struct ghcb *ghcb; 2134 u64 exit_code = 0; 2135 2136 ghcb = svm->ghcb; 2137 2138 /* Only GHCB Usage code 0 is supported */ 2139 if (ghcb->ghcb_usage) 2140 goto vmgexit_err; 2141 2142 /* 2143 * Retrieve the exit code now even though is may not be marked valid 2144 * as it could help with debugging. 2145 */ 2146 exit_code = ghcb_get_sw_exit_code(ghcb); 2147 2148 if (!ghcb_sw_exit_code_is_valid(ghcb) || 2149 !ghcb_sw_exit_info_1_is_valid(ghcb) || 2150 !ghcb_sw_exit_info_2_is_valid(ghcb)) 2151 goto vmgexit_err; 2152 2153 switch (ghcb_get_sw_exit_code(ghcb)) { 2154 case SVM_EXIT_READ_DR7: 2155 break; 2156 case SVM_EXIT_WRITE_DR7: 2157 if (!ghcb_rax_is_valid(ghcb)) 2158 goto vmgexit_err; 2159 break; 2160 case SVM_EXIT_RDTSC: 2161 break; 2162 case SVM_EXIT_RDPMC: 2163 if (!ghcb_rcx_is_valid(ghcb)) 2164 goto vmgexit_err; 2165 break; 2166 case SVM_EXIT_CPUID: 2167 if (!ghcb_rax_is_valid(ghcb) || 2168 !ghcb_rcx_is_valid(ghcb)) 2169 goto vmgexit_err; 2170 if (ghcb_get_rax(ghcb) == 0xd) 2171 if (!ghcb_xcr0_is_valid(ghcb)) 2172 goto vmgexit_err; 2173 break; 2174 case SVM_EXIT_INVD: 2175 break; 2176 case SVM_EXIT_IOIO: 2177 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 2178 if (!ghcb_sw_scratch_is_valid(ghcb)) 2179 goto vmgexit_err; 2180 } else { 2181 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 2182 if (!ghcb_rax_is_valid(ghcb)) 2183 goto vmgexit_err; 2184 } 2185 break; 2186 case SVM_EXIT_MSR: 2187 if (!ghcb_rcx_is_valid(ghcb)) 2188 goto vmgexit_err; 2189 if (ghcb_get_sw_exit_info_1(ghcb)) { 2190 if (!ghcb_rax_is_valid(ghcb) || 2191 !ghcb_rdx_is_valid(ghcb)) 2192 goto vmgexit_err; 2193 } 2194 break; 2195 case SVM_EXIT_VMMCALL: 2196 if (!ghcb_rax_is_valid(ghcb) || 2197 !ghcb_cpl_is_valid(ghcb)) 2198 goto vmgexit_err; 2199 break; 2200 case SVM_EXIT_RDTSCP: 2201 break; 2202 case SVM_EXIT_WBINVD: 2203 break; 2204 case SVM_EXIT_MONITOR: 2205 if (!ghcb_rax_is_valid(ghcb) || 2206 !ghcb_rcx_is_valid(ghcb) || 2207 !ghcb_rdx_is_valid(ghcb)) 2208 goto vmgexit_err; 2209 break; 2210 case SVM_EXIT_MWAIT: 2211 if (!ghcb_rax_is_valid(ghcb) || 2212 !ghcb_rcx_is_valid(ghcb)) 2213 goto vmgexit_err; 2214 break; 2215 case SVM_VMGEXIT_MMIO_READ: 2216 case SVM_VMGEXIT_MMIO_WRITE: 2217 if (!ghcb_sw_scratch_is_valid(ghcb)) 2218 goto vmgexit_err; 2219 break; 2220 case SVM_VMGEXIT_NMI_COMPLETE: 2221 case SVM_VMGEXIT_AP_HLT_LOOP: 2222 case SVM_VMGEXIT_AP_JUMP_TABLE: 2223 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2224 break; 2225 default: 2226 goto vmgexit_err; 2227 } 2228 2229 return 0; 2230 2231 vmgexit_err: 2232 vcpu = &svm->vcpu; 2233 2234 if (ghcb->ghcb_usage) { 2235 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2236 ghcb->ghcb_usage); 2237 } else { 2238 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", 2239 exit_code); 2240 dump_ghcb(svm); 2241 } 2242 2243 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2244 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 2245 vcpu->run->internal.ndata = 2; 2246 vcpu->run->internal.data[0] = exit_code; 2247 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 2248 2249 return -EINVAL; 2250 } 2251 2252 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2253 { 2254 if (!svm->ghcb) 2255 return; 2256 2257 if (svm->ghcb_sa_free) { 2258 /* 2259 * The scratch area lives outside the GHCB, so there is a 2260 * buffer that, depending on the operation performed, may 2261 * need to be synced, then freed. 2262 */ 2263 if (svm->ghcb_sa_sync) { 2264 kvm_write_guest(svm->vcpu.kvm, 2265 ghcb_get_sw_scratch(svm->ghcb), 2266 svm->ghcb_sa, svm->ghcb_sa_len); 2267 svm->ghcb_sa_sync = false; 2268 } 2269 2270 kfree(svm->ghcb_sa); 2271 svm->ghcb_sa = NULL; 2272 svm->ghcb_sa_free = false; 2273 } 2274 2275 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb); 2276 2277 sev_es_sync_to_ghcb(svm); 2278 2279 kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true); 2280 svm->ghcb = NULL; 2281 } 2282 2283 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2284 { 2285 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2286 int asid = sev_get_asid(svm->vcpu.kvm); 2287 2288 /* Assign the asid allocated