1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 23 #include <asm/pkru.h> 24 #include <asm/trapnr.h> 25 #include <asm/fpu/xcr.h> 26 #include <asm/debugreg.h> 27 28 #include "mmu.h" 29 #include "x86.h" 30 #include "svm.h" 31 #include "svm_ops.h" 32 #include "cpuid.h" 33 #include "trace.h" 34 35 #ifndef CONFIG_KVM_AMD_SEV 36 /* 37 * When this config is not defined, SEV feature is not supported and APIs in 38 * this file are not used but this file still gets compiled into the KVM AMD 39 * module. 40 * 41 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 42 * misc_res_type {} defined in linux/misc_cgroup.h. 43 * 44 * Below macros allow compilation to succeed. 45 */ 46 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 47 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 48 #endif 49 50 #ifdef CONFIG_KVM_AMD_SEV 51 /* enable/disable SEV support */ 52 static bool sev_enabled = true; 53 module_param_named(sev, sev_enabled, bool, 0444); 54 55 /* enable/disable SEV-ES support */ 56 static bool sev_es_enabled = true; 57 module_param_named(sev_es, sev_es_enabled, bool, 0444); 58 59 /* enable/disable SEV-ES DebugSwap support */ 60 static bool sev_es_debug_swap_enabled = false; 61 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 62 #else 63 #define sev_enabled false 64 #define sev_es_enabled false 65 #define sev_es_debug_swap_enabled false 66 #endif /* CONFIG_KVM_AMD_SEV */ 67 68 static u8 sev_enc_bit; 69 static DECLARE_RWSEM(sev_deactivate_lock); 70 static DEFINE_MUTEX(sev_bitmap_lock); 71 unsigned int max_sev_asid; 72 static unsigned int min_sev_asid; 73 static unsigned long sev_me_mask; 74 static unsigned int nr_asids; 75 static unsigned long *sev_asid_bitmap; 76 static unsigned long *sev_reclaim_asid_bitmap; 77 78 struct enc_region { 79 struct list_head list; 80 unsigned long npages; 81 struct page **pages; 82 unsigned long uaddr; 83 unsigned long size; 84 }; 85 86 /* Called with the sev_bitmap_lock held, or on shutdown */ 87 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) 88 { 89 int ret, error = 0; 90 unsigned int asid; 91 92 /* Check if there are any ASIDs to reclaim before performing a flush */ 93 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 94 if (asid > max_asid) 95 return -EBUSY; 96 97 /* 98 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 99 * so it must be guarded. 100 */ 101 down_write(&sev_deactivate_lock); 102 103 wbinvd_on_all_cpus(); 104 ret = sev_guest_df_flush(&error); 105 106 up_write(&sev_deactivate_lock); 107 108 if (ret) 109 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 110 111 return ret; 112 } 113 114 static inline bool is_mirroring_enc_context(struct kvm *kvm) 115 { 116 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 117 } 118 119 /* Must be called with the sev_bitmap_lock held */ 120 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) 121 { 122 if (sev_flush_asids(min_asid, max_asid)) 123 return false; 124 125 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 126 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 127 nr_asids); 128 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 129 130 return true; 131 } 132 133 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 134 { 135 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 136 return misc_cg_try_charge(type, sev->misc_cg, 1); 137 } 138 139 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 140 { 141 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 142 misc_cg_uncharge(type, sev->misc_cg, 1); 143 } 144 145 static int sev_asid_new(struct kvm_sev_info *sev) 146 { 147 /* 148 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 149 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 150 * Note: min ASID can end up larger than the max if basic SEV support is 151 * effectively disabled by disallowing use of ASIDs for SEV guests. 