xref: /linux/arch/x86/kvm/svm/sev.c (revision 572af9f284669d31d9175122bbef9bc62cea8ded)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 #include <uapi/linux/sev-guest.h>
23 
24 #include <asm/pkru.h>
25 #include <asm/trapnr.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/fpu/xstate.h>
28 #include <asm/debugreg.h>
29 #include <asm/sev.h>
30 
31 #include "mmu.h"
32 #include "x86.h"
33 #include "svm.h"
34 #include "svm_ops.h"
35 #include "cpuid.h"
36 #include "trace.h"
37 
38 #define GHCB_VERSION_MAX	2ULL
39 #define GHCB_VERSION_DEFAULT	2ULL
40 #define GHCB_VERSION_MIN	1ULL
41 
42 #define GHCB_HV_FT_SUPPORTED	(GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)
43 
44 /* enable/disable SEV support */
45 static bool sev_enabled = true;
46 module_param_named(sev, sev_enabled, bool, 0444);
47 
48 /* enable/disable SEV-ES support */
49 static bool sev_es_enabled = true;
50 module_param_named(sev_es, sev_es_enabled, bool, 0444);
51 
52 /* enable/disable SEV-SNP support */
53 static bool sev_snp_enabled = true;
54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444);
55 
56 /* enable/disable SEV-ES DebugSwap support */
57 static bool sev_es_debug_swap_enabled = true;
58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
59 static u64 sev_supported_vmsa_features;
60 
61 #define AP_RESET_HOLD_NONE		0
62 #define AP_RESET_HOLD_NAE_EVENT		1
63 #define AP_RESET_HOLD_MSR_PROTO		2
64 
65 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */
66 #define SNP_POLICY_MASK_API_MINOR	GENMASK_ULL(7, 0)
67 #define SNP_POLICY_MASK_API_MAJOR	GENMASK_ULL(15, 8)
68 #define SNP_POLICY_MASK_SMT		BIT_ULL(16)
69 #define SNP_POLICY_MASK_RSVD_MBO	BIT_ULL(17)
70 #define SNP_POLICY_MASK_DEBUG		BIT_ULL(19)
71 #define SNP_POLICY_MASK_SINGLE_SOCKET	BIT_ULL(20)
72 
73 #define SNP_POLICY_MASK_VALID		(SNP_POLICY_MASK_API_MINOR	| \
74 					 SNP_POLICY_MASK_API_MAJOR	| \
75 					 SNP_POLICY_MASK_SMT		| \
76 					 SNP_POLICY_MASK_RSVD_MBO	| \
77 					 SNP_POLICY_MASK_DEBUG		| \
78 					 SNP_POLICY_MASK_SINGLE_SOCKET)
79 
80 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000
81 
82 static u8 sev_enc_bit;
83 static DECLARE_RWSEM(sev_deactivate_lock);
84 static DEFINE_MUTEX(sev_bitmap_lock);
85 unsigned int max_sev_asid;
86 static unsigned int min_sev_asid;
87 static unsigned long sev_me_mask;
88 static unsigned int nr_asids;
89 static unsigned long *sev_asid_bitmap;
90 static unsigned long *sev_reclaim_asid_bitmap;
91 
92 static int snp_decommission_context(struct kvm *kvm);
93 
94 struct enc_region {
95 	struct list_head list;
96 	unsigned long npages;
97 	struct page **pages;
98 	unsigned long uaddr;
99 	unsigned long size;
100 };
101 
102 /* Called with the sev_bitmap_lock held, or on shutdown  */
103 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
104 {
105 	int ret, error = 0;
106 	unsigned int asid;
107 
108 	/* Check if there are any ASIDs to reclaim before performing a flush */
109 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
110 	if (asid > max_asid)
111 		return -EBUSY;
112 
113 	/*
114 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
115 	 * so it must be guarded.
116 	 */
117 	down_write(&sev_deactivate_lock);
118 
119 	wbinvd_on_all_cpus();
120 
121 	if (sev_snp_enabled)
122 		ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
123 	else
124 		ret = sev_guest_df_flush(&error);
125 
126 	up_write(&sev_deactivate_lock);
127 
128 	if (ret)
129 		pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
130 		       sev_snp_enabled ? "-SNP" : "", ret, error);
131 
132 	return ret;
133 }
134 
135 static inline bool is_mirroring_enc_context(struct kvm *kvm)
136 {
137 	return !!to_kvm_sev_info(kvm)->enc_context_owner;
138 }
139 
140 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
141 {
142 	struct kvm_vcpu *vcpu = &svm->vcpu;
143 	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
144 
145 	return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
146 }
147 
148 /* Must be called with the sev_bitmap_lock held */
149 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
150 {
151 	if (sev_flush_asids(min_asid, max_asid))
152 		return false;
153 
154 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
155 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
156 		   nr_asids);
157 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
158 
159 	return true;
160 }
161 
162 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
163 {
164 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
165 	return misc_cg_try_charge(type, sev->misc_cg, 1);
166 }
167 
168 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
169 {
170 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
171 	misc_cg_uncharge(type, sev->misc_cg, 1);
172 }
173 
174 static int sev_asid_new(struct kvm_sev_info *sev)
175 {
176 	/*
177 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
178 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
179 	 * Note: min ASID can end up larger than the max if basic SEV support is
180 	 * effectively disabled by disallowing use of ASIDs for SEV guests.
181 	 */
182 	unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
183 	unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
184 	unsigned int asid;
185 	bool retry = true;
186 	int ret;
187 
188 	if (min_asid > max_asid)
189 		return -ENOTTY;
190 
191 	WARN_ON(sev->misc_cg);
192 	sev->misc_cg = get_current_misc_cg();
193 	ret = sev_misc_cg_try_charge(sev);
194 	if (ret) {
195 		put_misc_cg(sev->misc_cg);
196 		sev->misc_cg = NULL;
197 		return ret;
198 	}
199 
200 	mutex_lock(&sev_bitmap_lock);
201 
202 again:
203 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
204 	if (asid > max_asid) {
205 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
206 			retry = false;
207 			goto again;
208 		}
209 		mutex_unlock(&sev_bitmap_lock);
210 		ret = -EBUSY;
211 		goto e_uncharge;
212 	}
213 
214 	__set_bit(asid, sev_asid_bitmap);
215 
216 	mutex_unlock(&sev_bitmap_lock);
217 
218 	sev->asid = asid;
219 	return 0;
220 e_uncharge:
221 	sev_misc_cg_uncharge(sev);
222 	put_misc_cg(sev->misc_cg);
223 	sev->misc_cg = NULL;
224 	return ret;
225 }
226 
227 static unsigned int sev_get_asid(struct kvm *kvm)
228 {
229 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
230 
231 	return sev->asid;
232 }
233 
234 static void sev_asid_free(struct kvm_sev_info *sev)
235 {
236 	struct svm_cpu_data *sd;
237 	int cpu;
238 
239 	mutex_lock(&sev_bitmap_lock);
240 
241 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
242 
243 	for_each_possible_cpu(cpu) {
244 		sd = per_cpu_ptr(&svm_data, cpu);
245 		sd->sev_vmcbs[sev->asid] = NULL;
246 	}
247 
248 	mutex_unlock(&sev_bitmap_lock);
249 
250 	sev_misc_cg_uncharge(sev);
251 	put_misc_cg(sev->misc_cg);
252 	sev->misc_cg = NULL;
253 }
254 
255 static void sev_decommission(unsigned int handle)
256 {
257 	struct sev_data_decommission decommission;
258 
259 	if (!handle)
260 		return;
261 
262 	decommission.handle = handle;
263 	sev_guest_decommission(&decommission, NULL);
264 }
265 
266 /*
267  * Transition a page to hypervisor-owned/shared state in the RMP table. This
268  * should not fail under normal conditions, but leak the page should that
269  * happen since it will no longer be usable by the host due to RMP protections.
270  */
271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
272 {
273 	if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
274 		snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
275 		return -EIO;
276 	}
277 
278 	return 0;
279 }
280 
281 /*
282  * Certain page-states, such as Pre-Guest and Firmware pages (as documented
283  * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
284  * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
285  * unless they are reclaimed first.
286  *
287  * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
288  * might not be usable by the host due to being set as immutable or still
289  * being associated with a guest ASID.
290  *
291  * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
292  * converted back to shared, as the page is no longer usable due to RMP
293  * protections, and it's infeasible for the guest to continue on.
294  */
295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
296 {
297 	struct sev_data_snp_page_reclaim data = {0};
298 	int fw_err, rc;
299 
300 	data.paddr = __sme_set(pfn << PAGE_SHIFT);
301 	rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
302 	if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
303 		snp_leak_pages(pfn, 1);
304 		return -EIO;
305 	}
306 
307 	if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
308 		return -EIO;
309 
310 	return rc;
311 }
312 
313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
314 {
315 	struct sev_data_deactivate deactivate;
316 
317 	if (!handle)
318 		return;
319 
320 	deactivate.handle = handle;
321 
322 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
323 	down_read(&sev_deactivate_lock);
324 	sev_guest_deactivate(&deactivate, NULL);
325 	up_read(&sev_deactivate_lock);
326 
327 	sev_decommission(handle);
328 }
329 
330 /*
331  * This sets up bounce buffers/firmware pages to handle SNP Guest Request
332  * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
333  * 2.0 specification for more details.
334  *
335  * Technically, when an SNP Guest Request is issued, the guest will provide its
336  * own request/response pages, which could in theory be passed along directly
337  * to firmware rather than using bounce pages. However, these pages would need
338  * special care:
339  *
340  *   - Both pages are from shared guest memory, so they need to be protected
341  *     from migration/etc. occurring while firmware reads/writes to them. At a
342  *     minimum, this requires elevating the ref counts and potentially needing
343  *     an explicit pinning of the memory. This places additional restrictions
344  *     on what type of memory backends userspace can use for shared guest
345  *     memory since there is some reliance on using refcounted pages.
346  *
347  *   - The response page needs to be switched to Firmware-owned[1] state
348  *     before the firmware can write to it, which can lead to potential
349  *     host RMP #PFs if the guest is misbehaved and hands the host a
350  *     guest page that KVM might write to for other reasons (e.g. virtio
351  *     buffers/etc.).
352  *
353  * Both of these issues can be avoided completely by using separately-allocated
354  * bounce pages for both the request/response pages and passing those to
355  * firmware instead. So that's what is being set up here.
356  *
357  * Guest requests rely on message sequence numbers to ensure requests are
358  * issued to firmware in the order the guest issues them, so concurrent guest
359  * requests generally shouldn't happen. But a misbehaved guest could issue
360  * concurrent guest requests in theory, so a mutex is used to serialize
361  * access to the bounce buffers.
362  *
363  * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
364  *     details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
365  *     in the APM for details on the related RMP restrictions.
366  */
367 static int snp_guest_req_init(struct kvm *kvm)
368 {
369 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
370 	struct page *req_page;
371 
372 	req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
373 	if (!req_page)
374 		return -ENOMEM;
375 
376 	sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
377 	if (!sev->guest_resp_buf) {
378 		__free_page(req_page);
379 		return -EIO;
380 	}
381 
382 	sev->guest_req_buf = page_address(req_page);
383 	mutex_init(&sev->guest_req_mutex);
384 
385 	return 0;
386 }
387 
388 static void snp_guest_req_cleanup(struct kvm *kvm)
389 {
390 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
391 
392 	if (sev->guest_resp_buf)
393 		snp_free_firmware_page(sev->guest_resp_buf);
394 
395 	if (sev->guest_req_buf)
396 		__free_page(virt_to_page(sev->guest_req_buf));
397 
398 	sev->guest_req_buf = NULL;
399 	sev->guest_resp_buf = NULL;
400 }
401 
402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
403 			    struct kvm_sev_init *data,
404 			    unsigned long vm_type)
405 {
406 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
407 	struct sev_platform_init_args init_args = {0};
408 	bool es_active = vm_type != KVM_X86_SEV_VM;
409 	u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
410 	int ret;
411 
412 	if (kvm->created_vcpus)
413 		return -EINVAL;
414 
415 	if (data->flags)
416 		return -EINVAL;
417 
418 	if (data->vmsa_features & ~valid_vmsa_features)
419 		return -EINVAL;
420 
421 	if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
422 		return -EINVAL;
423 
424 	if (unlikely(sev->active))
425 		return -EINVAL;
426 
427 	sev->active = true;
428 	sev->es_active = es_active;
429 	sev->vmsa_features = data->vmsa_features;
430 	sev->ghcb_version = data->ghcb_version;
431 
432 	/*
433 	 * Currently KVM supports the full range of mandatory features defined
434 	 * by version 2 of the GHCB protocol, so default to that for SEV-ES
435 	 * guests created via KVM_SEV_INIT2.
436 	 */
437 	if (sev->es_active && !sev->ghcb_version)
438 		sev->ghcb_version = GHCB_VERSION_DEFAULT;
439 
440 	if (vm_type == KVM_X86_SNP_VM)
441 		sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;
442 
443 	ret = sev_asid_new(sev);
444 	if (ret)
445 		goto e_no_asid;
446 
447 	init_args.probe = false;
448 	ret = sev_platform_init(&init_args);
449 	if (ret)
450 		goto e_free;
451 
452 	/* This needs to happen after SEV/SNP firmware initialization. */
453 	if (vm_type == KVM_X86_SNP_VM) {
454 		ret = snp_guest_req_init(kvm);
455 		if (ret)
456 			goto e_free;
457 	}
458 
459 	INIT_LIST_HEAD(&sev->regions_list);
460 	INIT_LIST_HEAD(&sev->mirror_vms);
461 	sev->need_init = false;
462 
463 	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
464 
465 	return 0;
466 
467 e_free:
468 	argp->error = init_args.error;
469 	sev_asid_free(sev);
470 	sev->asid = 0;
471 e_no_asid:
472 	sev->vmsa_features = 0;
473 	sev->es_active = false;
474 	sev->active = false;
475 	return ret;
476 }
477 
478 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
479 {
480 	struct kvm_sev_init data = {
481 		.vmsa_features = 0,
482 		.ghcb_version = 0,
483 	};
484 	unsigned long vm_type;
485 
486 	if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
487 		return -EINVAL;
488 
489 	vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
490 
491 	/*
492 	 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
493 	 * continue to only ever support the minimal GHCB protocol version.
494 	 */
495 	if (vm_type == KVM_X86_SEV_ES_VM)
496 		data.ghcb_version = GHCB_VERSION_MIN;
497 
498 	return __sev_guest_init(kvm, argp, &data, vm_type);
499 }
500 
501 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
502 {
503 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
504 	struct kvm_sev_init data;
505 
506 	if (!sev->need_init)
507 		return -EINVAL;
508 
509 	if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
510 	    kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
511 	    kvm->arch.vm_type != KVM_X86_SNP_VM)
512 		return -EINVAL;
513 
514 	if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
515 		return -EFAULT;
516 
517 	return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
518 }
519 
520 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
521 {
522 	unsigned int asid = sev_get_asid(kvm);
523 	struct sev_data_activate activate;
524 	int ret;
525 
526 	/* activate ASID on the given handle */
527 	activate.handle = handle;
528 	activate.asid   = asid;
529 	ret = sev_guest_activate(&activate, error);
530 
531 	return ret;
532 }
533 
534 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
535 {
536 	CLASS(fd, f)(fd);
537 
538 	if (fd_empty(f))
539 		return -EBADF;
540 
541 	return sev_issue_cmd_external_user(fd_file(f), id, data, error);
542 }
543 
544 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
545 {
546 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
547 
548 	return __sev_issue_cmd(sev->fd, id, data, error);
549 }
550 
551 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
552 {
553 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
554 	struct sev_data_launch_start start;
555 	struct kvm_sev_launch_start params;
556 	void *dh_blob, *session_blob;
557 	int *error = &argp->error;
558 	int ret;
559 
560 	if (!sev_guest(kvm))
561 		return -ENOTTY;
562 
563 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
564 		return -EFAULT;
565 
566 	memset(&start, 0, sizeof(start));
567 
568 	dh_blob = NULL;
569 	if (params.dh_uaddr) {
570 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
571 		if (IS_ERR(dh_blob))
572 			return PTR_ERR(dh_blob);
573 
574 		start.dh_cert_address = __sme_set(__pa(dh_blob));
575 		start.dh_cert_len = params.dh_len;
576 	}
577 
578 	session_blob = NULL;
579 	if (params.session_uaddr) {
580 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
581 		if (IS_ERR(session_blob)) {
582 			ret = PTR_ERR(session_blob);
583 			goto e_free_dh;
584 		}
585 
586 		start.session_address = __sme_set(__pa(session_blob));
587 		start.session_len = params.session_len;
588 	}
589 
590 	start.handle = params.handle;
591 	start.policy = params.policy;
592 
593 	/* create memory encryption context */
594 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
595 	if (ret)
596 		goto e_free_session;
597 
598 	/* Bind ASID to this guest */
599 	ret = sev_bind_asid(kvm, start.handle, error);
600 	if (ret) {
601 		sev_decommission(start.handle);
602 		goto e_free_session;
603 	}
604 
605 	/* return handle to userspace */
606 	params.handle = start.handle;
607 	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params))) {
608 		sev_unbind_asid(kvm, start.handle);
609 		ret = -EFAULT;
610 		goto e_free_session;
611 	}
612 
613 	sev->handle = start.handle;
614 	sev->fd = argp->sev_fd;
615 
616 e_free_session:
617 	kfree(session_blob);
618 e_free_dh:
619 	kfree(dh_blob);
620 	return ret;
621 }
622 
623 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
624 				    unsigned long ulen, unsigned long *n,
625 				    int write)
626 {
627 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
628 	unsigned long npages, size;
629 	int npinned;
630 	unsigned long locked, lock_limit;
631 	struct page **pages;
632 	unsigned long first, last;
633 	int ret;
634 
635 	lockdep_assert_held(&kvm->lock);
636 
637 	if (ulen == 0 || uaddr + ulen < uaddr)
638 		return ERR_PTR(-EINVAL);
639 
640 	/* Calculate number of pages. */
641 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
642 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
643 	npages = (last - first + 1);
644 
645 	locked = sev->pages_locked + npages;
646 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
647 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
648 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
649 		return ERR_PTR(-ENOMEM);
650 	}
651 
652 	if (WARN_ON_ONCE(npages > INT_MAX))
653 		return ERR_PTR(-EINVAL);
654 
655 	/* Avoid using vmalloc for smaller buffers. */
656 	size = npages * sizeof(struct page *);
657 	if (size > PAGE_SIZE)
658 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
659 	else
660 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
661 
662 	if (!pages)
663 		return ERR_PTR(-ENOMEM);
664 
665 	/* Pin the user virtual address. */
666 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
667 	if (npinned != npages) {
668 		pr_err("SEV: Failure locking %lu pages.\n", npages);
669 		ret = -ENOMEM;
670 		goto err;
671 	}
672 
673 	*n = npages;
674 	sev->pages_locked = locked;
675 
676 	return pages;
677 
678 err:
679 	if (npinned > 0)
680 		unpin_user_pages(pages, npinned);
681 
682 	kvfree(pages);
683 	return ERR_PTR(ret);
684 }
685 
686 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
687 			     unsigned long npages)
688 {
689 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
690 
691 	unpin_user_pages(pages, npages);
692 	kvfree(pages);
693 	sev->pages_locked -= npages;
694 }
695 
696 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
697 {
698 	uint8_t *page_virtual;
699 	unsigned long i;
700 
701 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
702 	    pages == NULL)
703 		return;
704 
705 	for (i = 0; i < npages; i++) {
706 		page_virtual = kmap_local_page(pages[i]);
707 		clflush_cache_range(page_virtual, PAGE_SIZE);
708 		kunmap_local(page_virtual);
709 		cond_resched();
710 	}
711 }
712 
713 static unsigned long get_num_contig_pages(unsigned long idx,
714 				struct page **inpages, unsigned long npages)
715 {
716 	unsigned long paddr, next_paddr;
717 	unsigned long i = idx + 1, pages = 1;
718 
719 	/* find the number of contiguous pages starting from idx */
720 	paddr = __sme_page_pa(inpages[idx]);
721 	while (i < npages) {
722 		next_paddr = __sme_page_pa(inpages[i++]);
723 		if ((paddr + PAGE_SIZE) == next_paddr) {
724 			pages++;
725 			paddr = next_paddr;
726 			continue;
727 		}
728 		break;
729 	}
730 
731 	return pages;
732 }
733 
734 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
735 {
736 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
737 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
738 	struct kvm_sev_launch_update_data params;
739 	struct sev_data_launch_update_data data;
740 	struct page **inpages;
741 	int ret;
742 
743 	if (!sev_guest(kvm))
744 		return -ENOTTY;
745 
746 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
747 		return -EFAULT;
748 
749 	vaddr = params.uaddr;
750 	size = params.len;
751 	vaddr_end = vaddr + size;
752 
753 	/* Lock the user memory. */
754 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
755 	if (IS_ERR(inpages))
756 		return PTR_ERR(inpages);
757 
758 	/*
759 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
760 	 * place; the cache may contain the data that was written unencrypted.
