1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 #include <uapi/linux/sev-guest.h> 23 24 #include <asm/pkru.h> 25 #include <asm/trapnr.h> 26 #include <asm/fpu/xcr.h> 27 #include <asm/fpu/xstate.h> 28 #include <asm/debugreg.h> 29 #include <asm/sev.h> 30 31 #include "mmu.h" 32 #include "x86.h" 33 #include "svm.h" 34 #include "svm_ops.h" 35 #include "cpuid.h" 36 #include "trace.h" 37 38 #define GHCB_VERSION_MAX 2ULL 39 #define GHCB_VERSION_DEFAULT 2ULL 40 #define GHCB_VERSION_MIN 1ULL 41 42 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION) 43 44 /* enable/disable SEV support */ 45 static bool sev_enabled = true; 46 module_param_named(sev, sev_enabled, bool, 0444); 47 48 /* enable/disable SEV-ES support */ 49 static bool sev_es_enabled = true; 50 module_param_named(sev_es, sev_es_enabled, bool, 0444); 51 52 /* enable/disable SEV-SNP support */ 53 static bool sev_snp_enabled = true; 54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444); 55 56 /* enable/disable SEV-ES DebugSwap support */ 57 static bool sev_es_debug_swap_enabled = true; 58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 59 static u64 sev_supported_vmsa_features; 60 61 #define AP_RESET_HOLD_NONE 0 62 #define AP_RESET_HOLD_NAE_EVENT 1 63 #define AP_RESET_HOLD_MSR_PROTO 2 64 65 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */ 66 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0) 67 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8) 68 #define SNP_POLICY_MASK_SMT BIT_ULL(16) 69 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17) 70 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19) 71 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20) 72 73 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \ 74 SNP_POLICY_MASK_API_MAJOR | \ 75 SNP_POLICY_MASK_SMT | \ 76 SNP_POLICY_MASK_RSVD_MBO | \ 77 SNP_POLICY_MASK_DEBUG | \ 78 SNP_POLICY_MASK_SINGLE_SOCKET) 79 80 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000 81 82 static u8 sev_enc_bit; 83 static DECLARE_RWSEM(sev_deactivate_lock); 84 static DEFINE_MUTEX(sev_bitmap_lock); 85 unsigned int max_sev_asid; 86 static unsigned int min_sev_asid; 87 static unsigned long sev_me_mask; 88 static unsigned int nr_asids; 89 static unsigned long *sev_asid_bitmap; 90 static unsigned long *sev_reclaim_asid_bitmap; 91 92 static int snp_decommission_context(struct kvm *kvm); 93 94 struct enc_region { 95 struct list_head list; 96 unsigned long npages; 97 struct page **pages; 98 unsigned long uaddr; 99 unsigned long size; 100 }; 101 102 /* Called with the sev_bitmap_lock held, or on shutdown */ 103 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) 104 { 105 int ret, error = 0; 106 unsigned int asid; 107 108 /* Check if there are any ASIDs to reclaim before performing a flush */ 109 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 110 if (asid > max_asid) 111 return -EBUSY; 112 113 /* 114 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 115 * so it must be guarded. 116 */ 117 down_write(&sev_deactivate_lock); 118 119 wbinvd_on_all_cpus(); 120 121 if (sev_snp_enabled) 122 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error); 123 else 124 ret = sev_guest_df_flush(&error); 125 126 up_write(&sev_deactivate_lock); 127 128 if (ret) 129 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n", 130 sev_snp_enabled ? "-SNP" : "", ret, error); 131 132 return ret; 133 } 134 135 static inline bool is_mirroring_enc_context(struct kvm *kvm) 136 { 137 return !!to_kvm_sev_info(kvm)->enc_context_owner; 138 } 139 140 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm) 141 { 142 struct kvm_vcpu *vcpu = &svm->vcpu; 143 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 144 145 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP; 146 } 147 148 /* Must be called with the sev_bitmap_lock held */ 149 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) 150 { 151 if (sev_flush_asids(min_asid, max_asid)) 152 return false; 153 154 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 155 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 156 nr_asids); 157 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 158 159 return true; 160 } 161 162 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 163 { 164 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 165 return misc_cg_try_charge(type, sev->misc_cg, 1); 166 } 167 168 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 169 { 170 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 171 misc_cg_uncharge(type, sev->misc_cg, 1); 172 } 173 174 static int sev_asid_new(struct kvm_sev_info *sev) 175 { 176 /* 177 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 178 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 179 * Note: min ASID can end up larger than the max if basic SEV support is 180 * effectively disabled by disallowing use of ASIDs for SEV guests. 181 */ 182 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; 183 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 184 unsigned int asid; 185 bool retry = true; 186 int ret; 187 188 if (min_asid > max_asid) 189 return -ENOTTY; 190 191 WARN_ON(sev->misc_cg); 192 sev->misc_cg = get_current_misc_cg(); 193 ret = sev_misc_cg_try_charge(sev); 194 if (ret) { 195 put_misc_cg(sev->misc_cg); 196 sev->misc_cg = NULL; 197 return ret; 198 } 199 200 mutex_lock(&sev_bitmap_lock); 201 202 again: 203 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 204 if (asid > max_asid) { 205 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 206 retry = false; 207 goto again; 208 } 209 mutex_unlock(&sev_bitmap_lock); 210 ret = -EBUSY; 211 goto e_uncharge; 212 } 213 214 __set_bit(asid, sev_asid_bitmap); 215 216 mutex_unlock(&sev_bitmap_lock); 217 218 sev->asid = asid; 219 return 0; 220 e_uncharge: 221 sev_misc_cg_uncharge(sev); 222 put_misc_cg(sev->misc_cg); 223 sev->misc_cg = NULL; 224 return ret; 225 } 226 227 static unsigned int sev_get_asid(struct kvm *kvm) 228 { 229 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 230 231 return sev->asid; 232 } 233 234 static void sev_asid_free(struct kvm_sev_info *sev) 235 { 236 struct svm_cpu_data *sd; 237 int cpu; 238 239 mutex_lock(&sev_bitmap_lock); 240 241 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 242 243 for_each_possible_cpu(cpu) { 244 sd = per_cpu_ptr(&svm_data, cpu); 245 sd->sev_vmcbs[sev->asid] = NULL; 246 } 247 248 mutex_unlock(&sev_bitmap_lock); 249 250 sev_misc_cg_uncharge(sev); 251 put_misc_cg(sev->misc_cg); 252 sev->misc_cg = NULL; 253 } 254 255 static void sev_decommission(unsigned int handle) 256 { 257 struct sev_data_decommission decommission; 258 259 if (!handle) 260 return; 261 262 decommission.handle = handle; 263 sev_guest_decommission(&decommission, NULL); 264 } 265 266 /* 267 * Transition a page to hypervisor-owned/shared state in the RMP table. This 268 * should not fail under normal conditions, but leak the page should that 269 * happen since it will no longer be usable by the host due to RMP protections. 270 */ 271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level) 272 { 273 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) { 274 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT); 275 return -EIO; 276 } 277 278 return 0; 279 } 280 281 /* 282 * Certain page-states, such as Pre-Guest and Firmware pages (as documented 283 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be 284 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE 285 * unless they are reclaimed first. 286 * 287 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they 288 * might not be usable by the host due to being set as immutable or still 289 * being associated with a guest ASID. 290 * 291 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be 292 * converted back to shared, as the page is no longer usable due to RMP 293 * protections, and it's infeasible for the guest to continue on. 294 */ 295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn) 296 { 297 struct sev_data_snp_page_reclaim data = {0}; 298 int fw_err, rc; 299 300 data.paddr = __sme_set(pfn << PAGE_SHIFT); 301 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err); 302 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) { 303 snp_leak_pages(pfn, 1); 304 return -EIO; 305 } 306 307 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K)) 308 return -EIO; 309 310 return rc; 311 } 312 313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 314 { 315 struct sev_data_deactivate deactivate; 316 317 if (!handle) 318 return; 319 320 deactivate.handle = handle; 321 322 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 323 down_read(&sev_deactivate_lock); 324 sev_guest_deactivate(&deactivate, NULL); 325 up_read(&sev_deactivate_lock); 326 327 sev_decommission(handle); 328 } 329 330 /* 331 * This sets up bounce buffers/firmware pages to handle SNP Guest Request 332 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB 333 * 2.0 specification for more details. 334 * 335 * Technically, when an SNP Guest Request is issued, the guest will provide its 336 * own request/response pages, which could in theory be passed along directly 337 * to firmware rather than using bounce pages. However, these pages would need 338 * special care: 339 * 340 * - Both pages are from shared guest memory, so they need to be protected 341 * from migration/etc. occurring while firmware reads/writes to them. At a 342 * minimum, this requires elevating the ref counts and potentially needing 343 * an explicit pinning of the memory. This places additional restrictions 344 * on what type of memory backends userspace can use for shared guest 345 * memory since there is some reliance on using refcounted pages. 346 * 347 * - The response page needs to be switched to Firmware-owned[1] state 348 * before the firmware can write to it, which can lead to potential 349 * host RMP #PFs if the guest is misbehaved and hands the host a 350 * guest page that KVM might write to for other reasons (e.g. virtio 351 * buffers/etc.). 352 * 353 * Both of these issues can be avoided completely by using separately-allocated 354 * bounce pages for both the request/response pages and passing those to 355 * firmware instead. So that's what is being set up here. 356 * 357 * Guest requests rely on message sequence numbers to ensure requests are 358 * issued to firmware in the order the guest issues them, so concurrent guest 359 * requests generally shouldn't happen. But a misbehaved guest could issue 360 * concurrent guest requests in theory, so a mutex is used to serialize 361 * access to the bounce buffers. 362 * 363 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more 364 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks" 365 * in the APM for details on the related RMP restrictions. 366 */ 367 static int snp_guest_req_init(struct kvm *kvm) 368 { 369 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 370 struct page *req_page; 371 372 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 373 if (!req_page) 374 return -ENOMEM; 375 376 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 377 if (!sev->guest_resp_buf) { 378 __free_page(req_page); 379 return -EIO; 380 } 381 382 sev->guest_req_buf = page_address(req_page); 383 mutex_init(&sev->guest_req_mutex); 384 385 return 0; 386 } 387 388 static void snp_guest_req_cleanup(struct kvm *kvm) 389 { 390 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 391 392 if (sev->guest_resp_buf) 393 snp_free_firmware_page(sev->guest_resp_buf); 394 395 if (sev->guest_req_buf) 396 __free_page(virt_to_page(sev->guest_req_buf)); 397 398 sev->guest_req_buf = NULL; 399 sev->guest_resp_buf = NULL; 400 } 401 402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp, 403 struct kvm_sev_init *data, 404 unsigned long vm_type) 405 { 406 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 407 struct sev_platform_init_args init_args = {0}; 408 bool es_active = vm_type != KVM_X86_SEV_VM; 409 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0; 410 int ret; 411 412 if (kvm->created_vcpus) 413 return -EINVAL; 414 415 if (data->flags) 416 return -EINVAL; 417 418 if (data->vmsa_features & ~valid_vmsa_features) 419 return -EINVAL; 420 421 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version)) 422 return -EINVAL; 423 424 if (unlikely(sev->active)) 425 return -EINVAL; 426 427 sev->active = true; 428 sev->es_active = es_active; 429 sev->vmsa_features = data->vmsa_features; 430 sev->ghcb_version = data->ghcb_version; 431 432 /* 433 * Currently KVM supports the full range of mandatory features defined 434 * by version 2 of the GHCB protocol, so default to that for SEV-ES 435 * guests created via KVM_SEV_INIT2. 436 */ 437 if (sev->es_active && !sev->ghcb_version) 438 sev->ghcb_version = GHCB_VERSION_DEFAULT; 439 440 if (vm_type == KVM_X86_SNP_VM) 441 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE; 442 443 ret = sev_asid_new(sev); 444 if (ret) 445 goto e_no_asid; 446 447 init_args.probe = false; 448 ret = sev_platform_init(&init_args); 449 if (ret) 450 goto e_free; 451 452 /* This needs to happen after SEV/SNP firmware initialization. */ 453 if (vm_type == KVM_X86_SNP_VM) { 454 ret = snp_guest_req_init(kvm); 455 if (ret) 456 goto e_free; 457 } 458 459 INIT_LIST_HEAD(&sev->regions_list); 460 INIT_LIST_HEAD(&sev->mirror_vms); 461 sev->need_init = false; 462 463 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 464 465 return 0; 466 467 e_free: 468 argp->error = init_args.error; 469 sev_asid_free(sev); 470 sev->asid = 0; 471 e_no_asid: 472 sev->vmsa_features = 0; 473 sev->es_active = false; 474 sev->active = false; 475 return ret; 476 } 477 478 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 479 { 480 struct kvm_sev_init data = { 481 .vmsa_features = 0, 482 .ghcb_version = 0, 483 }; 484 unsigned long vm_type; 485 486 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM) 487 return -EINVAL; 488 489 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM); 490 491 /* 492 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will 493 * continue to only ever support the minimal GHCB protocol version. 494 */ 495 if (vm_type == KVM_X86_SEV_ES_VM) 496 data.ghcb_version = GHCB_VERSION_MIN; 497 498 return __sev_guest_init(kvm, argp, &data, vm_type); 499 } 500 501 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp) 502 { 503 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 504 struct kvm_sev_init data; 505 506 if (!sev->need_init) 507 return -EINVAL; 508 509 if (kvm->arch.vm_type != KVM_X86_SEV_VM && 510 kvm->arch.vm_type != KVM_X86_SEV_ES_VM && 511 kvm->arch.vm_type != KVM_X86_SNP_VM) 512 return -EINVAL; 513 514 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data))) 515 return -EFAULT; 516 517 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type); 518 } 519 520 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 521 { 522 unsigned int asid = sev_get_asid(kvm); 523 struct sev_data_activate activate; 524 int ret; 525 526 /* activate ASID on the given handle */ 527 activate.handle = handle; 528 activate.asid = asid; 529 ret = sev_guest_activate(&activate, error); 530 531 return ret; 532 } 533 534 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 535 { 536 struct fd f; 537 int ret; 538 539 f = fdget(fd); 540 if (!fd_file(f)) 541 return -EBADF; 542 543 ret = sev_issue_cmd_external_user(fd_file(f), id, data, error); 544 545 fdput(f); 546 return ret; 547 } 548 549 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 550 { 551 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 552 553 return __sev_issue_cmd(sev->fd, id, data, error); 554 } 555 556 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 557 { 558 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 559 struct sev_data_launch_start start; 560 struct kvm_sev_launch_start params; 561 void *dh_blob, *session_blob; 562 int *error = &argp->error; 563 int ret; 564 565 if (!sev_guest(kvm)) 566 return -ENOTTY; 567 568 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 569 return -EFAULT; 570 571 memset(&start, 0, sizeof(start)); 572 573 dh_blob = NULL; 574 if (params.dh_uaddr) { 575 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 576 if (IS_ERR(dh_blob)) 577 return PTR_ERR(dh_blob); 578 579 start.dh_cert_address = __sme_set(__pa(dh_blob)); 580 start.dh_cert_len = params.dh_len; 581 } 582 583 session_blob = NULL; 584 if (params.session_uaddr) { 585 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 586 if (IS_ERR(session_blob)) { 587 ret = PTR_ERR(session_blob); 588 goto e_free_dh; 589 } 590 591 start.session_address = __sme_set(__pa(session_blob)); 592 start.session_len = params.session_len; 593 } 594 595 start.handle = params.handle; 596 start.policy = params.policy; 597 598 /* create memory encryption context */ 599 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 600 if (ret) 601 goto e_free_session; 602 603 /* Bind ASID to this guest */ 604 ret = sev_bind_asid(kvm, start.handle, error); 605 if (ret) { 606 sev_decommission(start.handle); 607 goto e_free_session; 608 } 609 610 /* return handle to userspace */ 611 params.handle = start.handle; 612 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) { 613 sev_unbind_asid(kvm, start.handle); 614 ret = -EFAULT; 615 goto e_free_session; 616 } 617 618 sev->handle = start.handle; 619 sev->fd = argp->sev_fd; 620 621 e_free_session: 622 kfree(session_blob); 623 e_free_dh: 624 kfree(dh_blob); 625 return ret; 626 } 627 628 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 629 unsigned long ulen, unsigned long *n, 630 int write) 631 { 632 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 633 unsigned long npages, size; 634 int npinned; 635 unsigned long locked, lock_limit; 636 struct page **pages; 637 unsigned long first, last; 638 int ret; 639 640 lockdep_assert_held(&kvm->lock); 641 642 if (ulen == 0 || uaddr + ulen < uaddr) 643 return ERR_PTR(-EINVAL); 644 645 /* Calculate number of pages. */ 646 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 647 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 648 npages = (last - first + 1); 649 650 locked = sev->pages_locked + npages; 651 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 652 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 653 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 654 return ERR_PTR(-ENOMEM); 655 } 656 657 if (WARN_ON_ONCE(npages > INT_MAX)) 658 return ERR_PTR(-EINVAL); 659 660 /* Avoid using vmalloc for smaller buffers. */ 661 size = npages * sizeof(struct page *); 662 if (size > PAGE_SIZE) 663 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT); 664 else 665 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 666 667 if (!pages) 668 return ERR_PTR(-ENOMEM); 669 670 /* Pin the user virtual address. */ 671 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 672 if (npinned != npages) { 673 pr_err("SEV: Failure locking %lu pages.