1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 21 #include <asm/pkru.h> 22 #include <asm/trapnr.h> 23 #include <asm/fpu/xcr.h> 24 25 #include "x86.h" 26 #include "svm.h" 27 #include "svm_ops.h" 28 #include "cpuid.h" 29 #include "trace.h" 30 31 #ifndef CONFIG_KVM_AMD_SEV 32 /* 33 * When this config is not defined, SEV feature is not supported and APIs in 34 * this file are not used but this file still gets compiled into the KVM AMD 35 * module. 36 * 37 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 38 * misc_res_type {} defined in linux/misc_cgroup.h. 39 * 40 * Below macros allow compilation to succeed. 41 */ 42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 44 #endif 45 46 #ifdef CONFIG_KVM_AMD_SEV 47 /* enable/disable SEV support */ 48 static bool sev_enabled = true; 49 module_param_named(sev, sev_enabled, bool, 0444); 50 51 /* enable/disable SEV-ES support */ 52 static bool sev_es_enabled = true; 53 module_param_named(sev_es, sev_es_enabled, bool, 0444); 54 #else 55 #define sev_enabled false 56 #define sev_es_enabled false 57 #endif /* CONFIG_KVM_AMD_SEV */ 58 59 static u8 sev_enc_bit; 60 static DECLARE_RWSEM(sev_deactivate_lock); 61 static DEFINE_MUTEX(sev_bitmap_lock); 62 unsigned int max_sev_asid; 63 static unsigned int min_sev_asid; 64 static unsigned long sev_me_mask; 65 static unsigned int nr_asids; 66 static unsigned long *sev_asid_bitmap; 67 static unsigned long *sev_reclaim_asid_bitmap; 68 69 struct enc_region { 70 struct list_head list; 71 unsigned long npages; 72 struct page **pages; 73 unsigned long uaddr; 74 unsigned long size; 75 }; 76 77 /* Called with the sev_bitmap_lock held, or on shutdown */ 78 static int sev_flush_asids(int min_asid, int max_asid) 79 { 80 int ret, asid, error = 0; 81 82 /* Check if there are any ASIDs to reclaim before performing a flush */ 83 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 84 if (asid > max_asid) 85 return -EBUSY; 86 87 /* 88 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 89 * so it must be guarded. 90 */ 91 down_write(&sev_deactivate_lock); 92 93 wbinvd_on_all_cpus(); 94 ret = sev_guest_df_flush(&error); 95 96 up_write(&sev_deactivate_lock); 97 98 if (ret) 99 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 100 101 return ret; 102 } 103 104 static inline bool is_mirroring_enc_context(struct kvm *kvm) 105 { 106 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 107 } 108 109 /* Must be called with the sev_bitmap_lock held */ 110 static bool __sev_recycle_asids(int min_asid, int max_asid) 111 { 112 if (sev_flush_asids(min_asid, max_asid)) 113 return false; 114 115 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 116 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 117 nr_asids); 118 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 119 120 return true; 121 } 122 123 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 124 { 125 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 126 return misc_cg_try_charge(type, sev->misc_cg, 1); 127 } 128 129 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 130 { 131 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 132 misc_cg_uncharge(type, sev->misc_cg, 1); 133 } 134 135 static int sev_asid_new(struct kvm_sev_info *sev) 136 { 137 int asid, min_asid, max_asid, ret; 138 bool retry = true; 139 140 WARN_ON(sev->misc_cg); 141 sev->misc_cg = get_current_misc_cg(); 142 ret = sev_misc_cg_try_charge(sev); 143 if (ret) { 144 put_misc_cg(sev->misc_cg); 145 sev->misc_cg = NULL; 146 return ret; 147 } 148 149 mutex_lock(&sev_bitmap_lock); 150 151 /* 152 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 153 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 154 */ 155 min_asid = sev->es_active ? 1 : min_sev_asid; 156 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 157 again: 158 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 159 if (asid > max_asid) { 160 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 161 retry = false; 162 goto again; 163 } 164 mutex_unlock(&sev_bitmap_lock); 165 ret = -EBUSY; 166 goto e_uncharge; 167 } 168 169 __set_bit(asid, sev_asid_bitmap); 170 171 mutex_unlock(&sev_bitmap_lock); 172 173 return asid; 174 e_uncharge: 175 sev_misc_cg_uncharge(sev); 176 put_misc_cg(sev->misc_cg); 177 sev->misc_cg = NULL; 178 return ret; 179 } 180 181 static int sev_get_asid(struct kvm *kvm) 182 { 183 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 184 185 return sev->asid; 186 } 187 188 static void sev_asid_free(struct kvm_sev_info *sev) 189 { 190 struct svm_cpu_data *sd; 191 int cpu; 192 193 mutex_lock(&sev_bitmap_lock); 194 195 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 196 197 for_each_possible_cpu(cpu) { 198 sd = per_cpu(svm_data, cpu); 199 sd->sev_vmcbs[sev->asid] = NULL; 200 } 201 202 mutex_unlock(&sev_bitmap_lock); 203 204 sev_misc_cg_uncharge(sev); 205 put_misc_cg(sev->misc_cg); 206 sev->misc_cg = NULL; 207 } 208 209 static void sev_decommission(unsigned int handle) 210 { 211 struct sev_data_decommission decommission; 212 213 if (!handle) 214 return; 215 216 decommission.handle = handle; 217 sev_guest_decommission(&decommission, NULL); 218 } 219 220 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 221 { 222 struct sev_data_deactivate deactivate; 223 224 if (!handle) 225 return; 226 227 deactivate.handle = handle; 228 229 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 230 down_read(&sev_deactivate_lock); 231 sev_guest_deactivate(&deactivate, NULL); 232 up_read(&sev_deactivate_lock); 233 234 sev_decommission(handle); 235 } 236 237 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 238 { 239 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 240 int asid, ret; 241 242 if (kvm->created_vcpus) 243 return -EINVAL; 244 245 ret = -EBUSY; 246 if (unlikely(sev->active)) 247 return ret; 248 249 sev->active = true; 250 sev->es_active = argp->id == KVM_SEV_ES_INIT; 251 asid = sev_asid_new(sev); 252 if (asid < 0) 253 goto e_no_asid; 254 sev->asid = asid; 255 256 ret = sev_platform_init(&argp->error); 257 if (ret) 258 goto e_free; 259 260 INIT_LIST_HEAD(&sev->regions_list); 261 INIT_LIST_HEAD(&sev->mirror_vms); 262 263 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 264 265 return 0; 266 267 e_free: 268 sev_asid_free(sev); 269 sev->asid = 0; 270 e_no_asid: 271 sev->es_active = false; 272 sev->active = false; 273 return ret; 274 } 275 276 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 277 { 278 struct sev_data_activate activate; 279 int asid = sev_get_asid(kvm); 280 int ret; 281 282 /* activate ASID on the given handle */ 283 activate.handle = handle; 284 activate.asid = asid; 285 ret = sev_guest_activate(&activate, error); 286 287 return ret; 288 } 289 290 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 291 { 292 struct fd f; 293 int ret; 294 295 f = fdget(fd); 296 if (!f.file) 297 return -EBADF; 298 299 ret = sev_issue_cmd_external_user(f.file, id, data, error); 300 301 fdput(f); 302 return ret; 303 } 304 305 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 306 { 307 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 308 309 return __sev_issue_cmd(sev->fd, id, data, error); 310 } 311 312 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 313 { 314 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 315 struct sev_data_launch_start start; 316 struct kvm_sev_launch_start params; 317 void *dh_blob, *session_blob; 318 int *error = &argp->error; 319 int ret; 320 321 if (!sev_guest(kvm)) 322 return -ENOTTY; 323 324 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 325 return -EFAULT; 326 327 memset(&start, 0, sizeof(start)); 328 329 dh_blob = NULL; 330 if (params.dh_uaddr) { 331 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 332 if (IS_ERR(dh_blob)) 333 return PTR_ERR(dh_blob); 334 335 start.dh_cert_address = __sme_set(__pa(dh_blob)); 336 start.dh_cert_len = params.dh_len; 337 } 338 339 session_blob = NULL; 340 if (params.session_uaddr) { 341 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 342 if (IS_ERR(session_blob)) { 343 ret = PTR_ERR(session_blob); 344 goto e_free_dh; 345 } 346 347 start.session_address = __sme_set(__pa(session_blob)); 348 start.session_len = params.session_len; 349 } 350 351 start.handle = params.handle; 352 start.policy = params.policy; 353 354 /* create memory encryption context */ 355 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 356 if (ret) 357 goto e_free_session; 358 359 /* Bind ASID to this guest */ 360 ret = sev_bind_asid(kvm, start.handle, error); 361 if (ret) { 362 sev_decommission(start.handle); 363 goto e_free_session; 364 } 365 366 /* return handle to userspace */ 367 params.handle = start.handle; 368 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 369 sev_unbind_asid(kvm, start.handle); 370 ret = -EFAULT; 371 goto e_free_session; 372 } 373 374 sev->handle = start.handle; 375 sev->fd = argp->sev_fd; 376 377 e_free_session: 378 kfree(session_blob); 379 e_free_dh: 380 kfree(dh_blob); 381 return ret; 382 } 383 384 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 385 unsigned long ulen, unsigned long *n, 386 int write) 387 { 388 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 389 unsigned long npages, size; 390 int npinned; 391 unsigned long locked, lock_limit; 392 struct page **pages; 393 unsigned long first, last; 394 int ret; 395 396 lockdep_assert_held(&kvm->lock); 397 398 if (ulen == 0 || uaddr + ulen < uaddr) 399 return ERR_PTR(-EINVAL); 400 401 /* Calculate number of pages. */ 402 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 403 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 404 npages = (last - first + 1); 405 406 locked = sev->pages_locked + npages; 407 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 408 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 409 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 410 return ERR_PTR(-ENOMEM); 411 } 412 413 if (WARN_ON_ONCE(npages > INT_MAX)) 414 return ERR_PTR(-EINVAL); 415 416 /* Avoid using vmalloc for smaller buffers. */ 417 size = npages * sizeof(struct page *); 418 if (size > PAGE_SIZE) 419 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 420 else 421 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 422 423 if (!pages) 424 return ERR_PTR(-ENOMEM); 425 426 /* Pin the user virtual address. */ 427 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 428 if (npinned != npages) { 429 pr_err("SEV: Failure locking %lu pages.