152 */ 153 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; 154 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 155 unsigned int asid; 156 bool retry = true; 157 int ret; 158 159 if (min_asid > max_asid) 160 return -ENOTTY; 161 162 WARN_ON(sev->misc_cg); 163 sev->misc_cg = get_current_misc_cg(); 164 ret = sev_misc_cg_try_charge(sev); 165 if (ret) { 166 put_misc_cg(sev->misc_cg); 167 sev->misc_cg = NULL; 168 return ret; 169 } 170 171 mutex_lock(&sev_bitmap_lock); 172 173 again: 174 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 175 if (asid > max_asid) { 176 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 177 retry = false; 178 goto again; 179 } 180 mutex_unlock(&sev_bitmap_lock); 181 ret = -EBUSY; 182 goto e_uncharge; 183 } 184 185 __set_bit(asid, sev_asid_bitmap); 186 187 mutex_unlock(&sev_bitmap_lock); 188 189 sev->asid = asid; 190 return 0; 191 e_uncharge: 192 sev_misc_cg_uncharge(sev); 193 put_misc_cg(sev->misc_cg); 194 sev->misc_cg = NULL; 195 return ret; 196 } 197 198 static unsigned int sev_get_asid(struct kvm *kvm) 199 { 200 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 201 202 return sev->asid; 203 } 204 205 static void sev_asid_free(struct kvm_sev_info *sev) 206 { 207 struct svm_cpu_data *sd; 208 int cpu; 209 210 mutex_lock(&sev_bitmap_lock); 211 212 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 213 214 for_each_possible_cpu(cpu) { 215 sd = per_cpu_ptr(&svm_data, cpu); 216 sd->sev_vmcbs[sev->asid] = NULL; 217 } 218 219 mutex_unlock(&sev_bitmap_lock); 220 221 sev_misc_cg_uncharge(sev); 222 put_misc_cg(sev->misc_cg); 223 sev->misc_cg = NULL; 224 } 225 226 static void sev_decommission(unsigned int handle) 227 { 228 struct sev_data_decommission decommission; 229 230 if (!handle) 231 return; 232 233 decommission.handle = handle; 234 sev_guest_decommission(&decommission, NULL); 235 } 236 237 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 238 { 239 struct sev_data_deactivate deactivate; 240 241 if (!handle) 242 return; 243 244 deactivate.handle = handle; 245 246 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 247 down_read(&sev_deactivate_lock); 248 sev_guest_deactivate(&deactivate, NULL); 249 up_read(&sev_deactivate_lock); 250 251 sev_decommission(handle); 252 } 253 254 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 255 { 256 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 257 struct sev_platform_init_args init_args = {0}; 258 int ret; 259 260 if (kvm->created_vcpus) 261 return -EINVAL; 262 263 if (unlikely(sev->active)) 264 return -EINVAL; 265 266 sev->active = true; 267 sev->es_active = argp->id == KVM_SEV_ES_INIT; 268 ret = sev_asid_new(sev); 269 if (ret) 270 goto e_no_asid; 271 272 init_args.probe = false; 273 ret = sev_platform_init(&init_args); 274 if (ret) 275 goto e_free; 276 277 INIT_LIST_HEAD(&sev->regions_list); 278 INIT_LIST_HEAD(&sev->mirror_vms); 279 280 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 281 282 return 0; 283 284 e_free: 285 argp->error = init_args.error; 286 sev_asid_free(sev); 287 sev->asid = 0; 288 e_no_asid: 289 sev->es_active = false; 290 sev->active = false; 291 return ret; 292 } 293 294 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 295 { 296 unsigned int asid = sev_get_asid(kvm); 297 struct sev_data_activate activate; 298 int ret; 299 300 /* activate ASID on the given handle */ 301 activate.handle = handle; 302 activate.asid = asid; 303 ret = sev_guest_activate(&activate, error); 304 305 return ret; 306 } 307 308 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 309 { 310 struct fd f; 311 int ret; 312 313 f = fdget(fd); 314 if (!f.file) 315 return -EBADF; 316 317 ret = sev_issue_cmd_external_user(f.file, id, data, error); 318 319 fdput(f); 320 return ret; 321 } 322 323 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 324 { 325 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 326 327 return __sev_issue_cmd(sev->fd, id, data, error); 328 } 329 330 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 331 { 332 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 333 struct sev_data_launch_start start; 334 struct kvm_sev_launch_start params; 335 void *dh_blob, *session_blob; 336 int *error = &argp->error; 337 int ret; 338 339 if (!sev_guest(kvm)) 340 return -ENOTTY; 341 342 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 343 return -EFAULT; 344 345 memset(&start, 0, sizeof(start)); 346 347 dh_blob = NULL; 348 if (params.dh_uaddr) { 349 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 350 if (IS_ERR(dh_blob)) 351 return PTR_ERR(dh_blob); 352 353 start.dh_cert_address = __sme_set(__pa(dh_blob)); 354 start.dh_cert_len = params.dh_len; 355 } 356 357 session_blob = NULL; 358 if (params.session_uaddr) { 359 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 360 if (IS_ERR(session_blob)) { 361 ret = PTR_ERR(session_blob); 362 goto e_free_dh; 363 } 364 365 start.session_address = __sme_set(__pa(session_blob)); 366 start.session_len = params.session_len; 367 } 368 369 start.handle = params.handle; 370 start.policy = params.policy; 371 372 /* create memory encryption context */ 373 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 374 if (ret) 375 goto e_free_session; 376 377 /* Bind ASID to this guest */ 378 ret = sev_bind_asid(kvm, start.handle, error); 379 if (ret) { 380 sev_decommission(start.handle); 381 goto e_free_session; 382 } 383 384 /* return handle to userspace */ 385 params.handle = start.handle; 386 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 387 sev_unbind_asid(kvm, start.handle); 388 ret = -EFAULT; 389 goto e_free_session; 390 } 391 392 sev->handle = start.handle; 393 sev->fd = argp->sev_fd; 394 395 e_free_session: 396 kfree(session_blob); 397 e_free_dh: 398 kfree(dh_blob); 399 return ret; 400 } 401 402 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 403 unsigned long ulen, unsigned long *n, 404 int write) 405 { 406 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 407 unsigned long npages, size; 408 int npinned; 409 unsigned long locked, lock_limit; 410 struct page **pages; 411 unsigned long first, last; 412 int ret; 413 414 lockdep_assert_held(&kvm->lock); 415 416 if (ulen == 0 || uaddr + ulen < uaddr) 417 return ERR_PTR(-EINVAL); 418 419 /* Calculate number of pages. */ 420 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 421 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 422 npages = (last - first + 1); 423 424 locked = sev->pages_locked + npages; 425 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 426 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 427 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 428 return ERR_PTR(-ENOMEM); 429 } 430 431 if (WARN_ON_ONCE(npages > INT_MAX)) 432 return ERR_PTR(-EINVAL); 433 434 /* Avoid using vmalloc for smaller buffers. */ 435 size = npages * sizeof(struct page *); 436 if (size > PAGE_SIZE) 437 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 438 else 439 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 440 441 if (!pages) 442 return ERR_PTR(-ENOMEM); 443 444 /* Pin the user virtual address. */ 445 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 446 if (npinned != npages) { 447 pr_err("SEV: Failure locking %lu pages.\n", npages); 448 ret = -ENOMEM; 449 goto err; 450 } 451 452 *n = npages; 453 sev->pages_locked = locked; 454 455 return pages; 456 457 err: 458 if (npinned > 0) 459 unpin_user_pages(pages, npinned); 460 461 kvfree(pages); 462 return ERR_PTR(ret); 463 } 464 465 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 466 unsigned long npages) 467 { 468 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 469 470 unpin_user_pages(pages, npages); 471 kvfree(pages); 472 sev->pages_locked -= npages; 473 } 474 475 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 476 { 477 uint8_t *page_virtual; 478 unsigned long i; 479 480 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 481 pages == NULL) 482 return; 483 484 for (i = 0; i < npages; i++) { 485 page_virtual = kmap_local_page(pages[i]); 486 clflush_cache_range(page_virtual, PAGE_SIZE); 487 kunmap_local(page_virtual); 488 cond_resched(); 489 } 490 } 491 492 static unsigned long get_num_contig_pages(unsigned long idx, 493 struct page **inpages, unsigned long npages) 494 { 495 unsigned long paddr, next_paddr; 496 unsigned long i = idx + 1, pages = 