761 	 */
762 	sev_clflush_pages(inpages, npages);
763 
764 	data.reserved = 0;
765 	data.handle = sev->handle;
766 
767 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
768 		int offset, len;
769 
770 		/*
771 		 * If the user buffer is not page-aligned, calculate the offset
772 		 * within the page.
773 		 */
774 		offset = vaddr & (PAGE_SIZE - 1);
775 
776 		/* Calculate the number of pages that can be encrypted in one go. */
777 		pages = get_num_contig_pages(i, inpages, npages);
778 
779 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
780 
781 		data.len = len;
782 		data.address = __sme_page_pa(inpages[i]) + offset;
783 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
784 		if (ret)
785 			goto e_unpin;
786 
787 		size -= len;
788 		next_vaddr = vaddr + len;
789 	}
790 
791 e_unpin:
792 	/* content of memory is updated, mark pages dirty */
793 	for (i = 0; i < npages; i++) {
794 		set_page_dirty_lock(inpages[i]);
795 		mark_page_accessed(inpages[i]);
796 	}
797 	/* unlock the user pages */
798 	sev_unpin_memory(kvm, inpages, npages);
799 	return ret;
800 }
801 
802 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
803 {
804 	struct kvm_vcpu *vcpu = &svm->vcpu;
805 	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
806 	struct sev_es_save_area *save = svm->sev_es.vmsa;
807 	struct xregs_state *xsave;
808 	const u8 *s;
809 	u8 *d;
810 	int i;
811 
812 	/* Check some debug related fields before encrypting the VMSA */
813 	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
814 		return -EINVAL;
815 
816 	/*
817 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
818 	 * the traditional VMSA that is part of the VMCB. Copy the
819 	 * traditional VMSA as it has been built so far (in prep
820 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
821 	 */
822 	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
823 
824 	/* Sync registgers */
825 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
826 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
827 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
828 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
829 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
830 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
831 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
832 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
833 #ifdef CONFIG_X86_64
834 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
835 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
836 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
837 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
838 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
839 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
840 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
841 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
842 #endif
843 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
844 
845 	/* Sync some non-GPR registers before encrypting */
846 	save->xcr0 = svm->vcpu.arch.xcr0;
847 	save->pkru = svm->vcpu.arch.pkru;
848 	save->xss  = svm->vcpu.arch.ia32_xss;
849 	save->dr6  = svm->vcpu.arch.dr6;
850 
851 	save->sev_features = sev->vmsa_features;
852 
853 	/*
854 	 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
855 	 * breaking older measurements.
856 	 */
857 	if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
858 		xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
859 		save->x87_dp = xsave->i387.rdp;
860 		save->mxcsr = xsave->i387.mxcsr;
861 		save->x87_ftw = xsave->i387.twd;
862 		save->x87_fsw = xsave->i387.swd;
863 		save->x87_fcw = xsave->i387.cwd;
864 		save->x87_fop = xsave->i387.fop;
865 		save->x87_ds = 0;
866 		save->x87_cs = 0;
867 		save->x87_rip = xsave->i387.rip;
868 
869 		for (i = 0; i < 8; i++) {
870 			/*
871 			 * The format of the x87 save area is undocumented and
872 			 * definitely not what you would expect.  It consists of
873 			 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
874 			 * area with bytes 8-9 of each register.
875 			 */
876 			d = save->fpreg_x87 + i * 8;
877 			s = ((u8 *)xsave->i387.st_space) + i * 16;
878 			memcpy(d, s, 8);
879 			save->fpreg_x87[64 + i * 2] = s[8];
880 			save->fpreg_x87[64 + i * 2 + 1] = s[9];
881 		}
882 		memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
883 
884 		s = get_xsave_addr(xsave, XFEATURE_YMM);
885 		if (s)
886 			memcpy(save->fpreg_ymm, s, 256);
887 		else
888 			memset(save->fpreg_ymm, 0, 256);
889 	}
890 
891 	pr_debug("Virtual Machine Save Area (VMSA):\n");
892 	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
893 
894 	return 0;
895 }
896 
897 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
898 				    int *error)
899 {
900 	struct sev_data_launch_update_vmsa vmsa;
901 	struct vcpu_svm *svm = to_svm(vcpu);
902 	int ret;
903 
904 	if (vcpu->guest_debug) {
905 		pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
906 		return -EINVAL;
907 	}
908 
909 	/* Perform some pre-encryption checks against the VMSA */
910 	ret = sev_es_sync_vmsa(svm);
911 	if (ret)
912 		return ret;
913 
914 	/*
915 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
916 	 * the VMSA memory content (i.e it will write the same memory region
917 	 * with the guest's key), so invalidate it first.
918 	 */
919 	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
920 
921 	vmsa.reserved = 0;
922 	vmsa.handle = to_kvm_sev_info(kvm)->handle;
923 	vmsa.address = __sme_pa(svm->sev_es.vmsa);
924 	vmsa.len = PAGE_SIZE;
925 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
926 	if (ret)
927 	  return ret;
928 
929 	/*
930 	 * SEV-ES guests maintain an encrypted version of their FPU
931 	 * state which is restored and saved on VMRUN and VMEXIT.
932 	 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
933 	 * do xsave/xrstor on it.
934 	 */
935 	fpstate_set_confidential(&vcpu->arch.guest_fpu);
936 	vcpu->arch.guest_state_protected = true;
937 
938 	/*
939 	 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
940 	 * only after setting guest_state_protected because KVM_SET_MSRS allows
941 	 * dynamic toggling of LBRV (for performance reason) on write access to
942 	 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
943 	 */
944 	svm_enable_lbrv(vcpu);
945 	return 0;
946 }
947 
948 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
949 {
950 	struct kvm_vcpu *vcpu;
951 	unsigned long i;
952 	int ret;
953 
954 	if (!sev_es_guest(kvm))
955 		return -ENOTTY;
956 
957 	kvm_for_each_vcpu(i, vcpu, kvm) {
958 		ret = mutex_lock_killable(&vcpu->mutex);
959 		if (ret)
960 			return ret;
961 
962 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
963 
964 		mutex_unlock(&vcpu->mutex);
965 		if (ret)
966 			return ret;
967 	}
968 
969 	return 0;
970 }
971 
972 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
973 {
974 	void __user *measure = u64_to_user_ptr(argp->data);
975 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
976 	struct sev_data_launch_measure data;
977 	struct kvm_sev_launch_measure params;
978 	void __user *p = NULL;
979 	void *blob = NULL;
980 	int ret;
981 
982 	if (!sev_guest(kvm))
983 		return -ENOTTY;
984 
985 	if (copy_from_user(&params, measure, sizeof(params)))
986 		return -EFAULT;
987 
988 	memset(&data, 0, sizeof(data));
989 
990 	/* User wants to query the blob length */
991 	if (!params.len)
992 		goto cmd;
993 
994 	p = u64_to_user_ptr(params.uaddr);
995 	if (p) {
996 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
997 			return -EINVAL;
998 
999 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1000 		if (!blob)
1001 			return -ENOMEM;
1002 
1003 		data.address = __psp_pa(blob);
1004 		data.len = params.len;
1005 	}
1006 
1007 cmd:
1008 	data.handle = sev->handle;
1009 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
1010 
1011 	/*
1012 	 * If we query the session length, FW responded with expected data.
1013 	 */
1014 	if (!params.len)
1015 		goto done;
1016 
1017 	if (ret)
1018 		goto e_free_blob;
1019 
1020 	if (blob) {
1021 		if (copy_to_user(p, blob, params.len))
1022 			ret = -EFAULT;
1023 	}
1024 
1025 done:
1026 	params.len = data.len;
1027 	if (copy_to_user(measure, &params, sizeof(params)))
1028 		ret = -EFAULT;
1029 e_free_blob:
1030 	kfree(blob);
1031 	return ret;
1032 }
1033 
1034 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1035 {
1036 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1037 	struct sev_data_launch_finish data;
1038 
1039 	if (!sev_guest(kvm))
1040 		return -ENOTTY;
1041 
1042 	data.handle = sev->handle;
1043 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
1044 }
1045 
1046 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
1047 {
1048 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1049 	struct kvm_sev_guest_status params;
1050 	struct sev_data_guest_status data;
1051 	int ret;
1052 
1053 	if (!sev_guest(kvm))
1054 		return -ENOTTY;
1055 
1056 	memset(&data, 0, sizeof(data));
1057 
1058 	data.handle = sev->handle;
1059 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
1060 	if (ret)
1061 		return ret;
1062 
1063 	params.policy = data.policy;
1064 	params.state = data.state;
1065 	params.handle = data.handle;
1066 
1067 	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
1068 		ret = -EFAULT;
1069 
1070 	return ret;
1071 }
1072 
1073 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
1074 			       unsigned long dst, int size,
1075 			       int *error, bool enc)
1076 {
1077 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1078 	struct sev_data_dbg data;
1079 
1080 	data.reserved = 0;
1081 	data.handle = sev->handle;
1082 	data.dst_addr = dst;
1083 	data.src_addr = src;
1084 	data.len = size;
1085 
1086 	return sev_issue_cmd(kvm,
1087 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
1088 			     &data, error);
1089 }
1090 
1091 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
1092 			     unsigned long dst_paddr, int sz, int *err)
1093 {
1094 	int offset;
1095 
1096 	/*
1097 	 * Its safe to read more than we are asked, caller should ensure that
1098 	 * destination has enough space.
1099 	 */
1100 	offset = src_paddr & 15;
1101 	src_paddr = round_down(src_paddr, 16);
1102 	sz = round_up(sz + offset, 16);
1103 
1104 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
1105 }
1106 
1107 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
1108 				  void __user *dst_uaddr,
1109 				  unsigned long dst_paddr,
1110 				  int size, int *err)
1111 {
1112 	struct page *tpage = NULL;
1113 	int ret, offset;
1114 
1115 	/* if inputs are not 16-byte then use intermediate buffer */
1116 	if (!IS_ALIGNED(dst_paddr, 16) ||
1117 	    !IS_ALIGNED(paddr,     16) ||
1118 	    !IS_ALIGNED(size,      16)) {
1119 		tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1120 		if (!tpage)
1121 			return -ENOMEM;
1122 
1123 		dst_paddr = __sme_page_pa(tpage);
1124 	}
1125 
1126 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
1127 	if (ret)
1128 		goto e_free;
1129 
1130 	if (tpage) {
1131 		offset = paddr & 15;
1132 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
1133 			ret = -EFAULT;
1134 	}
1135 
1136 e_free:
1137 	if (tpage)
1138 		__free_page(tpage);
1139 
1140 	return ret;
1141 }
1142 
1143 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
1144 				  void __user *vaddr,
1145 				  unsigned long dst_paddr,
1146 				  void __user *dst_vaddr,
1147 				  int size, int *error)
1148 {
1149 	struct page *src_tpage = NULL;
1150 	struct page *dst_tpage = NULL;
1151 	int ret, len = size;
1152 
1153 	/* If source buffer is not aligned then use an intermediate buffer */
1154 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1155 		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1156 		if (!src_tpage)
1157 			return -ENOMEM;
1158 
1159 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1160 			__free_page(src_tpage);
1161 			return -EFAULT;
1162 		}
1163 
1164 		paddr = __sme_page_pa(src_tpage);
1165 	}
1166 
1167 	/*
1168 	 *  If destination buffer or length is not aligned then do read-modify-write:
1169 	 *   - decrypt destination in an intermediate buffer
1170 	 *   - copy the source buffer in an intermediate buffer
1171 	 *   - use the intermediate buffer as source buffer
1172 	 */
1173 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1174 		int dst_offset;
1175 
1176 		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1177 		if (!dst_tpage) {
1178 			ret = -ENOMEM;
1179 			goto e_free;
1180 		}
1181 
1182 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
1183 					__sme_page_pa(dst_tpage), size, error);
1184 		if (ret)
1185 			goto e_free;
1186 
1187 		/*
1188 		 *  If source is kernel buffer then use memcpy() otherwise
1189 		 *  copy_from_user().
1190 		 */
1191 		dst_offset = dst_paddr & 15;
1192 
1193 		if (src_tpage)
1194 			memcpy(page_address(dst_tpage) + dst_offset,
1195 			       page_address(src_tpage), size);
1196 		else {
1197 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
1198 					   vaddr, size)) {
1199 				ret = -EFAULT;
1200 				goto e_free;
1201 			}
1202 		}
1203 
1204 		paddr = __sme_page_pa(dst_tpage);
1205 		dst_paddr = round_down(dst_paddr, 16);
1206 		len = round_up(size, 16);
1207 	}
1208 
1209 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1210 
1211 e_free:
1212 	if (src_tpage)
1213 		__free_page(src_tpage);
1214 	if (dst_tpage)
1215 		__free_page(dst_tpage);
1216 	return ret;
1217 }
1218 
1219 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1220 {
1221 	unsigned long vaddr, vaddr_end, next_vaddr;
1222 	unsigned long dst_vaddr;
1223 	struct page **src_p, **dst_p;
1224 	struct kvm_sev_dbg debug;
1225 	unsigned long n;
1226 	unsigned int size;
1227 	int ret;
1228 
1229 	if (!sev_guest(kvm))
1230 		return -ENOTTY;
1231 
1232 	if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1233 		return -EFAULT;
1234 
1235 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1236 		return -EINVAL;
1237 	if (!debug.dst_uaddr)
1238 		return -EINVAL;
1239 
1240 	vaddr = debug.src_uaddr;
1241 	size = debug.len;
1242 	vaddr_end = vaddr + size;
1243 	dst_vaddr = debug.dst_uaddr;
1244 
1245 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1246 		int len, s_off, d_off;
1247 
1248 		/* lock userspace source and destination page */
1249 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1250 		if (IS_ERR(src_p))
1251 			return PTR_ERR(src_p);
1252 
1253 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
1254 		if (IS_ERR(dst_p)) {
1255 			sev_unpin_memory(kvm, src_p, n);
1256 			return PTR_ERR(dst_p);
1257 		}
1258 
1259 		/*
1260 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1261 		 * the pages; flush the destination too so that future accesses do not
1262 		 * see stale data.
1263 		 */
1264 		sev_clflush_pages(src_p, 1);
1265 		sev_clflush_pages(dst_p, 1);
1266 
1267 		/*
1268 		 * Since user buffer may not be page aligned, calculate the
1269 		 * offset within the page.
1270 		 */
1271 		s_off = vaddr & ~PAGE_MASK;
1272 		d_off = dst_vaddr & ~PAGE_MASK;
1273 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
1274 
1275 		if (dec)
1276 			ret = __sev_dbg_decrypt_user(kvm,
1277 						     __sme_page_pa(src_p[0]) + s_off,
1278 						     (void __user *)dst_vaddr,
1279 						     __sme_page_pa(dst_p[0]) + d_off,
1280 						     len, &argp->error);
1281 		else
1282 			ret = __sev_dbg_encrypt_user(kvm,
1283 						     __sme_page_pa(src_p[0]) + s_off,
1284 						     (void __user *)vaddr,
1285 						     __sme_page_pa(dst_p[0]) + d_off,
1286 						     (void __user *)dst_vaddr,
1287 						     len, &argp->error);
1288 
1289 		sev_unpin_memory(kvm, src_p, n);
1290 		sev_unpin_memory(kvm, dst_p, n);
1291 
1292 		if (ret)
1293 			goto err;
1294 
1295 		next_vaddr = vaddr + len;
1296 		dst_vaddr = dst_vaddr + len;
1297 		size -= len;
1298 	}
1299 err:
1300 	return ret;
1301 }
1302 
1303 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1304 {
1305 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1306 	struct sev_data_launch_secret data;
1307 	struct kvm_sev_launch_secret params;
1308 	struct page **pages;
1309 	void *blob, *hdr;
1310 	unsigned long n, i;
1311 	int ret, offset;
1312 
1313 	if (!sev_guest(kvm))
1314 		return -ENOTTY;
1315 
1316 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1317 		return -EFAULT;
1318 
1319 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1320 	if (IS_ERR(pages))
1321 		return PTR_ERR(pages);
1322 
1323 	/*
1324 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1325 	 * place; the cache may contain the data that was written unencrypted.
1326 	 */
1327 	sev_clflush_pages(pages, n);
1328 
1329 	/*
1330 	 * The secret must be copied into contiguous memory region, lets verify
1331 	 * that userspace memory pages are contiguous before we issue command.