\n", npages); 430 ret = -ENOMEM; 431 goto err; 432 } 433 434 *n = npages; 435 sev->pages_locked = locked; 436 437 return pages; 438 439 err: 440 if (npinned > 0) 441 unpin_user_pages(pages, npinned); 442 443 kvfree(pages); 444 return ERR_PTR(ret); 445 } 446 447 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 448 unsigned long npages) 449 { 450 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 451 452 unpin_user_pages(pages, npages); 453 kvfree(pages); 454 sev->pages_locked -= npages; 455 } 456 457 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 458 { 459 uint8_t *page_virtual; 460 unsigned long i; 461 462 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 463 pages == NULL) 464 return; 465 466 for (i = 0; i < npages; i++) { 467 page_virtual = kmap_atomic(pages[i]); 468 clflush_cache_range(page_virtual, PAGE_SIZE); 469 kunmap_atomic(page_virtual); 470 cond_resched(); 471 } 472 } 473 474 static unsigned long get_num_contig_pages(unsigned long idx, 475 struct page **inpages, unsigned long npages) 476 { 477 unsigned long paddr, next_paddr; 478 unsigned long i = idx + 1, pages = 1; 479 480 /* find the number of contiguous pages starting from idx */ 481 paddr = __sme_page_pa(inpages[idx]); 482 while (i < npages) { 483 next_paddr = __sme_page_pa(inpages[i++]); 484 if ((paddr + PAGE_SIZE) == next_paddr) { 485 pages++; 486 paddr = next_paddr; 487 continue; 488 } 489 break; 490 } 491 492 return pages; 493 } 494 495 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 496 { 497 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 498 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 499 struct kvm_sev_launch_update_data params; 500 struct sev_data_launch_update_data data; 501 struct page **inpages; 502 int ret; 503 504 if (!sev_guest(kvm)) 505 return -ENOTTY; 506 507 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 508 return -EFAULT; 509 510 vaddr = params.uaddr; 511 size = params.len; 512 vaddr_end = vaddr + size; 513 514 /* Lock the user memory. */ 515 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 516 if (IS_ERR(inpages)) 517 return PTR_ERR(inpages); 518 519 /* 520 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 521 * place; the cache may contain the data that was written unencrypted. 522 */ 523 sev_clflush_pages(inpages, npages); 524 525 data.reserved = 0; 526 data.handle = sev->handle; 527 528 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 529 int offset, len; 530 531 /* 532 * If the user buffer is not page-aligned, calculate the offset 533 * within the page. 534 */ 535 offset = vaddr & (PAGE_SIZE - 1); 536 537 /* Calculate the number of pages that can be encrypted in one go. */ 538 pages = get_num_contig_pages(i, inpages, npages); 539 540 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 541 542 data.len = len; 543 data.address = __sme_page_pa(inpages[i]) + offset; 544 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 545 if (ret) 546 goto e_unpin; 547 548 size -= len; 549 next_vaddr = vaddr + len; 550 } 551 552 e_unpin: 553 /* content of memory is updated, mark pages dirty */ 554 for (i = 0; i < npages; i++) { 555 set_page_dirty_lock(inpages[i]); 556 mark_page_accessed(inpages[i]); 557 } 558 /* unlock the user pages */ 559 sev_unpin_memory(kvm, inpages, npages); 560 return ret; 561 } 562 563 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 564 { 565 struct sev_es_save_area *save = svm->sev_es.vmsa; 566 567 /* Check some debug related fields before encrypting the VMSA */ 568 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 569 return -EINVAL; 570 571 /* 572 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 573 * the traditional VMSA that is part of the VMCB. Copy the 574 * traditional VMSA as it has been built so far (in prep 575 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 576 */ 577 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 578 579 /* Sync registgers */ 580 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 581 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 582 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 583 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 584 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 585 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 586 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 587 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 588 #ifdef CONFIG_X86_64 589 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 590 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 591 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 592 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 593 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 594 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 595 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 596 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 597 #endif 598 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 599 600 /* Sync some non-GPR registers before encrypting */ 601 save->xcr0 = svm->vcpu.arch.xcr0; 602 save->pkru = svm->vcpu.arch.pkru; 603 save->xss = svm->vcpu.arch.ia32_xss; 604 save->dr6 = svm->vcpu.arch.dr6; 605 606 return 0; 607 } 608 609 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 610 int *error) 611 { 612 struct sev_data_launch_update_vmsa vmsa; 613 struct vcpu_svm *svm = to_svm(vcpu); 614 int ret; 615 616 /* Perform some pre-encryption checks against the VMSA */ 617 ret = sev_es_sync_vmsa(svm); 618 if (ret) 619 return ret; 620 621 /* 622 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 623 * the VMSA memory content (i.e it will write the same memory region 624 * with the guest's key), so invalidate it first. 625 */ 626 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 627 628 vmsa.reserved = 0; 629 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle; 630 vmsa.address = __sme_pa(svm->sev_es.vmsa); 631 vmsa.len = PAGE_SIZE; 632 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 633 if (ret) 634 return ret; 635 636 vcpu->arch.guest_state_protected = true; 637 return 0; 638 } 639 640 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 641 { 642 struct kvm_vcpu *vcpu; 643 unsigned long i; 644 int ret; 645 646 if (!sev_es_guest(kvm)) 647 return -ENOTTY; 648 649 kvm_for_each_vcpu(i, vcpu, kvm) { 650 ret = mutex_lock_killable(&vcpu->mutex); 651 if (ret) 652 return ret; 653 654 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 655 656 mutex_unlock(&vcpu->mutex); 657 if (ret) 658 return ret; 659 } 660 661 return 0; 662 } 663 664 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 665 { 666 void __user *measure = (void __user *)(uintptr_t)argp->data; 667 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 668 struct sev_data_launch_measure data; 669 struct kvm_sev_launch_measure params; 670 void __user *p = NULL; 671 void *blob = NULL; 672 int ret; 673 674 if (!sev_guest(kvm)) 675 return -ENOTTY; 676 677 if (copy_from_user(¶ms, measure, sizeof(params))) 678 return -EFAULT; 679 680 memset(&data, 0, sizeof(data)); 681 682 /* User wants to query the blob length */ 683 if (!params.len) 684 goto cmd; 685 686 p = (void __user *)(uintptr_t)params.uaddr; 687 if (p) { 688 if (params.len > SEV_FW_BLOB_MAX_SIZE) 689 return -EINVAL; 690 691 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 692 if (!blob) 693 return -ENOMEM; 694 695 data.address = __psp_pa(blob); 696 data.len = params.len; 697 } 698 699 cmd: 700 data.handle = sev->handle; 701 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 702 703 /* 704 * If we query the session length, FW responded with expected data. 705 */ 706 if (!params.len) 707 goto done; 708 709 if (ret) 710 goto e_free_blob; 711 712 if (blob) { 713 if (copy_to_user(p, blob, params.len)) 714 ret = -EFAULT; 715 } 716 717 done: 718 params.len = data.len; 719 if (copy_to_user(measure, ¶ms, sizeof(params))) 720 ret = -EFAULT; 721 e_free_blob: 722 kfree(blob); 723 return ret; 724 } 725 726 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 727 { 728 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 729 struct sev_data_launch_finish data; 730 731 if (!sev_guest(kvm)) 732 return -ENOTTY; 733 734 data.handle = sev->handle; 735 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 736 } 737 738 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 739 { 740 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 741 struct kvm_sev_guest_status params; 742 struct sev_data_guest_status data; 743 int ret; 744 745 if (!sev_guest(kvm)) 746 return -ENOTTY; 747 748 memset(&data, 0, sizeof(data)); 749 750 data.handle = sev->handle; 751 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 752 if (ret) 753 return ret; 754 755 params.policy = data.policy; 756 params.state = data.state; 757 params.handle = data.handle; 758 759 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 760 ret = -EFAULT; 761 762 return ret; 763 } 764 765 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 766 unsigned long dst, int size, 767 int *error, bool enc) 768 { 769 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 770 struct sev_data_dbg data; 771 772 data.reserved = 0; 773 data.handle = sev->handle; 774 data.dst_addr = dst; 775 data.src_addr = src; 776 data.len = size; 777 778 return sev_issue_cmd(kvm, 779 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 780 &data, error); 781 } 782 783 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 784 unsigned long dst_paddr, int sz, int *err) 785 { 786 int offset; 787 788 /* 789 * Its safe to read more than we are asked, caller should ensure that 790 * destination has enough space. 