1; 497 498 /* find the number of contiguous pages starting from idx */ 499 paddr = __sme_page_pa(inpages[idx]); 500 while (i < npages) { 501 next_paddr = __sme_page_pa(inpages[i++]); 502 if ((paddr + PAGE_SIZE) == next_paddr) { 503 pages++; 504 paddr = next_paddr; 505 continue; 506 } 507 break; 508 } 509 510 return pages; 511 } 512 513 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 514 { 515 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 516 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 517 struct kvm_sev_launch_update_data params; 518 struct sev_data_launch_update_data data; 519 struct page **inpages; 520 int ret; 521 522 if (!sev_guest(kvm)) 523 return -ENOTTY; 524 525 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 526 return -EFAULT; 527 528 vaddr = params.uaddr; 529 size = params.len; 530 vaddr_end = vaddr + size; 531 532 /* Lock the user memory. */ 533 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 534 if (IS_ERR(inpages)) 535 return PTR_ERR(inpages); 536 537 /* 538 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 539 * place; the cache may contain the data that was written unencrypted. 540 */ 541 sev_clflush_pages(inpages, npages); 542 543 data.reserved = 0; 544 data.handle = sev->handle; 545 546 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 547 int offset, len; 548 549 /* 550 * If the user buffer is not page-aligned, calculate the offset 551 * within the page. 552 */ 553 offset = vaddr & (PAGE_SIZE - 1); 554 555 /* Calculate the number of pages that can be encrypted in one go. */ 556 pages = get_num_contig_pages(i, inpages, npages); 557 558 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 559 560 data.len = len; 561 data.address = __sme_page_pa(inpages[i]) + offset; 562 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 563 if (ret) 564 goto e_unpin; 565 566 size -= len; 567 next_vaddr = vaddr + len; 568 } 569 570 e_unpin: 571 /* content of memory is updated, mark pages dirty */ 572 for (i = 0; i < npages; i++) { 573 set_page_dirty_lock(inpages[i]); 574 mark_page_accessed(inpages[i]); 575 } 576 /* unlock the user pages */ 577 sev_unpin_memory(kvm, inpages, npages); 578 return ret; 579 } 580 581 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 582 { 583 struct sev_es_save_area *save = svm->sev_es.vmsa; 584 585 /* Check some debug related fields before encrypting the VMSA */ 586 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 587 return -EINVAL; 588 589 /* 590 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 591 * the traditional VMSA that is part of the VMCB. Copy the 592 * traditional VMSA as it has been built so far (in prep 593 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 594 */ 595 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 596 597 /* Sync registgers */ 598 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 599 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 600 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 601 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 602 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 603 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 604 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 605 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 606 #ifdef CONFIG_X86_64 607 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 608 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 609 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 610 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 611 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 612 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 613 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 614 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 615 #endif 616 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 617 618 /* Sync some non-GPR registers before encrypting */ 619 save->xcr0 = svm->vcpu.arch.xcr0; 620 save->pkru = svm->vcpu.arch.pkru; 621 save->xss = svm->vcpu.arch.ia32_xss; 622 save->dr6 = svm->vcpu.arch.dr6; 623 624 if (sev_es_debug_swap_enabled) { 625 save->sev_features |= SVM_SEV_FEAT_DEBUG_SWAP; 626 pr_warn_once("Enabling DebugSwap with KVM_SEV_ES_INIT. " 627 "This will not work starting with Linux 6.10\n"); 628 } 629 630 pr_debug("Virtual Machine Save Area (VMSA):\n"); 631 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 632 633 return 0; 634 } 635 636 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 637 int *error) 638 { 639 struct sev_data_launch_update_vmsa vmsa; 640 struct vcpu_svm *svm = to_svm(vcpu); 641 int ret; 642 643 if (vcpu->guest_debug) { 644 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 645 return -EINVAL; 646 } 647 648 /* Perform some pre-encryption checks against the VMSA */ 649 ret = sev_es_sync_vmsa(svm); 650 if (ret) 651 return ret; 652 653 /* 654 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 655 * the VMSA memory content (i.e it will write the same memory region 656 * with the guest's key), so invalidate it first. 657 */ 658 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 659 660 vmsa.reserved = 0; 661 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle; 662 vmsa.address = __sme_pa(svm->sev_es.vmsa); 663 vmsa.len = PAGE_SIZE; 664 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 665 if (ret) 666 return ret; 667 668 vcpu->arch.guest_state_protected = true; 669 return 0; 670 } 671 672 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 673 { 674 struct kvm_vcpu *vcpu; 675 unsigned long i; 676 int ret; 677 678 if (!sev_es_guest(kvm)) 679 return -ENOTTY; 680 681 kvm_for_each_vcpu(i, vcpu, kvm) { 682 ret = mutex_lock_killable(&vcpu->mutex); 683 if (ret) 684 return ret; 685 686 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 687 688 mutex_unlock(&vcpu->mutex); 689 if (ret) 690 return ret; 691 } 692 693 return 0; 694 } 695 696 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 697 { 698 void __user *measure = (void __user *)(uintptr_t)argp->data; 699 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 700 struct sev_data_launch_measure data; 701 struct kvm_sev_launch_measure params; 702 void __user *p = NULL; 703 void *blob = NULL; 704 int ret; 705 706 if (!sev_guest(kvm)) 707 return -ENOTTY; 708 709 if (copy_from_user(¶ms, measure, sizeof(params))) 710 return -EFAULT; 711 712 memset(&data, 0, sizeof(data)); 713 714 /* User wants to query the blob length */ 715 if (!params.len) 716 goto cmd; 717 718 p = (void __user *)(uintptr_t)params.uaddr; 719 if (p) { 720 if (params.len > SEV_FW_BLOB_MAX_SIZE) 721 return -EINVAL; 722 723 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 724 if (!blob) 725 return -ENOMEM; 726 727 data.address = __psp_pa(blob); 728 data.len = params.len; 729 } 730 731 cmd: 732 data.handle = sev->handle; 733 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 734 735 /* 736 * If we query the session length, FW responded with expected data. 737 */ 738 if (!params.len) 739 goto done; 740 741 if (ret) 742 goto e_free_blob; 743 744 if (blob) { 745 if (copy_to_user(p, blob, params.len)) 746 ret = -EFAULT; 747 } 748 749 done: 750 params.len = data.len; 751 if (copy_to_user(measure, ¶ms, sizeof(params))) 752 ret = -EFAULT; 753 e_free_blob: 754 kfree(blob); 755 return ret; 756 } 757 758 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 759 { 760 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 761 struct sev_data_launch_finish data; 762 763 if (!sev_guest(kvm)) 764 return -ENOTTY; 765 766 data.handle = sev->handle; 767 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 768 } 769 770 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 771 { 772 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 773 struct kvm_sev_guest_status params; 774 struct sev_data_guest_status data; 775 int ret; 776 777 if (!sev_guest(kvm)) 778 return -ENOTTY; 779 780 memset(&data, 0, sizeof(data)); 781 782 data.handle = sev->handle; 783 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 784 if (ret) 785 return ret; 786 787 params.policy = data.policy; 788 params.state = data.state; 789 params.handle = data.handle; 790 791 