1332 	 */
1333 	if (get_num_contig_pages(0, pages, n) != n) {
1334 		ret = -EINVAL;
1335 		goto e_unpin_memory;
1336 	}
1337 
1338 	memset(&data, 0, sizeof(data));
1339 
1340 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1341 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1342 	data.guest_len = params.guest_len;
1343 
1344 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1345 	if (IS_ERR(blob)) {
1346 		ret = PTR_ERR(blob);
1347 		goto e_unpin_memory;
1348 	}
1349 
1350 	data.trans_address = __psp_pa(blob);
1351 	data.trans_len = params.trans_len;
1352 
1353 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1354 	if (IS_ERR(hdr)) {
1355 		ret = PTR_ERR(hdr);
1356 		goto e_free_blob;
1357 	}
1358 	data.hdr_address = __psp_pa(hdr);
1359 	data.hdr_len = params.hdr_len;
1360 
1361 	data.handle = sev->handle;
1362 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1363 
1364 	kfree(hdr);
1365 
1366 e_free_blob:
1367 	kfree(blob);
1368 e_unpin_memory:
1369 	/* content of memory is updated, mark pages dirty */
1370 	for (i = 0; i < n; i++) {
1371 		set_page_dirty_lock(pages[i]);
1372 		mark_page_accessed(pages[i]);
1373 	}
1374 	sev_unpin_memory(kvm, pages, n);
1375 	return ret;
1376 }
1377 
1378 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1379 {
1380 	void __user *report = u64_to_user_ptr(argp->data);
1381 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1382 	struct sev_data_attestation_report data;
1383 	struct kvm_sev_attestation_report params;
1384 	void __user *p;
1385 	void *blob = NULL;
1386 	int ret;
1387 
1388 	if (!sev_guest(kvm))
1389 		return -ENOTTY;
1390 
1391 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1392 		return -EFAULT;
1393 
1394 	memset(&data, 0, sizeof(data));
1395 
1396 	/* User wants to query the blob length */
1397 	if (!params.len)
1398 		goto cmd;
1399 
1400 	p = u64_to_user_ptr(params.uaddr);
1401 	if (p) {
1402 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1403 			return -EINVAL;
1404 
1405 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1406 		if (!blob)
1407 			return -ENOMEM;
1408 
1409 		data.address = __psp_pa(blob);
1410 		data.len = params.len;
1411 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1412 	}
1413 cmd:
1414 	data.handle = sev->handle;
1415 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1416 	/*
1417 	 * If we query the session length, FW responded with expected data.
1418 	 */
1419 	if (!params.len)
1420 		goto done;
1421 
1422 	if (ret)
1423 		goto e_free_blob;
1424 
1425 	if (blob) {
1426 		if (copy_to_user(p, blob, params.len))
1427 			ret = -EFAULT;
1428 	}
1429 
1430 done:
1431 	params.len = data.len;
1432 	if (copy_to_user(report, &params, sizeof(params)))
1433 		ret = -EFAULT;
1434 e_free_blob:
1435 	kfree(blob);
1436 	return ret;
1437 }
1438 
1439 /* Userspace wants to query session length. */
1440 static int
1441 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1442 				      struct kvm_sev_send_start *params)
1443 {
1444 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1445 	struct sev_data_send_start data;
1446 	int ret;
1447 
1448 	memset(&data, 0, sizeof(data));
1449 	data.handle = sev->handle;
1450 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1451 
1452 	params->session_len = data.session_len;
1453 	if (copy_to_user(u64_to_user_ptr(argp->data), params,
1454 				sizeof(struct kvm_sev_send_start)))
1455 		ret = -EFAULT;
1456 
1457 	return ret;
1458 }
1459 
1460 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1461 {
1462 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1463 	struct sev_data_send_start data;
1464 	struct kvm_sev_send_start params;
1465 	void *amd_certs, *session_data;
1466 	void *pdh_cert, *plat_certs;
1467 	int ret;
1468 
1469 	if (!sev_guest(kvm))
1470 		return -ENOTTY;
1471 
1472 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1473 				sizeof(struct kvm_sev_send_start)))
1474 		return -EFAULT;
1475 
1476 	/* if session_len is zero, userspace wants to query the session length */
1477 	if (!params.session_len)
1478 		return __sev_send_start_query_session_length(kvm, argp,
1479 				&params);
1480 
1481 	/* some sanity checks */
1482 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1483 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1484 		return -EINVAL;
1485 
1486 	/* allocate the memory to hold the session data blob */
1487 	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1488 	if (!session_data)
1489 		return -ENOMEM;
1490 
1491 	/* copy the certificate blobs from userspace */
1492 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1493 				params.pdh_cert_len);
1494 	if (IS_ERR(pdh_cert)) {
1495 		ret = PTR_ERR(pdh_cert);
1496 		goto e_free_session;
1497 	}
1498 
1499 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1500 				params.plat_certs_len);
1501 	if (IS_ERR(plat_certs)) {
1502 		ret = PTR_ERR(plat_certs);
1503 		goto e_free_pdh;
1504 	}
1505 
1506 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1507 				params.amd_certs_len);
1508 	if (IS_ERR(amd_certs)) {
1509 		ret = PTR_ERR(amd_certs);
1510 		goto e_free_plat_cert;
1511 	}
1512 
1513 	/* populate the FW SEND_START field with system physical address */
1514 	memset(&data, 0, sizeof(data));
1515 	data.pdh_cert_address = __psp_pa(pdh_cert);
1516 	data.pdh_cert_len = params.pdh_cert_len;
1517 	data.plat_certs_address = __psp_pa(plat_certs);
1518 	data.plat_certs_len = params.plat_certs_len;
1519 	data.amd_certs_address = __psp_pa(amd_certs);
1520 	data.amd_certs_len = params.amd_certs_len;
1521 	data.session_address = __psp_pa(session_data);
1522 	data.session_len = params.session_len;
1523 	data.handle = sev->handle;
1524 
1525 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1526 
1527 	if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1528 			session_data, params.session_len)) {
1529 		ret = -EFAULT;
1530 		goto e_free_amd_cert;
1531 	}
1532 
1533 	params.policy = data.policy;
1534 	params.session_len = data.session_len;
1535 	if (copy_to_user(u64_to_user_ptr(argp->data), &params,
1536 				sizeof(struct kvm_sev_send_start)))
1537 		ret = -EFAULT;
1538 
1539 e_free_amd_cert:
1540 	kfree(amd_certs);
1541 e_free_plat_cert:
1542 	kfree(plat_certs);
1543 e_free_pdh:
1544 	kfree(pdh_cert);
1545 e_free_session:
1546 	kfree(session_data);
1547 	return ret;
1548 }
1549 
1550 /* Userspace wants to query either header or trans length. */
1551 static int
1552 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1553 				     struct kvm_sev_send_update_data *params)
1554 {
1555 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1556 	struct sev_data_send_update_data data;
1557 	int ret;
1558 
1559 	memset(&data, 0, sizeof(data));
1560 	data.handle = sev->handle;
1561 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1562 
1563 	params->hdr_len = data.hdr_len;
1564 	params->trans_len = data.trans_len;
1565 
1566 	if (copy_to_user(u64_to_user_ptr(argp->data), params,
1567 			 sizeof(struct kvm_sev_send_update_data)))
1568 		ret = -EFAULT;
1569 
1570 	return ret;
1571 }
1572 
1573 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1574 {
1575 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1576 	struct sev_data_send_update_data data;
1577 	struct kvm_sev_send_update_data params;
1578 	void *hdr, *trans_data;
1579 	struct page **guest_page;
1580 	unsigned long n;
1581 	int ret, offset;
1582 
1583 	if (!sev_guest(kvm))
1584 		return -ENOTTY;
1585 
1586 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1587 			sizeof(struct kvm_sev_send_update_data)))
1588 		return -EFAULT;
1589 
1590 	/* userspace wants to query either header or trans length */
1591 	if (!params.trans_len || !params.hdr_len)
1592 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1593 
1594 	if (!params.trans_uaddr || !params.guest_uaddr ||
1595 	    !params.guest_len || !params.hdr_uaddr)
1596 		return -EINVAL;
1597 
1598 	/* Check if we are crossing the page boundary */
1599 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1600 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1601 		return -EINVAL;
1602 
1603 	/* Pin guest memory */
1604 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1605 				    PAGE_SIZE, &n, 0);
1606 	if (IS_ERR(guest_page))
1607 		return PTR_ERR(guest_page);
1608 
1609 	/* allocate memory for header and transport buffer */
1610 	ret = -ENOMEM;
1611 	hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1612 	if (!hdr)
1613 		goto e_unpin;
1614 
1615 	trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1616 	if (!trans_data)
1617 		goto e_free_hdr;
1618 
1619 	memset(&data, 0, sizeof(data));
1620 	data.hdr_address = __psp_pa(hdr);
1621 	data.hdr_len = params.hdr_len;
1622 	data.trans_address = __psp_pa(trans_data);
1623 	data.trans_len = params.trans_len;
1624 
1625 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1626 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1627 	data.guest_address |= sev_me_mask;
1628 	data.guest_len = params.guest_len;
1629 	data.handle = sev->handle;
1630 
1631 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1632 
1633 	if (ret)
1634 		goto e_free_trans_data;
1635 
1636 	/* copy transport buffer to user space */
1637 	if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1638 			 trans_data, params.trans_len)) {
1639 		ret = -EFAULT;
1640 		goto e_free_trans_data;
1641 	}
1642 
1643 	/* Copy packet header to userspace. */
1644 	if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1645 			 params.hdr_len))
1646 		ret = -EFAULT;
1647 
1648 e_free_trans_data:
1649 	kfree(trans_data);
1650 e_free_hdr:
1651 	kfree(hdr);
1652 e_unpin:
1653 	sev_unpin_memory(kvm, guest_page, n);
1654 
1655 	return ret;
1656 }
1657 
1658 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1659 {
1660 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1661 	struct sev_data_send_finish data;
1662 
1663 	if (!sev_guest(kvm))
1664 		return -ENOTTY;
1665 
1666 	data.handle = sev->handle;
1667 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1668 }
1669 
1670 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1671 {
1672 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1673 	struct sev_data_send_cancel data;
1674 
1675 	if (!sev_guest(kvm))
1676 		return -ENOTTY;
1677 
1678 	data.handle = sev->handle;
1679 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1680 }
1681 
1682 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1683 {
1684 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1685 	struct sev_data_receive_start start;
1686 	struct kvm_sev_receive_start params;
1687 	int *error = &argp->error;
1688 	void *session_data;
1689 	void *pdh_data;
1690 	int ret;
1691 
1692 	if (!sev_guest(kvm))
1693 		return -ENOTTY;
1694 
1695 	/* Get parameter from the userspace */
1696 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1697 			sizeof(struct kvm_sev_receive_start)))
1698 		return -EFAULT;
1699 
1700 	/* some sanity checks */
1701 	if (!params.pdh_uaddr || !params.pdh_len ||
1702 	    !params.session_uaddr || !params.session_len)
1703 		return -EINVAL;
1704 
1705 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1706 	if (IS_ERR(pdh_data))
1707 		return PTR_ERR(pdh_data);
1708 
1709 	session_data = psp_copy_user_blob(params.session_uaddr,
1710 			params.session_len);
1711 	if (IS_ERR(session_data)) {
1712 		ret = PTR_ERR(session_data);
1713 		goto e_free_pdh;
1714 	}
1715 
1716 	memset(&start, 0, sizeof(start));
1717 	start.handle = params.handle;
1718 	start.policy = params.policy;
1719 	start.pdh_cert_address = __psp_pa(pdh_data);
1720 	start.pdh_cert_len = params.pdh_len;
1721 	start.session_address = __psp_pa(session_data);
1722 	start.session_len = params.session_len;
1723 
1724 	/* create memory encryption context */
1725 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1726 				error);
1727 	if (ret)
1728 		goto e_free_session;
1729 
1730 	/* Bind ASID to this guest */
1731 	ret = sev_bind_asid(kvm, start.handle, error);
1732 	if (ret) {
1733 		sev_decommission(start.handle);
1734 		goto e_free_session;
1735 	}
1736 
1737 	params.handle = start.handle;
1738 	if (copy_to_user(u64_to_user_ptr(argp->data),
1739 			 &params, sizeof(struct kvm_sev_receive_start))) {
1740 		ret = -EFAULT;
1741 		sev_unbind_asid(kvm, start.handle);
1742 		goto e_free_session;
1743 	}
1744 
1745     	sev->handle = start.handle;
1746 	sev->fd = argp->sev_fd;
1747 
1748 e_free_session:
1749 	kfree(session_data);
1750 e_free_pdh:
1751 	kfree(pdh_data);
1752 
1753 	return ret;
1754 }
1755 
1756 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1757 {
1758 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1759 	struct kvm_sev_receive_update_data params;
1760 	struct sev_data_receive_update_data data;
1761 	void *hdr = NULL, *trans = NULL;
1762 	struct page **guest_page;
1763 	unsigned long n;
1764 	int ret, offset;
1765 
1766 	if (!sev_guest(kvm))
1767 		return -EINVAL;
1768 
1769 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1770 			sizeof(struct kvm_sev_receive_update_data)))
1771 		return -EFAULT;
1772 
1773 	if (!params.hdr_uaddr || !params.hdr_len ||
1774 	    !params.guest_uaddr || !params.guest_len ||
1775 	    !params.trans_uaddr || !params.trans_len)
1776 		return -EINVAL;
1777 
1778 	/* Check if we are crossing the page boundary */
1779 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1780 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1781 		return -EINVAL;
1782 
1783 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1784 	if (IS_ERR(hdr))
1785 		return PTR_ERR(hdr);
1786 
1787 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1788 	if (IS_ERR(trans)) {
1789 		ret = PTR_ERR(trans);
1790 		goto e_free_hdr;
1791 	}
1792 
1793 	memset(&data, 0, sizeof(data));
1794 	data.hdr_address = __psp_pa(hdr);
1795 	data.hdr_len = params.hdr_len;
1796 	data.trans_address = __psp_pa(trans);
1797 	data.trans_len = params.trans_len;
1798 
1799 	/* Pin guest memory */
1800 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1801 				    PAGE_SIZE, &n, 1);
1802 	if (IS_ERR(guest_page)) {
1803 		ret = PTR_ERR(guest_page);
1804 		goto e_free_trans;
1805 	}
1806 
1807 	/*
1808 	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1809 	 * encrypts the written data with the guest's key, and the cache may
1810 	 * contain dirty, unencrypted data.
1811 	 */
1812 	sev_clflush_pages(guest_page, n);
1813 
1814 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1815 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1816 	data.guest_address |= sev_me_mask;
1817 	data.guest_len = params.guest_len;
1818 	data.handle = sev->handle;
1819 
1820 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1821 				&argp->error);
1822 
1823 	sev_unpin_memory(kvm, guest_page, n);
1824 
1825 e_free_trans:
1826 	kfree(trans);
1827 e_free_hdr:
1828 	kfree(hdr);
1829 
1830 	return ret;
1831 }
1832 
1833 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1834 {
1835 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1836 	struct sev_data_receive_finish data;
1837 
1838 	if (!sev_guest(kvm))
1839 		return -ENOTTY;
1840 
1841 	data.handle = sev->handle;
1842 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1843 }
1844 
1845 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1846 {
1847 	/*
1848 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1849 	 * active mirror VMs. Also allow the debugging and status commands.
1850 	 */
1851 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1852 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1853 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1854 		return true;
1855 
1856 	return false;
1857 }
1858 
1859 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1860 {
1861 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1862 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1863 	int r = -EBUSY;
1864 
1865 	if (dst_kvm == src_kvm)
1866 		return -EINVAL;
1867 
1868 	/*
1869 	 * Bail if these VMs are already involved in a migration to avoid
1870 	 * deadlock between two VMs trying to migrate to/from each other.
1871 	 */
1872 	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1873 		return -EBUSY;
1874 
1875 	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1876 		goto release_dst;
1877 
1878 	r = -EINTR;
1879 	if (mutex_lock_killable(&dst_kvm->lock))
1880 		goto release_src;
1881 	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1882 		goto unlock_dst;
1883 	return 0;
1884 
1885 unlock_dst:
1886 	mutex_unlock(&dst_kvm->lock);
1887 release_src:
1888 	atomic_set_release(&src_sev->migration_in_progress, 0);
1889 release_dst:
1890 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1891 	return r;
1892 }
1893 
1894 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1895 {
1896 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1897 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1898 
1899 	mutex_unlock(&dst_kvm->lock);
1900 	mutex_unlock(&src_kvm->lock);
1901 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1902 	atomic_set_release(&src_sev->migration_in_progress, 0);
1903 }
1904 
1905 /* vCPU mutex subclasses.  */
1906 enum sev_migration_role {
1907 	SEV_MIGRATION_SOURCE = 0,
1908 	SEV_MIGRATION_TARGET,
1909 	SEV_NR_MIGRATION_ROLES,
1910 };
1911 
1912 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1913 					enum sev_migration_role role)
1914 {
1915 	struct kvm_vcpu *vcpu;
1916 	unsigned long i, j;
1917 
1918 	kvm_for_each_vcpu(i, vcpu, kvm) {
1919 		if (mutex_lock_killable_nested(&vcpu->mutex, role))
1920 			goto out_unlock;
1921 
1922 #ifdef CONFIG_PROVE_LOCKING
1923 		if (!i)
1924 			/*
1925 			 * Reset the role to one that avoids colliding with
1926 			 * the role used for the first vcpu mutex.
1927 			 */
1928 			role = SEV_NR_MIGRATION_ROLES;
1929 		else
1930 			mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1931 #endif
1932 	}
1933 
1934 	return 0;
1935 
1936 out_unlock:
1937 
1938 	kvm_for_each_vcpu(j, vcpu, kvm) {
1939 		if (i == j)
1940 			break;
1941 
1942 #ifdef CONFIG_PROVE_LOCKING
1943 		if (j)
1944 			mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1945 #endif
1946 
1947 		mutex_unlock(&vcpu->mutex);
1948 	}
1949 	return -EINTR;
1950 }
1951 
1952 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1953 {
1954 	struct kvm_vcpu *vcpu;
1955 	unsigned long i;
1956 	bool first = true;
1957 
1958 	kvm_for_each_vcpu(i, vcpu, kvm) {
1959 		if (first)
1960 			first = false;
1961 		else
1962 			mutex_acquire(&vcpu->mutex.dep_map,
1963 				      SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1964 
1965 		mutex_unlock(&vcpu->mutex);
1966 	}
1967 }
1968 
1969 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1970 {
1971 	struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1972 	struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1973 	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1974 	struct vcpu_svm *dst_svm, *src_svm;
1975 	struct kvm_sev_info *mirror;
1976 	unsigned long i;
1977 
1978 	dst->active = true;
1979 	dst->asid = src->asid;
1980 	dst->handle = src->handle;
1981 	dst->pages_locked = src->pages_locked;
1982 	dst->enc_context_owner = src->enc_context_owner;
1983 	dst->es_active = src->es_active;
1984 	dst->vmsa_features = src->vmsa_features;
1985 
1986 	src->asid = 0;
1987 	src->active = false;
1988 	src->handle = 0;
1989 	src->pages_locked = 0;
1990 	src->enc_context_owner = NULL;
1991 	src->es_active = false;
1992 
1993 	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1994 
1995 	/*
1996 	 * If this VM has mirrors, "transfer" each mirror's refcount of the
1997 	 * source to the destination (this KVM).  The caller holds a reference
1998 	 * to the source, so there's no danger of use-after-free.