791 */ 792 offset = src_paddr & 15; 793 src_paddr = round_down(src_paddr, 16); 794 sz = round_up(sz + offset, 16); 795 796 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 797 } 798 799 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 800 void __user *dst_uaddr, 801 unsigned long dst_paddr, 802 int size, int *err) 803 { 804 struct page *tpage = NULL; 805 int ret, offset; 806 807 /* if inputs are not 16-byte then use intermediate buffer */ 808 if (!IS_ALIGNED(dst_paddr, 16) || 809 !IS_ALIGNED(paddr, 16) || 810 !IS_ALIGNED(size, 16)) { 811 tpage = (void *)alloc_page(GFP_KERNEL | __GFP_ZERO); 812 if (!tpage) 813 return -ENOMEM; 814 815 dst_paddr = __sme_page_pa(tpage); 816 } 817 818 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 819 if (ret) 820 goto e_free; 821 822 if (tpage) { 823 offset = paddr & 15; 824 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 825 ret = -EFAULT; 826 } 827 828 e_free: 829 if (tpage) 830 __free_page(tpage); 831 832 return ret; 833 } 834 835 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 836 void __user *vaddr, 837 unsigned long dst_paddr, 838 void __user *dst_vaddr, 839 int size, int *error) 840 { 841 struct page *src_tpage = NULL; 842 struct page *dst_tpage = NULL; 843 int ret, len = size; 844 845 /* If source buffer is not aligned then use an intermediate buffer */ 846 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 847 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 848 if (!src_tpage) 849 return -ENOMEM; 850 851 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 852 __free_page(src_tpage); 853 return -EFAULT; 854 } 855 856 paddr = __sme_page_pa(src_tpage); 857 } 858 859 /* 860 * If destination buffer or length is not aligned then do read-modify-write: 861 * - decrypt destination in an intermediate buffer 862 * - copy the source buffer in an intermediate buffer 863 * - use the intermediate buffer as source buffer 864 */ 865 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 866 int dst_offset; 867 868 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 869 if (!dst_tpage) { 870 ret = -ENOMEM; 871 goto e_free; 872 } 873 874 ret = __sev_dbg_decrypt(kvm, dst_paddr, 875 __sme_page_pa(dst_tpage), size, error); 876 if (ret) 877 goto e_free; 878 879 /* 880 * If source is kernel buffer then use memcpy() otherwise 881 * copy_from_user(). 882 */ 883 dst_offset = dst_paddr & 15; 884 885 if (src_tpage) 886 memcpy(page_address(dst_tpage) + dst_offset, 887 page_address(src_tpage), size); 888 else { 889 if (copy_from_user(page_address(dst_tpage) + dst_offset, 890 vaddr, size)) { 891 ret = -EFAULT; 892 goto e_free; 893 } 894 } 895 896 paddr = __sme_page_pa(dst_tpage); 897 dst_paddr = round_down(dst_paddr, 16); 898 len = round_up(size, 16); 899 } 900 901 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 902 903 e_free: 904 if (src_tpage) 905 __free_page(src_tpage); 906 if (dst_tpage) 907 __free_page(dst_tpage); 908 return ret; 909 } 910 911 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 912 { 913 unsigned long vaddr, vaddr_end, next_vaddr; 914 unsigned long dst_vaddr; 915 struct page **src_p, **dst_p; 916 struct kvm_sev_dbg debug; 917 unsigned long n; 918 unsigned int size; 919 int ret; 920 921 if (!sev_guest(kvm)) 922 return -ENOTTY; 923 924 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 925 return -EFAULT; 926 927 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 928 return -EINVAL; 929 if (!debug.dst_uaddr) 930 return -EINVAL; 931 932 vaddr = debug.src_uaddr; 933 size = debug.len; 934 vaddr_end = vaddr + size; 935 dst_vaddr = debug.dst_uaddr; 936 937 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 938 int len, s_off, d_off; 939 940 /* lock userspace source and destination page */ 941 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 942 if (IS_ERR(src_p)) 943 return PTR_ERR(src_p); 944 945 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 946 if (IS_ERR(dst_p)) { 947 sev_unpin_memory(kvm, src_p, n); 948 return PTR_ERR(dst_p); 949 } 950 951 /* 952 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 953 * the pages; flush the destination too so that future accesses do not 954 * see stale data. 955 */ 956 sev_clflush_pages(src_p, 1); 957 sev_clflush_pages(dst_p, 1); 958 959 /* 960 * Since user buffer may not be page aligned, calculate the 961 * offset within the page. 962 */ 963 s_off = vaddr & ~PAGE_MASK; 964 d_off = dst_vaddr & ~PAGE_MASK; 965 len = min_t(size_t, (PAGE_SIZE - s_off), size); 966 967 if (dec) 968 ret = __sev_dbg_decrypt_user(kvm, 969 __sme_page_pa(src_p[0]) + s_off, 970 (void __user *)dst_vaddr, 971 __sme_page_pa(dst_p[0]) + d_off, 972 len, &argp->error); 973 else 974 ret = __sev_dbg_encrypt_user(kvm, 975 __sme_page_pa(src_p[0]) + s_off, 976 (void __user *)vaddr, 977 __sme_page_pa(dst_p[0]) + d_off, 978 (void __user *)dst_vaddr, 979 len, &argp->error); 980 981 sev_unpin_memory(kvm, src_p, n); 982 sev_unpin_memory(kvm, dst_p, n); 983 984 if (ret) 985 goto err; 986 987 next_vaddr = vaddr + len; 988 dst_vaddr = dst_vaddr + len; 989 size -= len; 990 } 991 err: 992 return ret; 993 } 994 995 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 996 { 997 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 998 struct sev_data_launch_secret data; 999 struct kvm_sev_launch_secret params; 1000 struct page **pages; 1001 void *blob, *hdr; 1002 unsigned long n, i; 1003 int ret, offset; 1004 1005 if (!sev_guest(kvm)) 1006 return -ENOTTY; 1007 1008 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1009 return -EFAULT; 1010 1011 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1012 if (IS_ERR(pages)) 1013 return PTR_ERR(pages); 1014 1015 /* 1016 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1017 * place; the cache may contain the data that was written unencrypted. 1018 */ 1019 sev_clflush_pages(pages, n); 1020 1021 /* 1022 * The secret must be copied into contiguous memory region, lets verify 1023 * that userspace memory pages are contiguous before we issue command. 1024 */ 1025 if (get_num_contig_pages(0, pages, n) != n) { 1026 ret = -EINVAL; 1027 goto e_unpin_memory; 1028 } 1029 1030 memset(&data, 0, sizeof(data)); 1031 1032 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1033 data.guest_address = __sme_page_pa(pages[0]) + offset; 1034 data.guest_len = params.guest_len; 1035 1036 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1037 if (IS_ERR(blob)) { 1038 ret = PTR_ERR(blob); 1039 goto e_unpin_memory; 1040 } 1041 1042 data.trans_address = __psp_pa(blob); 1043 data.trans_len = params.trans_len; 1044 1045 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1046 if (IS_ERR(hdr)) { 1047 ret = PTR_ERR(hdr); 1048 goto e_free_blob; 1049 } 1050 data.hdr_address = __psp_pa(hdr); 1051 data.hdr_len = params.hdr_len; 1052 1053 data.handle = sev->handle; 1054 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1055 1056 kfree(hdr); 1057 1058 e_free_blob: 1059 kfree(blob); 1060 e_unpin_memory: 1061 /* content of memory is updated, mark pages dirty */ 1062 for (i = 0; i < n; i++) { 1063 set_page_dirty_lock(pages[i]); 1064 mark_page_accessed(pages[i]); 1065 } 1066 sev_unpin_memory(kvm, pages, n); 1067 return ret; 1068 } 1069 1070 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1071 { 1072 void __user *report = (void __user *)(uintptr_t)argp->data; 1073 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1074 struct sev_data_attestation_report data; 1075 struct kvm_sev_attestation_report params; 1076 void __user *p; 1077 void *blob = NULL; 1078 int ret; 1079 1080 if (!sev_guest(kvm)) 1081 return -ENOTTY; 1082 1083 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1084 return -EFAULT; 1085 1086 memset(&data, 0, sizeof(data)); 1087 1088 /* User wants to query the blob length */ 1089 if (!params.len) 1090 goto cmd; 1091 1092 p = (void __user *)(uintptr_t)params.uaddr; 1093 if (p) { 1094 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1095 return -EINVAL; 1096 1097 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1098 if (!blob) 1099 return -ENOMEM; 1100 1101 data.address = __psp_pa(blob); 1102 data.len = params.len; 1103 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1104 } 1105 cmd: 1106 data.handle = sev->handle; 1107 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1108 /* 1109 * If we query the session length, FW responded with expected data. 1110 */ 1111 if (!params.len) 1112 goto done; 1113 1114 if (ret) 1115 goto e_free_blob; 1116 1117 if (blob) { 1118 if (copy_to_user(p, blob, params.len)) 1119 ret = -EFAULT; 1120 } 1121 1122 done: 1123 params.len = data.len; 1124 if (copy_to_user(report, ¶ms, sizeof(params))) 1125 ret = -EFAULT; 1126 e_free_blob: 1127 kfree(blob); 1128 return ret; 1129 } 1130 1131 /* Userspace wants to query session length. */ 1132 static int 1133 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1134 struct kvm_sev_send_start *params) 1135 { 1136 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1137 struct sev_data_send_start data; 1138 int ret; 1139 1140 memset(&data, 0, sizeof(data)); 1141 data.handle = sev->handle; 1142 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1143 1144 params->session_len = data.session_len; 1145 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1146 sizeof(struct kvm_sev_send_start))) 1147 ret = -EFAULT; 1148 1149 return ret; 1150 } 1151 1152 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1153 { 1154 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1155 struct sev_data_send_start data; 1156 struct kvm_sev_send_start params; 1157 void *amd_certs, *session_data; 1158 void *pdh_cert, *plat_certs; 1159 int ret; 1160 1161 if (!sev_guest(kvm)) 1162 return -ENOTTY; 1163 1164 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1165 sizeof(struct kvm_sev_send_start))) 1166 return -EFAULT; 1167 1168 /* if session_len is zero, userspace wants to query the session length */ 1169 if (!params.session_len) 1170 return __sev_send_start_query_session_length(kvm, argp, 1171 ¶ms); 1172 1173 /* some sanity checks */ 1174 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1175 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1176 return -EINVAL; 1177 1178 /* allocate the memory to hold the session data blob */ 1179 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1180 if (!session_data) 1181 return -ENOMEM; 1182 1183 /* copy the certificate blobs from userspace */ 1184 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1185 params.pdh_cert_len); 1186 if (IS_ERR(pdh_cert)) { 1187 ret = PTR_ERR(pdh_cert); 1188 goto e_free_session; 1189 } 1190 1191 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1192 params.plat_certs_len); 1193 if (IS_ERR(plat_certs)) { 1194 ret = PTR_ERR(plat_certs); 1195 goto e_free_pdh; 1196 } 1197 1198 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1199 params.amd_certs_len); 1200 if (IS_ERR(amd_certs)) { 1201 ret = PTR_ERR(amd_certs); 1202 goto e_free_plat_cert; 1203 } 1204 1205 /* populate the FW SEND_START field with system physical address */ 1206 memset(&data, 0, sizeof(data)); 1207 data.pdh_cert_address = __psp_pa(pdh_cert); 1208 data.pdh_cert_len = params.pdh_cert_len; 1209 data.plat_certs_address = __psp_pa(plat_certs); 1210 data.plat_certs_len = params.plat_certs_len; 1211 data.amd_certs_address = __psp_pa(amd_certs); 1212 data.amd_certs_len = params.amd_certs_len; 1213 data.session_address = __psp_pa(session_data); 1214 data.session_len = params.session_len; 1215 data.handle = sev->handle; 1216 1217 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1218 1219 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1220 session_data, params.session_len)) { 