\n", npages); 674 ret = -ENOMEM; 675 goto err; 676 } 677 678 *n = npages; 679 sev->pages_locked = locked; 680 681 return pages; 682 683 err: 684 if (npinned > 0) 685 unpin_user_pages(pages, npinned); 686 687 kvfree(pages); 688 return ERR_PTR(ret); 689 } 690 691 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 692 unsigned long npages) 693 { 694 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 695 696 unpin_user_pages(pages, npages); 697 kvfree(pages); 698 sev->pages_locked -= npages; 699 } 700 701 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 702 { 703 uint8_t *page_virtual; 704 unsigned long i; 705 706 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 707 pages == NULL) 708 return; 709 710 for (i = 0; i < npages; i++) { 711 page_virtual = kmap_local_page(pages[i]); 712 clflush_cache_range(page_virtual, PAGE_SIZE); 713 kunmap_local(page_virtual); 714 cond_resched(); 715 } 716 } 717 718 static unsigned long get_num_contig_pages(unsigned long idx, 719 struct page **inpages, unsigned long npages) 720 { 721 unsigned long paddr, next_paddr; 722 unsigned long i = idx + 1, pages = 1; 723 724 /* find the number of contiguous pages starting from idx */ 725 paddr = __sme_page_pa(inpages[idx]); 726 while (i < npages) { 727 next_paddr = __sme_page_pa(inpages[i++]); 728 if ((paddr + PAGE_SIZE) == next_paddr) { 729 pages++; 730 paddr = next_paddr; 731 continue; 732 } 733 break; 734 } 735 736 return pages; 737 } 738 739 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 740 { 741 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 742 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 743 struct kvm_sev_launch_update_data params; 744 struct sev_data_launch_update_data data; 745 struct page **inpages; 746 int ret; 747 748 if (!sev_guest(kvm)) 749 return -ENOTTY; 750 751 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 752 return -EFAULT; 753 754 vaddr = params.uaddr; 755 size = params.len; 756 vaddr_end = vaddr + size; 757 758 /* Lock the user memory. */ 759 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 760 if (IS_ERR(inpages)) 761 return PTR_ERR(inpages); 762 763 /* 764 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 765 * place; the cache may contain the data that was written unencrypted. 766 */ 767 sev_clflush_pages(inpages, npages); 768 769 data.reserved = 0; 770 data.handle = sev->handle; 771 772 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 773 int offset, len; 774 775 /* 776 * If the user buffer is not page-aligned, calculate the offset 777 * within the page. 778 */ 779 offset = vaddr & (PAGE_SIZE - 1); 780 781 /* Calculate the number of pages that can be encrypted in one go. */ 782 pages = get_num_contig_pages(i, inpages, npages); 783 784 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 785 786 data.len = len; 787 data.address = __sme_page_pa(inpages[i]) + offset; 788 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 789 if (ret) 790 goto e_unpin; 791 792 size -= len; 793 next_vaddr = vaddr + len; 794 } 795 796 e_unpin: 797 /* content of memory is updated, mark pages dirty */ 798 for (i = 0; i < npages; i++) { 799 set_page_dirty_lock(inpages[i]); 800 mark_page_accessed(inpages[i]); 801 } 802 /* unlock the user pages */ 803 sev_unpin_memory(kvm, inpages, npages); 804 return ret; 805 } 806 807 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 808 { 809 struct kvm_vcpu *vcpu = &svm->vcpu; 810 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 811 struct sev_es_save_area *save = svm->sev_es.vmsa; 812 struct xregs_state *xsave; 813 const u8 *s; 814 u8 *d; 815 int i; 816 817 /* Check some debug related fields before encrypting the VMSA */ 818 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 819 return -EINVAL; 820 821 /* 822 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 823 * the traditional VMSA that is part of the VMCB. Copy the 824 * traditional VMSA as it has been built so far (in prep 825 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 826 */ 827 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 828 829 /* Sync registgers */ 830 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 831 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 832 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 833 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 834 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 835 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 836 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 837 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 838 #ifdef CONFIG_X86_64 839 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 840 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 841 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 842 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 843 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 844 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 845 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 846 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 847 #endif 848 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 849 850 /* Sync some non-GPR registers before encrypting */ 851 save->xcr0 = svm->vcpu.arch.xcr0; 852 save->pkru = svm->vcpu.arch.pkru; 853 save->xss = svm->vcpu.arch.ia32_xss; 854 save->dr6 = svm->vcpu.arch.dr6; 855 856 save->sev_features = sev->vmsa_features; 857 858 /* 859 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid 860 * breaking older measurements. 861 */ 862 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) { 863 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave; 864 save->x87_dp = xsave->i387.rdp; 865 save->mxcsr = xsave->i387.mxcsr; 866 save->x87_ftw = xsave->i387.twd; 867 save->x87_fsw = xsave->i387.swd; 868 save->x87_fcw = xsave->i387.cwd; 869 save->x87_fop = xsave->i387.fop; 870 save->x87_ds = 0; 871 save->x87_cs = 0; 872 save->x87_rip = xsave->i387.rip; 873 874 for (i = 0; i < 8; i++) { 875 /* 876 * The format of the x87 save area is undocumented and 877 * definitely not what you would expect. It consists of 878 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes 879 * area with bytes 8-9 of each register. 880 */ 881 d = save->fpreg_x87 + i * 8; 882 s = ((u8 *)xsave->i387.st_space) + i * 16; 883 memcpy(d, s, 8); 884 save->fpreg_x87[64 + i * 2] = s[8]; 885 save->fpreg_x87[64 + i * 2 + 1] = s[9]; 886 } 887 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256); 888 889 s = get_xsave_addr(xsave, XFEATURE_YMM); 890 if (s) 891 memcpy(save->fpreg_ymm, s, 256); 892 else 893 memset(save->fpreg_ymm, 0, 256); 894 } 895 896 pr_debug("Virtual Machine Save Area (VMSA):\n"); 897 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 898 899 return 0; 900 } 901 902 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 903 int *error) 904 { 905 struct sev_data_launch_update_vmsa vmsa; 906 struct vcpu_svm *svm = to_svm(vcpu); 907 int ret; 908 909 if (vcpu->guest_debug) { 910 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 911 return -EINVAL; 912 } 913 914 /* Perform some pre-encryption checks against the VMSA */ 915 ret = sev_es_sync_vmsa(svm); 916 if (ret) 917 return ret; 918 919 /* 920 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 921 * the VMSA memory content (i.e it will write the same memory region 922 * with the guest's key), so invalidate it first. 923 */ 924 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 925 926 vmsa.reserved = 0; 927 vmsa.handle = to_kvm_sev_info(kvm)->handle; 928 vmsa.address = __sme_pa(svm->sev_es.vmsa); 929 vmsa.len = PAGE_SIZE; 930 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 931 if (ret) 932 return ret; 933 934 /* 935 * SEV-ES guests maintain an encrypted version of their FPU 936 * state which is restored and saved on VMRUN and VMEXIT. 937 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 938 * do xsave/xrstor on it. 939 */ 940 fpstate_set_confidential(&vcpu->arch.guest_fpu); 941 vcpu->arch.guest_state_protected = true; 942 943 /* 944 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it 945 * only after setting guest_state_protected because KVM_SET_MSRS allows 946 * dynamic toggling of LBRV (for performance reason) on write access to 947 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 948 */ 949 svm_enable_lbrv(vcpu); 950 return 0; 951 } 952 953 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 954 { 955 struct kvm_vcpu *vcpu; 956 unsigned long i; 957 int ret; 958 959 if (!sev_es_guest(kvm)) 960 return -ENOTTY; 961 962 kvm_for_each_vcpu(i, vcpu, kvm) { 963 ret = mutex_lock_killable(&vcpu->mutex); 964 if (ret) 965 return ret; 966 967 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 968 969 mutex_unlock(&vcpu->mutex); 970 if (ret) 971 return ret; 972 } 973 974 return 0; 975 } 976 977 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 978 { 979 void __user *measure = u64_to_user_ptr(argp->data); 980 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 981 struct sev_data_launch_measure data; 982 struct kvm_sev_launch_measure params; 983 void __user *p = NULL; 984 void *blob = NULL; 985 int ret; 986 987 if (!sev_guest(kvm)) 988 return -ENOTTY; 989 990 if (copy_from_user(¶ms, measure, sizeof(params))) 991 return -EFAULT; 992 993 memset(&data, 0, sizeof(data)); 994 995 /* User wants to query the blob length */ 996 if (!params.len) 997 goto cmd; 998 999 p = u64_to_user_ptr(params.uaddr); 1000 if (p) { 1001 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1002 return -EINVAL; 1003 1004 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1005 if (!blob) 1006 return -ENOMEM; 1007 1008 data.address = __psp_pa(blob); 1009 data.len = params.len; 1010 } 1011 1012 cmd: 1013 data.handle = sev->handle; 1014 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 1015 1016 /* 1017 * If we query the session length, FW responded with expected data. 1018 */ 1019 if (!params.len) 1020 goto done; 1021 1022 if (ret) 1023 goto e_free_blob; 1024 1025 if (blob) { 1026 if (copy_to_user(p, blob, params.len)) 1027 ret = -EFAULT; 1028 } 1029 1030 done: 1031 params.len = data.len; 1032 if (copy_to_user(measure, ¶ms, sizeof(params))) 1033 ret = -EFAULT; 1034 e_free_blob: 1035 kfree(blob); 1036 return ret; 1037 } 1038 1039 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1040 { 1041 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1042 struct sev_data_launch_finish data; 1043 1044 if (!sev_guest(kvm)) 1045 return -ENOTTY; 1046 1047 data.handle = sev->handle; 1048 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 1049 } 1050 1051 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 1052 { 1053 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1054 struct kvm_sev_guest_status params; 1055 struct sev_data_guest_status data; 1056 int ret; 1057 1058 if (!sev_guest(kvm)) 1059 return -ENOTTY; 1060 1061 memset(&data, 0, sizeof(data)); 1062 1063 data.handle = sev->handle; 1064 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 1065 if (ret) 1066 return ret; 1067 1068 params.policy = data.policy; 1069 params.state = data.state; 1070 params.handle = data.handle; 1071 1072 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 1073 ret = -EFAULT; 1074 1075 return ret; 1076 } 1077 1078 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 1079 unsigned long dst, int size, 1080 int *error, bool enc) 1081 { 1082 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1083 struct sev_data_dbg data; 1084 1085 data.reserved = 0; 1086 data.handle = sev->handle; 1087 data.dst_addr = dst; 1088 data.src_addr = src; 1089 data.len = size; 1090 1091 return sev_issue_cmd(kvm, 1092 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 1093 &data, error); 1094 } 1095 1096 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 1097 unsigned long dst_paddr, int sz, int *err) 1098 { 1099 int offset; 1100 1101 /* 1102 * Its safe to read more than we are asked, caller should ensure that 1103 * destination has enough space. 1104 */ 1105 offset = src_paddr & 15; 1106 src_paddr = round_down(src_paddr, 16); 1107 sz = round_up(sz + offset, 16); 1108 1109 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 1110 } 1111 1112 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 1113 void __user *dst_uaddr, 1114 unsigned long dst_paddr, 1115 int size, int *err) 1116 { 1117 struct page *tpage = NULL; 1118 int ret, offset; 1119 1120 /* if inputs are not 16-byte then use intermediate buffer */ 1121 if (!IS_ALIGNED(dst_paddr, 16) || 1122 !IS_ALIGNED(paddr, 16) || 1123 !IS_ALIGNED(size, 16)) { 1124 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1125 if (!tpage) 1126 return -ENOMEM; 1127 1128 dst_paddr = __sme_page_pa(tpage); 1129 } 1130 1131 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 1132 if (ret) 1133 goto e_free; 1134 1135 if (tpage) { 1136 offset = paddr & 15; 1137 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 1138 ret = -EFAULT; 1139 } 1140 1141 e_free: 1142 if (tpage) 1143 __free_page(tpage); 1144 1145 return ret; 1146 } 1147 1148 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 1149 void __user *vaddr, 1150 unsigned long dst_paddr, 1151 void __user *dst_vaddr, 1152 int size, int *error) 1153 { 1154 struct page *src_tpage = NULL; 1155 struct page *dst_tpage = NULL; 1156 int ret, len = size; 1157 1158 /* If source buffer is not aligned then use an intermediate buffer */ 1159 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 1160 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1161 if (!src_tpage) 1162 return -ENOMEM; 1163 1164 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 1165 __free_page(src_tpage); 1166 return -EFAULT; 1167 } 1168 1169 paddr = __sme_page_pa(src_tpage); 1170 } 1171 1172 /* 1173 * If destination buffer or length is not aligned then do read-modify-write: 1174 * - decrypt destination in an intermediate buffer 1175 * - copy the source buffer in an intermediate buffer 1176 * - use the intermediate buffer as source buffer 1177 */ 1178 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 1179 int dst_offset; 1180 1181 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1182 if (!dst_tpage) { 1183 ret = -ENOMEM; 1184 goto e_free; 1185 } 1186 1187 ret = __sev_dbg_decrypt(kvm, dst_paddr, 1188 __sme_page_pa(dst_tpage), size, error); 1189 if (ret) 1190 goto e_free; 1191 1192 /* 1193 * If source is kernel buffer then use memcpy() otherwise 1194 * copy_from_user(). 1195 */ 1196 dst_offset = dst_paddr & 15; 1197 1198 if (src_tpage) 1199 memcpy(page_address(dst_tpage) + dst_offset, 1200 page_address(src_tpage), size); 1201 else { 1202 if (copy_from_user(page_address(dst_tpage) + dst_offset, 1203 vaddr, size)) { 1204 ret = -EFAULT; 1205 goto e_free; 1206 } 1207 } 1208 1209 paddr = __sme_page_pa(dst_tpage); 1210 dst_paddr = round_down(dst_paddr, 16); 1211 len = round_up(size, 16); 1212 } 1213 1214 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 1215 1216 e_free: 1217 if (src_tpage) 1218 __free_page(src_tpage); 1219 if (dst_tpage) 1220 __free_page(dst_tpage); 1221 return ret; 1222 } 1223 1224 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 1225 { 1226 unsigned long vaddr, vaddr_end, next_vaddr; 1227 unsigned long dst_vaddr; 1228 struct page **src_p, **dst_p; 1229 struct kvm_sev_dbg debug; 1230 unsigned long n; 1231 unsigned int size; 1232 int ret; 1233 1234 if (!sev_guest(kvm)) 1235 return -ENOTTY; 1236 1237 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug))) 1238 return -EFAULT; 1239 1240 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 1241 return -EINVAL; 1242 if (!debug.dst_uaddr) 1243 return -EINVAL; 1244 1245 vaddr = debug.src_uaddr; 1246 size = debug.len; 1247 vaddr_end = vaddr + size; 1248 dst_vaddr = debug.dst_uaddr; 1249 1250 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 1251 int len, s_off, d_off; 1252 1253 /* lock userspace source and destination page */ 1254 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 1255 if (IS_ERR(src_p)) 1256 return PTR_ERR(src_p); 1257 1258 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 1259 if (IS_ERR(dst_p)) { 1260 sev_unpin_memory(kvm, src_p, n); 1261 return PTR_ERR(dst_p); 1262 } 1263 1264 /* 1265 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 1266 * the pages; flush the destination too so that future accesses do not 1267 * see stale data. 1268 */ 1269 sev_clflush_pages(src_p, 1); 1270 sev_clflush_pages(dst_p, 1); 1271 1272 /* 1273 * Since user buffer may not be page aligned, calculate the 1274 * offset within the page. 1275 */ 1276 s_off = vaddr & ~PAGE_MASK; 1277 d_off = dst_vaddr & ~PAGE_MASK; 1278 len = min_t(size_t, (PAGE_SIZE - s_off), size); 1279 1280 if (dec) 1281 ret = __sev_dbg_decrypt_user(kvm, 1282 __sme_page_pa(src_p[0]) + s_off, 1283 (void __user *)dst_vaddr, 1284 __sme_page_pa(dst_p[0]) + d_off, 1285 len, &argp->error); 1286 else 1287 ret = __sev_dbg_encrypt_user(kvm, 1288 __sme_page_pa(src_p[0]) + s_off, 1289 (void __user *)vaddr, 1290 __sme_page_pa(dst_p[0]) + d_off, 1291 (void __user *)dst_vaddr, 1292 len, &argp->error); 1293 1294 sev_unpin_memory(kvm, src_p, n); 1295 sev_unpin_memory(kvm, dst_p, n); 1296 1297 if (ret) 1298 goto err; 1299 1300 next_vaddr = vaddr + len; 1301 dst_vaddr = dst_vaddr + len; 1302 size -= len; 1303 } 1304 err: 1305 return ret; 1306 } 1307 1308 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1309 { 1310 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1311 struct sev_data_launch_secret data; 1312 struct kvm_sev_launch_secret params; 1313 struct page **pages; 1314 void *blob, *hdr; 1315 unsigned long n, i; 1316 int ret, offset; 1317 1318 if (!sev_guest(kvm)) 1319 return -ENOTTY; 1320 1321 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1322 return -EFAULT; 1323 1324 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1325 if (IS_ERR(pages)) 1326 return PTR_ERR(pages); 1327 1328 /* 1329 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1330 * place; the cache may contain the data that was written unencrypted. 