1999 	 */
2000 	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
2001 	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
2002 		kvm_get_kvm(dst_kvm);
2003 		kvm_put_kvm(src_kvm);
2004 		mirror->enc_context_owner = dst_kvm;
2005 	}
2006 
2007 	/*
2008 	 * If this VM is a mirror, remove the old mirror from the owners list
2009 	 * and add the new mirror to the list.
2010 	 */
2011 	if (is_mirroring_enc_context(dst_kvm)) {
2012 		struct kvm_sev_info *owner_sev_info =
2013 			&to_kvm_svm(dst->enc_context_owner)->sev_info;
2014 
2015 		list_del(&src->mirror_entry);
2016 		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
2017 	}
2018 
2019 	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
2020 		dst_svm = to_svm(dst_vcpu);
2021 
2022 		sev_init_vmcb(dst_svm);
2023 
2024 		if (!dst->es_active)
2025 			continue;
2026 
2027 		/*
2028 		 * Note, the source is not required to have the same number of
2029 		 * vCPUs as the destination when migrating a vanilla SEV VM.
2030 		 */
2031 		src_vcpu = kvm_get_vcpu(src_kvm, i);
2032 		src_svm = to_svm(src_vcpu);
2033 
2034 		/*
2035 		 * Transfer VMSA and GHCB state to the destination.  Nullify and
2036 		 * clear source fields as appropriate, the state now belongs to
2037 		 * the destination.
2038 		 */
2039 		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
2040 		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
2041 		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
2042 		dst_vcpu->arch.guest_state_protected = true;
2043 
2044 		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
2045 		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
2046 		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
2047 		src_vcpu->arch.guest_state_protected = false;
2048 	}
2049 }
2050 
2051 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
2052 {
2053 	struct kvm_vcpu *src_vcpu;
2054 	unsigned long i;
2055 
2056 	if (!sev_es_guest(src))
2057 		return 0;
2058 
2059 	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
2060 		return -EINVAL;
2061 
2062 	kvm_for_each_vcpu(i, src_vcpu, src) {
2063 		if (!src_vcpu->arch.guest_state_protected)
2064 			return -EINVAL;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2071 {
2072 	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
2073 	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
2074 	CLASS(fd, f)(source_fd);
2075 	struct kvm *source_kvm;
2076 	bool charged = false;
2077 	int ret;
2078 
2079 	if (fd_empty(f))
2080 		return -EBADF;
2081 
2082 	if (!file_is_kvm(fd_file(f)))
2083 		return -EBADF;
2084 
2085 	source_kvm = fd_file(f)->private_data;
2086 	ret = sev_lock_two_vms(kvm, source_kvm);
2087 	if (ret)
2088 		return ret;
2089 
2090 	if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
2091 	    sev_guest(kvm) || !sev_guest(source_kvm)) {
2092 		ret = -EINVAL;
2093 		goto out_unlock;
2094 	}
2095 
2096 	src_sev = &to_kvm_svm(source_kvm)->sev_info;
2097 
2098 	dst_sev->misc_cg = get_current_misc_cg();
2099 	cg_cleanup_sev = dst_sev;
2100 	if (dst_sev->misc_cg != src_sev->misc_cg) {
2101 		ret = sev_misc_cg_try_charge(dst_sev);
2102 		if (ret)
2103 			goto out_dst_cgroup;
2104 		charged = true;
2105 	}
2106 
2107 	ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
2108 	if (ret)
2109 		goto out_dst_cgroup;
2110 	ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
2111 	if (ret)
2112 		goto out_dst_vcpu;
2113 
2114 	ret = sev_check_source_vcpus(kvm, source_kvm);
2115 	if (ret)
2116 		goto out_source_vcpu;
2117 
2118 	sev_migrate_from(kvm, source_kvm);
2119 	kvm_vm_dead(source_kvm);
2120 	cg_cleanup_sev = src_sev;
2121 	ret = 0;
2122 
2123 out_source_vcpu:
2124 	sev_unlock_vcpus_for_migration(source_kvm);
2125 out_dst_vcpu:
2126 	sev_unlock_vcpus_for_migration(kvm);
2127 out_dst_cgroup:
2128 	/* Operates on the source on success, on the destination on failure.  */
2129 	if (charged)
2130 		sev_misc_cg_uncharge(cg_cleanup_sev);
2131 	put_misc_cg(cg_cleanup_sev->misc_cg);
2132 	cg_cleanup_sev->misc_cg = NULL;
2133 out_unlock:
2134 	sev_unlock_two_vms(kvm, source_kvm);
2135 	return ret;
2136 }
2137 
2138 int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
2139 {
2140 	if (group != KVM_X86_GRP_SEV)
2141 		return -ENXIO;
2142 
2143 	switch (attr) {
2144 	case KVM_X86_SEV_VMSA_FEATURES:
2145 		*val = sev_supported_vmsa_features;
2146 		return 0;
2147 
2148 	default:
2149 		return -ENXIO;
2150 	}
2151 }
2152 
2153 /*
2154  * The guest context contains all the information, keys and metadata
2155  * associated with the guest that the firmware tracks to implement SEV
2156  * and SNP features. The firmware stores the guest context in hypervisor
2157  * provide page via the SNP_GCTX_CREATE command.
2158  */
2159 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
2160 {
2161 	struct sev_data_snp_addr data = {};
2162 	void *context;
2163 	int rc;
2164 
2165 	/* Allocate memory for context page */
2166 	context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
2167 	if (!context)
2168 		return NULL;
2169 
2170 	data.address = __psp_pa(context);
2171 	rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
2172 	if (rc) {
2173 		pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
2174 			rc, argp->error);
2175 		snp_free_firmware_page(context);
2176 		return NULL;
2177 	}
2178 
2179 	return context;
2180 }
2181 
2182 static int snp_bind_asid(struct kvm *kvm, int *error)
2183 {
2184 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2185 	struct sev_data_snp_activate data = {0};
2186 
2187 	data.gctx_paddr = __psp_pa(sev->snp_context);
2188 	data.asid = sev_get_asid(kvm);
2189 	return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
2190 }
2191 
2192 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
2193 {
2194 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2195 	struct sev_data_snp_launch_start start = {0};
2196 	struct kvm_sev_snp_launch_start params;
2197 	int rc;
2198 
2199 	if (!sev_snp_guest(kvm))
2200 		return -ENOTTY;
2201 
2202 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2203 		return -EFAULT;
2204 
2205 	/* Don't allow userspace to allocate memory for more than 1 SNP context. */
2206 	if (sev->snp_context)
2207 		return -EINVAL;
2208 
2209 	if (params.flags)
2210 		return -EINVAL;
2211 
2212 	if (params.policy & ~SNP_POLICY_MASK_VALID)
2213 		return -EINVAL;
2214 
2215 	/* Check for policy bits that must be set */
2216 	if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) ||
2217 	    !(params.policy & SNP_POLICY_MASK_SMT))
2218 		return -EINVAL;
2219 
2220 	if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET)
2221 		return -EINVAL;
2222 
2223 	sev->snp_context = snp_context_create(kvm, argp);
2224 	if (!sev->snp_context)
2225 		return -ENOTTY;
2226 
2227 	start.gctx_paddr = __psp_pa(sev->snp_context);
2228 	start.policy = params.policy;
2229 	memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
2230 	rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
2231 	if (rc) {
2232 		pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
2233 			 __func__, rc);
2234 		goto e_free_context;
2235 	}
2236 
2237 	sev->fd = argp->sev_fd;
2238 	rc = snp_bind_asid(kvm, &argp->error);
2239 	if (rc) {
2240 		pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
2241 			 __func__, rc);
2242 		goto e_free_context;
2243 	}
2244 
2245 	return 0;
2246 
2247 e_free_context:
2248 	snp_decommission_context(kvm);
2249 
2250 	return rc;
2251 }
2252 
2253 struct sev_gmem_populate_args {
2254 	__u8 type;
2255 	int sev_fd;
2256 	int fw_error;
2257 };
2258 
2259 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
2260 				  void __user *src, int order, void *opaque)
2261 {
2262 	struct sev_gmem_populate_args *sev_populate_args = opaque;
2263 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2264 	int n_private = 0, ret, i;
2265 	int npages = (1 << order);
2266 	gfn_t gfn;
2267 
2268 	if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
2269 		return -EINVAL;
2270 
2271 	for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
2272 		struct sev_data_snp_launch_update fw_args = {0};
2273 		bool assigned = false;
2274 		int level;
2275 
2276 		ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
2277 		if (ret || assigned) {
2278 			pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
2279 				 __func__, gfn, ret, assigned);
2280 			ret = ret ? -EINVAL : -EEXIST;
2281 			goto err;
2282 		}
2283 
2284 		if (src) {
2285 			void *vaddr = kmap_local_pfn(pfn + i);
2286 
2287 			if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) {
2288 				ret = -EFAULT;
2289 				goto err;
2290 			}
2291 			kunmap_local(vaddr);
2292 		}
2293 
2294 		ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
2295 				       sev_get_asid(kvm), true);
2296 		if (ret)
2297 			goto err;
2298 
2299 		n_private++;
2300 
2301 		fw_args.gctx_paddr = __psp_pa(sev->snp_context);
2302 		fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
2303 		fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
2304 		fw_args.page_type = sev_populate_args->type;
2305 
2306 		ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2307 				      &fw_args, &sev_populate_args->fw_error);
2308 		if (ret)
2309 			goto fw_err;
2310 	}
2311 
2312 	return 0;
2313 
2314 fw_err:
2315 	/*
2316 	 * If the firmware command failed handle the reclaim and cleanup of that
2317 	 * PFN specially vs. prior pages which can be cleaned up below without
2318 	 * needing to reclaim in advance.
2319 	 *
2320 	 * Additionally, when invalid CPUID function entries are detected,
2321 	 * firmware writes the expected values into the page and leaves it
2322 	 * unencrypted so it can be used for debugging and error-reporting.
2323 	 *
2324 	 * Copy this page back into the source buffer so userspace can use this
2325 	 * information to provide information on which CPUID leaves/fields
2326 	 * failed CPUID validation.
2327 	 */
2328 	if (!snp_page_reclaim(kvm, pfn + i) &&
2329 	    sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
2330 	    sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
2331 		void *vaddr = kmap_local_pfn(pfn + i);
2332 
2333 		if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
2334 			pr_debug("Failed to write CPUID page back to userspace\n");
2335 
2336 		kunmap_local(vaddr);
2337 	}
2338 
2339 	/* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
2340 	n_private--;
2341 
2342 err:
2343 	pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
2344 		 __func__, ret, sev_populate_args->fw_error, n_private);
2345 	for (i = 0; i < n_private; i++)
2346 		kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);
2347 
2348 	return ret;
2349 }
2350 
2351 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
2352 {
2353 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2354 	struct sev_gmem_populate_args sev_populate_args = {0};
2355 	struct kvm_sev_snp_launch_update params;
2356 	struct kvm_memory_slot *memslot;
2357 	long npages, count;
2358 	void __user *src;
2359 	int ret = 0;
2360 
2361 	if (!sev_snp_guest(kvm) || !sev->snp_context)
2362 		return -EINVAL;
2363 
2364 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2365 		return -EFAULT;
2366 
2367 	pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
2368 		 params.gfn_start, params.len, params.type, params.flags);
2369 
2370 	if (!PAGE_ALIGNED(params.len) || params.flags ||
2371 	    (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
2372 	     params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
2373 	     params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
2374 	     params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
2375 	     params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
2376 		return -EINVAL;
2377 
2378 	npages = params.len / PAGE_SIZE;
2379 
2380 	/*
2381 	 * For each GFN that's being prepared as part of the initial guest
2382 	 * state, the following pre-conditions are verified:
2383 	 *
2384 	 *   1) The backing memslot is a valid private memslot.
2385 	 *   2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
2386 	 *      beforehand.
2387 	 *   3) The PFN of the guest_memfd has not already been set to private
2388 	 *      in the RMP table.
2389 	 *
2390 	 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
2391 	 * faults if there's a race between a fault and an attribute update via
2392 	 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
2393 	 * here. However, kvm->slots_lock guards against both this as well as
2394 	 * concurrent memslot updates occurring while these checks are being
2395 	 * performed, so use that here to make it easier to reason about the
2396 	 * initial expected state and better guard against unexpected
2397 	 * situations.
2398 	 */
2399 	mutex_lock(&kvm->slots_lock);
2400 
2401 	memslot = gfn_to_memslot(kvm, params.gfn_start);
2402 	if (!kvm_slot_can_be_private(memslot)) {
2403 		ret = -EINVAL;
2404 		goto out;
2405 	}
2406 
2407 	sev_populate_args.sev_fd = argp->sev_fd;
2408 	sev_populate_args.type = params.type;
2409 	src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);
2410 
2411 	count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
2412 				  sev_gmem_post_populate, &sev_populate_args);
2413 	if (count < 0) {
2414 		argp->error = sev_populate_args.fw_error;
2415 		pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
2416 			 __func__, count, argp->error);
2417 		ret = -EIO;
2418 	} else {
2419 		params.gfn_start += count;
2420 		params.len -= count * PAGE_SIZE;
2421 		if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
2422 			params.uaddr += count * PAGE_SIZE;
2423 
2424 		ret = 0;
2425 		if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
2426 			ret = -EFAULT;
2427 	}
2428 
2429 out:
2430 	mutex_unlock(&kvm->slots_lock);
2431 
2432 	return ret;
2433 }
2434 
2435 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
2436 {
2437 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2438 	struct sev_data_snp_launch_update data = {};
2439 	struct kvm_vcpu *vcpu;
2440 	unsigned long i;
2441 	int ret;
2442 
2443 	data.gctx_paddr = __psp_pa(sev->snp_context);
2444 	data.page_type = SNP_PAGE_TYPE_VMSA;
2445 
2446 	kvm_for_each_vcpu(i, vcpu, kvm) {
2447 		struct vcpu_svm *svm = to_svm(vcpu);
2448 		u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
2449 
2450 		ret = sev_es_sync_vmsa(svm);
2451 		if (ret)
2452 			return ret;
2453 
2454 		/* Transition the VMSA page to a firmware state. */
2455 		ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
2456 		if (ret)
2457 			return ret;
2458 
2459 		/* Issue the SNP command to encrypt the VMSA */
2460 		data.address = __sme_pa(svm->sev_es.vmsa);
2461 		ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2462 				      &data, &argp->error);
2463 		if (ret) {
2464 			snp_page_reclaim(kvm, pfn);
2465 
2466 			return ret;
2467 		}
2468 
2469 		svm->vcpu.arch.guest_state_protected = true;
2470 		/*
2471 		 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
2472 		 * be _always_ ON. Enable it only after setting
2473 		 * guest_state_protected because KVM_SET_MSRS allows dynamic
2474 		 * toggling of LBRV (for performance reason) on write access to
2475 		 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
2476 		 */
2477 		svm_enable_lbrv(vcpu);
2478 	}
2479 
2480 	return 0;
2481 }
2482 
2483 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
2484 {
2485 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2486 	struct kvm_sev_snp_launch_finish params;
2487 	struct sev_data_snp_launch_finish *data;
2488 	void *id_block = NULL, *id_auth = NULL;
2489 	int ret;
2490 
2491 	if (!sev_snp_guest(kvm))
2492 		return -ENOTTY;
2493 
2494 	if (!sev->snp_context)
2495 		return -EINVAL;
2496 
2497 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2498 		return -EFAULT;
2499 
2500 	if (params.flags)
2501 		return -EINVAL;
2502 
2503 	/* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
2504 	ret = snp_launch_update_vmsa(kvm, argp);
2505 	if (ret)
2506 		return ret;
2507 
2508 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
2509 	if (!data)
2510 		return -ENOMEM;
2511 
2512 	if (params.id_block_en) {
2513 		id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
2514 		if (IS_ERR(id_block)) {
2515 			ret = PTR_ERR(id_block);
2516 			goto e_free;
2517 		}
2518 
2519 		data->id_block_en = 1;
2520 		data->id_block_paddr = __sme_pa(id_block);
2521 
2522 		id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
2523 		if (IS_ERR(id_auth)) {
2524 			ret = PTR_ERR(id_auth);
2525 			goto e_free_id_block;
2526 		}
2527 
2528 		data->id_auth_paddr = __sme_pa(id_auth);
2529 
2530 		if (params.auth_key_en)
2531 			data->auth_key_en = 1;
2532 	}
2533 
2534 	data->vcek_disabled = params.vcek_disabled;
2535 
2536 	memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
2537 	data->gctx_paddr = __psp_pa(sev->snp_context);
2538 	ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);
2539 
2540 	/*
2541 	 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
2542 	 * can be given to the guest simply by marking the RMP entry as private.
2543 	 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
2544 	 */
2545 	if (!ret)
2546 		kvm->arch.pre_fault_allowed = true;
2547 
2548 	kfree(id_auth);
2549 
2550 e_free_id_block:
2551 	kfree(id_block);
2552 
2553 e_free:
2554 	kfree(data);
2555 
2556 	return ret;
2557 }
2558 
2559 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2560 {
2561 	struct kvm_sev_cmd sev_cmd;
2562 	int r;
2563 
2564 	if (!sev_enabled)
2565 		return -ENOTTY;
2566 
2567 	if (!argp)
2568 		return 0;
2569 
2570 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2571 		return -EFAULT;
2572 
2573 	mutex_lock(&kvm->lock);
2574 
2575 	/* Only the enc_context_owner handles some memory enc operations. */
2576 	if (is_mirroring_enc_context(kvm) &&
2577 	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2578 		r = -EINVAL;
2579 		goto out;
2580 	}
2581 
2582 	/*
2583 	 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
2584 	 * allow the use of SNP-specific commands.