1221 ret = -EFAULT; 1222 goto e_free_amd_cert; 1223 } 1224 1225 params.policy = data.policy; 1226 params.session_len = data.session_len; 1227 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1228 sizeof(struct kvm_sev_send_start))) 1229 ret = -EFAULT; 1230 1231 e_free_amd_cert: 1232 kfree(amd_certs); 1233 e_free_plat_cert: 1234 kfree(plat_certs); 1235 e_free_pdh: 1236 kfree(pdh_cert); 1237 e_free_session: 1238 kfree(session_data); 1239 return ret; 1240 } 1241 1242 /* Userspace wants to query either header or trans length. */ 1243 static int 1244 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1245 struct kvm_sev_send_update_data *params) 1246 { 1247 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1248 struct sev_data_send_update_data data; 1249 int ret; 1250 1251 memset(&data, 0, sizeof(data)); 1252 data.handle = sev->handle; 1253 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1254 1255 params->hdr_len = data.hdr_len; 1256 params->trans_len = data.trans_len; 1257 1258 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1259 sizeof(struct kvm_sev_send_update_data))) 1260 ret = -EFAULT; 1261 1262 return ret; 1263 } 1264 1265 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1266 { 1267 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1268 struct sev_data_send_update_data data; 1269 struct kvm_sev_send_update_data params; 1270 void *hdr, *trans_data; 1271 struct page **guest_page; 1272 unsigned long n; 1273 int ret, offset; 1274 1275 if (!sev_guest(kvm)) 1276 return -ENOTTY; 1277 1278 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1279 sizeof(struct kvm_sev_send_update_data))) 1280 return -EFAULT; 1281 1282 /* userspace wants to query either header or trans length */ 1283 if (!params.trans_len || !params.hdr_len) 1284 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1285 1286 if (!params.trans_uaddr || !params.guest_uaddr || 1287 !params.guest_len || !params.hdr_uaddr) 1288 return -EINVAL; 1289 1290 /* Check if we are crossing the page boundary */ 1291 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1292 if ((params.guest_len + offset > PAGE_SIZE)) 1293 return -EINVAL; 1294 1295 /* Pin guest memory */ 1296 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1297 PAGE_SIZE, &n, 0); 1298 if (IS_ERR(guest_page)) 1299 return PTR_ERR(guest_page); 1300 1301 /* allocate memory for header and transport buffer */ 1302 ret = -ENOMEM; 1303 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1304 if (!hdr) 1305 goto e_unpin; 1306 1307 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1308 if (!trans_data) 1309 goto e_free_hdr; 1310 1311 memset(&data, 0, sizeof(data)); 1312 data.hdr_address = __psp_pa(hdr); 1313 data.hdr_len = params.hdr_len; 1314 data.trans_address = __psp_pa(trans_data); 1315 data.trans_len = params.trans_len; 1316 1317 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1318 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1319 data.guest_address |= sev_me_mask; 1320 data.guest_len = params.guest_len; 1321 data.handle = sev->handle; 1322 1323 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1324 1325 if (ret) 1326 goto e_free_trans_data; 1327 1328 /* copy transport buffer to user space */ 1329 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1330 trans_data, params.trans_len)) { 1331 ret = -EFAULT; 1332 goto e_free_trans_data; 1333 } 1334 1335 /* Copy packet header to userspace. */ 1336 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1337 params.hdr_len)) 1338 ret = -EFAULT; 1339 1340 e_free_trans_data: 1341 kfree(trans_data); 1342 e_free_hdr: 1343 kfree(hdr); 1344 e_unpin: 1345 sev_unpin_memory(kvm, guest_page, n); 1346 1347 return ret; 1348 } 1349 1350 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1351 { 1352 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1353 struct sev_data_send_finish data; 1354 1355 if (!sev_guest(kvm)) 1356 return -ENOTTY; 1357 1358 data.handle = sev->handle; 1359 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1360 } 1361 1362 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1363 { 1364 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1365 struct sev_data_send_cancel data; 1366 1367 if (!sev_guest(kvm)) 1368 return -ENOTTY; 1369 1370 data.handle = sev->handle; 1371 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1372 } 1373 1374 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1375 { 1376 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1377 struct sev_data_receive_start start; 1378 struct kvm_sev_receive_start params; 1379 int *error = &argp->error; 1380 void *session_data; 1381 void *pdh_data; 1382 int ret; 1383 1384 if (!sev_guest(kvm)) 1385 return -ENOTTY; 1386 1387 /* Get parameter from the userspace */ 1388 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1389 sizeof(struct kvm_sev_receive_start))) 1390 return -EFAULT; 1391 1392 /* some sanity checks */ 1393 if (!params.pdh_uaddr || !params.pdh_len || 1394 !params.session_uaddr || !params.session_len) 1395 return -EINVAL; 1396 1397 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1398 if (IS_ERR(pdh_data)) 1399 return PTR_ERR(pdh_data); 1400 1401 session_data = psp_copy_user_blob(params.session_uaddr, 1402 params.session_len); 1403 if (IS_ERR(session_data)) { 1404 ret = PTR_ERR(session_data); 1405 goto e_free_pdh; 1406 } 1407 1408 memset(&start, 0, sizeof(start)); 1409 start.handle = params.handle; 1410 start.policy = params.policy; 1411 start.pdh_cert_address = __psp_pa(pdh_data); 1412 start.pdh_cert_len = params.pdh_len; 1413 start.session_address = __psp_pa(session_data); 1414 start.session_len = params.session_len; 1415 1416 /* create memory encryption context */ 1417 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1418 error); 1419 if (ret) 1420 goto e_free_session; 1421 1422 /* Bind ASID to this guest */ 1423 ret = sev_bind_asid(kvm, start.handle, error); 1424 if (ret) { 1425 sev_decommission(start.handle); 1426 goto e_free_session; 1427 } 1428 1429 params.handle = start.handle; 1430 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1431 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1432 ret = -EFAULT; 1433 sev_unbind_asid(kvm, start.handle); 1434 goto e_free_session; 1435 } 1436 1437 sev->handle = start.handle; 1438 sev->fd = argp->sev_fd; 1439 1440 e_free_session: 1441 kfree(session_data); 1442 e_free_pdh: 1443 kfree(pdh_data); 1444 1445 return ret; 1446 } 1447 1448 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1449 { 1450 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1451 struct kvm_sev_receive_update_data params; 1452 struct sev_data_receive_update_data data; 1453 void *hdr = NULL, *trans = NULL; 1454 struct page **guest_page; 1455 unsigned long n; 1456 int ret, offset; 1457 1458 if (!sev_guest(kvm)) 1459 return -EINVAL; 1460 1461 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1462 sizeof(struct kvm_sev_receive_update_data))) 1463 return -EFAULT; 1464 1465 if (!params.hdr_uaddr || !params.hdr_len || 1466 !params.guest_uaddr || !params.guest_len || 1467 !params.trans_uaddr || !params.trans_len) 1468 return -EINVAL; 1469 1470 /* Check if we are crossing the page boundary */ 1471 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1472 if ((params.guest_len + offset > PAGE_SIZE)) 1473 return -EINVAL; 1474 1475 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1476 if (IS_ERR(hdr)) 1477 return PTR_ERR(hdr); 1478 1479 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1480 if (IS_ERR(trans)) { 1481 ret = PTR_ERR(trans); 1482 goto e_free_hdr; 1483 } 1484 1485 memset(&data, 0, sizeof(data)); 1486 data.hdr_address = __psp_pa(hdr); 1487 data.hdr_len = params.hdr_len; 1488 data.trans_address = __psp_pa(trans); 1489 data.trans_len = params.trans_len; 1490 1491 /* Pin guest memory */ 1492 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1493 PAGE_SIZE, &n, 1); 1494 if (IS_ERR(guest_page)) { 1495 ret = PTR_ERR(guest_page); 1496 goto e_free_trans; 1497 } 1498 1499 /* 1500 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1501 * encrypts the written data with the guest's key, and the cache may 1502 * contain dirty, unencrypted data. 1503 */ 1504 sev_clflush_pages(guest_page, n); 1505 1506 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1507 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1508 data.guest_address |= sev_me_mask; 1509 data.guest_len = params.guest_len; 1510 data.handle = sev->handle; 1511 1512 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1513 &argp->error); 1514 1515 sev_unpin_memory(kvm, guest_page, n); 1516 1517 e_free_trans: 1518 kfree(trans); 1519 e_free_hdr: 1520 kfree(hdr); 1521 1522 return ret; 1523 } 1524 1525 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1526 { 1527 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1528 struct sev_data_receive_finish data; 1529 1530 if (!sev_guest(kvm)) 1531 return -ENOTTY; 1532 1533 data.handle = sev->handle; 1534 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1535 } 1536 1537 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1538 { 1539 /* 1540 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1541 * active mirror VMs. Also allow the debugging and status commands. 1542 */ 1543 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1544 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1545 cmd_id == KVM_SEV_DBG_ENCRYPT) 1546 return true; 1547 1548 return false; 1549 } 1550 1551 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1552 { 1553 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1554 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1555 int r = -EBUSY; 1556 1557 if (dst_kvm == src_kvm) 1558 return -EINVAL; 1559 1560 /* 1561 * Bail if these VMs are already involved in a migration to avoid 1562 * deadlock between two VMs trying to migrate to/from each other. 