1331 */ 1332 sev_clflush_pages(pages, n); 1333 1334 /* 1335 * The secret must be copied into contiguous memory region, lets verify 1336 * that userspace memory pages are contiguous before we issue command. 1337 */ 1338 if (get_num_contig_pages(0, pages, n) != n) { 1339 ret = -EINVAL; 1340 goto e_unpin_memory; 1341 } 1342 1343 memset(&data, 0, sizeof(data)); 1344 1345 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1346 data.guest_address = __sme_page_pa(pages[0]) + offset; 1347 data.guest_len = params.guest_len; 1348 1349 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1350 if (IS_ERR(blob)) { 1351 ret = PTR_ERR(blob); 1352 goto e_unpin_memory; 1353 } 1354 1355 data.trans_address = __psp_pa(blob); 1356 data.trans_len = params.trans_len; 1357 1358 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1359 if (IS_ERR(hdr)) { 1360 ret = PTR_ERR(hdr); 1361 goto e_free_blob; 1362 } 1363 data.hdr_address = __psp_pa(hdr); 1364 data.hdr_len = params.hdr_len; 1365 1366 data.handle = sev->handle; 1367 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1368 1369 kfree(hdr); 1370 1371 e_free_blob: 1372 kfree(blob); 1373 e_unpin_memory: 1374 /* content of memory is updated, mark pages dirty */ 1375 for (i = 0; i < n; i++) { 1376 set_page_dirty_lock(pages[i]); 1377 mark_page_accessed(pages[i]); 1378 } 1379 sev_unpin_memory(kvm, pages, n); 1380 return ret; 1381 } 1382 1383 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1384 { 1385 void __user *report = u64_to_user_ptr(argp->data); 1386 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1387 struct sev_data_attestation_report data; 1388 struct kvm_sev_attestation_report params; 1389 void __user *p; 1390 void *blob = NULL; 1391 int ret; 1392 1393 if (!sev_guest(kvm)) 1394 return -ENOTTY; 1395 1396 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1397 return -EFAULT; 1398 1399 memset(&data, 0, sizeof(data)); 1400 1401 /* User wants to query the blob length */ 1402 if (!params.len) 1403 goto cmd; 1404 1405 p = u64_to_user_ptr(params.uaddr); 1406 if (p) { 1407 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1408 return -EINVAL; 1409 1410 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1411 if (!blob) 1412 return -ENOMEM; 1413 1414 data.address = __psp_pa(blob); 1415 data.len = params.len; 1416 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1417 } 1418 cmd: 1419 data.handle = sev->handle; 1420 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1421 /* 1422 * If we query the session length, FW responded with expected data. 1423 */ 1424 if (!params.len) 1425 goto done; 1426 1427 if (ret) 1428 goto e_free_blob; 1429 1430 if (blob) { 1431 if (copy_to_user(p, blob, params.len)) 1432 ret = -EFAULT; 1433 } 1434 1435 done: 1436 params.len = data.len; 1437 if (copy_to_user(report, ¶ms, sizeof(params))) 1438 ret = -EFAULT; 1439 e_free_blob: 1440 kfree(blob); 1441 return ret; 1442 } 1443 1444 /* Userspace wants to query session length. */ 1445 static int 1446 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1447 struct kvm_sev_send_start *params) 1448 { 1449 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1450 struct sev_data_send_start data; 1451 int ret; 1452 1453 memset(&data, 0, sizeof(data)); 1454 data.handle = sev->handle; 1455 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1456 1457 params->session_len = data.session_len; 1458 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1459 sizeof(struct kvm_sev_send_start))) 1460 ret = -EFAULT; 1461 1462 return ret; 1463 } 1464 1465 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1466 { 1467 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1468 struct sev_data_send_start data; 1469 struct kvm_sev_send_start params; 1470 void *amd_certs, *session_data; 1471 void *pdh_cert, *plat_certs; 1472 int ret; 1473 1474 if (!sev_guest(kvm)) 1475 return -ENOTTY; 1476 1477 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1478 sizeof(struct kvm_sev_send_start))) 1479 return -EFAULT; 1480 1481 /* if session_len is zero, userspace wants to query the session length */ 1482 if (!params.session_len) 1483 return __sev_send_start_query_session_length(kvm, argp, 1484 ¶ms); 1485 1486 /* some sanity checks */ 1487 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1488 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1489 return -EINVAL; 1490 1491 /* allocate the memory to hold the session data blob */ 1492 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1493 if (!session_data) 1494 return -ENOMEM; 1495 1496 /* copy the certificate blobs from userspace */ 1497 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1498 params.pdh_cert_len); 1499 if (IS_ERR(pdh_cert)) { 1500 ret = PTR_ERR(pdh_cert); 1501 goto e_free_session; 1502 } 1503 1504 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1505 params.plat_certs_len); 1506 if (IS_ERR(plat_certs)) { 1507 ret = PTR_ERR(plat_certs); 1508 goto e_free_pdh; 1509 } 1510 1511 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1512 params.amd_certs_len); 1513 if (IS_ERR(amd_certs)) { 1514 ret = PTR_ERR(amd_certs); 1515 goto e_free_plat_cert; 1516 } 1517 1518 /* populate the FW SEND_START field with system physical address */ 1519 memset(&data, 0, sizeof(data)); 1520 data.pdh_cert_address = __psp_pa(pdh_cert); 1521 data.pdh_cert_len = params.pdh_cert_len; 1522 data.plat_certs_address = __psp_pa(plat_certs); 1523 data.plat_certs_len = params.plat_certs_len; 1524 data.amd_certs_address = __psp_pa(amd_certs); 1525 data.amd_certs_len = params.amd_certs_len; 1526 data.session_address = __psp_pa(session_data); 1527 data.session_len = params.session_len; 1528 data.handle = sev->handle; 1529 1530 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1531 1532 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr), 1533 session_data, params.session_len)) { 1534 ret = -EFAULT; 1535 goto e_free_amd_cert; 1536 } 1537 1538 params.policy = data.policy; 1539 params.session_len = data.session_len; 1540 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, 1541 sizeof(struct kvm_sev_send_start))) 1542 ret = -EFAULT; 1543 1544 e_free_amd_cert: 1545 kfree(amd_certs); 1546 e_free_plat_cert: 1547 kfree(plat_certs); 1548 e_free_pdh: 1549 kfree(pdh_cert); 1550 e_free_session: 1551 kfree(session_data); 1552 return ret; 1553 } 1554 1555 /* Userspace wants to query either header or trans length. */ 1556 static int 1557 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1558 struct kvm_sev_send_update_data *params) 1559 { 1560 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1561 struct sev_data_send_update_data data; 1562 int ret; 1563 1564 memset(&data, 0, sizeof(data)); 1565 data.handle = sev->handle; 1566 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1567 1568 params->hdr_len = data.hdr_len; 1569 params->trans_len = data.trans_len; 1570 1571 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1572 sizeof(struct kvm_sev_send_update_data))) 1573 ret = -EFAULT; 1574 1575 return ret; 1576 } 1577 1578 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1579 { 1580 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1581 struct sev_data_send_update_data data; 1582 struct kvm_sev_send_update_data params; 1583 void *hdr, *trans_data; 1584 struct page **guest_page; 1585 unsigned long n; 1586 int ret, offset; 1587 1588 if (!sev_guest(kvm)) 1589 return -ENOTTY; 1590 1591 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1592 sizeof(struct kvm_sev_send_update_data))) 1593 return -EFAULT; 1594 1595 /* userspace wants to query either header or trans length */ 1596 if (!params.trans_len || !params.hdr_len) 1597 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1598 1599 if (!params.trans_uaddr || !params.guest_uaddr || 1600 !params.guest_len || !params.hdr_uaddr) 1601 return -EINVAL; 1602 1603 /* Check if we are crossing the page boundary */ 1604 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1605 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1606 return -EINVAL; 1607 1608 /* Pin guest memory */ 1609 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1610 PAGE_SIZE, &n, 0); 1611 if (IS_ERR(guest_page)) 1612 return PTR_ERR(guest_page); 1613 1614 /* allocate memory for header and transport buffer */ 1615 ret = -ENOMEM; 1616 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1617 if (!hdr) 1618 goto e_unpin; 1619 1620 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1621 if (!trans_data) 1622 goto e_free_hdr; 1623 1624 memset(&data, 0, sizeof(data)); 1625 data.hdr_address = __psp_pa(hdr); 1626 data.hdr_len = params.hdr_len; 1627 data.trans_address = __psp_pa(trans_data); 1628 data.trans_len = params.trans_len; 1629 1630 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1631 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1632 data.guest_address |= sev_me_mask; 1633 data.guest_len = params.guest_len; 1634 data.handle = sev->handle; 1635 1636 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1637 1638 if (ret) 1639 goto e_free_trans_data; 1640 1641 /* copy transport buffer to user space */ 1642 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr), 1643 trans_data, params.trans_len)) { 1644 ret = -EFAULT; 1645 goto e_free_trans_data; 1646 } 1647 1648 /* Copy packet header to userspace. */ 1649 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr, 1650 params.hdr_len)) 1651 ret = -EFAULT; 1652 1653 e_free_trans_data: 1654 kfree(trans_data); 1655 e_free_hdr: 1656 kfree(hdr); 1657 e_unpin: 1658 sev_unpin_memory(kvm, guest_page, n); 1659 1660 return ret; 1661 } 1662 1663 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1664 { 1665 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1666 struct sev_data_send_finish data; 1667 1668 if (!sev_guest(kvm)) 1669 return -ENOTTY; 1670 1671 data.handle = sev->handle; 1672 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1673 } 1674 1675 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1676 { 1677 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1678 struct sev_data_send_cancel data; 1679 1680 if (!sev_guest(kvm)) 1681 return -ENOTTY; 1682 1683 data.handle = sev->handle; 1684 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1685 } 1686 1687 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1688 { 1689 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1690 struct sev_data_receive_start start; 1691 struct kvm_sev_receive_start params; 1692 int *error = &argp->error; 1693 void *session_data; 1694 void *pdh_data; 1695 int ret; 1696 1697 if (!sev_guest(kvm)) 1698 return -ENOTTY; 1699 1700 /* Get parameter from the userspace */ 1701 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1702 sizeof(struct kvm_sev_receive_start))) 1703 return -EFAULT; 1704 1705 /* some sanity checks */ 1706 if (!params.pdh_uaddr || !params.pdh_len || 1707 !params.session_uaddr || !params.session_len) 1708 return -EINVAL; 1709 1710 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1711 if (IS_ERR(pdh_data)) 1712 return PTR_ERR(pdh_data); 1713 1714 session_data = psp_copy_user_blob(params.session_uaddr, 1715 params.session_len); 1716 if (IS_ERR(session_data)) { 1717 ret = PTR_ERR(session_data); 1718 goto e_free_pdh; 1719 } 1720 1721 memset(&start, 0, sizeof(start)); 1722 start.handle = params.handle; 1723 start.policy = params.policy; 1724 start.pdh_cert_address = __psp_pa(pdh_data); 1725 start.pdh_cert_len = params.pdh_len; 1726 start.session_address = __psp_pa(session_data); 1727 start.session_len = params.session_len; 1728 1729 /* create memory encryption context */ 1730 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1731 error); 1732 if (ret) 1733 goto e_free_session; 1734 1735 /* Bind ASID to this guest */ 1736 ret = sev_bind_asid(kvm, start.handle, error); 1737 if (ret) { 1738 sev_decommission(start.handle); 1739 goto e_free_session; 1740 } 1741 1742 params.handle = start.handle; 1743 if (copy_to_user(u64_to_user_ptr(argp->data), 1744 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1745 ret = -EFAULT; 1746 sev_unbind_asid(kvm, start.handle); 1747 goto e_free_session; 1748 } 1749 1750 sev->handle = start.handle; 1751 sev->fd = argp->sev_fd; 1752 1753 e_free_session: 1754 kfree(session_data); 1755 e_free_pdh: 1756 kfree(pdh_data); 1757 1758 return ret; 1759 } 1760 1761 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1762 { 1763 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1764 struct kvm_sev_receive_update_data params; 1765 struct sev_data_receive_update_data data; 1766 void *hdr = NULL, *trans = NULL; 1767 struct page **guest_page; 1768 unsigned long n; 1769 int ret, offset; 1770 1771 if (!sev_guest(kvm)) 1772 return -EINVAL; 1773 1774 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1775 sizeof(struct kvm_sev_receive_update_data))) 1776 return -EFAULT; 1777 1778 if (!params.hdr_uaddr || !params.hdr_len || 1779 !params.guest_uaddr || !params.guest_len || 1780 !params.trans_uaddr || !params.trans_len) 1781 return -EINVAL; 1782 1783 /* Check if we are crossing the page boundary */ 1784 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1785 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1786 return -EINVAL; 1787 1788 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1789 if (IS_ERR(hdr)) 1790 return PTR_ERR(hdr); 1791 1792 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1793 if (IS_ERR(trans)) { 1794 ret = PTR_ERR(trans); 1795 goto e_free_hdr; 1796 } 1797 1798 memset(&data, 0, sizeof(data)); 1799 data.hdr_address = __psp_pa(hdr); 1800 data.hdr_len = params.hdr_len; 1801 data.trans_address = __psp_pa(trans); 1802 data.trans_len = params.trans_len; 1803 1804 /* Pin guest memory */ 1805 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1806 PAGE_SIZE, &n, 1); 1807 if (IS_ERR(guest_page)) { 1808 ret = PTR_ERR(guest_page); 1809 goto e_free_trans; 1810 } 1811 1812 /* 1813 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1814 * encrypts the written data with the guest's key, and the cache may 1815 * contain dirty, unencrypted data. 1816 */ 1817 sev_clflush_pages(guest_page, n); 1818 1819 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1820 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1821 data.guest_address |= sev_me_mask; 1822 data.guest_len = params.guest_len; 1823 data.handle = sev->handle; 1824 1825 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1826 &argp->error); 1827 1828 sev_unpin_memory(kvm, guest_page, n); 1829 1830 e_free_trans: 1831 kfree(trans); 1832 e_free_hdr: 1833 kfree(hdr); 1834 1835 return ret; 1836 } 1837 1838 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1839 { 1840 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1841 struct sev_data_receive_finish data; 1842 1843 if (!sev_guest(kvm)) 1844 return -ENOTTY; 1845 1846 data.handle = sev->handle; 1847 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1848 } 1849 1850 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1851 { 1852 /* 1853 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1854 * active mirror VMs. Also allow the debugging and status commands. 1855 */ 1856 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1857 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1858 cmd_id == KVM_SEV_DBG_ENCRYPT) 1859 return true; 1860 1861 return false; 1862 } 1863 1864 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1865 { 1866 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1867 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1868 int r = -EBUSY; 1869 1870 if (dst_kvm == src_kvm) 1871 return -EINVAL; 1872 1873 /* 1874 * Bail if these VMs are already involved in a migration to avoid 1875 * deadlock between two VMs trying to migrate to/from each other. 1876 */ 1877 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1878 return -EBUSY; 1879 1880 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1881 goto release_dst; 1882 1883 r = -EINTR; 1884 if (mutex_lock_killable(&dst_kvm->lock)) 1885 goto release_src; 1886 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1887 goto unlock_dst; 1888 return 0; 1889 1890 unlock_dst: 1891 mutex_unlock(&dst_kvm->lock); 1892 release_src: 1893 atomic_set_release(&src_sev->migration_in_progress, 0); 1894 release_dst: 1895 atomic_set_release(&dst_sev->migration_in_progress, 0); 1896 return r; 1897 } 1898 1899 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1900 { 1901 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1902 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1903 1904 mutex_unlock(&dst_kvm->lock); 1905 mutex_unlock(&src_kvm->lock); 1906 atomic_set_release(&dst_sev->migration_in_progress, 0); 1907 atomic_set_release(&src_sev->migration_in_progress, 0); 1908 } 1909 1910 /* vCPU mutex subclasses. */ 1911 enum sev_migration_role { 1912 SEV_MIGRATION_SOURCE = 0, 1913 SEV_MIGRATION_TARGET, 1914 SEV_NR_MIGRATION_ROLES, 1915 }; 1916 1917 static int sev_lock_vcpus_for_migration(struct kvm *kvm, 1918 enum sev_migration_role role) 1919 { 1920 struct kvm_vcpu *vcpu; 1921 unsigned long i, j; 1922 1923 kvm_for_each_vcpu(i, vcpu, kvm) { 1924 if (mutex_lock_killable_nested(&vcpu->mutex, role)) 1925 goto out_unlock; 1926 1927 #ifdef CONFIG_PROVE_LOCKING 1928 if (!i) 1929 /* 1930 * Reset the role to one that avoids colliding with 1931 * the role used for the first vcpu mutex. 