2585 	 */
2586 	if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
2587 		r = -EPERM;
2588 		goto out;
2589 	}
2590 
2591 	switch (sev_cmd.id) {
2592 	case KVM_SEV_ES_INIT:
2593 		if (!sev_es_enabled) {
2594 			r = -ENOTTY;
2595 			goto out;
2596 		}
2597 		fallthrough;
2598 	case KVM_SEV_INIT:
2599 		r = sev_guest_init(kvm, &sev_cmd);
2600 		break;
2601 	case KVM_SEV_INIT2:
2602 		r = sev_guest_init2(kvm, &sev_cmd);
2603 		break;
2604 	case KVM_SEV_LAUNCH_START:
2605 		r = sev_launch_start(kvm, &sev_cmd);
2606 		break;
2607 	case KVM_SEV_LAUNCH_UPDATE_DATA:
2608 		r = sev_launch_update_data(kvm, &sev_cmd);
2609 		break;
2610 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
2611 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
2612 		break;
2613 	case KVM_SEV_LAUNCH_MEASURE:
2614 		r = sev_launch_measure(kvm, &sev_cmd);
2615 		break;
2616 	case KVM_SEV_LAUNCH_FINISH:
2617 		r = sev_launch_finish(kvm, &sev_cmd);
2618 		break;
2619 	case KVM_SEV_GUEST_STATUS:
2620 		r = sev_guest_status(kvm, &sev_cmd);
2621 		break;
2622 	case KVM_SEV_DBG_DECRYPT:
2623 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
2624 		break;
2625 	case KVM_SEV_DBG_ENCRYPT:
2626 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
2627 		break;
2628 	case KVM_SEV_LAUNCH_SECRET:
2629 		r = sev_launch_secret(kvm, &sev_cmd);
2630 		break;
2631 	case KVM_SEV_GET_ATTESTATION_REPORT:
2632 		r = sev_get_attestation_report(kvm, &sev_cmd);
2633 		break;
2634 	case KVM_SEV_SEND_START:
2635 		r = sev_send_start(kvm, &sev_cmd);
2636 		break;
2637 	case KVM_SEV_SEND_UPDATE_DATA:
2638 		r = sev_send_update_data(kvm, &sev_cmd);
2639 		break;
2640 	case KVM_SEV_SEND_FINISH:
2641 		r = sev_send_finish(kvm, &sev_cmd);
2642 		break;
2643 	case KVM_SEV_SEND_CANCEL:
2644 		r = sev_send_cancel(kvm, &sev_cmd);
2645 		break;
2646 	case KVM_SEV_RECEIVE_START:
2647 		r = sev_receive_start(kvm, &sev_cmd);
2648 		break;
2649 	case KVM_SEV_RECEIVE_UPDATE_DATA:
2650 		r = sev_receive_update_data(kvm, &sev_cmd);
2651 		break;
2652 	case KVM_SEV_RECEIVE_FINISH:
2653 		r = sev_receive_finish(kvm, &sev_cmd);
2654 		break;
2655 	case KVM_SEV_SNP_LAUNCH_START:
2656 		r = snp_launch_start(kvm, &sev_cmd);
2657 		break;
2658 	case KVM_SEV_SNP_LAUNCH_UPDATE:
2659 		r = snp_launch_update(kvm, &sev_cmd);
2660 		break;
2661 	case KVM_SEV_SNP_LAUNCH_FINISH:
2662 		r = snp_launch_finish(kvm, &sev_cmd);
2663 		break;
2664 	default:
2665 		r = -EINVAL;
2666 		goto out;
2667 	}
2668 
2669 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2670 		r = -EFAULT;
2671 
2672 out:
2673 	mutex_unlock(&kvm->lock);
2674 	return r;
2675 }
2676 
2677 int sev_mem_enc_register_region(struct kvm *kvm,
2678 				struct kvm_enc_region *range)
2679 {
2680 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2681 	struct enc_region *region;
2682 	int ret = 0;
2683 
2684 	if (!sev_guest(kvm))
2685 		return -ENOTTY;
2686 
2687 	/* If kvm is mirroring encryption context it isn't responsible for it */
2688 	if (is_mirroring_enc_context(kvm))
2689 		return -EINVAL;
2690 
2691 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2692 		return -EINVAL;
2693 
2694 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2695 	if (!region)
2696 		return -ENOMEM;
2697 
2698 	mutex_lock(&kvm->lock);
2699 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
2700 	if (IS_ERR(region->pages)) {
2701 		ret = PTR_ERR(region->pages);
2702 		mutex_unlock(&kvm->lock);
2703 		goto e_free;
2704 	}
2705 
2706 	/*
2707 	 * The guest may change the memory encryption attribute from C=0 -> C=1
2708 	 * or vice versa for this memory range. Lets make sure caches are
2709 	 * flushed to ensure that guest data gets written into memory with
2710 	 * correct C-bit.  Note, this must be done before dropping kvm->lock,
2711 	 * as region and its array of pages can be freed by a different task
2712 	 * once kvm->lock is released.
2713 	 */
2714 	sev_clflush_pages(region->pages, region->npages);
2715 
2716 	region->uaddr = range->addr;
2717 	region->size = range->size;
2718 
2719 	list_add_tail(&region->list, &sev->regions_list);
2720 	mutex_unlock(&kvm->lock);
2721 
2722 	return ret;
2723 
2724 e_free:
2725 	kfree(region);
2726 	return ret;
2727 }
2728 
2729 static struct enc_region *
2730 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2731 {
2732 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2733 	struct list_head *head = &sev->regions_list;
2734 	struct enc_region *i;
2735 
2736 	list_for_each_entry(i, head, list) {
2737 		if (i->uaddr == range->addr &&
2738 		    i->size == range->size)
2739 			return i;
2740 	}
2741 
2742 	return NULL;
2743 }
2744 
2745 static void __unregister_enc_region_locked(struct kvm *kvm,
2746 					   struct enc_region *region)
2747 {
2748 	sev_unpin_memory(kvm, region->pages, region->npages);
2749 	list_del(&region->list);
2750 	kfree(region);
2751 }
2752 
2753 int sev_mem_enc_unregister_region(struct kvm *kvm,
2754 				  struct kvm_enc_region *range)
2755 {
2756 	struct enc_region *region;
2757 	int ret;
2758 
2759 	/* If kvm is mirroring encryption context it isn't responsible for it */
2760 	if (is_mirroring_enc_context(kvm))
2761 		return -EINVAL;
2762 
2763 	mutex_lock(&kvm->lock);
2764 
2765 	if (!sev_guest(kvm)) {
2766 		ret = -ENOTTY;
2767 		goto failed;
2768 	}
2769 
2770 	region = find_enc_region(kvm, range);
2771 	if (!region) {
2772 		ret = -EINVAL;
2773 		goto failed;
2774 	}
2775 
2776 	/*
2777 	 * Ensure that all guest tagged cache entries are flushed before
2778 	 * releasing the pages back to the system for use. CLFLUSH will
2779 	 * not do this, so issue a WBINVD.
2780 	 */
2781 	wbinvd_on_all_cpus();
2782 
2783 	__unregister_enc_region_locked(kvm, region);
2784 
2785 	mutex_unlock(&kvm->lock);
2786 	return 0;
2787 
2788 failed:
2789 	mutex_unlock(&kvm->lock);
2790 	return ret;
2791 }
2792 
2793 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2794 {
2795 	CLASS(fd, f)(source_fd);
2796 	struct kvm *source_kvm;
2797 	struct kvm_sev_info *source_sev, *mirror_sev;
2798 	int ret;
2799 
2800 	if (fd_empty(f))
2801 		return -EBADF;
2802 
2803 	if (!file_is_kvm(fd_file(f)))
2804 		return -EBADF;
2805 
2806 	source_kvm = fd_file(f)->private_data;
2807 	ret = sev_lock_two_vms(kvm, source_kvm);
2808 	if (ret)
2809 		return ret;
2810 
2811 	/*
2812 	 * Mirrors of mirrors should work, but let's not get silly.  Also
2813 	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2814 	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2815 	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2816 	 */
2817 	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2818 	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2819 		ret = -EINVAL;
2820 		goto e_unlock;
2821 	}
2822 
2823 	/*
2824 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2825 	 * disappear until we're done with it
2826 	 */
2827 	source_sev = &to_kvm_svm(source_kvm)->sev_info;
2828 	kvm_get_kvm(source_kvm);
2829 	mirror_sev = &to_kvm_svm(kvm)->sev_info;
2830 	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2831 
2832 	/* Set enc_context_owner and copy its encryption context over */
2833 	mirror_sev->enc_context_owner = source_kvm;
2834 	mirror_sev->active = true;
2835 	mirror_sev->asid = source_sev->asid;
2836 	mirror_sev->fd = source_sev->fd;
2837 	mirror_sev->es_active = source_sev->es_active;
2838 	mirror_sev->need_init = false;
2839 	mirror_sev->handle = source_sev->handle;
2840 	INIT_LIST_HEAD(&mirror_sev->regions_list);
2841 	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2842 	ret = 0;
2843 
2844 	/*
2845 	 * Do not copy ap_jump_table. Since the mirror does not share the same
2846 	 * KVM contexts as the original, and they may have different
2847 	 * memory-views.
2848 	 */
2849 
2850 e_unlock:
2851 	sev_unlock_two_vms(kvm, source_kvm);
2852 	return ret;
2853 }
2854 
2855 static int snp_decommission_context(struct kvm *kvm)
2856 {
2857 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2858 	struct sev_data_snp_addr data = {};
2859 	int ret;
2860 
2861 	/* If context is not created then do nothing */
2862 	if (!sev->snp_context)
2863 		return 0;
2864 
2865 	/* Do the decommision, which will unbind the ASID from the SNP context */
2866 	data.address = __sme_pa(sev->snp_context);
2867 	down_write(&sev_deactivate_lock);
2868 	ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
2869 	up_write(&sev_deactivate_lock);
2870 
2871 	if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
2872 		return ret;
2873 
2874 	snp_free_firmware_page(sev->snp_context);
2875 	sev->snp_context = NULL;
2876 
2877 	return 0;
2878 }
2879 
2880 void sev_vm_destroy(struct kvm *kvm)
2881 {
2882 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2883 	struct list_head *head = &sev->regions_list;
2884 	struct list_head *pos, *q;
2885 
2886 	if (!sev_guest(kvm))
2887 		return;
2888 
2889 	WARN_ON(!list_empty(&sev->mirror_vms));
2890 
2891 	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2892 	if (is_mirroring_enc_context(kvm)) {
2893 		struct kvm *owner_kvm = sev->enc_context_owner;
2894 
2895 		mutex_lock(&owner_kvm->lock);
2896 		list_del(&sev->mirror_entry);
2897 		mutex_unlock(&owner_kvm->lock);
2898 		kvm_put_kvm(owner_kvm);
2899 		return;
2900 	}
2901 
2902 	/*
2903 	 * Ensure that all guest tagged cache entries are flushed before
2904 	 * releasing the pages back to the system for use. CLFLUSH will
2905 	 * not do this, so issue a WBINVD.
2906 	 */
2907 	wbinvd_on_all_cpus();
2908 
2909 	/*
2910 	 * if userspace was terminated before unregistering the memory regions
2911 	 * then lets unpin all the registered memory.
2912 	 */
2913 	if (!list_empty(head)) {
2914 		list_for_each_safe(pos, q, head) {
2915 			__unregister_enc_region_locked(kvm,
2916 				list_entry(pos, struct enc_region, list));
2917 			cond_resched();
2918 		}
2919 	}
2920 
2921 	if (sev_snp_guest(kvm)) {
2922 		snp_guest_req_cleanup(kvm);
2923 
2924 		/*
2925 		 * Decomission handles unbinding of the ASID. If it fails for
2926 		 * some unexpected reason, just leak the ASID.
2927 		 */
2928 		if (snp_decommission_context(kvm))
2929 			return;
2930 	} else {
2931 		sev_unbind_asid(kvm, sev->handle);
2932 	}
2933 
2934 	sev_asid_free(sev);
2935 }
2936 
2937 void __init sev_set_cpu_caps(void)
2938 {
2939 	if (sev_enabled) {
2940 		kvm_cpu_cap_set(X86_FEATURE_SEV);
2941 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2942 	}
2943 	if (sev_es_enabled) {
2944 		kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2945 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2946 	}
2947 	if (sev_snp_enabled) {
2948 		kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
2949 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
2950 	}
2951 }
2952 
2953 void __init sev_hardware_setup(void)
2954 {
2955 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2956 	bool sev_snp_supported = false;
2957 	bool sev_es_supported = false;
2958 	bool sev_supported = false;
2959 
2960 	if (!sev_enabled || !npt_enabled || !nrips)
2961 		goto out;
2962 
2963 	/*
2964 	 * SEV must obviously be supported in hardware.  Sanity check that the
2965 	 * CPU supports decode assists, which is mandatory for SEV guests to
2966 	 * support instruction emulation.  Ditto for flushing by ASID, as SEV
2967 	 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2968 	 * ASID to effect a TLB flush.
2969 	 */
2970 	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2971 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2972 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2973 		goto out;
2974 
2975 	/* Retrieve SEV CPUID information */
2976 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2977 
2978 	/* Set encryption bit location for SEV-ES guests */
2979 	sev_enc_bit = ebx & 0x3f;
2980 
2981 	/* Maximum number of encrypted guests supported simultaneously */
2982 	max_sev_asid = ecx;
2983 	if (!max_sev_asid)
2984 		goto out;
2985 
2986 	/* Minimum ASID value that should be used for SEV guest */
2987 	min_sev_asid = edx;
2988 	sev_me_mask = 1UL << (ebx & 0x3f);
2989 
2990 	/*
2991 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2992 	 * even though it's never used, so that the bitmap is indexed by the
2993 	 * actual ASID.
2994 	 */
2995 	nr_asids = max_sev_asid + 1;
2996 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2997 	if (!sev_asid_bitmap)
2998 		goto out;
2999 
3000 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3001 	if (!sev_reclaim_asid_bitmap) {
3002 		bitmap_free(sev_asid_bitmap);
3003 		sev_asid_bitmap = NULL;
3004 		goto out;
3005 	}
3006 
3007 	if (min_sev_asid <= max_sev_asid) {
3008 		sev_asid_count = max_sev_asid - min_sev_asid + 1;
3009 		WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
3010 	}
3011 	sev_supported = true;
3012 
3013 	/* SEV-ES support requested? */
3014 	if (!sev_es_enabled)
3015 		goto out;
3016 
3017 	/*
3018 	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
3019 	 * instruction stream, i.e. can't emulate in response to a #NPF and
3020 	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
3021 	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
3022 	 */
3023 	if (!enable_mmio_caching)
3024 		goto out;
3025 
3026 	/* Does the CPU support SEV-ES? */
3027 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
3028 		goto out;
3029 
3030 	if (!lbrv) {
3031 		WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
3032 			  "LBRV must be present for SEV-ES support");
3033 		goto out;
3034 	}
3035 
3036 	/* Has the system been allocated ASIDs for SEV-ES? */
3037 	if (min_sev_asid == 1)
3038 		goto out;
3039 
3040 	sev_es_asid_count = min_sev_asid - 1;
3041 	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
3042 	sev_es_supported = true;
3043 	sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
3044 
3045 out:
3046 	if (boot_cpu_has(X86_FEATURE_SEV))
3047 		pr_info("SEV %s (ASIDs %u - %u)\n",
3048 			sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
3049 								       "unusable" :
3050 								       "disabled",
3051 			min_sev_asid, max_sev_asid);
3052 	if (boot_cpu_has(X86_FEATURE_SEV_ES))
3053 		pr_info("SEV-ES %s (ASIDs %u - %u)\n",
3054 			sev_es_supported ? "enabled" : "disabled",
3055 			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3056 	if (boot_cpu_has(X86_FEATURE_SEV_SNP))
3057 		pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
3058 			sev_snp_supported ? "enabled" : "disabled",
3059 			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3060 
3061 	sev_enabled = sev_supported;
3062 	sev_es_enabled = sev_es_supported;
3063 	sev_snp_enabled = sev_snp_supported;
3064 
3065 	if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
3066 	    !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
3067 		sev_es_debug_swap_enabled = false;
3068 
3069 	sev_supported_vmsa_features = 0;
3070 	if (sev_es_debug_swap_enabled)
3071 		sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
3072 }
3073 
3074 void sev_hardware_unsetup(void)
3075 {
3076 	if (!sev_enabled)
3077 		return;
3078 
3079 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
3080 	sev_flush_asids(1, max_sev_asid);
3081 
3082 	bitmap_free(sev_asid_bitmap);
3083 	bitmap_free(sev_reclaim_asid_bitmap);
3084 
3085 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
3086 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
3087 }
3088 
3089 int sev_cpu_init(struct svm_cpu_data *sd)
3090 {
3091 	if (!sev_enabled)
3092 		return 0;
3093 
3094 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
3095 	if (!sd->sev_vmcbs)
3096 		return -ENOMEM;
3097 
3098 	return 0;
3099 }
3100 
3101 /*
3102  * Pages used by hardware to hold guest encrypted state must be flushed before
3103  * returning them to the system.
3104  */
3105 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
3106 {
3107 	unsigned int asid = sev_get_asid(vcpu->kvm);
3108 
3109 	/*
3110 	 * Note!  The address must be a kernel address, as regular page walk
3111 	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
3112 	 * address is non-deterministic and unsafe.  This function deliberately
3113 	 * takes a pointer to deter passing in a user address.
3114 	 */
3115 	unsigned long addr = (unsigned long)va;
3116 
3117 	/*
3118 	 * If CPU enforced cache coherency for encrypted mappings of the
3119 	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
3120 	 * flush is still needed in order to work properly with DMA devices.
3121 	 */
3122 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
3123 		clflush_cache_range(va, PAGE_SIZE);
3124 		return;
3125 	}
3126 
3127 	/*
3128 	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
3129 	 * back to WBINVD if this faults so as not to make any problems worse
3130 	 * by leaving stale encrypted data in the cache.
3131 	 */
3132 	if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
3133 		goto do_wbinvd;
3134 
3135 	return;
3136 
3137 do_wbinvd:
3138 	wbinvd_on_all_cpus();
3139 }
3140 
3141 void sev_guest_memory_reclaimed(struct kvm *kvm)
3142 {
3143 	/*
3144 	 * With SNP+gmem, private/encrypted memory is unreachable via the
3145 	 * hva-based mmu notifiers, so these events are only actually
3146 	 * pertaining to shared pages where there is no need to perform
3147 	 * the WBINVD to flush associated caches.
3148 	 */
3149 	if (!sev_guest(kvm) || sev_snp_guest(kvm))
3150 		return;
3151 
3152 	wbinvd_on_all_cpus();
3153 }
3154 
3155 void sev_free_vcpu(struct kvm_vcpu *vcpu)
3156 {
3157 	struct vcpu_svm *svm;
3158 
3159 	if (!sev_es_guest(vcpu->kvm))
3160 		return;
3161 
3162 	svm = to_svm(vcpu);
3163 
3164 	/*
3165 	 * If it's an SNP guest, then the VMSA was marked in the RMP table as
3166 	 * a guest-owned page. Transition the page to hypervisor state before
3167 	 * releasing it back to the system.