1563 */ 1564 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1565 return -EBUSY; 1566 1567 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1568 goto release_dst; 1569 1570 r = -EINTR; 1571 if (mutex_lock_killable(&dst_kvm->lock)) 1572 goto release_src; 1573 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1574 goto unlock_dst; 1575 return 0; 1576 1577 unlock_dst: 1578 mutex_unlock(&dst_kvm->lock); 1579 release_src: 1580 atomic_set_release(&src_sev->migration_in_progress, 0); 1581 release_dst: 1582 atomic_set_release(&dst_sev->migration_in_progress, 0); 1583 return r; 1584 } 1585 1586 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1587 { 1588 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1589 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1590 1591 mutex_unlock(&dst_kvm->lock); 1592 mutex_unlock(&src_kvm->lock); 1593 atomic_set_release(&dst_sev->migration_in_progress, 0); 1594 atomic_set_release(&src_sev->migration_in_progress, 0); 1595 } 1596 1597 /* vCPU mutex subclasses. */ 1598 enum sev_migration_role { 1599 SEV_MIGRATION_SOURCE = 0, 1600 SEV_MIGRATION_TARGET, 1601 SEV_NR_MIGRATION_ROLES, 1602 }; 1603 1604 static int sev_lock_vcpus_for_migration(struct kvm *kvm, 1605 enum sev_migration_role role) 1606 { 1607 struct kvm_vcpu *vcpu; 1608 unsigned long i, j; 1609 bool first = true; 1610 1611 kvm_for_each_vcpu(i, vcpu, kvm) { 1612 if (mutex_lock_killable_nested(&vcpu->mutex, role)) 1613 goto out_unlock; 1614 1615 if (first) { 1616 /* 1617 * Reset the role to one that avoids colliding with 1618 * the role used for the first vcpu mutex. 1619 */ 1620 role = SEV_NR_MIGRATION_ROLES; 1621 first = false; 1622 } else { 1623 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_); 1624 } 1625 } 1626 1627 return 0; 1628 1629 out_unlock: 1630 1631 first = true; 1632 kvm_for_each_vcpu(j, vcpu, kvm) { 1633 if (i == j) 1634 break; 1635 1636 if (first) 1637 first = false; 1638 else 1639 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_); 1640 1641 1642 mutex_unlock(&vcpu->mutex); 1643 } 1644 return -EINTR; 1645 } 1646 1647 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1648 { 1649 struct kvm_vcpu *vcpu; 1650 unsigned long i; 1651 bool first = true; 1652 1653 kvm_for_each_vcpu(i, vcpu, kvm) { 1654 if (first) 1655 first = false; 1656 else 1657 mutex_acquire(&vcpu->mutex.dep_map, 1658 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_); 1659 1660 mutex_unlock(&vcpu->mutex); 1661 } 1662 } 1663 1664 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1665 { 1666 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info; 1667 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info; 1668 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1669 struct vcpu_svm *dst_svm, *src_svm; 1670 struct kvm_sev_info *mirror; 1671 unsigned long i; 1672 1673 dst->active = true; 1674 dst->asid = src->asid; 1675 dst->handle = src->handle; 1676 dst->pages_locked = src->pages_locked; 1677 dst->enc_context_owner = src->enc_context_owner; 1678 dst->es_active = src->es_active; 1679 1680 src->asid = 0; 1681 src->active = false; 1682 src->handle = 0; 1683 src->pages_locked = 0; 1684 src->enc_context_owner = NULL; 1685 src->es_active = false; 1686 1687 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1688 1689 /* 1690 * If this VM has mirrors, "transfer" each mirror's refcount of the 1691 * source to the destination (this KVM). The caller holds a reference 1692 * to the source, so there's no danger of use-after-free. 1693 */ 1694 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 1695 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 1696 kvm_get_kvm(dst_kvm); 1697 kvm_put_kvm(src_kvm); 1698 mirror->enc_context_owner = dst_kvm; 1699 } 1700 1701 /* 1702 * If this VM is a mirror, remove the old mirror from the owners list 1703 * and add the new mirror to the list. 1704 */ 1705 if (is_mirroring_enc_context(dst_kvm)) { 1706 struct kvm_sev_info *owner_sev_info = 1707 &to_kvm_svm(dst->enc_context_owner)->sev_info; 1708 1709 list_del(&src->mirror_entry); 1710 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 1711 } 1712 1713 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 1714 dst_svm = to_svm(dst_vcpu); 1715 1716 sev_init_vmcb(dst_svm); 1717 1718 if (!dst->es_active) 1719 continue; 1720 1721 /* 1722 * Note, the source is not required to have the same number of 1723 * vCPUs as the destination when migrating a vanilla SEV VM. 1724 */ 1725 src_vcpu = kvm_get_vcpu(dst_kvm, i); 1726 src_svm = to_svm(src_vcpu); 1727 1728 /* 1729 * Transfer VMSA and GHCB state to the destination. Nullify and 1730 * clear source fields as appropriate, the state now belongs to 1731 * the destination. 1732 */ 1733 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 1734 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 1735 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 1736 dst_vcpu->arch.guest_state_protected = true; 1737 1738 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 1739 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 1740 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 1741 src_vcpu->arch.guest_state_protected = false; 1742 } 1743 } 1744 1745 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 1746 { 1747 struct kvm_vcpu *src_vcpu; 1748 unsigned long i; 1749 1750 if (!sev_es_guest(src)) 1751 return 0; 1752 1753 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 1754 return -EINVAL; 1755 1756 kvm_for_each_vcpu(i, src_vcpu, src) { 1757 if (!src_vcpu->arch.guest_state_protected) 1758 return -EINVAL; 1759 } 1760 1761 return 0; 1762 } 1763 1764 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 1765 { 1766 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 1767 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 1768 struct file *source_kvm_file; 1769 struct kvm *source_kvm; 1770 bool charged = false; 1771 int ret; 1772 1773 source_kvm_file = fget(source_fd); 1774 if (!file_is_kvm(source_kvm_file)) { 1775 ret = -EBADF; 1776 goto out_fput; 1777 } 1778 1779 source_kvm = source_kvm_file->private_data; 1780 ret = sev_lock_two_vms(kvm, source_kvm); 1781 if (ret) 1782 goto out_fput; 1783 1784 if (sev_guest(kvm) || !sev_guest(source_kvm)) { 1785 ret = -EINVAL; 1786 goto out_unlock; 1787 } 1788 1789 src_sev = &to_kvm_svm(source_kvm)->sev_info; 1790 1791 dst_sev->misc_cg = get_current_misc_cg(); 1792 cg_cleanup_sev = dst_sev; 1793 if (dst_sev->misc_cg != src_sev->misc_cg) { 1794 ret = sev_misc_cg_try_charge(dst_sev); 1795 if (ret) 1796 goto out_dst_cgroup; 1797 charged = true; 1798 } 1799 1800 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE); 1801 if (ret) 1802 goto out_dst_cgroup; 1803 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET); 1804 if (ret) 1805 goto out_dst_vcpu; 1806 1807 ret = sev_check_source_vcpus(kvm, source_kvm); 1808 if (ret) 1809 goto out_source_vcpu; 1810 1811 sev_migrate_from(kvm, source_kvm); 1812 kvm_vm_dead(source_kvm); 1813 cg_cleanup_sev = src_sev; 1814 ret = 0; 1815 1816 out_source_vcpu: 1817 sev_unlock_vcpus_for_migration(source_kvm); 1818 out_dst_vcpu: 1819 sev_unlock_vcpus_for_migration(kvm); 1820 out_dst_cgroup: 1821 /* Operates on the source on success, on the destination on failure. */ 1822 if (charged) 1823 sev_misc_cg_uncharge(cg_cleanup_sev); 1824 put_misc_cg(cg_cleanup_sev->misc_cg); 1825 cg_cleanup_sev->misc_cg = NULL; 1826 out_unlock: 1827 sev_unlock_two_vms(kvm, source_kvm); 1828 out_fput: 1829 if (source_kvm_file) 1830 fput(source_kvm_file); 1831 return ret; 1832 } 1833 1834 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 1835 { 1836 struct kvm_sev_cmd sev_cmd; 1837 int r; 1838 1839 if (!sev_enabled) 1840 return -ENOTTY; 1841 1842 if (!argp) 1843 return 0; 1844 1845 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1846 return -EFAULT; 1847 1848 mutex_lock(&kvm->lock); 1849 1850 /* Only the enc_context_owner handles some memory enc operations. */ 1851 if (is_mirroring_enc_context(kvm) && 1852 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 1853 r = -EINVAL; 1854 goto out; 1855 } 1856 1857 switch (sev_cmd.id) { 1858 case KVM_SEV_ES_INIT: 1859 if (!sev_es_enabled) { 1860 r = -ENOTTY; 1861 goto out; 1862 } 1863 fallthrough; 1864 case KVM_SEV_INIT: 1865 r = sev_guest_init(kvm, &sev_cmd); 1866 break; 1867 case KVM_SEV_LAUNCH_START: 1868 r = sev_launch_start(kvm, &sev_cmd); 1869 break; 1870 case KVM_SEV_LAUNCH_UPDATE_DATA: 1871 r = sev_launch_update_data(kvm, &sev_cmd); 1872 break; 1873 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1874 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1875 break; 1876 case KVM_SEV_LAUNCH_MEASURE: 1877 r = sev_launch_measure(kvm, &sev_cmd); 1878 break; 1879 case KVM_SEV_LAUNCH_FINISH: 1880 r = sev_launch_finish(kvm, &sev_cmd); 1881 break; 1882 case KVM_SEV_GUEST_STATUS: 1883 r = sev_guest_status(kvm, &sev_cmd); 1884 break; 1885 case KVM_SEV_DBG_DECRYPT: 1886 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1887 break; 1888 case KVM_SEV_DBG_ENCRYPT: 1889 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1890 break; 1891 case KVM_SEV_LAUNCH_SECRET: 1892 r = sev_launch_secret(kvm, &sev_cmd); 1893 break; 1894 case KVM_SEV_GET_ATTESTATION_REPORT: 1895 r = sev_get_attestation_report(kvm, &sev_cmd); 1896 break; 1897 case KVM_SEV_SEND_START: 1898 r = sev_send_start(kvm, &sev_cmd); 1899 break; 1900 case KVM_SEV_SEND_UPDATE_DATA: 1901 r = sev_send_update_data(kvm, &sev_cmd); 1902 break; 1903 case KVM_SEV_SEND_FINISH: 1904 r = sev_send_finish(kvm, &sev_cmd); 1905 break; 1906 case KVM_SEV_SEND_CANCEL: 1907 r = sev_send_cancel(kvm, &sev_cmd); 1908 break; 1909 case KVM_SEV_RECEIVE_START: 1910 r = sev_receive_start(kvm, &sev_cmd); 1911 break; 1912 case KVM_SEV_RECEIVE_UPDATE_DATA: 1913 r = sev_receive_update_data(kvm, &sev_cmd); 1914 break; 1915 case KVM_SEV_RECEIVE_FINISH: 1916 r = sev_receive_finish(kvm, &sev_cmd); 1917 break; 1918 default: 1919 r = -EINVAL; 1920 goto out; 1921 } 1922 1923 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1924 r = -EFAULT; 1925 1926 out: 1927 mutex_unlock(&kvm->lock); 1928 return r; 1929 } 1930 1931 int sev_mem_enc_register_region(struct kvm *kvm, 1932 struct kvm_enc_region *range) 1933 { 1934 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1935 struct enc_region *region; 1936 int ret = 0; 1937 1938 if (!sev_guest(kvm)) 1939 return -ENOTTY; 1940 1941 /* If kvm is mirroring encryption context it isn't responsible for it */ 1942 if (is_mirroring_enc_context(kvm)) 1943 return -EINVAL; 1944 1945 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1946 return -EINVAL; 1947 1948 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1949 if (!region) 1950 return -ENOMEM; 1951 1952 mutex_lock(&kvm->lock); 1953 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1954 if (IS_ERR(region->pages)) { 1955 ret = PTR_ERR(region->pages); 1956 mutex_unlock(&kvm->lock); 1957 goto e_free; 1958 } 1959 1960 region->uaddr = range->addr; 1961 region->size = range->size; 1962 1963 list_add_tail(®ion->list, &sev->regions_list); 1964 mutex_unlock(&kvm->lock); 1965 1966 /* 1967 * The guest may change the memory encryption attribute from C=0 -> C=1 1968 * or vice versa for this memory range. Lets make sure caches are 1969 * flushed to ensure that guest data gets written into memory with 1970 * correct C-bit. 1971 */ 1972 sev_clflush_pages(region->pages, region->npages); 1973 1974 return ret; 1975 1976 e_free: 1977 kfree(region); 1978 return ret; 1979 } 1980 1981 static struct enc_region * 1982 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1983 { 1984 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1985 struct list_head *head = &sev->regions_list; 1986 struct enc_region *i; 1987 1988 list_for_each_entry(i, head, list) { 1989 if (i->uaddr == range->addr && 1990 i->size == range->size) 1991 return i; 1992 } 1993 1994 return NULL; 1995 } 1996 1997 static void __unregister_enc_region_locked(struct kvm *kvm, 1998 struct enc_region *region) 1999 { 2000 sev_unpin_memory(kvm, region->pages, region->npages); 2001 list_del(®ion->list); 2002 kfree(region); 2003 } 2004 2005 int sev_mem_enc_unregister_region(struct kvm *kvm, 2006 struct kvm_enc_region *range) 2007 { 2008 struct enc_region *region; 2009 int ret; 2010 2011 /* If kvm is mirroring encryption context it isn't responsible for it */ 2012 if (is_mirroring_enc_context(kvm)) 2013 return -EINVAL; 2014 2015 mutex_lock(&kvm->lock); 2016 2017 if (!sev_guest(kvm)) { 2018 ret = -ENOTTY; 2019 goto failed; 2020 } 2021 2022 region = find_enc_region(kvm, range); 2023 if (!region) { 2024 ret = -EINVAL; 2025 goto failed; 2026 } 2027 2028 /* 2029 * Ensure that all guest tagged cache entries are flushed before 2030 * releasing the pages back to the system for use. CLFLUSH will 2031 * not do this, so issue a WBINVD. 