with this SEV guest */ 2289 svm->asid = asid; 2290 2291 /* 2292 * Flush guest TLB: 2293 * 2294 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2295 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2296 */ 2297 if (sd->sev_vmcbs[asid] == svm->vmcb && 2298 svm->vcpu.arch.last_vmentry_cpu == cpu) 2299 return; 2300 2301 sd->sev_vmcbs[asid] = svm->vmcb; 2302 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2303 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2304 } 2305 2306 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2307 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2308 { 2309 struct vmcb_control_area *control = &svm->vmcb->control; 2310 struct ghcb *ghcb = svm->ghcb; 2311 u64 ghcb_scratch_beg, ghcb_scratch_end; 2312 u64 scratch_gpa_beg, scratch_gpa_end; 2313 void *scratch_va; 2314 2315 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 2316 if (!scratch_gpa_beg) { 2317 pr_err("vmgexit: scratch gpa not provided\n"); 2318 return false; 2319 } 2320 2321 scratch_gpa_end = scratch_gpa_beg + len; 2322 if (scratch_gpa_end < scratch_gpa_beg) { 2323 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2324 len, scratch_gpa_beg); 2325 return false; 2326 } 2327 2328 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2329 /* Scratch area begins within GHCB */ 2330 ghcb_scratch_beg = control->ghcb_gpa + 2331 offsetof(struct ghcb, shared_buffer); 2332 ghcb_scratch_end = control->ghcb_gpa + 2333 offsetof(struct ghcb, reserved_1); 2334 2335 /* 2336 * If the scratch area begins within the GHCB, it must be 2337 * completely contained in the GHCB shared buffer area. 2338 */ 2339 if (scratch_gpa_beg < ghcb_scratch_beg || 2340 scratch_gpa_end > ghcb_scratch_end) { 2341 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2342 scratch_gpa_beg, scratch_gpa_end); 2343 return false; 2344 } 2345 2346 scratch_va = (void *)svm->ghcb; 2347 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2348 } else { 2349 /* 2350 * The guest memory must be read into a kernel buffer, so 2351 * limit the size 2352 */ 2353 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2354 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2355 len, GHCB_SCRATCH_AREA_LIMIT); 2356 return false; 2357 } 2358 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT); 2359 if (!scratch_va) 2360 return false; 2361 2362 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2363 /* Unable to copy scratch area from guest */ 2364 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2365 2366 kfree(scratch_va); 2367 return false; 2368 } 2369 2370 /* 2371 * The scratch area is outside the GHCB. The operation will 2372 * dictate whether the buffer needs to be synced before running 2373 * the vCPU next time (i.e. a read was requested so the data 2374 * must be written back to the guest memory). 2375 */ 2376 svm->ghcb_sa_sync = sync; 2377 svm->ghcb_sa_free = true; 2378 } 2379 2380 svm->ghcb_sa = scratch_va; 2381 svm->ghcb_sa_len = len; 2382 2383 return true; 2384 } 2385 2386 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2387 unsigned int pos) 2388 { 2389 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2390 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2391 } 2392 2393 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2394 { 2395 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2396 } 2397 2398 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2399 { 2400 svm->vmcb->control.ghcb_gpa = value; 2401 } 2402 2403 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2404 { 2405 struct vmcb_control_area *control = &svm->vmcb->control; 2406 struct kvm_vcpu *vcpu = &svm->vcpu; 2407 u64 ghcb_info; 2408 int ret = 1; 2409 2410 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2411 2412 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2413 control->ghcb_gpa); 2414 2415 switch (ghcb_info) { 2416 case GHCB_MSR_SEV_INFO_REQ: 2417 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2418 GHCB_VERSION_MIN, 2419 sev_enc_bit)); 2420 break; 2421 case GHCB_MSR_CPUID_REQ: { 2422 u64 cpuid_fn, cpuid_reg, cpuid_value; 2423 2424 cpuid_fn = get_ghcb_msr_bits(svm, 