3168 	 */
3169 	if (sev_snp_guest(vcpu->kvm)) {
3170 		u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
3171 
3172 		if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
3173 			goto skip_vmsa_free;
3174 	}
3175 
3176 	if (vcpu->arch.guest_state_protected)
3177 		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
3178 
3179 	__free_page(virt_to_page(svm->sev_es.vmsa));
3180 
3181 skip_vmsa_free:
3182 	if (svm->sev_es.ghcb_sa_free)
3183 		kvfree(svm->sev_es.ghcb_sa);
3184 }
3185 
3186 static void dump_ghcb(struct vcpu_svm *svm)
3187 {
3188 	struct ghcb *ghcb = svm->sev_es.ghcb;
3189 	unsigned int nbits;
3190 
3191 	/* Re-use the dump_invalid_vmcb module parameter */
3192 	if (!dump_invalid_vmcb) {
3193 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3194 		return;
3195 	}
3196 
3197 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
3198 
3199 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
3200 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
3201 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
3202 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
3203 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
3204 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
3205 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
3206 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
3207 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
3208 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
3209 }
3210 
3211 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
3212 {
3213 	struct kvm_vcpu *vcpu = &svm->vcpu;
3214 	struct ghcb *ghcb = svm->sev_es.ghcb;
3215 
3216 	/*
3217 	 * The GHCB protocol so far allows for the following data
3218 	 * to be returned:
3219 	 *   GPRs RAX, RBX, RCX, RDX
3220 	 *
3221 	 * Copy their values, even if they may not have been written during the
3222 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
3223 	 */
3224 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
3225 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
3226 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
3227 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
3228 }
3229 
3230 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
3231 {
3232 	struct vmcb_control_area *control = &svm->vmcb->control;
3233 	struct kvm_vcpu *vcpu = &svm->vcpu;
3234 	struct ghcb *ghcb = svm->sev_es.ghcb;
3235 	u64 exit_code;
3236 
3237 	/*
3238 	 * The GHCB protocol so far allows for the following data
3239 	 * to be supplied:
3240 	 *   GPRs RAX, RBX, RCX, RDX
3241 	 *   XCR0
3242 	 *   CPL
3243 	 *
3244 	 * VMMCALL allows the guest to provide extra registers. KVM also
3245 	 * expects RSI for hypercalls, so include that, too.
3246 	 *
3247 	 * Copy their values to the appropriate location if supplied.
3248 	 */
3249 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
3250 
3251 	BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
3252 	memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
3253 
3254 	vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
3255 	vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
3256 	vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
3257 	vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
3258 	vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
3259 
3260 	svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
3261 
3262 	if (kvm_ghcb_xcr0_is_valid(svm)) {
3263 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
3264 		kvm_update_cpuid_runtime(vcpu);
3265 	}
3266 
3267 	/* Copy the GHCB exit information into the VMCB fields */
3268 	exit_code = ghcb_get_sw_exit_code(ghcb);
3269 	control->exit_code = lower_32_bits(exit_code);
3270 	control->exit_code_hi = upper_32_bits(exit_code);
3271 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
3272 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
3273 	svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
3274 
3275 	/* Clear the valid entries fields */
3276 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
3277 }
3278 
3279 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
3280 {
3281 	return (((u64)control->exit_code_hi) << 32) | control->exit_code;
3282 }
3283 
3284 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
3285 {
3286 	struct vmcb_control_area *control = &svm->vmcb->control;
3287 	struct kvm_vcpu *vcpu = &svm->vcpu;
3288 	u64 exit_code;
3289 	u64 reason;
3290 
3291 	/*
3292 	 * Retrieve the exit code now even though it may not be marked valid
3293 	 * as it could help with debugging.
3294 	 */
3295 	exit_code = kvm_ghcb_get_sw_exit_code(control);
3296 
3297 	/* Only GHCB Usage code 0 is supported */
3298 	if (svm->sev_es.ghcb->ghcb_usage) {
3299 		reason = GHCB_ERR_INVALID_USAGE;
3300 		goto vmgexit_err;
3301 	}
3302 
3303 	reason = GHCB_ERR_MISSING_INPUT;
3304 
3305 	if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
3306 	    !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
3307 	    !kvm_ghcb_sw_exit_info_2_is_valid(svm))
3308 		goto vmgexit_err;
3309 
3310 	switch (exit_code) {
3311 	case SVM_EXIT_READ_DR7:
3312 		break;
3313 	case SVM_EXIT_WRITE_DR7:
3314 		if (!kvm_ghcb_rax_is_valid(svm))
3315 			goto vmgexit_err;
3316 		break;
3317 	case SVM_EXIT_RDTSC:
3318 		break;
3319 	case SVM_EXIT_RDPMC:
3320 		if (!kvm_ghcb_rcx_is_valid(svm))
3321 			goto vmgexit_err;
3322 		break;
3323 	case SVM_EXIT_CPUID:
3324 		if (!kvm_ghcb_rax_is_valid(svm) ||
3325 		    !kvm_ghcb_rcx_is_valid(svm))
3326 			goto vmgexit_err;
3327 		if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
3328 			if (!kvm_ghcb_xcr0_is_valid(svm))
3329 				goto vmgexit_err;
3330 		break;
3331 	case SVM_EXIT_INVD:
3332 		break;
3333 	case SVM_EXIT_IOIO:
3334 		if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
3335 			if (!kvm_ghcb_sw_scratch_is_valid(svm))
3336 				goto vmgexit_err;
3337 		} else {
3338 			if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
3339 				if (!kvm_ghcb_rax_is_valid(svm))
3340 					goto vmgexit_err;
3341 		}
3342 		break;
3343 	case SVM_EXIT_MSR:
3344 		if (!kvm_ghcb_rcx_is_valid(svm))
3345 			goto vmgexit_err;
3346 		if (control->exit_info_1) {
3347 			if (!kvm_ghcb_rax_is_valid(svm) ||
3348 			    !kvm_ghcb_rdx_is_valid(svm))
3349 				goto vmgexit_err;
3350 		}
3351 		break;
3352 	case SVM_EXIT_VMMCALL:
3353 		if (!kvm_ghcb_rax_is_valid(svm) ||
3354 		    !kvm_ghcb_cpl_is_valid(svm))
3355 			goto vmgexit_err;
3356 		break;
3357 	case SVM_EXIT_RDTSCP:
3358 		break;
3359 	case SVM_EXIT_WBINVD:
3360 		break;
3361 	case SVM_EXIT_MONITOR:
3362 		if (!kvm_ghcb_rax_is_valid(svm) ||
3363 		    !kvm_ghcb_rcx_is_valid(svm) ||
3364 		    !kvm_ghcb_rdx_is_valid(svm))
3365 			goto vmgexit_err;
3366 		break;
3367 	case SVM_EXIT_MWAIT:
3368 		if (!kvm_ghcb_rax_is_valid(svm) ||
3369 		    !kvm_ghcb_rcx_is_valid(svm))
3370 			goto vmgexit_err;
3371 		break;
3372 	case SVM_VMGEXIT_MMIO_READ:
3373 	case SVM_VMGEXIT_MMIO_WRITE:
3374 		if (!kvm_ghcb_sw_scratch_is_valid(svm))
3375 			goto vmgexit_err;
3376 		break;
3377 	case SVM_VMGEXIT_AP_CREATION:
3378 		if (!sev_snp_guest(vcpu->kvm))
3379 			goto vmgexit_err;
3380 		if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
3381 			if (!kvm_ghcb_rax_is_valid(svm))
3382 				goto vmgexit_err;
3383 		break;
3384 	case SVM_VMGEXIT_NMI_COMPLETE:
3385 	case SVM_VMGEXIT_AP_HLT_LOOP:
3386 	case SVM_VMGEXIT_AP_JUMP_TABLE:
3387 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3388 	case SVM_VMGEXIT_HV_FEATURES:
3389 	case SVM_VMGEXIT_TERM_REQUEST:
3390 		break;
3391 	case SVM_VMGEXIT_PSC:
3392 		if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
3393 			goto vmgexit_err;
3394 		break;
3395 	case SVM_VMGEXIT_GUEST_REQUEST:
3396 	case SVM_VMGEXIT_EXT_GUEST_REQUEST:
3397 		if (!sev_snp_guest(vcpu->kvm) ||
3398 		    !PAGE_ALIGNED(control->exit_info_1) ||
3399 		    !PAGE_ALIGNED(control->exit_info_2) ||
3400 		    control->exit_info_1 == control->exit_info_2)
3401 			goto vmgexit_err;
3402 		break;
3403 	default:
3404 		reason = GHCB_ERR_INVALID_EVENT;
3405 		goto vmgexit_err;
3406 	}
3407 
3408 	return 0;
3409 
3410 vmgexit_err:
3411 	if (reason == GHCB_ERR_INVALID_USAGE) {
3412 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
3413 			    svm->sev_es.ghcb->ghcb_usage);
3414 	} else if (reason == GHCB_ERR_INVALID_EVENT) {
3415 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
3416 			    exit_code);
3417 	} else {
3418 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
3419 			    exit_code);
3420 		dump_ghcb(svm);
3421 	}
3422 
3423 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
3424 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
3425 
3426 	/* Resume the guest to "return" the error code. */
3427 	return 1;
3428 }
3429 
3430 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
3431 {
3432 	/* Clear any indication that the vCPU is in a type of AP Reset Hold */
3433 	svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
3434 
3435 	if (!svm->sev_es.ghcb)
3436 		return;
3437 
3438 	if (svm->sev_es.ghcb_sa_free) {
3439 		/*
3440 		 * The scratch area lives outside the GHCB, so there is a
3441 		 * buffer that, depending on the operation performed, may
3442 		 * need to be synced, then freed.
3443 		 */
3444 		if (svm->sev_es.ghcb_sa_sync) {
3445 			kvm_write_guest(svm->vcpu.kvm,
3446 					svm->sev_es.sw_scratch,
3447 					svm->sev_es.ghcb_sa,
3448 					svm->sev_es.ghcb_sa_len);
3449 			svm->sev_es.ghcb_sa_sync = false;
3450 		}
3451 
3452 		kvfree(svm->sev_es.ghcb_sa);
3453 		svm->sev_es.ghcb_sa = NULL;
3454 		svm->sev_es.ghcb_sa_free = false;
3455 	}
3456 
3457 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
3458 
3459 	sev_es_sync_to_ghcb(svm);
3460 
3461 	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map);
3462 	svm->sev_es.ghcb = NULL;
3463 }
3464 
3465 void pre_sev_run(struct vcpu_svm *svm, int cpu)
3466 {
3467 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
3468 	unsigned int asid = sev_get_asid(svm->vcpu.kvm);
3469 
3470 	/* Assign the asid allocated with this SEV guest */
3471 	svm->asid = asid;
3472 
3473 	/*
3474 	 * Flush guest TLB:
3475 	 *
3476 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
3477 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
3478 	 */
3479 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
3480 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
3481 		return;
3482 
3483 	sd->sev_vmcbs[asid] = svm->vmcb;
3484 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3485 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3486 }
3487 
3488 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
3489 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
3490 {
3491 	struct vmcb_control_area *control = &svm->vmcb->control;
3492 	u64 ghcb_scratch_beg, ghcb_scratch_end;
3493 	u64 scratch_gpa_beg, scratch_gpa_end;
3494 	void *scratch_va;
3495 
3496 	scratch_gpa_beg = svm->sev_es.sw_scratch;
3497 	if (!scratch_gpa_beg) {
3498 		pr_err("vmgexit: scratch gpa not provided\n");
3499 		goto e_scratch;
3500 	}
3501 
3502 	scratch_gpa_end = scratch_gpa_beg + len;
3503 	if (scratch_gpa_end < scratch_gpa_beg) {
3504 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
3505 		       len, scratch_gpa_beg);
3506 		goto e_scratch;
3507 	}
3508 
3509 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
3510 		/* Scratch area begins within GHCB */
3511 		ghcb_scratch_beg = control->ghcb_gpa +
3512 				   offsetof(struct ghcb, shared_buffer);
3513 		ghcb_scratch_end = control->ghcb_gpa +
3514 				   offsetof(struct ghcb, reserved_0xff0);
3515 
3516 		/*
3517 		 * If the scratch area begins within the GHCB, it must be
3518 		 * completely contained in the GHCB shared buffer area.
3519 		 */
3520 		if (scratch_gpa_beg < ghcb_scratch_beg ||
3521 		    scratch_gpa_end > ghcb_scratch_end) {
3522 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
3523 			       scratch_gpa_beg, scratch_gpa_end);
3524 			goto e_scratch;
3525 		}
3526 
3527 		scratch_va = (void *)svm->sev_es.ghcb;
3528 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
3529 	} else {
3530 		/*
3531 		 * The guest memory must be read into a kernel buffer, so
3532 		 * limit the size
3533 		 */
3534 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
3535 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
3536 			       len, GHCB_SCRATCH_AREA_LIMIT);
3537 			goto e_scratch;
3538 		}
3539 		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
3540 		if (!scratch_va)
3541 			return -ENOMEM;
3542 
3543 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
3544 			/* Unable to copy scratch area from guest */
3545 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
3546 
3547 			kvfree(scratch_va);
3548 			return -EFAULT;
3549 		}
3550 
3551 		/*
3552 		 * The scratch area is outside the GHCB. The operation will
3553 		 * dictate whether the buffer needs to be synced before running
3554 		 * the vCPU next time (i.e. a read was requested so the data
3555 		 * must be written back to the guest memory).
3556 		 */
3557 		svm->sev_es.ghcb_sa_sync = sync;
3558 		svm->sev_es.ghcb_sa_free = true;
3559 	}
3560 
3561 	svm->sev_es.ghcb_sa = scratch_va;
3562 	svm->sev_es.ghcb_sa_len = len;
3563 
3564 	return 0;
3565 
3566 e_scratch:
3567 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
3568 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
3569 
3570 	return 1;
3571 }
3572 
3573 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
3574 			      unsigned int pos)
3575 {
3576 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
3577 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
3578 }
3579 
3580 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
3581 {
3582 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
3583 }
3584 
3585 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
3586 {
3587 	svm->vmcb->control.ghcb_gpa = value;
3588 }
3589 
3590 static int snp_rmptable_psmash(kvm_pfn_t pfn)
3591 {
3592 	int ret;
3593 
3594 	pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);
3595 
3596 	/*
3597 	 * PSMASH_FAIL_INUSE indicates another processor is modifying the
3598 	 * entry, so retry until that's no longer the case.
3599 	 */
3600 	do {
3601 		ret = psmash(pfn);
3602 	} while (ret == PSMASH_FAIL_INUSE);
3603 
3604 	return ret;
3605 }
3606 
3607 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
3608 {
3609 	struct vcpu_svm *svm = to_svm(vcpu);
3610 
3611 	if (vcpu->run->hypercall.ret)
3612 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3613 	else
3614 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);
3615 
3616 	return 1; /* resume guest */
3617 }
3618 
3619 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
3620 {
3621 	u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
3622 	u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
3623 	struct kvm_vcpu *vcpu = &svm->vcpu;
3624 
3625 	if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
3626 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3627 		return 1; /* resume guest */
3628 	}
3629 
3630 	if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
3631 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3632 		return 1; /* resume guest */
3633 	}
3634 
3635 	vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3636 	vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3637 	vcpu->run->hypercall.args[0] = gpa;
3638 	vcpu->run->hypercall.args[1] = 1;
3639 	vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
3640 				       ? KVM_MAP_GPA_RANGE_ENCRYPTED
3641 				       : KVM_MAP_GPA_RANGE_DECRYPTED;
3642 	vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3643 
3644 	vcpu->arch.complete_userspace_io = snp_complete_psc_msr;
3645 
3646 	return 0; /* forward request to userspace */
3647 }
3648 
3649 struct psc_buffer {
3650 	struct psc_hdr hdr;
3651 	struct psc_entry entries[];
3652 } __packed;
3653 
3654 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);
3655 
3656 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
3657 {
3658 	svm->sev_es.psc_inflight = 0;
3659 	svm->sev_es.psc_idx = 0;
3660 	svm->sev_es.psc_2m = false;
3661 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret);
3662 }
3663 
3664 static void __snp_complete_one_psc(struct vcpu_svm *svm)
3665 {
3666 	struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3667 	struct psc_entry *entries = psc->entries;
3668 	struct psc_hdr *hdr = &psc->hdr;
3669 	__u16 idx;
3670 
3671 	/*
3672 	 * Everything in-flight has been processed successfully. Update the
3673 	 * corresponding entries in the guest's PSC buffer and zero out the
3674 	 * count of in-flight PSC entries.
3675 	 */
3676 	for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
3677 	     svm->sev_es.psc_inflight--, idx++) {
3678 		struct psc_entry *entry = &entries[idx];
3679 
3680 		entry->cur_page = entry->pagesize ? 512 : 1;
3681 	}
3682 
3683 	hdr->cur_entry = idx;
3684 }
3685 
3686 static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
3687 {
3688 	struct vcpu_svm *svm = to_svm(vcpu);
3689 	struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3690 
3691 	if (vcpu->run->hypercall.ret) {
3692 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3693 		return 1; /* resume guest */
3694 	}
3695 
3696 	__snp_complete_one_psc(svm);
3697 
3698 	/* Handle the next range (if any). */
3699 	return snp_begin_psc(svm, psc);
3700 }
3701 
3702 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
3703 {
3704 	struct psc_entry *entries = psc->entries;
3705 	struct kvm_vcpu *vcpu = &svm->vcpu;
3706 	struct psc_hdr *hdr = &psc->hdr;
3707 	struct psc_entry entry_start;
3708 	u16 idx, idx_start, idx_end;
3709 	int npages;
3710 	bool huge;
3711 	u64 gfn;
3712 
3713 	if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
3714 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3715 		return 1;
3716 	}
3717 
3718 next_range:
3719 	/* There should be no other PSCs in-flight at this point. */
3720 	if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
3721 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3722 		return 1;
3723 	}
3724 
3725 	/*
3726 	 * The PSC descriptor buffer can be modified by a misbehaved guest after
3727 	 * validation, so take care to only use validated copies of values used
3728 	 * for things like array indexing.
3729 	 */
3730 	idx_start = hdr->cur_entry;
3731 	idx_end = hdr->end_entry;
3732 
3733 	if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
3734 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
3735 		return 1;
3736 	}
3737 
3738 	/* Find the start of the next range which needs processing. */
3739 	for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
3740 		entry_start = entries[idx];
3741 
3742 		gfn = entry_start.gfn;
3743 		huge = entry_start.pagesize;
3744 		npages = huge ? 512 : 1;
3745 
3746 		if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
3747 			snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
3748 			return 1;
3749 		}
3750 
3751 		if (entry_start.cur_page) {
3752 			/*
3753 			 * If this is a partially-completed 2M range, force 4K handling
3754 			 * for the remaining pages since they're effectively split at
3755 			 * this point. Subsequent code should ensure this doesn't get
3756 			 * combined with adjacent PSC entries where 2M handling is still
3757 			 * possible.