2032 */ 2033 wbinvd_on_all_cpus(); 2034 2035 __unregister_enc_region_locked(kvm, region); 2036 2037 mutex_unlock(&kvm->lock); 2038 return 0; 2039 2040 failed: 2041 mutex_unlock(&kvm->lock); 2042 return ret; 2043 } 2044 2045 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2046 { 2047 struct file *source_kvm_file; 2048 struct kvm *source_kvm; 2049 struct kvm_sev_info *source_sev, *mirror_sev; 2050 int ret; 2051 2052 source_kvm_file = fget(source_fd); 2053 if (!file_is_kvm(source_kvm_file)) { 2054 ret = -EBADF; 2055 goto e_source_fput; 2056 } 2057 2058 source_kvm = source_kvm_file->private_data; 2059 ret = sev_lock_two_vms(kvm, source_kvm); 2060 if (ret) 2061 goto e_source_fput; 2062 2063 /* 2064 * Mirrors of mirrors should work, but let's not get silly. Also 2065 * disallow out-of-band SEV/SEV-ES init if the target is already an 2066 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2067 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2068 */ 2069 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2070 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2071 ret = -EINVAL; 2072 goto e_unlock; 2073 } 2074 2075 /* 2076 * The mirror kvm holds an enc_context_owner ref so its asid can't 2077 * disappear until we're done with it 2078 */ 2079 source_sev = &to_kvm_svm(source_kvm)->sev_info; 2080 kvm_get_kvm(source_kvm); 2081 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2082 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2083 2084 /* Set enc_context_owner and copy its encryption context over */ 2085 mirror_sev->enc_context_owner = source_kvm; 2086 mirror_sev->active = true; 2087 mirror_sev->asid = source_sev->asid; 2088 mirror_sev->fd = source_sev->fd; 2089 mirror_sev->es_active = source_sev->es_active; 2090 mirror_sev->handle = source_sev->handle; 2091 INIT_LIST_HEAD(&mirror_sev->regions_list); 2092 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2093 ret = 0; 2094 2095 /* 2096 * Do not copy ap_jump_table. Since the mirror does not share the same 2097 * KVM contexts as the original, and they may have different 2098 * memory-views. 2099 */ 2100 2101 e_unlock: 2102 sev_unlock_two_vms(kvm, source_kvm); 2103 e_source_fput: 2104 if (source_kvm_file) 2105 fput(source_kvm_file); 2106 return ret; 2107 } 2108 2109 void sev_vm_destroy(struct kvm *kvm) 2110 { 2111 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2112 struct list_head *head = &sev->regions_list; 2113 struct list_head *pos, *q; 2114 2115 if (!sev_guest(kvm)) 2116 return; 2117 2118 WARN_ON(!list_empty(&sev->mirror_vms)); 2119 2120 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2121 if (is_mirroring_enc_context(kvm)) { 2122 struct kvm *owner_kvm = sev->enc_context_owner; 2123 2124 mutex_lock(&owner_kvm->lock); 2125 list_del(&sev->mirror_entry); 2126 mutex_unlock(&owner_kvm->lock); 2127 kvm_put_kvm(owner_kvm); 2128 return; 2129 } 2130 2131 /* 2132 * Ensure that all guest tagged cache entries are flushed before 2133 * releasing the pages back to the system for use. CLFLUSH will 2134 * not do this, so issue a WBINVD. 2135 */ 2136 wbinvd_on_all_cpus(); 2137 2138 /* 2139 * if userspace was terminated before unregistering the memory regions 2140 * then lets unpin all the registered memory. 2141 */ 2142 if (!list_empty(head)) { 2143 list_for_each_safe(pos, q, head) { 2144 __unregister_enc_region_locked(kvm, 2145 list_entry(pos, struct enc_region, list)); 2146 cond_resched(); 2147 } 2148 } 2149 2150 sev_unbind_asid(kvm, sev->handle); 2151 sev_asid_free(sev); 2152 } 2153 2154 void __init sev_set_cpu_caps(void) 2155 { 2156 if (!sev_enabled) 2157 kvm_cpu_cap_clear(X86_FEATURE_SEV); 2158 if (!sev_es_enabled) 2159 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 2160 } 2161 2162 void __init sev_hardware_setup(void) 2163 { 2164 #ifdef CONFIG_KVM_AMD_SEV 2165 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2166 bool sev_es_supported = false; 2167 bool sev_supported = false; 2168 2169 if (!sev_enabled || !npt_enabled) 2170 goto out; 2171 2172 /* 2173 * SEV must obviously be supported in hardware. Sanity check that the 2174 * CPU supports decode assists, which is mandatory for SEV guests to 2175 * support instruction emulation. 2176 */ 2177 if (!boot_cpu_has(X86_FEATURE_SEV) || 2178 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS))) 2179 goto out; 2180 2181 /* Retrieve SEV CPUID information */ 2182 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2183 2184 /* Set encryption bit location for SEV-ES guests */ 2185 sev_enc_bit = ebx & 0x3f; 2186 2187 /* Maximum number of encrypted guests supported simultaneously */ 2188 max_sev_asid = ecx; 2189 if (!max_sev_asid) 2190 goto out; 2191 2192 /* Minimum ASID value that should be used for SEV guest */ 2193 min_sev_asid = edx; 2194 sev_me_mask = 1UL << (ebx & 0x3f); 2195 2196 /* 2197 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2198 * even though it's never used, so that the bitmap is indexed by the 2199 * actual ASID. 2200 */ 2201 nr_asids = max_sev_asid + 1; 2202 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2203 if (!sev_asid_bitmap) 2204 goto out; 2205 2206 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2207 if (!sev_reclaim_asid_bitmap) { 2208 bitmap_free(sev_asid_bitmap); 2209 sev_asid_bitmap = NULL; 2210 goto out; 2211 } 2212 2213 sev_asid_count = max_sev_asid - min_sev_asid + 1; 2214 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 2215 goto out; 2216 2217 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 2218 sev_supported = true; 2219 2220 /* SEV-ES support requested? */ 2221 if (!sev_es_enabled) 2222 goto out; 2223 2224 /* Does the CPU support SEV-ES? */ 2225 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 2226 goto out; 2227 2228 /* Has the system been allocated ASIDs for SEV-ES? */ 2229 if (min_sev_asid == 1) 2230 goto out; 2231 2232 sev_es_asid_count = min_sev_asid - 1; 2233 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 2234 goto out; 2235 2236 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 2237 sev_es_supported = true; 2238 2239 out: 2240 sev_enabled = sev_supported; 2241 sev_es_enabled = sev_es_supported; 2242 #endif 2243 } 2244 2245 void sev_hardware_unsetup(void) 2246 { 2247 if (!sev_enabled) 2248 return; 2249 2250 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 2251 sev_flush_asids(1, max_sev_asid); 2252 2253 bitmap_free(sev_asid_bitmap); 2254 bitmap_free(sev_reclaim_asid_bitmap); 2255 2256 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 2257 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 2258 } 2259 2260 int sev_cpu_init(struct svm_cpu_data *sd) 2261 { 2262 if (!sev_enabled) 2263 return 0; 2264 2265 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 2266 if (!sd->sev_vmcbs) 2267 return -ENOMEM; 2268 2269 return 0; 2270 } 2271 2272 /* 2273 * Pages used by hardware to hold guest encrypted state must be flushed before 2274 * returning them to the system. 2275 */ 2276 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 2277 { 2278 int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid; 2279 2280 /* 2281 * Note! The address must be a kernel address, as regular page walk 2282 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 2283 * address is non-deterministic and unsafe. This function deliberately 2284 * takes a pointer to deter passing in a user address. 2285 */ 2286 unsigned long addr = (unsigned long)va; 2287 2288 /* 2289 * If CPU enforced cache coherency for encrypted mappings of the 2290 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 2291 * flush is still needed in order to work properly with DMA devices. 2292 */ 2293 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 2294 clflush_cache_range(va, PAGE_SIZE); 2295 return; 2296 } 2297 2298 /* 2299 * VM Page Flush takes a host virtual address and a guest ASID. Fall 2300 * back to WBINVD if this faults so as not to make any problems worse 2301 * by leaving stale encrypted data in the cache. 