2425 GHCB_MSR_CPUID_FUNC_MASK, 2426 GHCB_MSR_CPUID_FUNC_POS); 2427 2428 /* Initialize the registers needed by the CPUID intercept */ 2429 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2430 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2431 2432 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2433 if (!ret) { 2434 ret = -EINVAL; 2435 break; 2436 } 2437 2438 cpuid_reg = get_ghcb_msr_bits(svm, 2439 GHCB_MSR_CPUID_REG_MASK, 2440 GHCB_MSR_CPUID_REG_POS); 2441 if (cpuid_reg == 0) 2442 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2443 else if (cpuid_reg == 1) 2444 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2445 else if (cpuid_reg == 2) 2446 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2447 else 2448 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2449 2450 set_ghcb_msr_bits(svm, cpuid_value, 2451 GHCB_MSR_CPUID_VALUE_MASK, 2452 GHCB_MSR_CPUID_VALUE_POS); 2453 2454 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2455 GHCB_MSR_INFO_MASK, 2456 GHCB_MSR_INFO_POS); 2457 break; 2458 } 2459 case GHCB_MSR_TERM_REQ: { 2460 u64 reason_set, reason_code; 2461 2462 reason_set = get_ghcb_msr_bits(svm, 2463 GHCB_MSR_TERM_REASON_SET_MASK, 2464 GHCB_MSR_TERM_REASON_SET_POS); 2465 reason_code = get_ghcb_msr_bits(svm, 2466 GHCB_MSR_TERM_REASON_MASK, 2467 GHCB_MSR_TERM_REASON_POS); 2468 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2469 reason_set, reason_code); 2470 fallthrough; 2471 } 2472 default: 2473 ret = -EINVAL; 2474 } 2475 2476 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2477 control->ghcb_gpa, ret); 2478 2479 return ret; 2480 } 2481 2482 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2483 { 2484 struct vcpu_svm *svm = to_svm(vcpu); 2485 struct vmcb_control_area *control = &svm->vmcb->control; 2486 u64 ghcb_gpa, exit_code; 2487 struct ghcb *ghcb; 2488 int ret; 2489 2490 /* Validate the GHCB */ 2491 ghcb_gpa = control->ghcb_gpa; 2492 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2493 return sev_handle_vmgexit_msr_protocol(svm); 2494 2495 if (!ghcb_gpa) { 2496 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2497 return -EINVAL; 2498 } 2499 2500 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) { 2501 /* Unable to map GHCB from guest */ 2502 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2503 ghcb_gpa); 2504 return -EINVAL; 2505 } 2506 2507 svm->ghcb = svm->ghcb_map.hva; 2508 ghcb = svm->ghcb_map.hva; 2509 2510 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); 2511 2512 exit_code = ghcb_get_sw_exit_code(ghcb); 2513 2514 ret = sev_es_validate_vmgexit(svm); 2515 if (ret) 2516 return ret; 2517 2518 sev_es_sync_from_ghcb(svm); 2519 ghcb_set_sw_exit_info_1(ghcb, 0); 2520 ghcb_set_sw_exit_info_2(ghcb, 0); 2521 2522 ret = -EINVAL; 2523 switch (exit_code) { 2524 case SVM_VMGEXIT_MMIO_READ: 2525 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) 2526 break; 2527 2528 ret = kvm_sev_es_mmio_read(vcpu, 2529 control->exit_info_1, 2530 control->exit_info_2, 2531 svm->ghcb_sa); 2532 break; 2533 case SVM_VMGEXIT_MMIO_WRITE: 2534 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) 2535 break; 2536 2537 ret = kvm_sev_es_mmio_write(vcpu, 2538 control->exit_info_1, 2539 control->exit_info_2, 2540 svm->ghcb_sa); 2541 break; 2542 case SVM_VMGEXIT_NMI_COMPLETE: 2543 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); 2544 break; 2545 case SVM_VMGEXIT_AP_HLT_LOOP: 2546 ret = kvm_emulate_ap_reset_hold(vcpu); 2547 break; 2548 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2549 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2550 2551 switch (control->exit_info_1) { 2552 case 0: 2553 /* Set AP jump table address */ 2554 sev->ap_jump_table = control->exit_info_2; 2555 break; 2556 case 1: 2557 /* Get AP jump table address */ 2558 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2559 break; 2560 default: 2561 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2562 control->exit_info_1); 2563 ghcb_set_sw_exit_info_1(ghcb, 1); 2564 ghcb_set_sw_exit_info_2(ghcb, 2565 X86_TRAP_UD | 2566 SVM_EVTINJ_TYPE_EXEPT | 2567 SVM_EVTINJ_VALID); 2568 } 2569 2570 