1932 */ 1933 role = SEV_NR_MIGRATION_ROLES; 1934 else 1935 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_); 1936 #endif 1937 } 1938 1939 return 0; 1940 1941 out_unlock: 1942 1943 kvm_for_each_vcpu(j, vcpu, kvm) { 1944 if (i == j) 1945 break; 1946 1947 #ifdef CONFIG_PROVE_LOCKING 1948 if (j) 1949 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_); 1950 #endif 1951 1952 mutex_unlock(&vcpu->mutex); 1953 } 1954 return -EINTR; 1955 } 1956 1957 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1958 { 1959 struct kvm_vcpu *vcpu; 1960 unsigned long i; 1961 bool first = true; 1962 1963 kvm_for_each_vcpu(i, vcpu, kvm) { 1964 if (first) 1965 first = false; 1966 else 1967 mutex_acquire(&vcpu->mutex.dep_map, 1968 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_); 1969 1970 mutex_unlock(&vcpu->mutex); 1971 } 1972 } 1973 1974 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1975 { 1976 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info; 1977 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info; 1978 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1979 struct vcpu_svm *dst_svm, *src_svm; 1980 struct kvm_sev_info *mirror; 1981 unsigned long i; 1982 1983 dst->active = true; 1984 dst->asid = src->asid; 1985 dst->handle = src->handle; 1986 dst->pages_locked = src->pages_locked; 1987 dst->enc_context_owner = src->enc_context_owner; 1988 dst->es_active = src->es_active; 1989 dst->vmsa_features = src->vmsa_features; 1990 1991 src->asid = 0; 1992 src->active = false; 1993 src->handle = 0; 1994 src->pages_locked = 0; 1995 src->enc_context_owner = NULL; 1996 src->es_active = false; 1997 1998 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1999 2000 /* 2001 * If this VM has mirrors, "transfer" each mirror's refcount of the 2002 * source to the destination (this KVM). The caller holds a reference 2003 * to the source, so there's no danger of use-after-free. 2004 */ 2005 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 2006 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 2007 kvm_get_kvm(dst_kvm); 2008 kvm_put_kvm(src_kvm); 2009 mirror->enc_context_owner = dst_kvm; 2010 } 2011 2012 /* 2013 * If this VM is a mirror, remove the old mirror from the owners list 2014 * and add the new mirror to the list. 2015 */ 2016 if (is_mirroring_enc_context(dst_kvm)) { 2017 struct kvm_sev_info *owner_sev_info = 2018 &to_kvm_svm(dst->enc_context_owner)->sev_info; 2019 2020 list_del(&src->mirror_entry); 2021 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 2022 } 2023 2024 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 2025 dst_svm = to_svm(dst_vcpu); 2026 2027 sev_init_vmcb(dst_svm); 2028 2029 if (!dst->es_active) 2030 continue; 2031 2032 /* 2033 * Note, the source is not required to have the same number of 2034 * vCPUs as the destination when migrating a vanilla SEV VM. 2035 */ 2036 src_vcpu = kvm_get_vcpu(src_kvm, i); 2037 src_svm = to_svm(src_vcpu); 2038 2039 /* 2040 * Transfer VMSA and GHCB state to the destination. Nullify and 2041 * clear source fields as appropriate, the state now belongs to 2042 * the destination. 2043 */ 2044 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 2045 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 2046 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 2047 dst_vcpu->arch.guest_state_protected = true; 2048 2049 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 2050 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 2051 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 2052 src_vcpu->arch.guest_state_protected = false; 2053 } 2054 } 2055 2056 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 2057 { 2058 struct kvm_vcpu *src_vcpu; 2059 unsigned long i; 2060 2061 if (!sev_es_guest(src)) 2062 return 0; 2063 2064 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 2065 return -EINVAL; 2066 2067 kvm_for_each_vcpu(i, src_vcpu, src) { 2068 if (!src_vcpu->arch.guest_state_protected) 2069 return -EINVAL; 2070 } 2071 2072 return 0; 2073 } 2074 2075 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2076 { 2077 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 2078 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 2079 struct fd f = fdget(source_fd); 2080 struct kvm *source_kvm; 2081 bool charged = false; 2082 int ret; 2083 2084 if (!fd_file(f)) 2085 return -EBADF; 2086 2087 if (!file_is_kvm(fd_file(f))) { 2088 ret = -EBADF; 2089 goto out_fput; 2090 } 2091 2092 source_kvm = fd_file(f)->private_data; 2093 ret = sev_lock_two_vms(kvm, source_kvm); 2094 if (ret) 2095 goto out_fput; 2096 2097 if (kvm->arch.vm_type != source_kvm->arch.vm_type || 2098 sev_guest(kvm) || !sev_guest(source_kvm)) { 2099 ret = -EINVAL; 2100 goto out_unlock; 2101 } 2102 2103 src_sev = &to_kvm_svm(source_kvm)->sev_info; 2104 2105 dst_sev->misc_cg = get_current_misc_cg(); 2106 cg_cleanup_sev = dst_sev; 2107 if (dst_sev->misc_cg != src_sev->misc_cg) { 2108 ret = sev_misc_cg_try_charge(dst_sev); 2109 if (ret) 2110 goto out_dst_cgroup; 2111 charged = true; 2112 } 2113 2114 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE); 2115 if (ret) 2116 goto out_dst_cgroup; 2117 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET); 2118 if (ret) 2119 goto out_dst_vcpu; 2120 2121 ret = sev_check_source_vcpus(kvm, source_kvm); 2122 if (ret) 2123 goto out_source_vcpu; 2124 2125 sev_migrate_from(kvm, source_kvm); 2126 kvm_vm_dead(source_kvm); 2127 cg_cleanup_sev = src_sev; 2128 ret = 0; 2129 2130 out_source_vcpu: 2131 sev_unlock_vcpus_for_migration(source_kvm); 2132 out_dst_vcpu: 2133 sev_unlock_vcpus_for_migration(kvm); 2134 out_dst_cgroup: 2135 /* Operates on the source on success, on the destination on failure. */ 2136 if (charged) 2137 sev_misc_cg_uncharge(cg_cleanup_sev); 2138 put_misc_cg(cg_cleanup_sev->misc_cg); 2139 cg_cleanup_sev->misc_cg = NULL; 2140 out_unlock: 2141 sev_unlock_two_vms(kvm, source_kvm); 2142 out_fput: 2143 fdput(f); 2144 return ret; 2145 } 2146 2147 int sev_dev_get_attr(u32 group, u64 attr, u64 *val) 2148 { 2149 if (group != KVM_X86_GRP_SEV) 2150 return -ENXIO; 2151 2152 switch (attr) { 2153 case KVM_X86_SEV_VMSA_FEATURES: 2154 *val = sev_supported_vmsa_features; 2155 return 0; 2156 2157 default: 2158 return -ENXIO; 2159 } 2160 } 2161 2162 /* 2163 * The guest context contains all the information, keys and metadata 2164 * associated with the guest that the firmware tracks to implement SEV 2165 * and SNP features. The firmware stores the guest context in hypervisor 2166 * provide page via the SNP_GCTX_CREATE command. 2167 */ 2168 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp) 2169 { 2170 struct sev_data_snp_addr data = {}; 2171 void *context; 2172 int rc; 2173 2174 /* Allocate memory for context page */ 2175 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT); 2176 if (!context) 2177 return NULL; 2178 2179 data.address = __psp_pa(context); 2180 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error); 2181 if (rc) { 2182 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d", 2183 rc, argp->error); 2184 snp_free_firmware_page(context); 2185 return NULL; 2186 } 2187 2188 return context; 2189 } 2190 2191 static int snp_bind_asid(struct kvm *kvm, int *error) 2192 { 2193 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2194 struct sev_data_snp_activate data = {0}; 2195 2196 data.gctx_paddr = __psp_pa(sev->snp_context); 2197 data.asid = sev_get_asid(kvm); 2198 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error); 2199 } 2200 2201 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 2202 { 2203 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2204 struct sev_data_snp_launch_start start = {0}; 2205 struct kvm_sev_snp_launch_start params; 2206 int rc; 2207 2208 if (!sev_snp_guest(kvm)) 2209 return -ENOTTY; 2210 2211 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2212 return -EFAULT; 2213 2214 /* Don't allow userspace to allocate memory for more than 1 SNP context. */ 2215 if (sev->snp_context) 2216 return -EINVAL; 2217 2218 if (params.flags) 2219 return -EINVAL; 2220 2221 if (params.policy & ~SNP_POLICY_MASK_VALID) 2222 return -EINVAL; 2223 2224 /* Check for policy bits that must be set */ 2225 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) || 2226 !(params.policy & SNP_POLICY_MASK_SMT)) 2227 return -EINVAL; 2228 2229 if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET) 2230 return -EINVAL; 2231 2232 sev->snp_context = snp_context_create(kvm, argp); 2233 if (!sev->snp_context) 2234 return -ENOTTY; 2235 2236 start.gctx_paddr = __psp_pa(sev->snp_context); 2237 start.policy = params.policy; 2238 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw)); 2239 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error); 2240 if (rc) { 2241 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n", 2242 __func__, rc); 2243 goto e_free_context; 2244 } 2245 2246 sev->fd = argp->sev_fd; 2247 rc = snp_bind_asid(kvm, &argp->error); 2248 if (rc) { 2249 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n", 2250 __func__, rc); 2251 goto e_free_context; 2252 } 2253 2254 return 0; 2255 2256 e_free_context: 2257 snp_decommission_context(kvm); 2258 2259 return rc; 2260 } 2261 2262 struct sev_gmem_populate_args { 2263 __u8 type; 2264 int sev_fd; 2265 int fw_error; 2266 }; 2267 2268 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn, 2269 void __user *src, int order, void *opaque) 2270 { 2271 struct sev_gmem_populate_args *sev_populate_args = opaque; 2272 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2273 int n_private = 0, ret, i; 2274 int npages = (1 << order); 2275 gfn_t gfn; 2276 2277 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src)) 2278 return -EINVAL; 2279 2280 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) { 2281 struct sev_data_snp_launch_update fw_args = {0}; 2282 bool assigned = false; 2283 int level; 2284 2285 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level); 2286 if (ret || assigned) { 2287 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n", 2288 __func__, gfn, ret, assigned); 2289 ret = ret ? -EINVAL : -EEXIST; 2290 goto err; 2291 } 2292 2293 if (src) { 2294 void *vaddr = kmap_local_pfn(pfn + i); 2295 2296 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) { 2297 ret = -EFAULT; 2298 goto err; 2299 } 2300 kunmap_local(vaddr); 2301 } 2302 2303 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K, 2304 sev_get_asid(kvm), true); 2305 if (ret) 2306 goto err; 2307 2308 n_private++; 2309 2310 fw_args.gctx_paddr = __psp_pa(sev->snp_context); 2311 fw_args.address = __sme_set(pfn_to_hpa(pfn + i)); 2312 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K); 2313 fw_args.page_type = sev_populate_args->type; 2314 2315 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2316 &fw_args, &sev_populate_args->fw_error); 2317 if (ret) 2318 goto fw_err; 2319 } 2320 2321 return 0; 2322 2323 fw_err: 2324 /* 2325 * If the firmware command failed handle the reclaim and cleanup of that 2326 * PFN specially vs. prior pages which can be cleaned up below without 2327 * needing to reclaim in advance. 2328 * 2329 * Additionally, when invalid CPUID function entries are detected, 2330 * firmware writes the expected values into the page and leaves it 2331 * unencrypted so it can be used for debugging and error-reporting. 2332 * 2333 * Copy this page back into the source buffer so userspace can use this 2334 * information to provide information on which CPUID leaves/fields 2335 * failed CPUID validation. 2336 */ 2337 if (!snp_page_reclaim(kvm, pfn + i) && 2338 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID && 2339 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) { 2340 void *vaddr = kmap_local_pfn(pfn + i); 2341 2342 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE)) 2343 pr_debug("Failed to write CPUID page back to userspace\n"); 2344 2345 kunmap_local(vaddr); 2346 } 2347 2348 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */ 2349 n_private--; 2350 2351 err: 2352 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n", 2353 __func__, ret, sev_populate_args->fw_error, n_private); 2354 for (i = 0; i < n_private; i++) 2355 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K); 2356 2357 return ret; 2358 } 2359 2360 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp) 2361 { 2362 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2363 struct sev_gmem_populate_args sev_populate_args = {0}; 2364 struct kvm_sev_snp_launch_update params; 2365 struct kvm_memory_slot *memslot; 2366 long npages, count; 2367 void __user *src; 2368 int ret = 0; 2369 2370 if (!sev_snp_guest(kvm) || !sev->snp_context) 2371 return -EINVAL; 2372 2373 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2374 return -EFAULT; 2375 2376 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__, 2377 params.gfn_start, params.len, params.type, params.flags); 2378 2379 if (!PAGE_ALIGNED(params.len) || params.flags || 2380 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL && 2381 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO && 2382 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED && 2383 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS && 2384 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID)) 2385 return -EINVAL; 2386 2387 npages = params.len / PAGE_SIZE; 2388 2389 /* 2390 * For each GFN that's being prepared as part of the initial guest 2391 * state, the following pre-conditions are verified: 2392 * 2393 * 1) The backing memslot is a valid private memslot. 2394 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES 2395 * beforehand. 2396 * 3) The PFN of the guest_memfd has not already been set to private 2397 * in the RMP table. 2398 * 2399 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page 2400 * faults if there's a race between a fault and an attribute update via 2401 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized 2402 * here. However, kvm->slots_lock guards against both this as well as 2403 * concurrent memslot updates occurring while these checks are being 2404 * performed, so use that here to make it easier to reason about the 2405 * initial expected state and better guard against unexpected 2406 * situations. 2407 */ 2408 mutex_lock(&kvm->slots_lock); 2409 2410 memslot = gfn_to_memslot(kvm, params.gfn_start); 2411 if (!kvm_slot_can_be_private(memslot)) { 2412 ret = -EINVAL; 2413 goto out; 2414 } 2415 2416 sev_populate_args.sev_fd = argp->sev_fd; 2417 sev_populate_args.type = params.type; 2418 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr); 2419 2420 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages, 2421 sev_gmem_post_populate, &sev_populate_args); 2422 if (count < 0) { 2423 argp->error = sev_populate_args.fw_error; 2424 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n", 2425 __func__, count, argp->error); 2426 ret = -EIO; 2427 } else { 2428 params.gfn_start += count; 2429 params.len -= count * PAGE_SIZE; 2430 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO) 2431 params.uaddr += count * PAGE_SIZE; 2432 2433 ret = 0; 2434 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 2435 ret = -EFAULT; 2436 } 2437 2438 out: 2439 mutex_unlock(&kvm->slots_lock); 2440 2441 return ret; 2442 } 2443 2444 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 2445 { 2446 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2447 struct sev_data_snp_launch_update data = {}; 2448 struct kvm_vcpu *vcpu; 2449 unsigned long i; 2450 int ret; 2451 2452 data.gctx_paddr = __psp_pa(sev->snp_context); 2453 data.page_type = SNP_PAGE_TYPE_VMSA; 2454 2455 kvm_for_each_vcpu(i, vcpu, kvm) { 2456 struct vcpu_svm *svm = to_svm(vcpu); 2457 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 2458 2459 ret = sev_es_sync_vmsa(svm); 2460 if (ret) 2461 return ret; 2462 2463 /* Transition the VMSA page to a firmware state. */ 2464 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true); 2465 if (ret) 2466 return ret; 2467 2468 /* Issue the SNP command to encrypt the VMSA */ 2469 data.address = __sme_pa(svm->sev_es.vmsa); 2470 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2471 &data, &argp->error); 2472 if (ret) { 2473 snp_page_reclaim(kvm, pfn); 2474 2475 return ret; 2476 } 2477 2478 svm->vcpu.arch.guest_state_protected = true; 2479 /* 2480 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to 2481 * be _always_ ON. Enable it only after setting 2482 * guest_state_protected because KVM_SET_MSRS allows dynamic 2483 * toggling of LBRV (for performance reason) on write access to 2484 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 2485 */ 2486 svm_enable_lbrv(vcpu); 2487 } 2488 2489 return 0; 2490 } 2491 2492 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 2493 { 2494 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2495 struct kvm_sev_snp_launch_finish params; 2496 struct sev_data_snp_launch_finish *data; 2497 void *id_block = NULL, *id_auth = NULL; 2498 int ret; 2499 2500 if (!sev_snp_guest(kvm)) 2501 return -ENOTTY; 2502 2503 if (!sev->snp_context) 2504 return -EINVAL; 2505 2506 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2507 return -EFAULT; 2508 2509 if (params.flags) 2510 return -EINVAL; 2511 2512 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */ 2513 ret = snp_launch_update_vmsa(kvm, argp); 2514 if (ret) 2515 return ret; 2516 2517 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 2518 if (!data) 2519 return -ENOMEM; 2520 2521 if (params.id_block_en) { 2522 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE); 2523 if (IS_ERR(id_block)) { 2524 ret = PTR_ERR(id_block); 2525 goto e_free; 2526 } 2527 2528 data->id_block_en = 1; 2529 data->id_block_paddr = __sme_pa(id_block); 2530 2531 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE); 2532 if (IS_ERR(id_auth)) { 2533 ret = PTR_ERR(id_auth); 2534 goto e_free_id_block; 2535 } 2536 2537 data->id_auth_paddr = __sme_pa(id_auth); 2538 2539 if (params.auth_key_en) 2540 data->auth_key_en = 1; 2541 } 2542 2543 data->vcek_disabled = params.vcek_disabled; 2544 2545 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE); 2546 data->gctx_paddr = __psp_pa(sev->snp_context); 2547 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error); 2548 2549 /* 2550 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages 2551 * can be given to the guest simply by marking the RMP entry as private. 2552 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY. 2553 */ 2554 if (!ret) 2555 kvm->arch.pre_fault_allowed = true; 2556 2557 kfree(id_auth); 2558 2559 e_free_id_block: 2560 kfree(id_block); 2561 2562 e_free: 2563 kfree(data); 2564 2565 return ret; 2566 } 2567 2568 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 2569 { 2570 struct kvm_sev_cmd sev_cmd; 2571 int r; 2572 2573 if (!sev_enabled) 2574 return -ENOTTY; 2575 2576 if (!argp) 2577 return 0; 2578 2579 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 2580 return -EFAULT; 2581 2582 mutex_lock(&kvm->lock); 2583 2584 /* Only the enc_context_owner handles some memory enc operations. */ 2585 if (is_mirroring_enc_context(kvm) && 2586 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 2587 r = -EINVAL; 2588 goto out; 2589 } 2590 2591 /* 2592 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only 2593 * allow the use of SNP-specific commands. 