3758 			 */
3759 			npages -= entry_start.cur_page;
3760 			gfn += entry_start.cur_page;
3761 			huge = false;
3762 		}
3763 
3764 		if (npages)
3765 			break;
3766 	}
3767 
3768 	if (idx > idx_end) {
3769 		/* Nothing more to process. */
3770 		snp_complete_psc(svm, 0);
3771 		return 1;
3772 	}
3773 
3774 	svm->sev_es.psc_2m = huge;
3775 	svm->sev_es.psc_idx = idx;
3776 	svm->sev_es.psc_inflight = 1;
3777 
3778 	/*
3779 	 * Find all subsequent PSC entries that contain adjacent GPA
3780 	 * ranges/operations and can be combined into a single
3781 	 * KVM_HC_MAP_GPA_RANGE exit.
3782 	 */
3783 	while (++idx <= idx_end) {
3784 		struct psc_entry entry = entries[idx];
3785 
3786 		if (entry.operation != entry_start.operation ||
3787 		    entry.gfn != entry_start.gfn + npages ||
3788 		    entry.cur_page || !!entry.pagesize != huge)
3789 			break;
3790 
3791 		svm->sev_es.psc_inflight++;
3792 		npages += huge ? 512 : 1;
3793 	}
3794 
3795 	switch (entry_start.operation) {
3796 	case VMGEXIT_PSC_OP_PRIVATE:
3797 	case VMGEXIT_PSC_OP_SHARED:
3798 		vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3799 		vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3800 		vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
3801 		vcpu->run->hypercall.args[1] = npages;
3802 		vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
3803 					       ? KVM_MAP_GPA_RANGE_ENCRYPTED
3804 					       : KVM_MAP_GPA_RANGE_DECRYPTED;
3805 		vcpu->run->hypercall.args[2] |= entry_start.pagesize
3806 						? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
3807 						: KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3808 		vcpu->arch.complete_userspace_io = snp_complete_one_psc;
3809 		return 0; /* forward request to userspace */
3810 	default:
3811 		/*
3812 		 * Only shared/private PSC operations are currently supported, so if the
3813 		 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
3814 		 * then consider the entire range completed and avoid exiting to
3815 		 * userspace. In theory snp_complete_psc() can always be called directly
3816 		 * at this point to complete the current range and start the next one,
3817 		 * but that could lead to unexpected levels of recursion.
3818 		 */
3819 		__snp_complete_one_psc(svm);
3820 		goto next_range;
3821 	}
3822 
3823 	unreachable();
3824 }
3825 
3826 static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu)
3827 {
3828 	struct vcpu_svm *svm = to_svm(vcpu);
3829 
3830 	WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex));
3831 
3832 	/* Mark the vCPU as offline and not runnable */
3833 	vcpu->arch.pv.pv_unhalted = false;
3834 	vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3835 
3836 	/* Clear use of the VMSA */
3837 	svm->vmcb->control.vmsa_pa = INVALID_PAGE;
3838 
3839 	if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) {
3840 		gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
3841 		struct kvm_memory_slot *slot;
3842 		struct page *page;
3843 		kvm_pfn_t pfn;
3844 
3845 		slot = gfn_to_memslot(vcpu->kvm, gfn);
3846 		if (!slot)
3847 			return -EINVAL;
3848 
3849 		/*
3850 		 * The new VMSA will be private memory guest memory, so
3851 		 * retrieve the PFN from the gmem backend.
3852 		 */
3853 		if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL))
3854 			return -EINVAL;
3855 
3856 		/*
3857 		 * From this point forward, the VMSA will always be a
3858 		 * guest-mapped page rather than the initial one allocated
3859 		 * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa
3860 		 * could be free'd and cleaned up here, but that involves
3861 		 * cleanups like wbinvd_on_all_cpus() which would ideally
3862 		 * be handled during teardown rather than guest boot.
3863 		 * Deferring that also allows the existing logic for SEV-ES
3864 		 * VMSAs to be re-used with minimal SNP-specific changes.
3865 		 */
3866 		svm->sev_es.snp_has_guest_vmsa = true;
3867 
3868 		/* Use the new VMSA */
3869 		svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
3870 
3871 		/* Mark the vCPU as runnable */
3872 		vcpu->arch.pv.pv_unhalted = false;
3873 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3874 
3875 		svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3876 
3877 		/*
3878 		 * gmem pages aren't currently migratable, but if this ever
3879 		 * changes then care should be taken to ensure
3880 		 * svm->sev_es.vmsa is pinned through some other means.
3881 		 */
3882 		kvm_release_page_clean(page);
3883 	}
3884 
3885 	/*
3886 	 * When replacing the VMSA during SEV-SNP AP creation,
3887 	 * mark the VMCB dirty so that full state is always reloaded.
3888 	 */
3889 	vmcb_mark_all_dirty(svm->vmcb);
3890 
3891 	return 0;
3892 }
3893 
3894 /*
3895  * Invoked as part of svm_vcpu_reset() processing of an init event.
3896  */
3897 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
3898 {
3899 	struct vcpu_svm *svm = to_svm(vcpu);
3900 	int ret;
3901 
3902 	if (!sev_snp_guest(vcpu->kvm))
3903 		return;
3904 
3905 	mutex_lock(&svm->sev_es.snp_vmsa_mutex);
3906 
3907 	if (!svm->sev_es.snp_ap_waiting_for_reset)
3908 		goto unlock;
3909 
3910 	svm->sev_es.snp_ap_waiting_for_reset = false;
3911 
3912 	ret = __sev_snp_update_protected_guest_state(vcpu);
3913 	if (ret)
3914 		vcpu_unimpl(vcpu, "snp: AP state update on init failed\n");
3915 
3916 unlock:
3917 	mutex_unlock(&svm->sev_es.snp_vmsa_mutex);
3918 }
3919 
3920 static int sev_snp_ap_creation(struct vcpu_svm *svm)
3921 {
3922 	struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
3923 	struct kvm_vcpu *vcpu = &svm->vcpu;
3924 	struct kvm_vcpu *target_vcpu;
3925 	struct vcpu_svm *target_svm;
3926 	unsigned int request;
3927 	unsigned int apic_id;
3928 	bool kick;
3929 	int ret;
3930 
3931 	request = lower_32_bits(svm->vmcb->control.exit_info_1);
3932 	apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
3933 
3934 	/* Validate the APIC ID */
3935 	target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
3936 	if (!target_vcpu) {
3937 		vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
3938 			    apic_id);
3939 		return -EINVAL;
3940 	}
3941 
3942 	ret = 0;
3943 
3944 	target_svm = to_svm(target_vcpu);
3945 
3946 	/*
3947 	 * The target vCPU is valid, so the vCPU will be kicked unless the
3948 	 * request is for CREATE_ON_INIT. For any errors at this stage, the
3949 	 * kick will place the vCPU in an non-runnable state.
3950 	 */
3951 	kick = true;
3952 
3953 	mutex_lock(&target_svm->sev_es.snp_vmsa_mutex);
3954 
3955 	target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3956 	target_svm->sev_es.snp_ap_waiting_for_reset = true;
3957 
3958 	/* Interrupt injection mode shouldn't change for AP creation */
3959 	if (request < SVM_VMGEXIT_AP_DESTROY) {
3960 		u64 sev_features;
3961 
3962 		sev_features = vcpu->arch.regs[VCPU_REGS_RAX];
3963 		sev_features ^= sev->vmsa_features;
3964 
3965 		if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) {
3966 			vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n",
3967 				    vcpu->arch.regs[VCPU_REGS_RAX]);
3968 			ret = -EINVAL;
3969 			goto out;
3970 		}
3971 	}
3972 
3973 	switch (request) {
3974 	case SVM_VMGEXIT_AP_CREATE_ON_INIT:
3975 		kick = false;
3976 		fallthrough;
3977 	case SVM_VMGEXIT_AP_CREATE:
3978 		if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
3979 			vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
3980 				    svm->vmcb->control.exit_info_2);
3981 			ret = -EINVAL;
3982 			goto out;
3983 		}
3984 
3985 		/*
3986 		 * Malicious guest can RMPADJUST a large page into VMSA which
3987 		 * will hit the SNP erratum where the CPU will incorrectly signal
3988 		 * an RMP violation #PF if a hugepage collides with the RMP entry
3989 		 * of VMSA page, reject the AP CREATE request if VMSA address from
3990 		 * guest is 2M aligned.
3991 		 */
3992 		if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
3993 			vcpu_unimpl(vcpu,
3994 				    "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
3995 				    svm->vmcb->control.exit_info_2);
3996 			ret = -EINVAL;
3997 			goto out;
3998 		}
3999 
4000 		target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
4001 		break;
4002 	case SVM_VMGEXIT_AP_DESTROY:
4003 		break;
4004 	default:
4005 		vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
4006 			    request);
4007 		ret = -EINVAL;
4008 		break;
4009 	}
4010 
4011 out:
4012 	if (kick) {
4013 		kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
4014 		kvm_vcpu_kick(target_vcpu);
4015 	}
4016 
4017 	mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex);
4018 
4019 	return ret;
4020 }
4021 
4022 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4023 {
4024 	struct sev_data_snp_guest_request data = {0};
4025 	struct kvm *kvm = svm->vcpu.kvm;
4026 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4027 	sev_ret_code fw_err = 0;
4028 	int ret;
4029 
4030 	if (!sev_snp_guest(kvm))
4031 		return -EINVAL;
4032 
4033 	mutex_lock(&sev->guest_req_mutex);
4034 
4035 	if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
4036 		ret = -EIO;
4037 		goto out_unlock;
4038 	}
4039 
4040 	data.gctx_paddr = __psp_pa(sev->snp_context);
4041 	data.req_paddr = __psp_pa(sev->guest_req_buf);
4042 	data.res_paddr = __psp_pa(sev->guest_resp_buf);
4043 
4044 	/*
4045 	 * Firmware failures are propagated on to guest, but any other failure
4046 	 * condition along the way should be reported to userspace. E.g. if
4047 	 * the PSP is dead and commands are timing out.
4048 	 */
4049 	ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
4050 	if (ret && !fw_err)
4051 		goto out_unlock;
4052 
4053 	if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
4054 		ret = -EIO;
4055 		goto out_unlock;
4056 	}
4057 
4058 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err));
4059 
4060 	ret = 1; /* resume guest */
4061 
4062 out_unlock:
4063 	mutex_unlock(&sev->guest_req_mutex);
4064 	return ret;
4065 }
4066 
4067 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4068 {
4069 	struct kvm *kvm = svm->vcpu.kvm;
4070 	u8 msg_type;
4071 
4072 	if (!sev_snp_guest(kvm))
4073 		return -EINVAL;
4074 
4075 	if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
4076 			   &msg_type, 1))
4077 		return -EIO;
4078 
4079 	/*
4080 	 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
4081 	 * additional certificate data to be provided alongside the attestation
4082 	 * report via the guest-provided data pages indicated by RAX/RBX. The
4083 	 * certificate data is optional and requires additional KVM enablement
4084 	 * to provide an interface for userspace to provide it, but KVM still
4085 	 * needs to be able to handle extended guest requests either way. So
4086 	 * provide a stub implementation that will always return an empty
4087 	 * certificate table in the guest-provided data pages.
4088 	 */
4089 	if (msg_type == SNP_MSG_REPORT_REQ) {
4090 		struct kvm_vcpu *vcpu = &svm->vcpu;
4091 		u64 data_npages;
4092 		gpa_t data_gpa;
4093 
4094 		if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
4095 			goto request_invalid;
4096 
4097 		data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
4098 		data_npages = vcpu->arch.regs[VCPU_REGS_RBX];
4099 
4100 		if (!PAGE_ALIGNED(data_gpa))
4101 			goto request_invalid;
4102 
4103 		/*
4104 		 * As per GHCB spec (see "SNP Extended Guest Request"), the
4105 		 * certificate table is terminated by 24-bytes of zeroes.
4106 		 */
4107 		if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
4108 			return -EIO;
4109 	}
4110 
4111 	return snp_handle_guest_req(svm, req_gpa, resp_gpa);
4112 
4113 request_invalid:
4114 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4115 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4116 	return 1; /* resume guest */
4117 }
4118 
4119 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
4120 {
4121 	struct vmcb_control_area *control = &svm->vmcb->control;
4122 	struct kvm_vcpu *vcpu = &svm->vcpu;
4123 	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4124 	u64 ghcb_info;
4125 	int ret = 1;
4126 
4127 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
4128 
4129 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
4130 					     control->ghcb_gpa);
4131 
4132 	switch (ghcb_info) {
4133 	case GHCB_MSR_SEV_INFO_REQ:
4134 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4135 						    GHCB_VERSION_MIN,
4136 						    sev_enc_bit));
4137 		break;
4138 	case GHCB_MSR_CPUID_REQ: {
4139 		u64 cpuid_fn, cpuid_reg, cpuid_value;
4140 
4141 		cpuid_fn = get_ghcb_msr_bits(svm,
4142 					     GHCB_MSR_CPUID_FUNC_MASK,
4143 					     GHCB_MSR_CPUID_FUNC_POS);
4144 
4145 		/* Initialize the registers needed by the CPUID intercept */
4146 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
4147 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
4148 
4149 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
4150 		if (!ret) {
4151 			/* Error, keep GHCB MSR value as-is */
4152 			break;
4153 		}
4154 
4155 		cpuid_reg = get_ghcb_msr_bits(svm,
4156 					      GHCB_MSR_CPUID_REG_MASK,
4157 					      GHCB_MSR_CPUID_REG_POS);
4158 		if (cpuid_reg == 0)
4159 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
4160 		else if (cpuid_reg == 1)
4161 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
4162 		else if (cpuid_reg == 2)
4163 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
4164 		else
4165 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
4166 
4167 		set_ghcb_msr_bits(svm, cpuid_value,
4168 				  GHCB_MSR_CPUID_VALUE_MASK,
4169 				  GHCB_MSR_CPUID_VALUE_POS);
4170 
4171 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
4172 				  GHCB_MSR_INFO_MASK,
4173 				  GHCB_MSR_INFO_POS);
4174 		break;
4175 	}
4176 	case GHCB_MSR_AP_RESET_HOLD_REQ:
4177 		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
4178 		ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
4179 
4180 		/*
4181 		 * Preset the result to a non-SIPI return and then only set
4182 		 * the result to non-zero when delivering a SIPI.
4183 		 */
4184 		set_ghcb_msr_bits(svm, 0,
4185 				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4186 				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4187 
4188 		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4189 				  GHCB_MSR_INFO_MASK,
4190 				  GHCB_MSR_INFO_POS);
4191 		break;
4192 	case GHCB_MSR_HV_FT_REQ:
4193 		set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
4194 				  GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
4195 		set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
4196 				  GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
4197 		break;
4198 	case GHCB_MSR_PREF_GPA_REQ:
4199 		if (!sev_snp_guest(vcpu->kvm))
4200 			goto out_terminate;
4201 
4202 		set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
4203 				  GHCB_MSR_GPA_VALUE_POS);
4204 		set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
4205 				  GHCB_MSR_INFO_POS);
4206 		break;
4207 	case GHCB_MSR_REG_GPA_REQ: {
4208 		u64 gfn;
4209 
4210 		if (!sev_snp_guest(vcpu->kvm))
4211 			goto out_terminate;
4212 
4213 		gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
4214 					GHCB_MSR_GPA_VALUE_POS);
4215 
4216 		svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);
4217 
4218 		set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
4219 				  GHCB_MSR_GPA_VALUE_POS);
4220 		set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
4221 				  GHCB_MSR_INFO_POS);
4222 		break;
4223 	}
4224 	case GHCB_MSR_PSC_REQ:
4225 		if (!sev_snp_guest(vcpu->kvm))
4226 			goto out_terminate;
4227 
4228 		ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
4229 		break;
4230 	case GHCB_MSR_TERM_REQ: {
4231 		u64 reason_set, reason_code;
4232 
4233 		reason_set = get_ghcb_msr_bits(svm,
4234 					       GHCB_MSR_TERM_REASON_SET_MASK,
4235 					       GHCB_MSR_TERM_REASON_SET_POS);
4236 		reason_code = get_ghcb_msr_bits(svm,
4237 						GHCB_MSR_TERM_REASON_MASK,
4238 						GHCB_MSR_TERM_REASON_POS);
4239 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
4240 			reason_set, reason_code);
4241 
4242 		goto out_terminate;
4243 	}
4244 	default:
4245 		/* Error, keep GHCB MSR value as-is */
4246 		break;
4247 	}
4248 
4249 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
4250 					    control->ghcb_gpa, ret);
4251 
4252 	return ret;
4253 
4254 out_terminate:
4255 	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4256 	vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4257 	vcpu->run->system_event.ndata = 1;
4258 	vcpu->run->system_event.data[0] = control->ghcb_gpa;
4259 
4260 	return 0;
4261 }
4262 
4263 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
4264 {
4265 	struct vcpu_svm *svm = to_svm(vcpu);
4266 	struct vmcb_control_area *control = &svm->vmcb->control;
4267 	u64 ghcb_gpa, exit_code;
4268 	int ret;
4269 
4270 	/* Validate the GHCB */
4271 	ghcb_gpa = control->ghcb_gpa;
4272 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
4273 		return sev_handle_vmgexit_msr_protocol(svm);
4274 
4275 	if (!ghcb_gpa) {
4276 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
4277 
4278 		/* Without a GHCB, just return right back to the guest */
4279 		return 1;
4280 	}
4281 
4282 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
4283 		/* Unable to map GHCB from guest */
4284 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
4285 			    ghcb_gpa);
4286 
4287 		/* Without a GHCB, just return right back to the guest */
4288 		return 1;
4289 	}
4290 
4291 	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
4292 
4293 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
4294 
4295 	sev_es_sync_from_ghcb(svm);
4296 
4297 	/* SEV-SNP guest requires that the GHCB GPA must be registered */
4298 	if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
4299 		vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
4300 		return -EINVAL;
4301 	}
4302 
4303 	ret = sev_es_validate_vmgexit(svm);
4304 	if (ret)
4305 		return ret;
4306 
4307 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
4308 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
4309 
4310 	exit_code = kvm_ghcb_get_sw_exit_code(control);
4311 	switch (exit_code) {
4312 	case SVM_VMGEXIT_MMIO_READ:
4313 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4314 		if (ret)
4315 			break;
4316 
4317 		ret = kvm_sev_es_mmio_read(vcpu,
4318 					   control->exit_info_1,
4319 					   control->exit_info_2,
4320 					   svm->sev_es.ghcb_sa);
4321 		break;
4322 	case SVM_VMGEXIT_MMIO_WRITE:
4323 		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
4324 		if (ret)
4325 			break;
4326 
4327 		ret = kvm_sev_es_mmio_write(vcpu,
4328 					    control->exit_info_1,
4329 					    control->exit_info_2,
4330 					    svm->sev_es.ghcb_sa);
4331 		break;
4332 	case SVM_VMGEXIT_NMI_COMPLETE:
4333 		++vcpu->stat.nmi_window_exits;
4334 		svm->nmi_masked = false;
4335 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4336 		ret = 1;
4337 		break;
4338 	case SVM_VMGEXIT_AP_HLT_LOOP:
4339 		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
4340 		ret = kvm_emulate_ap_reset_hold(vcpu);
4341 		break;
4342 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
4343 		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4344 
4345 		switch (control->exit_info_1) {
4346 		case 0:
4347 			/* Set AP jump table address */
4348 			sev->ap_jump_table = control->exit_info_2;
4349 			break;
4350 		case 1:
4351 			/* Get AP jump table address */
4352 			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
4353 			break;
4354 		default:
4355 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
4356 			       control->exit_info_1);
4357 			ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4358 			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4359 		}
4360 
4361 		ret = 1;
4362 		break;
4363 	}
4364 	case SVM_VMGEXIT_HV_FEATURES:
4365 		ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED);
4366 
4367 		ret = 1;
4368 		break;
4369 	case SVM_VMGEXIT_TERM_REQUEST:
4370 		pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
4371 			control->exit_info_1, control->exit_info_2);
4372 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4373 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4374 		vcpu->run->system_event.ndata = 1;
4375 		vcpu->run->system_event.data[0] = control->ghcb_gpa;
4376 		break;
4377 	case SVM_VMGEXIT_PSC:
4378 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4379 		if (ret)
4380 			break;
4381 
4382 		ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
4383 		break;
4384 	case SVM_VMGEXIT_AP_CREATION:
4385 		ret = sev_snp_ap_creation(svm);
4386 		if (ret) {
4387 			ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4388 			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4389 		}
4390 
4391 		ret = 1;
4392 		break;
4393 	case SVM_VMGEXIT_GUEST_REQUEST:
4394 		ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
4395 		break;
4396 	case SVM_VMGEXIT_EXT_GUEST_REQUEST:
4397 		ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
4398 		break;
4399 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
4400 		vcpu_unimpl(vcpu,
4401 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
4402 			    control->exit_info_1, control->exit_info_2);
4403 		ret = -EINVAL;
4404 		break;
4405 	default:
4406 		ret = svm_invoke_exit_handler(vcpu, exit_code);
4407 	}
4408 
4409 	return ret;
4410 }
4411 
4412 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
4413 {
4414 	int count;
4415 	int bytes;
4416 	int r;
4417 
4418 	if (svm->vmcb->control.exit_info_2 > INT_MAX)
4419 		return -EINVAL;
4420 
4421 	count = svm->vmcb->control.exit_info_2;
4422 	if (unlikely(check_mul_overflow(count, size, &bytes)))
4423 		return -EINVAL;
4424 
4425 	r = setup_vmgexit_scratch(svm, in, bytes);
4426 	if (r)
4427 		return r;
4428 
4429 	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
4430 				    count, in);
4431 }
4432 
4433 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4434 {
4435 	struct kvm_vcpu *vcpu = &svm->vcpu;
4436 
4437 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
4438 		bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4439 				 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4440 
4441 		set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
4442 	}
4443 
4444 	/*
4445 	 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
4446 	 * the host/guest supports its use.