ret = 1; 2571 break; 2572 } 2573 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2574 vcpu_unimpl(vcpu, 2575 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2576 control->exit_info_1, control->exit_info_2); 2577 break; 2578 default: 2579 ret = svm_invoke_exit_handler(vcpu, exit_code); 2580 } 2581 2582 return ret; 2583 } 2584 2585 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2586 { 2587 if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2)) 2588 return -EINVAL; 2589 2590 return kvm_sev_es_string_io(&svm->vcpu, size, port, 2591 svm->ghcb_sa, svm->ghcb_sa_len / size, in); 2592 } 2593 2594 void sev_es_init_vmcb(struct vcpu_svm *svm) 2595 { 2596 struct kvm_vcpu *vcpu = &svm->vcpu; 2597 2598 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2599 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2600 2601 /* 2602 * An SEV-ES guest requires a VMSA area that is a separate from the 2603 * VMCB page. Do not include the encryption mask on the VMSA physical 2604 * address since hardware will access it using the guest key. 2605 */ 2606 svm->vmcb->control.vmsa_pa = __pa(svm->vmsa); 2607 2608 /* Can't intercept CR register access, HV can't modify CR registers */ 2609 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2610 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2611 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2612 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2613 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2614 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2615 2616 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2617 2618 /* Track EFER/CR register changes */ 2619 svm_set_intercept(svm, TRAP_EFER_WRITE); 2620 svm_set_intercept(svm, TRAP_CR0_WRITE); 2621 svm_set_intercept(svm, TRAP_CR4_WRITE); 2622 svm_set_intercept(svm, TRAP_CR8_WRITE); 2623 2624 /* No support for enable_vmware_backdoor */ 2625 clr_exception_intercept(svm, GP_VECTOR); 2626 2627 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2628 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2629 2630 /* Clear intercepts on selected MSRs */ 2631 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2632 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2633 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2634 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2635 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2636 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2637 } 2638 2639 void sev_es_create_vcpu(struct vcpu_svm *svm) 2640 { 2641 /* 2642 * Set the GHCB MSR value as per the GHCB specification when creating 2643 * a vCPU for an SEV-ES guest. 2644 */ 2645 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2646 GHCB_VERSION_MIN, 2647 sev_enc_bit)); 2648 } 2649 2650 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) 2651 { 2652 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2653 struct vmcb_save_area *hostsa; 2654 2655 /* 2656 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2657 * of which one step is to perform a VMLOAD. Since hardware does not 2658 * perform a VMSAVE on VMRUN, the host savearea must be updated. 2659 */ 2660 vmsave(__sme_page_pa(sd->save_area)); 2661 2662 /* XCR0 is restored on VMEXIT, save the current host value */ 2663 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 2664 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2665 2666 /* PKRU is restored on VMEXIT, save the current host value */ 2667 hostsa->pkru = read_pkru(); 2668 2669 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2670 hostsa->xss = host_xss; 2671 } 2672 2673 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2674 { 2675 struct vcpu_svm *svm = to_svm(vcpu); 2676 2677 /* First SIPI: Use the values as initially set by the VMM */ 2678 if (!svm->received_first_sipi) { 2679 svm->received_first_sipi = true; 2680 return; 2681 } 2682 2683 /* 2684 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2685 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2686 * non-zero value. 2687 */ 2688 if (!svm->ghcb) 2689 return; 2690 2691 ghcb_set_sw_exit_info_2(svm->ghcb, 1); 2692 } 2693