2594 */ 2595 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) { 2596 r = -EPERM; 2597 goto out; 2598 } 2599 2600 switch (sev_cmd.id) { 2601 case KVM_SEV_ES_INIT: 2602 if (!sev_es_enabled) { 2603 r = -ENOTTY; 2604 goto out; 2605 } 2606 fallthrough; 2607 case KVM_SEV_INIT: 2608 r = sev_guest_init(kvm, &sev_cmd); 2609 break; 2610 case KVM_SEV_INIT2: 2611 r = sev_guest_init2(kvm, &sev_cmd); 2612 break; 2613 case KVM_SEV_LAUNCH_START: 2614 r = sev_launch_start(kvm, &sev_cmd); 2615 break; 2616 case KVM_SEV_LAUNCH_UPDATE_DATA: 2617 r = sev_launch_update_data(kvm, &sev_cmd); 2618 break; 2619 case KVM_SEV_LAUNCH_UPDATE_VMSA: 2620 r = sev_launch_update_vmsa(kvm, &sev_cmd); 2621 break; 2622 case KVM_SEV_LAUNCH_MEASURE: 2623 r = sev_launch_measure(kvm, &sev_cmd); 2624 break; 2625 case KVM_SEV_LAUNCH_FINISH: 2626 r = sev_launch_finish(kvm, &sev_cmd); 2627 break; 2628 case KVM_SEV_GUEST_STATUS: 2629 r = sev_guest_status(kvm, &sev_cmd); 2630 break; 2631 case KVM_SEV_DBG_DECRYPT: 2632 r = sev_dbg_crypt(kvm, &sev_cmd, true); 2633 break; 2634 case KVM_SEV_DBG_ENCRYPT: 2635 r = sev_dbg_crypt(kvm, &sev_cmd, false); 2636 break; 2637 case KVM_SEV_LAUNCH_SECRET: 2638 r = sev_launch_secret(kvm, &sev_cmd); 2639 break; 2640 case KVM_SEV_GET_ATTESTATION_REPORT: 2641 r = sev_get_attestation_report(kvm, &sev_cmd); 2642 break; 2643 case KVM_SEV_SEND_START: 2644 r = sev_send_start(kvm, &sev_cmd); 2645 break; 2646 case KVM_SEV_SEND_UPDATE_DATA: 2647 r = sev_send_update_data(kvm, &sev_cmd); 2648 break; 2649 case KVM_SEV_SEND_FINISH: 2650 r = sev_send_finish(kvm, &sev_cmd); 2651 break; 2652 case KVM_SEV_SEND_CANCEL: 2653 r = sev_send_cancel(kvm, &sev_cmd); 2654 break; 2655 case KVM_SEV_RECEIVE_START: 2656 r = sev_receive_start(kvm, &sev_cmd); 2657 break; 2658 case KVM_SEV_RECEIVE_UPDATE_DATA: 2659 r = sev_receive_update_data(kvm, &sev_cmd); 2660 break; 2661 case KVM_SEV_RECEIVE_FINISH: 2662 r = sev_receive_finish(kvm, &sev_cmd); 2663 break; 2664 case KVM_SEV_SNP_LAUNCH_START: 2665 r = snp_launch_start(kvm, &sev_cmd); 2666 break; 2667 case KVM_SEV_SNP_LAUNCH_UPDATE: 2668 r = snp_launch_update(kvm, &sev_cmd); 2669 break; 2670 case KVM_SEV_SNP_LAUNCH_FINISH: 2671 r = snp_launch_finish(kvm, &sev_cmd); 2672 break; 2673 default: 2674 r = -EINVAL; 2675 goto out; 2676 } 2677 2678 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 2679 r = -EFAULT; 2680 2681 out: 2682 mutex_unlock(&kvm->lock); 2683 return r; 2684 } 2685 2686 int sev_mem_enc_register_region(struct kvm *kvm, 2687 struct kvm_enc_region *range) 2688 { 2689 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2690 struct enc_region *region; 2691 int ret = 0; 2692 2693 if (!sev_guest(kvm)) 2694 return -ENOTTY; 2695 2696 /* If kvm is mirroring encryption context it isn't responsible for it */ 2697 if (is_mirroring_enc_context(kvm)) 2698 return -EINVAL; 2699 2700 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 2701 return -EINVAL; 2702 2703 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 2704 if (!region) 2705 return -ENOMEM; 2706 2707 mutex_lock(&kvm->lock); 2708 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 2709 if (IS_ERR(region->pages)) { 2710 ret = PTR_ERR(region->pages); 2711 mutex_unlock(&kvm->lock); 2712 goto e_free; 2713 } 2714 2715 /* 2716 * The guest may change the memory encryption attribute from C=0 -> C=1 2717 * or vice versa for this memory range. Lets make sure caches are 2718 * flushed to ensure that guest data gets written into memory with 2719 * correct C-bit. Note, this must be done before dropping kvm->lock, 2720 * as region and its array of pages can be freed by a different task 2721 * once kvm->lock is released. 2722 */ 2723 sev_clflush_pages(region->pages, region->npages); 2724 2725 region->uaddr = range->addr; 2726 region->size = range->size; 2727 2728 list_add_tail(®ion->list, &sev->regions_list); 2729 mutex_unlock(&kvm->lock); 2730 2731 return ret; 2732 2733 e_free: 2734 kfree(region); 2735 return ret; 2736 } 2737 2738 static struct enc_region * 2739 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2740 { 2741 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2742 struct list_head *head = &sev->regions_list; 2743 struct enc_region *i; 2744 2745 list_for_each_entry(i, head, list) { 2746 if (i->uaddr == range->addr && 2747 i->size == range->size) 2748 return i; 2749 } 2750 2751 return NULL; 2752 } 2753 2754 static void __unregister_enc_region_locked(struct kvm *kvm, 2755 struct enc_region *region) 2756 { 2757 sev_unpin_memory(kvm, region->pages, region->npages); 2758 list_del(®ion->list); 2759 kfree(region); 2760 } 2761 2762 int sev_mem_enc_unregister_region(struct kvm *kvm, 2763 struct kvm_enc_region *range) 2764 { 2765 struct enc_region *region; 2766 int ret; 2767 2768 /* If kvm is mirroring encryption context it isn't responsible for it */ 2769 if (is_mirroring_enc_context(kvm)) 2770 return -EINVAL; 2771 2772 mutex_lock(&kvm->lock); 2773 2774 if (!sev_guest(kvm)) { 2775 ret = -ENOTTY; 2776 goto failed; 2777 } 2778 2779 region = find_enc_region(kvm, range); 2780 if (!region) { 2781 ret = -EINVAL; 2782 goto failed; 2783 } 2784 2785 /* 2786 * Ensure that all guest tagged cache entries are flushed before 2787 * releasing the pages back to the system for use. CLFLUSH will 2788 * not do this, so issue a WBINVD. 2789 */ 2790 wbinvd_on_all_cpus(); 2791 2792 __unregister_enc_region_locked(kvm, region); 2793 2794 mutex_unlock(&kvm->lock); 2795 return 0; 2796 2797 failed: 2798 mutex_unlock(&kvm->lock); 2799 return ret; 2800 } 2801 2802 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2803 { 2804 struct fd f = fdget(source_fd); 2805 struct kvm *source_kvm; 2806 struct kvm_sev_info *source_sev, *mirror_sev; 2807 int ret; 2808 2809 if (!fd_file(f)) 2810 return -EBADF; 2811 2812 if (!file_is_kvm(fd_file(f))) { 2813 ret = -EBADF; 2814 goto e_source_fput; 2815 } 2816 2817 source_kvm = fd_file(f)->private_data; 2818 ret = sev_lock_two_vms(kvm, source_kvm); 2819 if (ret) 2820 goto e_source_fput; 2821 2822 /* 2823 * Mirrors of mirrors should work, but let's not get silly. Also 2824 * disallow out-of-band SEV/SEV-ES init if the target is already an 2825 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2826 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2827 */ 2828 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2829 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2830 ret = -EINVAL; 2831 goto e_unlock; 2832 } 2833 2834 /* 2835 * The mirror kvm holds an enc_context_owner ref so its asid can't 2836 * disappear until we're done with it 2837 */ 2838 source_sev = &to_kvm_svm(source_kvm)->sev_info; 2839 kvm_get_kvm(source_kvm); 2840 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2841 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2842 2843 /* Set enc_context_owner and copy its encryption context over */ 2844 mirror_sev->enc_context_owner = source_kvm; 2845 mirror_sev->active = true; 2846 mirror_sev->asid = source_sev->asid; 2847 mirror_sev->fd = source_sev->fd; 2848 mirror_sev->es_active = source_sev->es_active; 2849 mirror_sev->need_init = false; 2850 mirror_sev->handle = source_sev->handle; 2851 INIT_LIST_HEAD(&mirror_sev->regions_list); 2852 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2853 ret = 0; 2854 2855 /* 2856 * Do not copy ap_jump_table. Since the mirror does not share the same 2857 * KVM contexts as the original, and they may have different 2858 * memory-views. 2859 */ 2860 2861 e_unlock: 2862 sev_unlock_two_vms(kvm, source_kvm); 2863 e_source_fput: 2864 fdput(f); 2865 return ret; 2866 } 2867 2868 static int snp_decommission_context(struct kvm *kvm) 2869 { 2870 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2871 struct sev_data_snp_addr data = {}; 2872 int ret; 2873 2874 /* If context is not created then do nothing */ 2875 if (!sev->snp_context) 2876 return 0; 2877 2878 /* Do the decommision, which will unbind the ASID from the SNP context */ 2879 data.address = __sme_pa(sev->snp_context); 2880 down_write(&sev_deactivate_lock); 2881 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL); 2882 up_write(&sev_deactivate_lock); 2883 2884 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret)) 2885 return ret; 2886 2887 snp_free_firmware_page(sev->snp_context); 2888 sev->snp_context = NULL; 2889 2890 return 0; 2891 } 2892 2893 void sev_vm_destroy(struct kvm *kvm) 2894 { 2895 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2896 struct list_head *head = &sev->regions_list; 2897 struct list_head *pos, *q; 2898 2899 if (!sev_guest(kvm)) 2900 return; 2901 2902 WARN_ON(!list_empty(&sev->mirror_vms)); 2903 2904 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2905 if (is_mirroring_enc_context(kvm)) { 2906 struct kvm *owner_kvm = sev->enc_context_owner; 2907 2908 mutex_lock(&owner_kvm->lock); 2909 list_del(&sev->mirror_entry); 2910 mutex_unlock(&owner_kvm->lock); 2911 kvm_put_kvm(owner_kvm); 2912 return; 2913 } 2914 2915 /* 2916 * Ensure that all guest tagged cache entries are flushed before 2917 * releasing the pages back to the system for use. CLFLUSH will 2918 * not do this, so issue a WBINVD. 2919 */ 2920 wbinvd_on_all_cpus(); 2921 2922 /* 2923 * if userspace was terminated before unregistering the memory regions 2924 * then lets unpin all the registered memory. 2925 */ 2926 if (!list_empty(head)) { 2927 list_for_each_safe(pos, q, head) { 2928 __unregister_enc_region_locked(kvm, 2929 list_entry(pos, struct enc_region, list)); 2930 cond_resched(); 2931 } 2932 } 2933 2934 if (sev_snp_guest(kvm)) { 2935 snp_guest_req_cleanup(kvm); 2936 2937 /* 2938 * Decomission handles unbinding of the ASID. If it fails for 2939 * some unexpected reason, just leak the ASID. 2940 */ 2941 if (snp_decommission_context(kvm)) 2942 return; 2943 } else { 2944 sev_unbind_asid(kvm, sev->handle); 2945 } 2946 2947 sev_asid_free(sev); 2948 } 2949 2950 void __init sev_set_cpu_caps(void) 2951 { 2952 if (sev_enabled) { 2953 kvm_cpu_cap_set(X86_FEATURE_SEV); 2954 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM); 2955 } 2956 if (sev_es_enabled) { 2957 kvm_cpu_cap_set(X86_FEATURE_SEV_ES); 2958 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM); 2959 } 2960 if (sev_snp_enabled) { 2961 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP); 2962 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM); 2963 } 2964 } 2965 2966 void __init sev_hardware_setup(void) 2967 { 2968 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2969 bool sev_snp_supported = false; 2970 bool sev_es_supported = false; 2971 bool sev_supported = false; 2972 2973 if (!sev_enabled || !npt_enabled || !nrips) 2974 goto out; 2975 2976 /* 2977 * SEV must obviously be supported in hardware. Sanity check that the 2978 * CPU supports decode assists, which is mandatory for SEV guests to 2979 * support instruction emulation. Ditto for flushing by ASID, as SEV 2980 * guests are bound to a single ASID, i.e. KVM can't rotate to a new 2981 * ASID to effect a TLB flush. 2982 */ 2983 if (!boot_cpu_has(X86_FEATURE_SEV) || 2984 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || 2985 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) 2986 goto out; 2987 2988 /* Retrieve SEV CPUID information */ 2989 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2990 2991 /* Set encryption bit location for SEV-ES guests */ 2992 sev_enc_bit = ebx & 0x3f; 2993 2994 /* Maximum number of encrypted guests supported simultaneously */ 2995 max_sev_asid = ecx; 2996 if (!max_sev_asid) 2997 goto out; 2998 2999 /* Minimum ASID value that should be used for SEV guest */ 3000 min_sev_asid = edx; 3001 sev_me_mask = 1UL << (ebx & 0x3f); 3002 3003 /* 3004 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 3005 * even though it's never used, so that the bitmap is indexed by the 3006 * actual ASID. 3007 */ 3008 nr_asids = max_sev_asid + 1; 3009 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 3010 if (!sev_asid_bitmap) 3011 goto out; 3012 3013 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 3014 if (!sev_reclaim_asid_bitmap) { 3015 bitmap_free(sev_asid_bitmap); 3016 sev_asid_bitmap = NULL; 3017 goto out; 3018 } 3019 3020 if (min_sev_asid <= max_sev_asid) { 3021 sev_asid_count = max_sev_asid - min_sev_asid + 1; 3022 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 3023 } 3024 sev_supported = true; 3025 3026 /* SEV-ES support requested? */ 3027 if (!sev_es_enabled) 3028 goto out; 3029 3030 /* 3031 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 3032 * instruction stream, i.e. can't emulate in response to a #NPF and 3033 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 3034 * (the guest can then do a #VMGEXIT to request MMIO emulation). 3035 */ 3036 if (!enable_mmio_caching) 3037 goto out; 3038 3039 /* Does the CPU support SEV-ES? */ 3040 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 3041 goto out; 3042 3043 if (!lbrv) { 3044 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV), 3045 "LBRV must be present for SEV-ES support"); 3046 goto out; 3047 } 3048 3049 /* Has the system been allocated ASIDs for SEV-ES? */ 3050 if (min_sev_asid == 1) 3051 goto out; 3052 3053 sev_es_asid_count = min_sev_asid - 1; 3054 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 3055 sev_es_supported = true; 3056 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP); 3057 3058 out: 3059 if (boot_cpu_has(X86_FEATURE_SEV)) 3060 pr_info("SEV %s (ASIDs %u - %u)\n", 3061 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : 3062 "unusable" : 3063 "disabled", 3064 min_sev_asid, max_sev_asid); 3065 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 3066 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 3067 sev_es_supported ? "enabled" : "disabled", 3068 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3069 if (boot_cpu_has(X86_FEATURE_SEV_SNP)) 3070 pr_info("SEV-SNP %s (ASIDs %u - %u)\n", 3071 sev_snp_supported ? "enabled" : "disabled", 3072 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3073 3074 sev_enabled = sev_supported; 3075 sev_es_enabled = sev_es_supported; 3076 sev_snp_enabled = sev_snp_supported; 3077 3078 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 3079 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 3080 sev_es_debug_swap_enabled = false; 3081 3082 sev_supported_vmsa_features = 0; 3083 if (sev_es_debug_swap_enabled) 3084 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP; 3085 } 3086 3087 void sev_hardware_unsetup(void) 3088 { 3089 if (!sev_enabled) 3090 return; 3091 3092 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 3093 sev_flush_asids(1, max_sev_asid); 3094 3095 bitmap_free(sev_asid_bitmap); 3096 bitmap_free(sev_reclaim_asid_bitmap); 3097 3098 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 3099 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 3100 } 3101 3102 int sev_cpu_init(struct svm_cpu_data *sd) 3103 { 3104 if (!sev_enabled) 3105 return 0; 3106 3107 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 3108 if (!sd->sev_vmcbs) 3109 return -ENOMEM; 3110 3111 return 0; 3112 } 3113 3114 /* 3115 * Pages used by hardware to hold guest encrypted state must be flushed before 3116 * returning them to the system. 3117 */ 3118 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 3119 { 3120 unsigned int asid = sev_get_asid(vcpu->kvm); 3121 3122 /* 3123 * Note! The address must be a kernel address, as regular page walk 3124 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 3125 * address is non-deterministic and unsafe. This function deliberately 3126 * takes a pointer to deter passing in a user address. 3127 */ 3128 unsigned long addr = (unsigned long)va; 3129 3130 /* 3131 * If CPU enforced cache coherency for encrypted mappings of the 3132 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 3133 * flush is still needed in order to work properly with DMA devices. 3134 */ 3135 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 3136 clflush_cache_range(va, PAGE_SIZE); 3137 return; 3138 } 3139 3140 /* 3141 * VM Page Flush takes a host virtual address and a guest ASID. Fall 3142 * back to WBINVD if this faults so as not to make any problems worse 3143 * by leaving stale encrypted data in the cache. 3144 */ 3145 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 3146 goto do_wbinvd; 3147 3148 return; 3149 3150 do_wbinvd: 3151 wbinvd_on_all_cpus(); 3152 } 3153 3154 void sev_guest_memory_reclaimed(struct kvm *kvm) 3155 { 3156 /* 3157 * With SNP+gmem, private/encrypted memory is unreachable via the 3158 * hva-based mmu notifiers, so these events are only actually 3159 * pertaining to shared pages where there is no need to perform 3160 * the WBINVD to flush associated caches. 3161 */ 3162 if (!sev_guest(kvm) || sev_snp_guest(kvm)) 3163 return; 3164 3165 wbinvd_on_all_cpus(); 3166 } 3167 3168 void sev_free_vcpu(struct kvm_vcpu *vcpu) 3169 { 3170 struct vcpu_svm *svm; 3171 3172 if (!sev_es_guest(vcpu->kvm)) 3173 return; 3174 3175 svm = to_svm(vcpu); 3176 3177 /* 3178 * If it's an SNP guest, then the VMSA was marked in the RMP table as 3179 * a guest-owned page. Transition the page to hypervisor state before 3180 * releasing it back to the system. 