2302 */ 2303 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 2304 goto do_wbinvd; 2305 2306 return; 2307 2308 do_wbinvd: 2309 wbinvd_on_all_cpus(); 2310 } 2311 2312 void sev_guest_memory_reclaimed(struct kvm *kvm) 2313 { 2314 if (!sev_guest(kvm)) 2315 return; 2316 2317 wbinvd_on_all_cpus(); 2318 } 2319 2320 void sev_free_vcpu(struct kvm_vcpu *vcpu) 2321 { 2322 struct vcpu_svm *svm; 2323 2324 if (!sev_es_guest(vcpu->kvm)) 2325 return; 2326 2327 svm = to_svm(vcpu); 2328 2329 if (vcpu->arch.guest_state_protected) 2330 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 2331 2332 __free_page(virt_to_page(svm->sev_es.vmsa)); 2333 2334 if (svm->sev_es.ghcb_sa_free) 2335 kvfree(svm->sev_es.ghcb_sa); 2336 } 2337 2338 static void dump_ghcb(struct vcpu_svm *svm) 2339 { 2340 struct ghcb *ghcb = svm->sev_es.ghcb; 2341 unsigned int nbits; 2342 2343 /* Re-use the dump_invalid_vmcb module parameter */ 2344 if (!dump_invalid_vmcb) { 2345 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2346 return; 2347 } 2348 2349 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2350 2351 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2352 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2353 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2354 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2355 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2356 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2357 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2358 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2359 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2360 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2361 } 2362 2363 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2364 { 2365 struct kvm_vcpu *vcpu = &svm->vcpu; 2366 struct ghcb *ghcb = svm->sev_es.ghcb; 2367 2368 /* 2369 * The GHCB protocol so far allows for the following data 2370 * to be returned: 2371 * GPRs RAX, RBX, RCX, RDX 2372 * 2373 * Copy their values, even if they may not have been written during the 2374 * VM-Exit. It's the guest's responsibility to not consume random data. 2375 */ 2376 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2377 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2378 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2379 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2380 } 2381 2382 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2383 { 2384 struct vmcb_control_area *control = &svm->vmcb->control; 2385 struct kvm_vcpu *vcpu = &svm->vcpu; 2386 struct ghcb *ghcb = svm->sev_es.ghcb; 2387 u64 exit_code; 2388 2389 /* 2390 * The GHCB protocol so far allows for the following data 2391 * to be supplied: 2392 * GPRs RAX, RBX, RCX, RDX 2393 * XCR0 2394 * CPL 2395 * 2396 * VMMCALL allows the guest to provide extra registers. KVM also 2397 * expects RSI for hypercalls, so include that, too. 2398 * 2399 * Copy their values to the appropriate location if supplied. 2400 */ 2401 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2402 2403 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 2404 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 2405 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 2406 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 2407 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 2408 2409 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 2410 2411 if (ghcb_xcr0_is_valid(ghcb)) { 2412 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2413 kvm_update_cpuid_runtime(vcpu); 2414 } 2415 2416 /* Copy the GHCB exit information into the VMCB fields */ 2417 exit_code = ghcb_get_sw_exit_code(ghcb); 2418 control->exit_code = lower_32_bits(exit_code); 2419 control->exit_code_hi = upper_32_bits(exit_code); 2420 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2421 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2422 2423 /* Clear the valid entries fields */ 2424 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2425 } 2426 2427 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2428 { 2429 struct kvm_vcpu *vcpu; 2430 struct ghcb *ghcb; 2431 u64 exit_code; 2432 u64 reason; 2433 2434 ghcb = svm->sev_es.ghcb; 2435 2436 /* 2437 * Retrieve the exit code now even though it may not be marked valid 2438 * as it could help with debugging. 2439 */ 2440 exit_code = ghcb_get_sw_exit_code(ghcb); 2441 2442 /* Only GHCB Usage code 0 is supported */ 2443 if (ghcb->ghcb_usage) { 2444 reason = GHCB_ERR_INVALID_USAGE; 2445 goto vmgexit_err; 2446 } 2447 2448 reason = GHCB_ERR_MISSING_INPUT; 2449 2450 if (!ghcb_sw_exit_code_is_valid(ghcb) || 2451 !ghcb_sw_exit_info_1_is_valid(ghcb) || 2452 !ghcb_sw_exit_info_2_is_valid(ghcb)) 2453 goto vmgexit_err; 2454 2455 switch (ghcb_get_sw_exit_code(ghcb)) { 2456 case SVM_EXIT_READ_DR7: 2457 break; 2458 case SVM_EXIT_WRITE_DR7: 2459 if (!ghcb_rax_is_valid(ghcb)) 2460 goto vmgexit_err; 2461 break; 2462 case SVM_EXIT_RDTSC: 2463 break; 2464 case SVM_EXIT_RDPMC: 2465 if (!ghcb_rcx_is_valid(ghcb)) 2466 goto vmgexit_err; 2467 break; 2468 case SVM_EXIT_CPUID: 2469 if (!ghcb_rax_is_valid(ghcb) || 2470 !ghcb_rcx_is_valid(ghcb)) 2471 goto vmgexit_err; 2472 if (ghcb_get_rax(ghcb) == 0xd) 2473 if (!ghcb_xcr0_is_valid(ghcb)) 2474 goto vmgexit_err; 2475 break; 2476 case SVM_EXIT_INVD: 2477 break; 2478 case SVM_EXIT_IOIO: 2479 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 2480 if (!ghcb_sw_scratch_is_valid(ghcb)) 2481 goto vmgexit_err; 2482 } else { 2483 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 2484 if (!ghcb_rax_is_valid(ghcb)) 2485 goto vmgexit_err; 2486 } 2487 break; 2488 case SVM_EXIT_MSR: 2489 if (!ghcb_rcx_is_valid(ghcb)) 2490 goto vmgexit_err; 2491 if (ghcb_get_sw_exit_info_1(ghcb)) { 2492 if (!ghcb_rax_is_valid(ghcb) || 2493 !ghcb_rdx_is_valid(ghcb)) 2494 goto vmgexit_err; 2495 } 2496 break; 2497 case SVM_EXIT_VMMCALL: 2498 if (!ghcb_rax_is_valid(ghcb) || 2499 !ghcb_cpl_is_valid(ghcb)) 2500 goto vmgexit_err; 2501 break; 2502 case SVM_EXIT_RDTSCP: 2503 break; 2504 case SVM_EXIT_WBINVD: 2505 break; 2506 case SVM_EXIT_MONITOR: 2507 if (!ghcb_rax_is_valid(ghcb) || 2508 !ghcb_rcx_is_valid(ghcb) || 2509 !ghcb_rdx_is_valid(ghcb)) 2510 goto vmgexit_err; 2511 break; 2512 case SVM_EXIT_MWAIT: 2513 if (!ghcb_rax_is_valid(ghcb) || 2514 !ghcb_rcx_is_valid(ghcb)) 2515 goto vmgexit_err; 2516 break; 2517 case SVM_VMGEXIT_MMIO_READ: 2518 case SVM_VMGEXIT_MMIO_WRITE: 2519 if (!ghcb_sw_scratch_is_valid(ghcb)) 2520 goto vmgexit_err; 2521 break; 2522 case SVM_VMGEXIT_NMI_COMPLETE: 2523 case SVM_VMGEXIT_AP_HLT_LOOP: 2524 case SVM_VMGEXIT_AP_JUMP_TABLE: 2525 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2526 break; 2527 default: 2528 reason = GHCB_ERR_INVALID_EVENT; 2529 goto vmgexit_err; 2530 } 2531 2532 return 0; 2533 2534 vmgexit_err: 2535 vcpu = &svm->vcpu; 2536 2537 if (reason == GHCB_ERR_INVALID_USAGE) { 2538 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2539 ghcb->ghcb_usage); 2540 } else if (reason == GHCB_ERR_INVALID_EVENT) { 2541 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 2542 exit_code); 2543 } else { 2544 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 2545 exit_code); 2546 dump_ghcb(svm); 2547 } 2548 2549 /* Clear the valid entries fields */ 2550 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2551 2552 ghcb_set_sw_exit_info_1(ghcb, 2); 2553 ghcb_set_sw_exit_info_2(ghcb, reason); 2554 2555 /* Resume the guest to "return" the error code. */ 2556 return 1; 2557 } 2558 2559 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2560 { 2561 if (!svm->sev_es.ghcb) 2562 return; 2563 2564 if (svm->sev_es.ghcb_sa_free) { 2565 /* 2566 * The scratch area lives outside the GHCB, so there is a 2567 * buffer that, depending on the operation performed, may 2568 * need to be synced, then freed. 2569 */ 2570 if (svm->sev_es.ghcb_sa_sync) { 2571 kvm_write_guest(svm->vcpu.kvm, 2572 ghcb_get_sw_scratch(svm->sev_es.ghcb), 2573 svm->sev_es.ghcb_sa, 2574 svm->sev_es.ghcb_sa_len); 2575 svm->sev_es.ghcb_sa_sync = false; 2576 } 2577 2578 kvfree(svm->sev_es.ghcb_sa); 2579 svm->sev_es.ghcb_sa = NULL; 2580 svm->sev_es.ghcb_sa_free = false; 2581 } 2582 2583 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 2584 2585 sev_es_sync_to_ghcb(svm); 2586 2587 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); 2588 svm->sev_es.ghcb = NULL; 2589 } 2590 2591 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2592 { 2593 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2594 int asid = sev_get_asid(svm->vcpu.kvm); 2595 2596 /* Assign the asid allocated with this SEV guest */ 2597 svm->asid = asid; 2598 2599 /* 2600 * Flush guest TLB: 2601 * 2602 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2603 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2604 */ 2605 if (sd->sev_vmcbs[asid] == svm->vmcb && 2606 svm->vcpu.arch.last_vmentry_cpu == cpu) 2607 return; 2608 2609 sd->sev_vmcbs[asid] = svm->vmcb; 2610 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2611 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2612 } 2613 2614 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2615 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2616 { 2617 struct vmcb_control_area *control = &svm->vmcb->control; 2618 struct ghcb *ghcb = svm->sev_es.ghcb; 2619 u64 ghcb_scratch_beg, ghcb_scratch_end; 2620 u64 scratch_gpa_beg, scratch_gpa_end; 2621 void *scratch_va; 2622 2623 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 2624 if (!scratch_gpa_beg) { 2625 pr_err("vmgexit: scratch gpa not provided\n"); 2626 goto e_scratch; 2627 } 2628 2629 scratch_gpa_end = scratch_gpa_beg + len; 2630 if (scratch_gpa_end < scratch_gpa_beg) { 2631 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2632 len, scratch_gpa_beg); 2633 goto e_scratch; 2634 } 2635 2636 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2637 /* Scratch area begins within GHCB */ 2638 ghcb_scratch_beg = control->ghcb_gpa + 2639 offsetof(struct ghcb, shared_buffer); 2640 ghcb_scratch_end = control->ghcb_gpa + 2641 offsetof(struct ghcb, reserved_1); 2642 2643 /* 2644 * If the scratch area begins within the GHCB, it must be 2645 * completely contained in the GHCB shared buffer area. 2646 */ 2647 if (scratch_gpa_beg < ghcb_scratch_beg || 2648 scratch_gpa_end > ghcb_scratch_end) { 2649 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2650 scratch_gpa_beg, scratch_gpa_end); 2651 goto e_scratch; 2652 } 2653 2654 scratch_va = (void *)svm->sev_es.ghcb; 2655 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2656 } else { 2657 /* 2658 * The guest memory must be read into a kernel buffer, so 2659 * limit the size 2660 */ 2661 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2662 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2663 len, GHCB_SCRATCH_AREA_LIMIT); 2664 goto e_scratch; 2665 } 2666 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 2667 if (!scratch_va) 2668 return -ENOMEM; 2669 2670 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2671 /* Unable to copy scratch area from guest */ 2672 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2673 2674 kvfree(scratch_va); 2675 return -EFAULT; 2676 } 2677 2678 /* 2679 * The scratch area is outside the GHCB. The operation will 2680 * dictate whether the buffer needs to be synced before running 2681 * the vCPU next time (i.e. a read was requested so the data 2682 * must be written back to the guest memory). 