4447 	 *
4448 	 * guest_can_use() checks a number of requirements on the host/guest to
4449 	 * ensure that MSR_IA32_XSS is available, but it might report true even
4450 	 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
4451 	 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
4452 	 * to further check that the guest CPUID actually supports
4453 	 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
4454 	 * guests will still get intercepted and caught in the normal
4455 	 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
4456 	 */
4457 	if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
4458 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4459 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
4460 	else
4461 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
4462 }
4463 
4464 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4465 {
4466 	struct kvm_vcpu *vcpu = &svm->vcpu;
4467 	struct kvm_cpuid_entry2 *best;
4468 
4469 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4470 	best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4471 	if (best)
4472 		vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4473 
4474 	if (sev_es_guest(svm->vcpu.kvm))
4475 		sev_es_vcpu_after_set_cpuid(svm);
4476 }
4477 
4478 static void sev_es_init_vmcb(struct vcpu_svm *svm)
4479 {
4480 	struct vmcb *vmcb = svm->vmcb01.ptr;
4481 	struct kvm_vcpu *vcpu = &svm->vcpu;
4482 
4483 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
4484 
4485 	/*
4486 	 * An SEV-ES guest requires a VMSA area that is a separate from the
4487 	 * VMCB page. Do not include the encryption mask on the VMSA physical
4488 	 * address since hardware will access it using the guest key.  Note,
4489 	 * the VMSA will be NULL if this vCPU is the destination for intrahost
4490 	 * migration, and will be copied later.
4491 	 */
4492 	if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa)
4493 		svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
4494 
4495 	/* Can't intercept CR register access, HV can't modify CR registers */
4496 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
4497 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
4498 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
4499 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
4500 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
4501 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
4502 
4503 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
4504 
4505 	/* Track EFER/CR register changes */
4506 	svm_set_intercept(svm, TRAP_EFER_WRITE);
4507 	svm_set_intercept(svm, TRAP_CR0_WRITE);
4508 	svm_set_intercept(svm, TRAP_CR4_WRITE);
4509 	svm_set_intercept(svm, TRAP_CR8_WRITE);
4510 
4511 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
4512 	if (!sev_vcpu_has_debug_swap(svm)) {
4513 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
4514 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
4515 		recalc_intercepts(svm);
4516 	} else {
4517 		/*
4518 		 * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
4519 		 * allow debugging SEV-ES guests, and enables DebugSwap iff
4520 		 * NO_NESTED_DATA_BP is supported, so there's no reason to
4521 		 * intercept #DB when DebugSwap is enabled.  For simplicity
4522 		 * with respect to guest debug, intercept #DB for other VMs
4523 		 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
4524 		 * guest can't DoS the CPU with infinite #DB vectoring.
4525 		 */
4526 		clr_exception_intercept(svm, DB_VECTOR);
4527 	}
4528 
4529 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
4530 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
4531 
4532 	/* Clear intercepts on selected MSRs */
4533 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
4534 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
4535 }
4536 
4537 void sev_init_vmcb(struct vcpu_svm *svm)
4538 {
4539 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
4540 	clr_exception_intercept(svm, UD_VECTOR);
4541 
4542 	/*
4543 	 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
4544 	 * KVM can't decrypt guest memory to decode the faulting instruction.
4545 	 */
4546 	clr_exception_intercept(svm, GP_VECTOR);
4547 
4548 	if (sev_es_guest(svm->vcpu.kvm))
4549 		sev_es_init_vmcb(svm);
4550 }
4551 
4552 void sev_es_vcpu_reset(struct vcpu_svm *svm)
4553 {
4554 	struct kvm_vcpu *vcpu = &svm->vcpu;
4555 	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4556 
4557 	/*
4558 	 * Set the GHCB MSR value as per the GHCB specification when emulating
4559 	 * vCPU RESET for an SEV-ES guest.
4560 	 */
4561 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4562 					    GHCB_VERSION_MIN,
4563 					    sev_enc_bit));
4564 
4565 	mutex_init(&svm->sev_es.snp_vmsa_mutex);
4566 }
4567 
4568 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
4569 {
4570 	/*
4571 	 * All host state for SEV-ES guests is categorized into three swap types
4572 	 * based on how it is handled by hardware during a world switch:
4573 	 *
4574 	 * A: VMRUN:   Host state saved in host save area
4575 	 *    VMEXIT:  Host state loaded from host save area
4576 	 *
4577 	 * B: VMRUN:   Host state _NOT_ saved in host save area
4578 	 *    VMEXIT:  Host state loaded from host save area
4579 	 *
4580 	 * C: VMRUN:   Host state _NOT_ saved in host save area
4581 	 *    VMEXIT:  Host state initialized to default(reset) values
4582 	 *
4583 	 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
4584 	 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
4585 	 * by common SVM code).
4586 	 */
4587 	hostsa->xcr0 = kvm_host.xcr0;
4588 	hostsa->pkru = read_pkru();
4589 	hostsa->xss = kvm_host.xss;
4590 
4591 	/*
4592 	 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
4593 	 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
4594 	 * saves and loads debug registers (Type-A).
4595 	 */
4596 	if (sev_vcpu_has_debug_swap(svm)) {
4597 		hostsa->dr0 = native_get_debugreg(0);
4598 		hostsa->dr1 = native_get_debugreg(1);
4599 		hostsa->dr2 = native_get_debugreg(2);
4600 		hostsa->dr3 = native_get_debugreg(3);
4601 		hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
4602 		hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
4603 		hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
4604 		hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
4605 	}
4606 }
4607 
4608 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4609 {
4610 	struct vcpu_svm *svm = to_svm(vcpu);
4611 
4612 	/* First SIPI: Use the values as initially set by the VMM */
4613 	if (!svm->sev_es.received_first_sipi) {
4614 		svm->sev_es.received_first_sipi = true;
4615 		return;
4616 	}
4617 
4618 	/* Subsequent SIPI */
4619 	switch (svm->sev_es.ap_reset_hold_type) {
4620 	case AP_RESET_HOLD_NAE_EVENT:
4621 		/*
4622 		 * Return from an AP Reset Hold VMGEXIT, where the guest will
4623 		 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
4624 		 */
4625 		ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
4626 		break;
4627 	case AP_RESET_HOLD_MSR_PROTO:
4628 		/*
4629 		 * Return from an AP Reset Hold VMGEXIT, where the guest will
4630 		 * set the CS and RIP. Set GHCB data field to a non-zero value.
4631 		 */
4632 		set_ghcb_msr_bits(svm, 1,
4633 				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4634 				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4635 
4636 		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4637 				  GHCB_MSR_INFO_MASK,
4638 				  GHCB_MSR_INFO_POS);
4639 		break;
4640 	default:
4641 		break;
4642 	}
4643 }
4644 
4645 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
4646 {
4647 	unsigned long pfn;
4648 	struct page *p;
4649 
4650 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4651 		return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
4652 
4653 	/*
4654 	 * Allocate an SNP-safe page to workaround the SNP erratum where
4655 	 * the CPU will incorrectly signal an RMP violation #PF if a
4656 	 * hugepage (2MB or 1GB) collides with the RMP entry of a
4657 	 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
4658 	 *
4659 	 * Allocate one extra page, choose a page which is not
4660 	 * 2MB-aligned, and free the other.
4661 	 */
4662 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
4663 	if (!p)
4664 		return NULL;
4665 
4666 	split_page(p, 1);
4667 
4668 	pfn = page_to_pfn(p);
4669 	if (IS_ALIGNED(pfn, PTRS_PER_PMD))
4670 		__free_page(p++);
4671 	else
4672 		__free_page(p + 1);
4673 
4674 	return p;
4675 }
4676 
4677 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
4678 {
4679 	struct kvm_memory_slot *slot;
4680 	struct kvm *kvm = vcpu->kvm;
4681 	int order, rmp_level, ret;
4682 	struct page *page;
4683 	bool assigned;
4684 	kvm_pfn_t pfn;
4685 	gfn_t gfn;
4686 
4687 	gfn = gpa >> PAGE_SHIFT;
4688 
4689 	/*
4690 	 * The only time RMP faults occur for shared pages is when the guest is
4691 	 * triggering an RMP fault for an implicit page-state change from
4692 	 * shared->private. Implicit page-state changes are forwarded to
4693 	 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
4694 	 * for shared pages should not end up here.
4695 	 */
4696 	if (!kvm_mem_is_private(kvm, gfn)) {
4697 		pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
4698 				    gpa);
4699 		return;
4700 	}
4701 
4702 	slot = gfn_to_memslot(kvm, gfn);
4703 	if (!kvm_slot_can_be_private(slot)) {
4704 		pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
4705 				    gpa);
4706 		return;
4707 	}
4708 
4709 	ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order);
4710 	if (ret) {
4711 		pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
4712 				    gpa);
4713 		return;
4714 	}
4715 
4716 	ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4717 	if (ret || !assigned) {
4718 		pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
4719 				    gpa, pfn, ret);
4720 		goto out_no_trace;
4721 	}
4722 
4723 	/*
4724 	 * There are 2 cases where a PSMASH may be needed to resolve an #NPF
4725 	 * with PFERR_GUEST_RMP_BIT set:
4726 	 *
4727 	 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
4728 	 *    bit set if the guest issues them with a smaller granularity than
4729 	 *    what is indicated by the page-size bit in the 2MB RMP entry for
4730 	 *    the PFN that backs the GPA.
4731 	 *
4732 	 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
4733 	 *    smaller than what is indicated by the 2MB RMP entry for the PFN
4734 	 *    that backs the GPA.
4735 	 *
4736 	 * In both these cases, the corresponding 2M RMP entry needs to
4737 	 * be PSMASH'd to 512 4K RMP entries.  If the RMP entry is already
4738 	 * split into 4K RMP entries, then this is likely a spurious case which
4739 	 * can occur when there are concurrent accesses by the guest to a 2MB
4740 	 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
4741 	 * the process of being PMASH'd into 4K entries. These cases should
4742 	 * resolve automatically on subsequent accesses, so just ignore them
4743 	 * here.
4744 	 */
4745 	if (rmp_level == PG_LEVEL_4K)
4746 		goto out;
4747 
4748 	ret = snp_rmptable_psmash(pfn);
4749 	if (ret) {
4750 		/*
4751 		 * Look it up again. If it's 4K now then the PSMASH may have
4752 		 * raced with another process and the issue has already resolved
4753 		 * itself.
4754 		 */
4755 		if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
4756 		    assigned && rmp_level == PG_LEVEL_4K)
4757 			goto out;
4758 
4759 		pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
4760 				    gpa, pfn, ret);
4761 	}
4762 
4763 	kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
4764 out:
4765 	trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
4766 out_no_trace:
4767 	kvm_release_page_unused(page);
4768 }
4769 
4770 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
4771 {
4772 	kvm_pfn_t pfn = start;
4773 
4774 	while (pfn < end) {
4775 		int ret, rmp_level;
4776 		bool assigned;
4777 
4778 		ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4779 		if (ret) {
4780 			pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
4781 					    pfn, start, end, rmp_level, ret);
4782 			return false;
4783 		}
4784 
4785 		if (assigned) {
4786 			pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
4787 				 __func__, pfn, start, end, rmp_level);
4788 			return false;
4789 		}
4790 
4791 		pfn++;
4792 	}
4793 
4794 	return true;
4795 }
4796 
4797 static u8 max_level_for_order(int order)
4798 {
4799 	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4800 		return PG_LEVEL_2M;
4801 
4802 	return PG_LEVEL_4K;
4803 }
4804 
4805 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
4806 {
4807 	kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4808 
4809 	/*
4810 	 * If this is a large folio, and the entire 2M range containing the
4811 	 * PFN is currently shared, then the entire 2M-aligned range can be
4812 	 * set to private via a single 2M RMP entry.
4813 	 */
4814 	if (max_level_for_order(order) > PG_LEVEL_4K &&
4815 	    is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
4816 		return true;
4817 
4818 	return false;
4819 }
4820 
4821 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
4822 {
4823 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
4824 	kvm_pfn_t pfn_aligned;
4825 	gfn_t gfn_aligned;
4826 	int level, rc;
4827 	bool assigned;
4828 
4829 	if (!sev_snp_guest(kvm))
4830 		return 0;
4831 
4832 	rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4833 	if (rc) {
4834 		pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
4835 				   gfn, pfn, rc);
4836 		return -ENOENT;
4837 	}
4838 
4839 	if (assigned) {
4840 		pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
4841 			 __func__, gfn, pfn, max_order, level);
4842 		return 0;
4843 	}
4844 
4845 	if (is_large_rmp_possible(kvm, pfn, max_order)) {
4846 		level = PG_LEVEL_2M;
4847 		pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4848 		gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
4849 	} else {
4850 		level = PG_LEVEL_4K;
4851 		pfn_aligned = pfn;
4852 		gfn_aligned = gfn;
4853 	}
4854 
4855 	rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
4856 	if (rc) {
4857 		pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
4858 				   gfn, pfn, level, rc);
4859 		return -EINVAL;
4860 	}
4861 
4862 	pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
4863 		 __func__, gfn, pfn, pfn_aligned, max_order, level);
4864 
4865 	return 0;
4866 }
4867 
4868 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
4869 {
4870 	kvm_pfn_t pfn;
4871 
4872 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4873 		return;
4874 
4875 	pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);
4876 
4877 	for (pfn = start; pfn < end;) {
4878 		bool use_2m_update = false;
4879 		int rc, rmp_level;
4880 		bool assigned;
4881 
4882 		rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4883 		if (rc || !assigned)
4884 			goto next_pfn;
4885 
4886 		use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
4887 				end >= (pfn + PTRS_PER_PMD) &&
4888 				rmp_level > PG_LEVEL_4K;
4889 
4890 		/*
4891 		 * If an unaligned PFN corresponds to a 2M region assigned as a
4892 		 * large page in the RMP table, PSMASH the region into individual
4893 		 * 4K RMP entries before attempting to convert a 4K sub-page.
4894 		 */
4895 		if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
4896 			/*
4897 			 * This shouldn't fail, but if it does, report it, but
4898 			 * still try to update RMP entry to shared and pray this
4899 			 * was a spurious error that can be addressed later.
4900 			 */
4901 			rc = snp_rmptable_psmash(pfn);
4902 			WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
4903 				  pfn, rc);
4904 		}
4905 
4906 		rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
4907 		if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
4908 			      pfn, rc))
4909 			goto next_pfn;
4910 
4911 		/*
4912 		 * SEV-ES avoids host/guest cache coherency issues through
4913 		 * WBINVD hooks issued via MMU notifiers during run-time, and
4914 		 * KVM's VM destroy path at shutdown. Those MMU notifier events
4915 		 * don't cover gmem since there is no requirement to map pages
4916 		 * to a HVA in order to use them for a running guest. While the
4917 		 * shutdown path would still likely cover things for SNP guests,
4918 		 * userspace may also free gmem pages during run-time via
4919 		 * hole-punching operations on the guest_memfd, so flush the
4920 		 * cache entries for these pages before free'ing them back to
4921 		 * the host.
4922 		 */
4923 		clflush_cache_range(__va(pfn_to_hpa(pfn)),
4924 				    use_2m_update ? PMD_SIZE : PAGE_SIZE);
4925 next_pfn:
4926 		pfn += use_2m_update ? PTRS_PER_PMD : 1;
4927 		cond_resched();
4928 	}
4929 }
4930 
4931 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
4932 {
4933 	int level, rc;
4934 	bool assigned;
4935 
4936 	if (!sev_snp_guest(kvm))
4937 		return 0;
4938 
4939 	rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4940 	if (rc || !assigned)
4941 		return PG_LEVEL_4K;
4942 
4943 	return level;
4944 }
4945