3181 */ 3182 if (sev_snp_guest(vcpu->kvm)) { 3183 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 3184 3185 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K)) 3186 goto skip_vmsa_free; 3187 } 3188 3189 if (vcpu->arch.guest_state_protected) 3190 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 3191 3192 __free_page(virt_to_page(svm->sev_es.vmsa)); 3193 3194 skip_vmsa_free: 3195 if (svm->sev_es.ghcb_sa_free) 3196 kvfree(svm->sev_es.ghcb_sa); 3197 } 3198 3199 static void dump_ghcb(struct vcpu_svm *svm) 3200 { 3201 struct ghcb *ghcb = svm->sev_es.ghcb; 3202 unsigned int nbits; 3203 3204 /* Re-use the dump_invalid_vmcb module parameter */ 3205 if (!dump_invalid_vmcb) { 3206 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3207 return; 3208 } 3209 3210 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 3211 3212 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 3213 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 3214 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 3215 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 3216 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 3217 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 3218 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 3219 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 3220 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 3221 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 3222 } 3223 3224 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 3225 { 3226 struct kvm_vcpu *vcpu = &svm->vcpu; 3227 struct ghcb *ghcb = svm->sev_es.ghcb; 3228 3229 /* 3230 * The GHCB protocol so far allows for the following data 3231 * to be returned: 3232 * GPRs RAX, RBX, RCX, RDX 3233 * 3234 * Copy their values, even if they may not have been written during the 3235 * VM-Exit. It's the guest's responsibility to not consume random data. 3236 */ 3237 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 3238 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 3239 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 3240 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 3241 } 3242 3243 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 3244 { 3245 struct vmcb_control_area *control = &svm->vmcb->control; 3246 struct kvm_vcpu *vcpu = &svm->vcpu; 3247 struct ghcb *ghcb = svm->sev_es.ghcb; 3248 u64 exit_code; 3249 3250 /* 3251 * The GHCB protocol so far allows for the following data 3252 * to be supplied: 3253 * GPRs RAX, RBX, RCX, RDX 3254 * XCR0 3255 * CPL 3256 * 3257 * VMMCALL allows the guest to provide extra registers. KVM also 3258 * expects RSI for hypercalls, so include that, too. 3259 * 3260 * Copy their values to the appropriate location if supplied. 3261 */ 3262 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 3263 3264 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 3265 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 3266 3267 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); 3268 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); 3269 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); 3270 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); 3271 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); 3272 3273 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); 3274 3275 if (kvm_ghcb_xcr0_is_valid(svm)) { 3276 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 3277 kvm_update_cpuid_runtime(vcpu); 3278 } 3279 3280 /* Copy the GHCB exit information into the VMCB fields */ 3281 exit_code = ghcb_get_sw_exit_code(ghcb); 3282 control->exit_code = lower_32_bits(exit_code); 3283 control->exit_code_hi = upper_32_bits(exit_code); 3284 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 3285 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 3286 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); 3287 3288 /* Clear the valid entries fields */ 3289 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 3290 } 3291 3292 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) 3293 { 3294 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 3295 } 3296 3297 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 3298 { 3299 struct vmcb_control_area *control = &svm->vmcb->control; 3300 struct kvm_vcpu *vcpu = &svm->vcpu; 3301 u64 exit_code; 3302 u64 reason; 3303 3304 /* 3305 * Retrieve the exit code now even though it may not be marked valid 3306 * as it could help with debugging. 3307 */ 3308 exit_code = kvm_ghcb_get_sw_exit_code(control); 3309 3310 /* Only GHCB Usage code 0 is supported */ 3311 if (svm->sev_es.ghcb->ghcb_usage) { 3312 reason = GHCB_ERR_INVALID_USAGE; 3313 goto vmgexit_err; 3314 } 3315 3316 reason = GHCB_ERR_MISSING_INPUT; 3317 3318 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 3319 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 3320 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 3321 goto vmgexit_err; 3322 3323 switch (exit_code) { 3324 case SVM_EXIT_READ_DR7: 3325 break; 3326 case SVM_EXIT_WRITE_DR7: 3327 if (!kvm_ghcb_rax_is_valid(svm)) 3328 goto vmgexit_err; 3329 break; 3330 case SVM_EXIT_RDTSC: 3331 break; 3332 case SVM_EXIT_RDPMC: 3333 if (!kvm_ghcb_rcx_is_valid(svm)) 3334 goto vmgexit_err; 3335 break; 3336 case SVM_EXIT_CPUID: 3337 if (!kvm_ghcb_rax_is_valid(svm) || 3338 !kvm_ghcb_rcx_is_valid(svm)) 3339 goto vmgexit_err; 3340 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 3341 if (!kvm_ghcb_xcr0_is_valid(svm)) 3342 goto vmgexit_err; 3343 break; 3344 case SVM_EXIT_INVD: 3345 break; 3346 case SVM_EXIT_IOIO: 3347 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 3348 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3349 goto vmgexit_err; 3350 } else { 3351 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 3352 if (!kvm_ghcb_rax_is_valid(svm)) 3353 goto vmgexit_err; 3354 } 3355 break; 3356 case SVM_EXIT_MSR: 3357 if (!kvm_ghcb_rcx_is_valid(svm)) 3358 goto vmgexit_err; 3359 if (control->exit_info_1) { 3360 if (!kvm_ghcb_rax_is_valid(svm) || 3361 !kvm_ghcb_rdx_is_valid(svm)) 3362 goto vmgexit_err; 3363 } 3364 break; 3365 case SVM_EXIT_VMMCALL: 3366 if (!kvm_ghcb_rax_is_valid(svm) || 3367 !kvm_ghcb_cpl_is_valid(svm)) 3368 goto vmgexit_err; 3369 break; 3370 case SVM_EXIT_RDTSCP: 3371 break; 3372 case SVM_EXIT_WBINVD: 3373 break; 3374 case SVM_EXIT_MONITOR: 3375 if (!kvm_ghcb_rax_is_valid(svm) || 3376 !kvm_ghcb_rcx_is_valid(svm) || 3377 !kvm_ghcb_rdx_is_valid(svm)) 3378 goto vmgexit_err; 3379 break; 3380 case SVM_EXIT_MWAIT: 3381 if (!kvm_ghcb_rax_is_valid(svm) || 3382 !kvm_ghcb_rcx_is_valid(svm)) 3383 goto vmgexit_err; 3384 break; 3385 case SVM_VMGEXIT_MMIO_READ: 3386 case SVM_VMGEXIT_MMIO_WRITE: 3387 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3388 goto vmgexit_err; 3389 break; 3390 case SVM_VMGEXIT_AP_CREATION: 3391 if (!sev_snp_guest(vcpu->kvm)) 3392 goto vmgexit_err; 3393 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY) 3394 if (!kvm_ghcb_rax_is_valid(svm)) 3395 goto vmgexit_err; 3396 break; 3397 case SVM_VMGEXIT_NMI_COMPLETE: 3398 case SVM_VMGEXIT_AP_HLT_LOOP: 3399 case SVM_VMGEXIT_AP_JUMP_TABLE: 3400 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 3401 case SVM_VMGEXIT_HV_FEATURES: 3402 case SVM_VMGEXIT_TERM_REQUEST: 3403 break; 3404 case SVM_VMGEXIT_PSC: 3405 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm)) 3406 goto vmgexit_err; 3407 break; 3408 case SVM_VMGEXIT_GUEST_REQUEST: 3409 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 3410 if (!sev_snp_guest(vcpu->kvm) || 3411 !PAGE_ALIGNED(control->exit_info_1) || 3412 !PAGE_ALIGNED(control->exit_info_2) || 3413 control->exit_info_1 == control->exit_info_2) 3414 goto vmgexit_err; 3415 break; 3416 default: 3417 reason = GHCB_ERR_INVALID_EVENT; 3418 goto vmgexit_err; 3419 } 3420 3421 return 0; 3422 3423 vmgexit_err: 3424 if (reason == GHCB_ERR_INVALID_USAGE) { 3425 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 3426 svm->sev_es.ghcb->ghcb_usage); 3427 } else if (reason == GHCB_ERR_INVALID_EVENT) { 3428 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 3429 exit_code); 3430 } else { 3431 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 3432 exit_code); 3433 dump_ghcb(svm); 3434 } 3435 3436 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 3437 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason); 3438 3439 /* Resume the guest to "return" the error code. */ 3440 return 1; 3441 } 3442 3443 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 3444 { 3445 /* Clear any indication that the vCPU is in a type of AP Reset Hold */ 3446 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE; 3447 3448 if (!svm->sev_es.ghcb) 3449 return; 3450 3451 if (svm->sev_es.ghcb_sa_free) { 3452 /* 3453 * The scratch area lives outside the GHCB, so there is a 3454 * buffer that, depending on the operation performed, may 3455 * need to be synced, then freed. 3456 */ 3457 if (svm->sev_es.ghcb_sa_sync) { 3458 kvm_write_guest(svm->vcpu.kvm, 3459 svm->sev_es.sw_scratch, 3460 svm->sev_es.ghcb_sa, 3461 svm->sev_es.ghcb_sa_len); 3462 svm->sev_es.ghcb_sa_sync = false; 3463 } 3464 3465 kvfree(svm->sev_es.ghcb_sa); 3466 svm->sev_es.ghcb_sa = NULL; 3467 svm->sev_es.ghcb_sa_free = false; 3468 } 3469 3470 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 3471 3472 sev_es_sync_to_ghcb(svm); 3473 3474 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); 3475 svm->sev_es.ghcb = NULL; 3476 } 3477 3478 void pre_sev_run(struct vcpu_svm *svm, int cpu) 3479 { 3480 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 3481 unsigned int asid = sev_get_asid(svm->vcpu.kvm); 3482 3483 /* Assign the asid allocated with this SEV guest */ 3484 svm->asid = asid; 3485 3486 /* 3487 * Flush guest TLB: 3488 * 3489 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 3490 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 3491 */ 3492 if (sd->sev_vmcbs[asid] == svm->vmcb && 3493 svm->vcpu.arch.last_vmentry_cpu == cpu) 3494 return; 3495 3496 sd->sev_vmcbs[asid] = svm->vmcb; 3497 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3498 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3499 } 3500 3501 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 3502 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 3503 { 3504 struct vmcb_control_area *control = &svm->vmcb->control; 3505 u64 ghcb_scratch_beg, ghcb_scratch_end; 3506 u64 scratch_gpa_beg, scratch_gpa_end; 3507 void *scratch_va; 3508 3509 scratch_gpa_beg = svm->sev_es.sw_scratch; 3510 if (!scratch_gpa_beg) { 3511 pr_err("vmgexit: scratch gpa not provided\n"); 3512 goto e_scratch; 3513 } 3514 3515 scratch_gpa_end = scratch_gpa_beg + len; 3516 if (scratch_gpa_end < scratch_gpa_beg) { 3517 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 3518 len, scratch_gpa_beg); 3519 goto e_scratch; 3520 } 3521 3522 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 3523 /* Scratch area begins within GHCB */ 3524 ghcb_scratch_beg = control->ghcb_gpa + 3525 offsetof(struct ghcb, shared_buffer); 3526 ghcb_scratch_end = control->ghcb_gpa + 3527 offsetof(struct ghcb, reserved_0xff0); 3528 3529 /* 3530 * If the scratch area begins within the GHCB, it must be 3531 * completely contained in the GHCB shared buffer area. 3532 */ 3533 if (scratch_gpa_beg < ghcb_scratch_beg || 3534 scratch_gpa_end > ghcb_scratch_end) { 3535 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 3536 scratch_gpa_beg, scratch_gpa_end); 3537 goto e_scratch; 3538 } 3539 3540 scratch_va = (void *)svm->sev_es.ghcb; 3541 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 3542 } else { 3543 /* 3544 * The guest memory must be read into a kernel buffer, so 3545 * limit the size 3546 */ 3547 if (len > GHCB_SCRATCH_AREA_LIMIT) { 3548 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 3549 len, GHCB_SCRATCH_AREA_LIMIT); 3550 goto e_scratch; 3551 } 3552 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 3553 if (!scratch_va) 3554 return -ENOMEM; 3555 3556 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 3557 /* Unable to copy scratch area from guest */ 3558 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 3559 3560 kvfree(scratch_va); 3561 return -EFAULT; 3562 } 3563 3564 /* 3565 * The scratch area is outside the GHCB. The operation will 3566 * dictate whether the buffer needs to be synced before running 3567 * the vCPU next time (i.e. a read was requested so the data 3568 * must be written back to the guest memory). 3569 */ 3570 svm->sev_es.ghcb_sa_sync = sync; 3571 svm->sev_es.ghcb_sa_free = true; 3572 } 3573 3574 svm->sev_es.ghcb_sa = scratch_va; 3575 svm->sev_es.ghcb_sa_len = len; 3576 3577 return 0; 3578 3579 e_scratch: 3580 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 3581 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); 3582 3583 return 1; 3584 } 3585 3586 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 3587 unsigned int pos) 3588 { 3589 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 3590 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 3591 } 3592 3593 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 3594 { 3595 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 3596 } 3597 3598 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 3599 { 3600 svm->vmcb->control.ghcb_gpa = value; 3601 } 3602 3603 static int snp_rmptable_psmash(kvm_pfn_t pfn) 3604 { 3605 int ret; 3606 3607 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1); 3608 3609 /* 3610 * PSMASH_FAIL_INUSE indicates another processor is modifying the 3611 * entry, so retry until that's no longer the case. 3612 */ 3613 do { 3614 ret = psmash(pfn); 3615 } while (ret == PSMASH_FAIL_INUSE); 3616 3617 return ret; 3618 } 3619 3620 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu) 3621 { 3622 struct vcpu_svm *svm = to_svm(vcpu); 3623 3624 if (vcpu->run->hypercall.ret) 3625 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3626 else 3627 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP); 3628 3629 return 1; /* resume guest */ 3630 } 3631 3632 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) 3633 { 3634 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr)); 3635 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr); 3636 struct kvm_vcpu *vcpu = &svm->vcpu; 3637 3638 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) { 3639 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3640 return 1; /* resume guest */ 3641 } 3642 3643 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { 3644 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3645 return 1; /* resume guest */ 3646 } 3647 3648 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3649 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3650 vcpu->run->hypercall.args[0] = gpa; 3651 vcpu->run->hypercall.args[1] = 1; 3652 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) 3653 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3654 : KVM_MAP_GPA_RANGE_DECRYPTED; 3655 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3656 3657 vcpu->arch.complete_userspace_io = snp_complete_psc_msr; 3658 3659 return 0; /* forward request to userspace */ 3660 } 3661 3662 struct psc_buffer { 3663 struct psc_hdr hdr; 3664 struct psc_entry entries[]; 3665 } __packed; 3666 3667 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc); 3668 3669 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret) 3670 { 3671 svm->sev_es.psc_inflight = 0; 3672 svm->sev_es.psc_idx = 0; 3673 svm->sev_es.psc_2m = false; 3674 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret); 3675 } 3676 3677 static void __snp_complete_one_psc(struct vcpu_svm *svm) 3678 { 3679 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3680 struct psc_entry *entries = psc->entries; 3681 struct psc_hdr *hdr = &psc->hdr; 3682 __u16 idx; 3683 3684 /* 3685 * Everything in-flight has been processed successfully. Update the 3686 * corresponding entries in the guest's PSC buffer and zero out the 3687 * count of in-flight PSC entries. 3688 */ 3689 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight; 3690 svm->sev_es.psc_inflight--, idx++) { 3691 struct psc_entry *entry = &entries[idx]; 3692 3693 entry->cur_page = entry->pagesize ? 512 : 1; 3694 } 3695 3696 hdr->cur_entry = idx; 3697 } 3698 3699 static int snp_complete_one_psc(struct kvm_vcpu *vcpu) 3700 { 3701 struct vcpu_svm *svm = to_svm(vcpu); 3702 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3703 3704 if (vcpu->run->hypercall.ret) { 3705 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3706 return 1; /* resume guest */ 3707 } 3708 3709 __snp_complete_one_psc(svm); 3710 3711 /* Handle the next range (if any). */ 3712 return snp_begin_psc(svm, psc); 3713 } 3714 3715 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) 3716 { 3717 struct psc_entry *entries = psc->entries; 3718 struct kvm_vcpu *vcpu = &svm->vcpu; 3719 struct psc_hdr *hdr = &psc->hdr; 3720 struct psc_entry entry_start; 3721 u16 idx, idx_start, idx_end; 3722 int npages; 3723 bool huge; 3724 u64 gfn; 3725 3726 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { 3727 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3728 return 1; 3729 } 3730 3731 next_range: 3732 /* There should be no other PSCs in-flight at this point. */ 3733 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) { 3734 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3735 return 1; 3736 } 3737 3738 /* 3739 * The PSC descriptor buffer can be modified by a misbehaved guest after 3740 * validation, so take care to only use validated copies of values used 3741 * for things like array indexing. 3742 */ 3743 idx_start = hdr->cur_entry; 3744 idx_end = hdr->end_entry; 3745 3746 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) { 3747 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR); 3748 return 1; 3749 } 3750 3751 /* Find the start of the next range which needs processing. */ 3752 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) { 3753 entry_start = entries[idx]; 3754 3755 gfn = entry_start.gfn; 3756 huge = entry_start.pagesize; 3757 npages = huge ? 512 : 1; 3758 3759 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) { 3760 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY); 3761 return 1; 3762 } 3763 3764 if (entry_start.cur_page) { 3765 /* 3766 * If this is a partially-completed 2M range, force 4K handling 3767 * for the remaining pages since they're effectively split at 3768 * this point. Subsequent code should ensure this doesn't get 3769 * combined with adjacent PSC entries where 2M handling is still 3770 * possible. 3771 */ 3772 npages -= entry_start.cur_page; 3773 gfn += entry_start.cur_page; 3774 huge = false; 3775 } 3776 3777 if (npages) 3778 break; 3779 } 3780 3781 if (idx > idx_end) { 3782 /* Nothing more to process. */ 3783 snp_complete_psc(svm, 0); 3784 return 1; 3785 } 3786 3787 svm->sev_es.psc_2m = huge; 3788 svm->sev_es.psc_idx = idx; 3789 svm->sev_es.psc_inflight = 1; 3790 3791 /* 3792 * Find all subsequent PSC entries that contain adjacent GPA 3793 * ranges/operations and can be combined into a single 3794 * KVM_HC_MAP_GPA_RANGE exit. 3795 */ 3796 while (++idx <= idx_end) { 3797 struct psc_entry entry = entries[idx]; 3798 3799 if (entry.operation != entry_start.operation || 3800 entry.gfn != entry_start.gfn + npages || 3801 entry.cur_page || !!entry.pagesize != huge) 3802 break; 3803 3804 svm->sev_es.psc_inflight++; 3805 npages += huge ? 