2683 */ 2684 svm->sev_es.ghcb_sa_sync = sync; 2685 svm->sev_es.ghcb_sa_free = true; 2686 } 2687 2688 svm->sev_es.ghcb_sa = scratch_va; 2689 svm->sev_es.ghcb_sa_len = len; 2690 2691 return 0; 2692 2693 e_scratch: 2694 ghcb_set_sw_exit_info_1(ghcb, 2); 2695 ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); 2696 2697 return 1; 2698 } 2699 2700 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2701 unsigned int pos) 2702 { 2703 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2704 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2705 } 2706 2707 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2708 { 2709 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2710 } 2711 2712 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2713 { 2714 svm->vmcb->control.ghcb_gpa = value; 2715 } 2716 2717 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2718 { 2719 struct vmcb_control_area *control = &svm->vmcb->control; 2720 struct kvm_vcpu *vcpu = &svm->vcpu; 2721 u64 ghcb_info; 2722 int ret = 1; 2723 2724 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2725 2726 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2727 control->ghcb_gpa); 2728 2729 switch (ghcb_info) { 2730 case GHCB_MSR_SEV_INFO_REQ: 2731 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2732 GHCB_VERSION_MIN, 2733 sev_enc_bit)); 2734 break; 2735 case GHCB_MSR_CPUID_REQ: { 2736 u64 cpuid_fn, cpuid_reg, cpuid_value; 2737 2738 cpuid_fn = get_ghcb_msr_bits(svm, 2739 GHCB_MSR_CPUID_FUNC_MASK, 2740 GHCB_MSR_CPUID_FUNC_POS); 2741 2742 /* Initialize the registers needed by the CPUID intercept */ 2743 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2744 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2745 2746 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2747 if (!ret) { 2748 /* Error, keep GHCB MSR value as-is */ 2749 break; 2750 } 2751 2752 cpuid_reg = get_ghcb_msr_bits(svm, 2753 GHCB_MSR_CPUID_REG_MASK, 2754 GHCB_MSR_CPUID_REG_POS); 2755 if (cpuid_reg == 0) 2756 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2757 else if (cpuid_reg == 1) 2758 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2759 else if (cpuid_reg == 2) 2760 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2761 else 2762 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2763 2764 set_ghcb_msr_bits(svm, cpuid_value, 2765 GHCB_MSR_CPUID_VALUE_MASK, 2766 GHCB_MSR_CPUID_VALUE_POS); 2767 2768 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2769 GHCB_MSR_INFO_MASK, 2770 GHCB_MSR_INFO_POS); 2771 break; 2772 } 2773 case GHCB_MSR_TERM_REQ: { 2774 u64 reason_set, reason_code; 2775 2776 reason_set = get_ghcb_msr_bits(svm, 2777 GHCB_MSR_TERM_REASON_SET_MASK, 2778 GHCB_MSR_TERM_REASON_SET_POS); 2779 reason_code = get_ghcb_msr_bits(svm, 2780 GHCB_MSR_TERM_REASON_MASK, 2781 GHCB_MSR_TERM_REASON_POS); 2782 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2783 reason_set, reason_code); 2784 2785 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 2786 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 2787 vcpu->run->system_event.ndata = 1; 2788 vcpu->run->system_event.data[0] = control->ghcb_gpa; 2789 2790 return 0; 2791 } 2792 default: 2793 /* Error, keep GHCB MSR value as-is */ 2794 break; 2795 } 2796 2797 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2798 control->ghcb_gpa, ret); 2799 2800 return ret; 2801 } 2802 2803 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2804 { 2805 struct vcpu_svm *svm = to_svm(vcpu); 2806 struct vmcb_control_area *control = &svm->vmcb->control; 2807 u64 ghcb_gpa, exit_code; 2808 struct ghcb *ghcb; 2809 int ret; 2810 2811 /* Validate the GHCB */ 2812 ghcb_gpa = control->ghcb_gpa; 2813 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2814 return sev_handle_vmgexit_msr_protocol(svm); 2815 2816 if (!ghcb_gpa) { 2817 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2818 2819 /* Without a GHCB, just return right back to the guest */ 2820 return 1; 2821 } 2822 2823 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 2824 /* Unable to map GHCB from guest */ 2825 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2826 ghcb_gpa); 2827 2828 /* Without a GHCB, just return right back to the guest */ 2829 return 1; 2830 } 2831 2832 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 2833 ghcb = svm->sev_es.ghcb_map.hva; 2834 2835 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); 2836 2837 exit_code = ghcb_get_sw_exit_code(ghcb); 2838 2839 ret = sev_es_validate_vmgexit(svm); 2840 if (ret) 2841 return ret; 2842 2843 sev_es_sync_from_ghcb(svm); 2844 ghcb_set_sw_exit_info_1(ghcb, 0); 2845 ghcb_set_sw_exit_info_2(ghcb, 0); 2846 2847 switch (exit_code) { 2848 case SVM_VMGEXIT_MMIO_READ: 2849 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 2850 if (ret) 2851 break; 2852 2853 ret = kvm_sev_es_mmio_read(vcpu, 2854 control->exit_info_1, 2855 control->exit_info_2, 2856 svm->sev_es.ghcb_sa); 2857 break; 2858 case SVM_VMGEXIT_MMIO_WRITE: 2859 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 2860 if (ret) 2861 break; 2862 2863 ret = kvm_sev_es_mmio_write(vcpu, 2864 control->exit_info_1, 2865 control->exit_info_2, 2866 svm->sev_es.ghcb_sa); 2867 break; 2868 case SVM_VMGEXIT_NMI_COMPLETE: 2869 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); 2870 break; 2871 case SVM_VMGEXIT_AP_HLT_LOOP: 2872 ret = kvm_emulate_ap_reset_hold(vcpu); 2873 break; 2874 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2875 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2876 2877 switch (control->exit_info_1) { 2878 case 0: 2879 /* Set AP jump table address */ 2880 sev->ap_jump_table = control->exit_info_2; 2881 break; 2882 case 1: 2883 /* Get AP jump table address */ 2884 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2885 break; 2886 default: 2887 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2888 control->exit_info_1); 2889 ghcb_set_sw_exit_info_1(ghcb, 2); 2890 ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT); 2891 } 2892 2893 ret = 1; 2894 break; 2895 } 2896 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2897 vcpu_unimpl(vcpu, 2898 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2899 control->exit_info_1, control->exit_info_2); 2900 ret = -EINVAL; 2901 break; 2902 default: 2903 ret = svm_invoke_exit_handler(vcpu, exit_code); 2904 } 2905 2906 return ret; 2907 } 2908 2909 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2910 { 2911 int count; 2912 int bytes; 2913 int r; 2914 2915 if (svm->vmcb->control.exit_info_2 > INT_MAX) 2916 return -EINVAL; 2917 2918 count = svm->vmcb->control.exit_info_2; 2919 if (unlikely(check_mul_overflow(count, size, &bytes))) 2920 return -EINVAL; 2921 2922 r = setup_vmgexit_scratch(svm, in, bytes); 2923 if (r) 2924 return r; 2925 2926 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 2927 count, in); 2928 } 2929 2930 static void sev_es_init_vmcb(struct vcpu_svm *svm) 2931 { 2932 struct kvm_vcpu *vcpu = &svm->vcpu; 2933 2934 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2935 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2936 2937 /* 2938 * An SEV-ES guest requires a VMSA area that is a separate from the 2939 * VMCB page. Do not include the encryption mask on the VMSA physical 2940 * address since hardware will access it using the guest key. 2941 */ 2942 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 2943 2944 /* Can't intercept CR register access, HV can't modify CR registers */ 2945 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2946 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2947 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2948 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2949 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2950 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2951 2952 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2953 2954 /* Track EFER/CR register changes */ 2955 svm_set_intercept(svm, TRAP_EFER_WRITE); 2956 svm_set_intercept(svm, TRAP_CR0_WRITE); 2957 svm_set_intercept(svm, TRAP_CR4_WRITE); 2958 svm_set_intercept(svm, TRAP_CR8_WRITE); 2959 2960 /* No support for enable_vmware_backdoor */ 2961 clr_exception_intercept(svm, GP_VECTOR); 2962 2963 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2964 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2965 2966 /* Clear intercepts on selected MSRs */ 2967 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2968 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2969 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2970 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2971 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2972 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2973 2974 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && 2975 (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP) || 2976 guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDPID))) { 2977 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, 1, 1); 2978 if (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP)) 2979 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 2980 } 2981 } 2982 2983 void sev_init_vmcb(struct vcpu_svm *svm) 2984 { 2985 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 2986 clr_exception_intercept(svm, UD_VECTOR); 2987 2988 if (sev_es_guest(svm->vcpu.kvm)) 2989 sev_es_init_vmcb(svm); 2990 } 2991 2992 void sev_es_vcpu_reset(struct vcpu_svm *svm) 2993 { 2994 /* 2995 * Set the GHCB MSR value as per the GHCB specification when emulating 2996 * vCPU RESET for an SEV-ES guest. 2997 */ 2998 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2999 GHCB_VERSION_MIN, 3000 sev_enc_bit)); 3001 } 3002 3003 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa) 3004 { 3005 /* 3006 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 3007 * of which one step is to perform a VMLOAD. KVM performs the 3008 * corresponding VMSAVE in svm_prepare_guest_switch for both 3009 * traditional and SEV-ES guests. 3010 */ 3011 3012 /* XCR0 is restored on VMEXIT, save the current host value */ 3013 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 3014 3015 /* PKRU is restored on VMEXIT, save the current host value */ 3016 hostsa->pkru = read_pkru(); 3017 3018 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 3019 hostsa->xss = host_xss; 3020 } 3021 3022 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 3023 { 3024 struct vcpu_svm *svm = to_svm(vcpu); 3025 3026 /* First SIPI: Use the values as initially set by the VMM */ 3027 if (!svm->sev_es.received_first_sipi) { 3028 svm->sev_es.received_first_sipi = true; 3029 return; 3030 } 3031 3032 /* 3033 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 3034 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 3035 * non-zero value. 3036 */ 3037 if (!svm->sev_es.ghcb) 3038 return; 3039 3040 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 3041 } 3042