512 : 1; 3806 } 3807 3808 switch (entry_start.operation) { 3809 case VMGEXIT_PSC_OP_PRIVATE: 3810 case VMGEXIT_PSC_OP_SHARED: 3811 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3812 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3813 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); 3814 vcpu->run->hypercall.args[1] = npages; 3815 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE 3816 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3817 : KVM_MAP_GPA_RANGE_DECRYPTED; 3818 vcpu->run->hypercall.args[2] |= entry_start.pagesize 3819 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M 3820 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3821 vcpu->arch.complete_userspace_io = snp_complete_one_psc; 3822 return 0; /* forward request to userspace */ 3823 default: 3824 /* 3825 * Only shared/private PSC operations are currently supported, so if the 3826 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH), 3827 * then consider the entire range completed and avoid exiting to 3828 * userspace. In theory snp_complete_psc() can always be called directly 3829 * at this point to complete the current range and start the next one, 3830 * but that could lead to unexpected levels of recursion. 3831 */ 3832 __snp_complete_one_psc(svm); 3833 goto next_range; 3834 } 3835 3836 unreachable(); 3837 } 3838 3839 static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu) 3840 { 3841 struct vcpu_svm *svm = to_svm(vcpu); 3842 3843 WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex)); 3844 3845 /* Mark the vCPU as offline and not runnable */ 3846 vcpu->arch.pv.pv_unhalted = false; 3847 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 3848 3849 /* Clear use of the VMSA */ 3850 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 3851 3852 if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) { 3853 gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa); 3854 struct kvm_memory_slot *slot; 3855 kvm_pfn_t pfn; 3856 3857 slot = gfn_to_memslot(vcpu->kvm, gfn); 3858 if (!slot) 3859 return -EINVAL; 3860 3861 /* 3862 * The new VMSA will be private memory guest memory, so 3863 * retrieve the PFN from the gmem backend. 3864 */ 3865 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, NULL)) 3866 return -EINVAL; 3867 3868 /* 3869 * From this point forward, the VMSA will always be a 3870 * guest-mapped page rather than the initial one allocated 3871 * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa 3872 * could be free'd and cleaned up here, but that involves 3873 * cleanups like wbinvd_on_all_cpus() which would ideally 3874 * be handled during teardown rather than guest boot. 3875 * Deferring that also allows the existing logic for SEV-ES 3876 * VMSAs to be re-used with minimal SNP-specific changes. 3877 */ 3878 svm->sev_es.snp_has_guest_vmsa = true; 3879 3880 /* Use the new VMSA */ 3881 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn); 3882 3883 /* Mark the vCPU as runnable */ 3884 vcpu->arch.pv.pv_unhalted = false; 3885 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3886 3887 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3888 3889 /* 3890 * gmem pages aren't currently migratable, but if this ever 3891 * changes then care should be taken to ensure 3892 * svm->sev_es.vmsa is pinned through some other means. 3893 */ 3894 kvm_release_pfn_clean(pfn); 3895 } 3896 3897 /* 3898 * When replacing the VMSA during SEV-SNP AP creation, 3899 * mark the VMCB dirty so that full state is always reloaded. 3900 */ 3901 vmcb_mark_all_dirty(svm->vmcb); 3902 3903 return 0; 3904 } 3905 3906 /* 3907 * Invoked as part of svm_vcpu_reset() processing of an init event. 3908 */ 3909 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) 3910 { 3911 struct vcpu_svm *svm = to_svm(vcpu); 3912 int ret; 3913 3914 if (!sev_snp_guest(vcpu->kvm)) 3915 return; 3916 3917 mutex_lock(&svm->sev_es.snp_vmsa_mutex); 3918 3919 if (!svm->sev_es.snp_ap_waiting_for_reset) 3920 goto unlock; 3921 3922 svm->sev_es.snp_ap_waiting_for_reset = false; 3923 3924 ret = __sev_snp_update_protected_guest_state(vcpu); 3925 if (ret) 3926 vcpu_unimpl(vcpu, "snp: AP state update on init failed\n"); 3927 3928 unlock: 3929 mutex_unlock(&svm->sev_es.snp_vmsa_mutex); 3930 } 3931 3932 static int sev_snp_ap_creation(struct vcpu_svm *svm) 3933 { 3934 struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 3935 struct kvm_vcpu *vcpu = &svm->vcpu; 3936 struct kvm_vcpu *target_vcpu; 3937 struct vcpu_svm *target_svm; 3938 unsigned int request; 3939 unsigned int apic_id; 3940 bool kick; 3941 int ret; 3942 3943 request = lower_32_bits(svm->vmcb->control.exit_info_1); 3944 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1); 3945 3946 /* Validate the APIC ID */ 3947 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id); 3948 if (!target_vcpu) { 3949 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n", 3950 apic_id); 3951 return -EINVAL; 3952 } 3953 3954 ret = 0; 3955 3956 target_svm = to_svm(target_vcpu); 3957 3958 /* 3959 * The target vCPU is valid, so the vCPU will be kicked unless the 3960 * request is for CREATE_ON_INIT. For any errors at this stage, the 3961 * kick will place the vCPU in an non-runnable state. 3962 */ 3963 kick = true; 3964 3965 mutex_lock(&target_svm->sev_es.snp_vmsa_mutex); 3966 3967 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3968 target_svm->sev_es.snp_ap_waiting_for_reset = true; 3969 3970 /* Interrupt injection mode shouldn't change for AP creation */ 3971 if (request < SVM_VMGEXIT_AP_DESTROY) { 3972 u64 sev_features; 3973 3974 sev_features = vcpu->arch.regs[VCPU_REGS_RAX]; 3975 sev_features ^= sev->vmsa_features; 3976 3977 if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) { 3978 vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n", 3979 vcpu->arch.regs[VCPU_REGS_RAX]); 3980 ret = -EINVAL; 3981 goto out; 3982 } 3983 } 3984 3985 switch (request) { 3986 case SVM_VMGEXIT_AP_CREATE_ON_INIT: 3987 kick = false; 3988 fallthrough; 3989 case SVM_VMGEXIT_AP_CREATE: 3990 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) { 3991 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n", 3992 svm->vmcb->control.exit_info_2); 3993 ret = -EINVAL; 3994 goto out; 3995 } 3996 3997 /* 3998 * Malicious guest can RMPADJUST a large page into VMSA which 3999 * will hit the SNP erratum where the CPU will incorrectly signal 4000 * an RMP violation #PF if a hugepage collides with the RMP entry 4001 * of VMSA page, reject the AP CREATE request if VMSA address from 4002 * guest is 2M aligned. 4003 */ 4004 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) { 4005 vcpu_unimpl(vcpu, 4006 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n", 4007 svm->vmcb->control.exit_info_2); 4008 ret = -EINVAL; 4009 goto out; 4010 } 4011 4012 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; 4013 break; 4014 case SVM_VMGEXIT_AP_DESTROY: 4015 break; 4016 default: 4017 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", 4018 request); 4019 ret = -EINVAL; 4020 break; 4021 } 4022 4023 out: 4024 if (kick) { 4025 kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); 4026 kvm_vcpu_kick(target_vcpu); 4027 } 4028 4029 mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex); 4030 4031 return ret; 4032 } 4033 4034 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4035 { 4036 struct sev_data_snp_guest_request data = {0}; 4037 struct kvm *kvm = svm->vcpu.kvm; 4038 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4039 sev_ret_code fw_err = 0; 4040 int ret; 4041 4042 if (!sev_snp_guest(kvm)) 4043 return -EINVAL; 4044 4045 mutex_lock(&sev->guest_req_mutex); 4046 4047 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) { 4048 ret = -EIO; 4049 goto out_unlock; 4050 } 4051 4052 data.gctx_paddr = __psp_pa(sev->snp_context); 4053 data.req_paddr = __psp_pa(sev->guest_req_buf); 4054 data.res_paddr = __psp_pa(sev->guest_resp_buf); 4055 4056 /* 4057 * Firmware failures are propagated on to guest, but any other failure 4058 * condition along the way should be reported to userspace. E.g. if 4059 * the PSP is dead and commands are timing out. 4060 */ 4061 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err); 4062 if (ret && !fw_err) 4063 goto out_unlock; 4064 4065 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) { 4066 ret = -EIO; 4067 goto out_unlock; 4068 } 4069 4070 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err)); 4071 4072 ret = 1; /* resume guest */ 4073 4074 out_unlock: 4075 mutex_unlock(&sev->guest_req_mutex); 4076 return ret; 4077 } 4078 4079 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4080 { 4081 struct kvm *kvm = svm->vcpu.kvm; 4082 u8 msg_type; 4083 4084 if (!sev_snp_guest(kvm)) 4085 return -EINVAL; 4086 4087 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type), 4088 &msg_type, 1)) 4089 return -EIO; 4090 4091 /* 4092 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for 4093 * additional certificate data to be provided alongside the attestation 4094 * report via the guest-provided data pages indicated by RAX/RBX. The 4095 * certificate data is optional and requires additional KVM enablement 4096 * to provide an interface for userspace to provide it, but KVM still 4097 * needs to be able to handle extended guest requests either way. So 4098 * provide a stub implementation that will always return an empty 4099 * certificate table in the guest-provided data pages. 4100 */ 4101 if (msg_type == SNP_MSG_REPORT_REQ) { 4102 struct kvm_vcpu *vcpu = &svm->vcpu; 4103 u64 data_npages; 4104 gpa_t data_gpa; 4105 4106 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm)) 4107 goto request_invalid; 4108 4109 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX]; 4110 data_npages = vcpu->arch.regs[VCPU_REGS_RBX]; 4111 4112 if (!PAGE_ALIGNED(data_gpa)) 4113 goto request_invalid; 4114 4115 /* 4116 * As per GHCB spec (see "SNP Extended Guest Request"), the 4117 * certificate table is terminated by 24-bytes of zeroes. 4118 */ 4119 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24)) 4120 return -EIO; 4121 } 4122 4123 return snp_handle_guest_req(svm, req_gpa, resp_gpa); 4124 4125 request_invalid: 4126 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4127 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4128 return 1; /* resume guest */ 4129 } 4130 4131 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 4132 { 4133 struct vmcb_control_area *control = &svm->vmcb->control; 4134 struct kvm_vcpu *vcpu = &svm->vcpu; 4135 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4136 u64 ghcb_info; 4137 int ret = 1; 4138 4139 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 4140 4141 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 4142 control->ghcb_gpa); 4143 4144 switch (ghcb_info) { 4145 case GHCB_MSR_SEV_INFO_REQ: 4146 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4147 GHCB_VERSION_MIN, 4148 sev_enc_bit)); 4149 break; 4150 case GHCB_MSR_CPUID_REQ: { 4151 u64 cpuid_fn, cpuid_reg, cpuid_value; 4152 4153 cpuid_fn = get_ghcb_msr_bits(svm, 4154 GHCB_MSR_CPUID_FUNC_MASK, 4155 GHCB_MSR_CPUID_FUNC_POS); 4156 4157 /* Initialize the registers needed by the CPUID intercept */ 4158 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 4159 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 4160 4161 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 4162 if (!ret) { 4163 /* Error, keep GHCB MSR value as-is */ 4164 break; 4165 } 4166 4167 cpuid_reg = get_ghcb_msr_bits(svm, 4168 GHCB_MSR_CPUID_REG_MASK, 4169 GHCB_MSR_CPUID_REG_POS); 4170 if (cpuid_reg == 0) 4171 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 4172 else if (cpuid_reg == 1) 4173 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 4174 else if (cpuid_reg == 2) 4175 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 4176 else 4177 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 4178 4179 set_ghcb_msr_bits(svm, cpuid_value, 4180 GHCB_MSR_CPUID_VALUE_MASK, 4181 GHCB_MSR_CPUID_VALUE_POS); 4182 4183 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 4184 GHCB_MSR_INFO_MASK, 4185 GHCB_MSR_INFO_POS); 4186 break; 4187 } 4188 case GHCB_MSR_AP_RESET_HOLD_REQ: 4189 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO; 4190 ret = kvm_emulate_ap_reset_hold(&svm->vcpu); 4191 4192 /* 4193 * Preset the result to a non-SIPI return and then only set 4194 * the result to non-zero when delivering a SIPI. 4195 */ 4196 set_ghcb_msr_bits(svm, 0, 4197 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4198 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4199 4200 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4201 GHCB_MSR_INFO_MASK, 4202 GHCB_MSR_INFO_POS); 4203 break; 4204 case GHCB_MSR_HV_FT_REQ: 4205 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED, 4206 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS); 4207 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP, 4208 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); 4209 break; 4210 case GHCB_MSR_PREF_GPA_REQ: 4211 if (!sev_snp_guest(vcpu->kvm)) 4212 goto out_terminate; 4213 4214 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK, 4215 GHCB_MSR_GPA_VALUE_POS); 4216 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK, 4217 GHCB_MSR_INFO_POS); 4218 break; 4219 case GHCB_MSR_REG_GPA_REQ: { 4220 u64 gfn; 4221 4222 if (!sev_snp_guest(vcpu->kvm)) 4223 goto out_terminate; 4224 4225 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK, 4226 GHCB_MSR_GPA_VALUE_POS); 4227 4228 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn); 4229 4230 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK, 4231 GHCB_MSR_GPA_VALUE_POS); 4232 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK, 4233 GHCB_MSR_INFO_POS); 4234 break; 4235 } 4236 case GHCB_MSR_PSC_REQ: 4237 if (!sev_snp_guest(vcpu->kvm)) 4238 goto out_terminate; 4239 4240 ret = snp_begin_psc_msr(svm, control->ghcb_gpa); 4241 break; 4242 case GHCB_MSR_TERM_REQ: { 4243 u64 reason_set, reason_code; 4244 4245 reason_set = get_ghcb_msr_bits(svm, 4246 GHCB_MSR_TERM_REASON_SET_MASK, 4247 GHCB_MSR_TERM_REASON_SET_POS); 4248 reason_code = get_ghcb_msr_bits(svm, 4249 GHCB_MSR_TERM_REASON_MASK, 4250 GHCB_MSR_TERM_REASON_POS); 4251 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 4252 reason_set, reason_code); 4253 4254 goto out_terminate; 4255 } 4256 default: 4257 /* Error, keep GHCB MSR value as-is */ 4258 break; 4259 } 4260 4261 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 4262 control->ghcb_gpa, ret); 4263 4264 return ret; 4265 4266 out_terminate: 4267 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4268 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4269 vcpu->run->system_event.ndata = 1; 4270 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4271 4272 return 0; 4273 } 4274 4275 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 4276 { 4277 struct vcpu_svm *svm = to_svm(vcpu); 4278 struct vmcb_control_area *control = &svm->vmcb->control; 4279 u64 ghcb_gpa, exit_code; 4280 int ret; 4281 4282 /* Validate the GHCB */ 4283 ghcb_gpa = control->ghcb_gpa; 4284 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 4285 return sev_handle_vmgexit_msr_protocol(svm); 4286 4287 if (!ghcb_gpa) { 4288 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 4289 4290 /* Without a GHCB, just return right back to the guest */ 4291 return 1; 4292 } 4293 4294 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 4295 /* Unable to map GHCB from guest */ 4296 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 4297 ghcb_gpa); 4298 4299 /* Without a GHCB, just return right back to the guest */ 4300 return 1; 4301 } 4302 4303 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 4304 4305 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 4306 4307 sev_es_sync_from_ghcb(svm); 4308 4309 /* SEV-SNP guest requires that the GHCB GPA must be registered */ 4310 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) { 4311 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa); 4312 return -EINVAL; 4313 } 4314 4315 ret = sev_es_validate_vmgexit(svm); 4316 if (ret) 4317 return ret; 4318 4319 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0); 4320 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0); 4321 4322 exit_code = kvm_ghcb_get_sw_exit_code(control); 4323 switch (exit_code) { 4324 case SVM_VMGEXIT_MMIO_READ: 4325 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4326 if (ret) 4327 break; 4328 4329 ret = kvm_sev_es_mmio_read(vcpu, 4330 control->exit_info_1, 4331 control->exit_info_2, 4332 svm->sev_es.ghcb_sa); 4333 break; 4334 case SVM_VMGEXIT_MMIO_WRITE: 4335 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 4336 if (ret) 4337 break; 4338 4339 ret = kvm_sev_es_mmio_write(vcpu, 4340 control->exit_info_1, 4341 control->exit_info_2, 4342 svm->sev_es.ghcb_sa); 4343 break; 4344 case SVM_VMGEXIT_NMI_COMPLETE: 4345 ++vcpu->stat.nmi_window_exits; 4346 svm->nmi_masked = false; 4347 kvm_make_request(KVM_REQ_EVENT, vcpu); 4348 ret = 1; 4349 break; 4350 case SVM_VMGEXIT_AP_HLT_LOOP: 4351 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT; 4352 ret = kvm_emulate_ap_reset_hold(vcpu); 4353 break; 4354 case SVM_VMGEXIT_AP_JUMP_TABLE: { 4355 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4356 4357 switch (control->exit_info_1) { 4358 case 0: 4359 /* Set AP jump table address */ 4360 sev->ap_jump_table = control->exit_info_2; 4361 break; 4362 case 1: 4363 /* Get AP jump table address */ 4364 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table); 4365 break; 4366 default: 4367 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 4368 control->exit_info_1); 4369 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4370 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4371 } 4372 4373 ret = 1; 4374 break; 4375 } 4376 case SVM_VMGEXIT_HV_FEATURES: 4377 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED); 4378 4379 ret = 1; 4380 break; 4381 case SVM_VMGEXIT_TERM_REQUEST: 4382 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n", 4383 control->exit_info_1, control->exit_info_2); 4384 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4385 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4386 vcpu->run->system_event.ndata = 1; 4387 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4388 break; 4389 case SVM_VMGEXIT_PSC: 4390 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4391 if (ret) 4392 break; 4393 4394 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa); 4395 break; 4396 case SVM_VMGEXIT_AP_CREATION: 4397 ret = sev_snp_ap_creation(svm); 4398 if (ret) { 4399 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4400 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4401 } 4402 4403 ret = 1; 4404 break; 4405 case SVM_VMGEXIT_GUEST_REQUEST: 4406 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2); 4407 break; 4408 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 4409 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2); 4410 break; 4411 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 4412 vcpu_unimpl(vcpu, 4413 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 4414 control->exit_info_1, control->exit_info_2); 4415 ret = -EINVAL; 4416 break; 4417 default: 4418 ret = svm_invoke_exit_handler(vcpu, exit_code); 4419 } 4420 4421 return ret; 4422 } 4423 4424 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 4425 { 4426 int count; 4427 int bytes; 4428 int r; 4429 4430 if (svm->vmcb->control.exit_info_2 > INT_MAX) 4431 return -EINVAL; 4432 4433 count = svm->vmcb->control.exit_info_2; 4434 if (unlikely(check_mul_overflow(count, size, &bytes))) 4435 return -EINVAL; 4436 4437 r = setup_vmgexit_scratch(svm, in, bytes); 4438 if (r) 4439 return r; 4440 4441 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 4442 count, in); 4443 } 4444 4445 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4446 { 4447 struct kvm_vcpu *vcpu = &svm->vcpu; 4448 4449 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 4450 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4451 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4452 4453 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); 4454 } 4455 4456 /* 4457 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if 4458 * the host/guest supports its use. 4459 * 4460 * guest_can_use() checks a number of requirements on the host/guest to 4461 * ensure that MSR_IA32_XSS is available, but it might report true even 4462 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host 4463 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better 4464 * to further check that the guest CPUID actually supports 4465 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved 4466 * guests will still get intercepted and caught in the normal 4467 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths. 4468 */ 4469 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 4470 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4471 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); 4472 else 4473 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0); 4474 } 4475 4476 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4477 { 4478 struct kvm_vcpu *vcpu = &svm->vcpu; 4479 struct kvm_cpuid_entry2 *best; 4480 4481 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4482 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4483 if (best) 4484 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4485 4486 if (sev_es_guest(svm->vcpu.kvm)) 4487 sev_es_vcpu_after_set_cpuid(svm); 4488 } 4489 4490 static void sev_es_init_vmcb(struct vcpu_svm *svm) 4491 { 4492 struct vmcb *vmcb = svm->vmcb01.ptr; 4493 struct kvm_vcpu *vcpu = &svm->vcpu; 4494 4495 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 4496 4497 /* 4498 * An SEV-ES guest requires a VMSA area that is a separate from the 4499 * VMCB page. Do not include the encryption mask on the VMSA physical 4500 * address since hardware will access it using the guest key. Note, 4501 * the VMSA will be NULL if this vCPU is the destination for intrahost 4502 * migration, and will be copied later. 4503 */ 4504 if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa) 4505 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 4506 4507 /* Can't intercept CR register access, HV can't modify CR registers */ 4508 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 4509 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 4510 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 4511 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 4512 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 4513 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 4514 4515 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 4516 4517 /* Track EFER/CR register changes */ 4518 svm_set_intercept(svm, TRAP_EFER_WRITE); 4519 svm_set_intercept(svm, TRAP_CR0_WRITE); 4520 svm_set_intercept(svm, TRAP_CR4_WRITE); 4521 svm_set_intercept(svm, TRAP_CR8_WRITE); 4522 4523 vmcb->control.intercepts[INTERCEPT_DR] = 0; 4524 if (!sev_vcpu_has_debug_swap(svm)) { 4525 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 4526 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 4527 recalc_intercepts(svm); 4528 } else { 4529 /* 4530 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 4531 * allow debugging SEV-ES guests, and enables DebugSwap iff 4532 * NO_NESTED_DATA_BP is supported, so there's no reason to 4533 * intercept #DB when DebugSwap is enabled. For simplicity 4534 * with respect to guest debug, intercept #DB for other VMs 4535 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 4536 * guest can't DoS the CPU with infinite #DB vectoring. 4537 */ 4538 clr_exception_intercept(svm, DB_VECTOR); 4539 } 4540 4541 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 4542 svm_clr_intercept(svm, INTERCEPT_XSETBV); 4543 4544 /* Clear intercepts on selected MSRs */ 4545 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 4546 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 4547 } 4548 4549 void sev_init_vmcb(struct vcpu_svm *svm) 4550 { 4551 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 4552 clr_exception_intercept(svm, UD_VECTOR); 4553 4554 /* 4555 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 4556 * KVM can't decrypt guest memory to decode the faulting instruction. 4557 */ 4558 clr_exception_intercept(svm, GP_VECTOR); 4559 4560 if (sev_es_guest(svm->vcpu.kvm)) 4561 sev_es_init_vmcb(svm); 4562 } 4563 4564 void sev_es_vcpu_reset(struct vcpu_svm *svm) 4565 { 4566 struct kvm_vcpu *vcpu = &svm->vcpu; 4567 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4568 4569 /* 4570 * Set the GHCB MSR value as per the GHCB specification when emulating 4571 * vCPU RESET for an SEV-ES guest. 4572 */ 4573 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4574 GHCB_VERSION_MIN, 4575 sev_enc_bit)); 4576 4577 mutex_init(&svm->sev_es.snp_vmsa_mutex); 4578 } 4579 4580 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa) 4581 { 4582 /* 4583 * All host state for SEV-ES guests is categorized into three swap types 4584 * based on how it is handled by hardware during a world switch: 4585 * 4586 * A: VMRUN: Host state saved in host save area 4587 * VMEXIT: Host state loaded from host save area 4588 * 4589 * B: VMRUN: Host state _NOT_ saved in host save area 4590 * VMEXIT: Host state loaded from host save area 4591 * 4592 * C: VMRUN: Host state _NOT_ saved in host save area 4593 * VMEXIT: Host state initialized to default(reset) values 4594 * 4595 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 4596 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 4597 * by common SVM code). 4598 */ 4599 hostsa->xcr0 = kvm_host.xcr0; 4600 hostsa->pkru = read_pkru(); 4601 hostsa->xss = kvm_host.xss; 4602 4603 /* 4604 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 4605 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both 4606 * saves and loads debug registers (Type-A). 4607 */ 4608 if (sev_vcpu_has_debug_swap(svm)) { 4609 hostsa->dr0 = native_get_debugreg(0); 4610 hostsa->dr1 = native_get_debugreg(1); 4611 hostsa->dr2 = native_get_debugreg(2); 4612 hostsa->dr3 = native_get_debugreg(3); 4613 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 4614 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 4615 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 4616 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 4617 } 4618 } 4619 4620 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4621 { 4622 struct vcpu_svm *svm = to_svm(vcpu); 4623 4624 /* First SIPI: Use the values as initially set by the VMM */ 4625 if (!svm->sev_es.received_first_sipi) { 4626 svm->sev_es.received_first_sipi = true; 4627 return; 4628 } 4629 4630 /* Subsequent SIPI */ 4631 switch (svm->sev_es.ap_reset_hold_type) { 4632 case AP_RESET_HOLD_NAE_EVENT: 4633 /* 4634 * Return from an AP Reset Hold VMGEXIT, where the guest will 4635 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value. 4636 */ 4637 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 4638 break; 4639 case AP_RESET_HOLD_MSR_PROTO: 4640 /* 4641 * Return from an AP Reset Hold VMGEXIT, where the guest will 4642 * set the CS and RIP. Set GHCB data field to a non-zero value. 4643 */ 4644 set_ghcb_msr_bits(svm, 1, 4645 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4646 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4647 4648 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4649 GHCB_MSR_INFO_MASK, 4650 GHCB_MSR_INFO_POS); 4651 break; 4652 default: 4653 break; 4654 } 4655 } 4656 4657 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) 4658 { 4659 unsigned long pfn; 4660 struct page *p; 4661 4662 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4663 return alloc_pages_node(node, gfp | __GFP_ZERO, 0); 4664 4665 /* 4666 * Allocate an SNP-safe page to workaround the SNP erratum where 4667 * the CPU will incorrectly signal an RMP violation #PF if a 4668 * hugepage (2MB or 1GB) collides with the RMP entry of a 4669 * 2MB-aligned VMCB, VMSA, or AVIC backing page. 4670 * 4671 * Allocate one extra page, choose a page which is not 4672 * 2MB-aligned, and free the other. 4673 */ 4674 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1); 4675 if (!p) 4676 return NULL; 4677 4678 split_page(p, 1); 4679 4680 pfn = page_to_pfn(p); 4681 if (IS_ALIGNED(pfn, PTRS_PER_PMD)) 4682 __free_page(p++); 4683 else 4684 __free_page(p + 1); 4685 4686 return p; 4687 } 4688 4689 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) 4690 { 4691 struct kvm_memory_slot *slot; 4692 struct kvm *kvm = vcpu->kvm; 4693 int order, rmp_level, ret; 4694 bool assigned; 4695 kvm_pfn_t pfn; 4696 gfn_t gfn; 4697 4698 gfn = gpa >> PAGE_SHIFT; 4699 4700 /* 4701 * The only time RMP faults occur for shared pages is when the guest is 4702 * triggering an RMP fault for an implicit page-state change from 4703 * shared->private. Implicit page-state changes are forwarded to 4704 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults 4705 * for shared pages should not end up here. 4706 */ 4707 if (!kvm_mem_is_private(kvm, gfn)) { 4708 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n", 4709 gpa); 4710 return; 4711 } 4712 4713 slot = gfn_to_memslot(kvm, gfn); 4714 if (!kvm_slot_can_be_private(slot)) { 4715 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n", 4716 gpa); 4717 return; 4718 } 4719 4720 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &order); 4721 if (ret) { 4722 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n", 4723 gpa); 4724 return; 4725 } 4726 4727 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4728 if (ret || !assigned) { 4729 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n", 4730 gpa, pfn, ret); 4731 goto out_no_trace; 4732 } 4733 4734 /* 4735 * There are 2 cases where a PSMASH may be needed to resolve an #NPF 4736 * with PFERR_GUEST_RMP_BIT set: 4737 * 4738 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM 4739 * bit set if the guest issues them with a smaller granularity than 4740 * what is indicated by the page-size bit in the 2MB RMP entry for 4741 * the PFN that backs the GPA. 4742 * 4743 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is 4744 * smaller than what is indicated by the 2MB RMP entry for the PFN 4745 * that backs the GPA. 4746 * 4747 * In both these cases, the corresponding 2M RMP entry needs to 4748 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already 4749 * split into 4K RMP entries, then this is likely a spurious case which 4750 * can occur when there are concurrent accesses by the guest to a 2MB 4751 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in 4752 * the process of being PMASH'd into 4K entries. These cases should 4753 * resolve automatically on subsequent accesses, so just ignore them 4754 * here. 4755 */ 4756 if (rmp_level == PG_LEVEL_4K) 4757 goto out; 4758 4759 ret = snp_rmptable_psmash(pfn); 4760 if (ret) { 4761 /* 4762 * Look it up again. If it's 4K now then the PSMASH may have 4763 * raced with another process and the issue has already resolved 4764 * itself. 4765 */ 4766 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) && 4767 assigned && rmp_level == PG_LEVEL_4K) 4768 goto out; 4769 4770 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n", 4771 gpa, pfn, ret); 4772 } 4773 4774 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD); 4775 out: 4776 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret); 4777 out_no_trace: 4778 put_page(pfn_to_page(pfn)); 4779 } 4780 4781 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end) 4782 { 4783 kvm_pfn_t pfn = start; 4784 4785 while (pfn < end) { 4786 int ret, rmp_level; 4787 bool assigned; 4788 4789 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4790 if (ret) { 4791 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n", 4792 pfn, start, end, rmp_level, ret); 4793 return false; 4794 } 4795 4796 if (assigned) { 4797 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n", 4798 __func__, pfn, start, end, rmp_level); 4799 return false; 4800 } 4801 4802 pfn++; 4803 } 4804 4805 return true; 4806 } 4807 4808 static u8 max_level_for_order(int order) 4809 { 4810 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4811 return PG_LEVEL_2M; 4812 4813 return PG_LEVEL_4K; 4814 } 4815 4816 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order) 4817 { 4818 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4819 4820 /* 4821 * If this is a large folio, and the entire 2M range containing the 4822 * PFN is currently shared, then the entire 2M-aligned range can be 4823 * set to private via a single 2M RMP entry. 4824 */ 4825 if (max_level_for_order(order) > PG_LEVEL_4K && 4826 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD)) 4827 return true; 4828 4829 return false; 4830 } 4831 4832 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) 4833 { 4834 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 4835 kvm_pfn_t pfn_aligned; 4836 gfn_t gfn_aligned; 4837 int level, rc; 4838 bool assigned; 4839 4840 if (!sev_snp_guest(kvm)) 4841 return 0; 4842 4843 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4844 if (rc) { 4845 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n", 4846 gfn, pfn, rc); 4847 return -ENOENT; 4848 } 4849 4850 if (assigned) { 4851 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n", 4852 __func__, gfn, pfn, max_order, level); 4853 return 0; 4854 } 4855 4856 if (is_large_rmp_possible(kvm, pfn, max_order)) { 4857 level = PG_LEVEL_2M; 4858 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4859 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD); 4860 } else { 4861 level = PG_LEVEL_4K; 4862 pfn_aligned = pfn; 4863 gfn_aligned = gfn; 4864 } 4865 4866 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false); 4867 if (rc) { 4868 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n", 4869 gfn, pfn, level, rc); 4870 return -EINVAL; 4871 } 4872 4873 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n", 4874 __func__, gfn, pfn, pfn_aligned, max_order, level); 4875 4876 return 0; 4877 } 4878 4879 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 4880 { 4881 kvm_pfn_t pfn; 4882 4883 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4884 return; 4885 4886 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end); 4887 4888 for (pfn = start; pfn < end;) { 4889 bool use_2m_update = false; 4890 int rc, rmp_level; 4891 bool assigned; 4892 4893 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4894 if (rc || !assigned) 4895 goto next_pfn; 4896 4897 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) && 4898 end >= (pfn + PTRS_PER_PMD) && 4899 rmp_level > PG_LEVEL_4K; 4900 4901 /* 4902 * If an unaligned PFN corresponds to a 2M region assigned as a 4903 * large page in the RMP table, PSMASH the region into individual 4904 * 4K RMP entries before attempting to convert a 4K sub-page. 4905 */ 4906 if (!use_2m_update && rmp_level > PG_LEVEL_4K) { 4907 /* 4908 * This shouldn't fail, but if it does, report it, but 4909 * still try to update RMP entry to shared and pray this 4910 * was a spurious error that can be addressed later. 4911 */ 4912 rc = snp_rmptable_psmash(pfn); 4913 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n", 4914 pfn, rc); 4915 } 4916 4917 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K); 4918 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n", 4919 pfn, rc)) 4920 goto next_pfn; 4921 4922 /* 4923 * SEV-ES avoids host/guest cache coherency issues through 4924 * WBINVD hooks issued via MMU notifiers during run-time, and 4925 * KVM's VM destroy path at shutdown. Those MMU notifier events 4926 * don't cover gmem since there is no requirement to map pages 4927 * to a HVA in order to use them for a running guest. While the 4928 * shutdown path would still likely cover things for SNP guests, 4929 * userspace may also free gmem pages during run-time via 4930 * hole-punching operations on the guest_memfd, so flush the 4931 * cache entries for these pages before free'ing them back to 4932 * the host. 4933 */ 4934 clflush_cache_range(__va(pfn_to_hpa(pfn)), 4935 use_2m_update ? PMD_SIZE : PAGE_SIZE); 4936 next_pfn: 4937 pfn += use_2m_update ? PTRS_PER_PMD : 1; 4938 cond_resched(); 4939 } 4940 } 4941 4942 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn) 4943 { 4944 int level, rc; 4945 bool assigned; 4946 4947 if (!sev_snp_guest(kvm)) 4948 return 0; 4949 4950 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4951 if (rc || !assigned) 4952 return PG_LEVEL_4K; 4953 4954 return level; 4955 } 4956