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 792 ret = -EFAULT; 793 794 return ret; 795 } 796 797 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 798 unsigned long dst, int size, 799 int *error, bool enc) 800 { 801 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 802 struct sev_data_dbg data; 803 804 data.reserved = 0; 805 data.handle = sev->handle; 806 data.dst_addr = dst; 807 data.src_addr = src; 808 data.len = size; 809 810 return sev_issue_cmd(kvm, 811 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 812 &data, error); 813 } 814 815 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 816 unsigned long dst_paddr, int sz, int *err) 817 { 818 int offset; 819 820 /* 821 * Its safe to read more than we are asked, caller should ensure that 822 * destination has enough space. 823 */ 824 offset = src_paddr & 15; 825 src_paddr = round_down(src_paddr, 16); 826 sz = round_up(sz + offset, 16); 827 828 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 829 } 830 831 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 832 void __user *dst_uaddr, 833 unsigned long dst_paddr, 834 int size, int *err) 835 { 836 struct page *tpage = NULL; 837 int ret, offset; 838 839 /* if inputs are not 16-byte then use intermediate buffer */ 840 if (!IS_ALIGNED(dst_paddr, 16) || 841 !IS_ALIGNED(paddr, 16) || 842 !IS_ALIGNED(size, 16)) { 843 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 844 if (!tpage) 845 return -ENOMEM; 846 847 dst_paddr = __sme_page_pa(tpage); 848 } 849 850 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 851 if (ret) 852 goto e_free; 853 854 if (tpage) { 855 offset = paddr & 15; 856 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 857 ret = -EFAULT; 858 } 859 860 e_free: 861 if (tpage) 862 __free_page(tpage); 863 864 return ret; 865 } 866 867 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 868 void __user *vaddr, 869 unsigned long dst_paddr, 870 void __user *dst_vaddr, 871 int size, int *error) 872 { 873 struct page *src_tpage = NULL; 874 struct page *dst_tpage = NULL; 875 int ret, len = size; 876 877 /* If source buffer is not aligned then use an intermediate buffer */ 878 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 879 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 880 if (!src_tpage) 881 return -ENOMEM; 882 883 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 884 __free_page(src_tpage); 885 return -EFAULT; 886 } 887 888 paddr = __sme_page_pa(src_tpage); 889 } 890 891 /* 892 * If destination buffer or length is not aligned then do read-modify-write: 893 * - decrypt destination in an intermediate buffer 894 * - copy the source buffer in an intermediate buffer 895 * - use the intermediate buffer as source buffer 896 */ 897 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 898 int dst_offset; 899 900 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 901 if (!dst_tpage) { 902 ret = -ENOMEM; 903 goto e_free; 904 } 905 906 ret = __sev_dbg_decrypt(kvm, dst_paddr, 907 __sme_page_pa(dst_tpage), size, error); 908 if (ret) 909 goto e_free; 910 911 /* 912 * If source is kernel buffer then use memcpy() otherwise 913 * copy_from_user(). 914 */ 915 dst_offset = dst_paddr & 15; 916 917 if (src_tpage) 918 memcpy(page_address(dst_tpage) + dst_offset, 919 page_address(src_tpage), size); 920 else { 921 if (copy_from_user(page_address(dst_tpage) + dst_offset, 922 vaddr, size)) { 923 ret = -EFAULT; 924 goto e_free; 925 } 926 } 927 928 paddr = __sme_page_pa(dst_tpage); 929 dst_paddr = round_down(dst_paddr, 16); 930 len = round_up(size, 16); 931 } 932 933 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 934 935 e_free: 936 if (src_tpage) 937 __free_page(src_tpage); 938 if (dst_tpage) 939 __free_page(dst_tpage); 940 return ret; 941 } 942 943 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 944 { 945 unsigned long vaddr, vaddr_end, next_vaddr; 946 unsigned long dst_vaddr; 947 struct page **src_p, **dst_p; 948 struct kvm_sev_dbg debug; 949 unsigned long n; 950 unsigned int size; 951 int ret; 952 953 if (!sev_guest(kvm)) 954 return -ENOTTY; 955 956 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 957 return -EFAULT; 958 959 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 960 return -EINVAL; 961 if (!debug.dst_uaddr) 962 return -EINVAL; 963 964 vaddr = debug.src_uaddr; 965 size = debug.len; 966 vaddr_end = vaddr + size; 967 dst_vaddr = debug.dst_uaddr; 968 969 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 970 int len, s_off, d_off; 971 972 /* lock userspace source and destination page */ 973 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 974 if (IS_ERR(src_p)) 975 return PTR_ERR(src_p); 976 977 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 978 if (IS_ERR(dst_p)) { 979 sev_unpin_memory(kvm, src_p, n); 980 return PTR_ERR(dst_p); 981 } 982 983 /* 984 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 985 * the pages; flush the destination too so that future accesses do not 986 * see stale data. 987 */ 988 sev_clflush_pages(src_p, 1); 989 sev_clflush_pages(dst_p, 1); 990 991 /* 992 * Since user buffer may not be page aligned, calculate the 993 * offset within the page. 994 */ 995 s_off = vaddr & ~PAGE_MASK; 996 d_off = dst_vaddr & ~PAGE_MASK; 997 len = min_t(size_t, (PAGE_SIZE - s_off), size); 998 999 if (dec) 1000 ret = __sev_dbg_decrypt_user(kvm, 1001 __sme_page_pa(src_p[0]) + s_off, 1002 (void __user *)dst_vaddr, 1003 __sme_page_pa(dst_p[0]) + d_off, 1004 len, &argp->error); 1005 else 1006 ret = __sev_dbg_encrypt_user(kvm, 1007 __sme_page_pa(src_p[0]) + s_off, 1008 (void __user *)vaddr, 1009 __sme_page_pa(dst_p[0]) + d_off, 1010 (void __user *)dst_vaddr, 1011 len, &argp->error); 1012 1013 sev_unpin_memory(kvm, src_p, n); 1014 sev_unpin_memory(kvm, dst_p, n); 1015 1016 if (ret) 1017 goto err; 1018 1019 next_vaddr = vaddr + len; 1020 dst_vaddr = dst_vaddr + len; 1021 size -= len; 1022 } 1023 err: 1024 return ret; 1025 } 1026 1027 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1028 { 1029 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1030 struct sev_data_launch_secret data; 1031 struct kvm_sev_launch_secret params; 1032 struct page **pages; 1033 void *blob, *hdr; 1034 unsigned long n, i; 1035 int ret, offset; 1036 1037 if (!sev_guest(kvm)) 1038 return -ENOTTY; 1039 1040 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1041 return -EFAULT; 1042 1043 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1044 if (IS_ERR(pages)) 1045 return PTR_ERR(pages); 1046 1047 /* 1048 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1049 * place; the cache may contain the data that was written unencrypted. 1050 */ 1051 sev_clflush_pages(pages, n); 1052 1053 /* 1054 * The secret must be copied into contiguous memory region, lets verify 1055 * that userspace memory pages are contiguous before we issue command. 1056 */ 1057 if (get_num_contig_pages(0, pages, n) != n) { 1058 ret = -EINVAL; 1059 goto e_unpin_memory; 1060 } 1061 1062 memset(&data, 0, sizeof(data)); 1063 1064 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1065 data.guest_address = __sme_page_pa(pages[0]) + offset; 1066 data.guest_len = params.guest_len; 1067 1068 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1069 if (IS_ERR(blob)) { 1070 ret = PTR_ERR(blob); 1071 goto e_unpin_memory; 1072 } 1073 1074 data.trans_address = __psp_pa(blob); 1075 data.trans_len = params.trans_len; 1076 1077 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1078 if (IS_ERR(hdr)) { 1079 ret = PTR_ERR(hdr); 1080 goto e_free_blob; 1081 } 1082 data.hdr_address = __psp_pa(hdr); 1083 data.hdr_len = params.hdr_len; 1084 1085 data.handle = sev->handle; 1086 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1087 1088 kfree(hdr); 1089 1090 e_free_blob: 1091 kfree(blob); 1092 e_unpin_memory: 1093 /* content of memory is updated, mark pages dirty */ 1094 for (i = 0; i < n; i++) { 1095 set_page_dirty_lock(pages[i]); 1096 mark_page_accessed(pages[i]); 1097 } 1098 sev_unpin_memory(kvm, pages, n); 1099 return ret; 1100 } 1101 1102 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1103 { 1104 void __user *report = (void __user *)(uintptr_t)argp->data; 1105 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1106 struct sev_data_attestation_report data; 1107 struct kvm_sev_attestation_report params; 1108 void __user *p; 1109 void *blob = NULL; 1110 int ret; 1111 1112 if (!sev_guest(kvm)) 1113 return -ENOTTY; 1114 1115 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1116 return -EFAULT; 1117 1118 memset(&data, 0, sizeof(data)); 1119 1120 /* User wants to query the blob length */ 1121 if (!params.len) 1122 goto cmd; 1123 1124 p = (void __user *)(uintptr_t)params.uaddr; 1125 if (p) { 1126 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1127 return -EINVAL; 1128 1129 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1130 if (!blob) 1131 return -ENOMEM; 1132 1133 data.address = __psp_pa(blob); 1134 data.len = params.len; 1135 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1136 } 1137 cmd: 1138 data.handle = sev->handle; 1139 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1140 /* 1141 * If we query the session length, FW responded with expected data. 1142 */ 1143 if (!params.len) 1144 goto done; 1145 1146 if (ret) 1147 goto e_free_blob; 1148 1149 if (blob) { 1150 if (copy_to_user(p, blob, params.len)) 1151 ret = -EFAULT; 1152 } 1153 1154 done: 1155 params.len = data.len; 1156 if (copy_to_user(report, ¶ms, sizeof(params))) 1157 ret = -EFAULT; 1158 e_free_blob: 1159 kfree(blob); 1160 return ret; 1161 } 1162 1163 /* Userspace wants to query session length. */ 1164 static int 1165 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1166 struct kvm_sev_send_start *params) 1167 { 1168 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1169 struct sev_data_send_start data; 1170 int ret; 1171 1172 memset(&data, 0, sizeof(data)); 1173 data.handle = sev->handle; 1174 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1175 1176 params->session_len = data.session_len; 1177 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1178 sizeof(struct kvm_sev_send_start))) 1179 ret = -EFAULT; 1180 1181 return ret; 1182 } 1183 1184 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1185 { 1186 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1187 struct sev_data_send_start data; 1188 struct kvm_sev_send_start params; 1189 void *amd_certs, *session_data; 1190 void *pdh_cert, *plat_certs; 1191 int ret; 1192 1193 if (!sev_guest(kvm)) 1194 return -ENOTTY; 1195 1196 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1197 sizeof(struct kvm_sev_send_start))) 1198 return -EFAULT; 1199 1200 /* if session_len is zero, userspace wants to query the session length */ 1201 if (!params.session_len) 1202 return __sev_send_start_query_session_length(kvm, argp, 1203 ¶ms); 1204 1205 /* some sanity checks */ 1206 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1207 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1208 return -EINVAL; 1209 1210 /* allocate the memory to hold the session data blob */ 1211 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1212 if (!session_data) 1213 return -ENOMEM; 1214 1215 /* copy the certificate blobs from userspace */ 1216 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1217 params.pdh_cert_len); 1218 if (IS_ERR(pdh_cert)) { 1219 ret = PTR_ERR(pdh_cert); 1220 goto e_free_session; 1221 } 1222 1223 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1224 params.plat_certs_len); 1225 if (IS_ERR(plat_certs)) { 1226 ret = PTR_ERR(plat_certs); 1227 goto e_free_pdh; 1228 } 1229 1230 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1231 params.amd_certs_len); 1232 if (IS_ERR(amd_certs)) { 1233 ret = PTR_ERR(amd_certs); 1234 goto e_free_plat_cert; 1235 } 1236 1237 /* populate the FW SEND_START field with system physical address */ 1238 memset(&data, 0, sizeof(data)); 1239 data.pdh_cert_address = __psp_pa(pdh_cert); 1240 data.pdh_cert_len = params.pdh_cert_len; 1241 data.plat_certs_address = __psp_pa(plat_certs); 1242 data.plat_certs_len = params.plat_certs_len; 1243 data.amd_certs_address = __psp_pa(amd_certs); 1244 data.amd_certs_len = params.amd_certs_len; 1245 data.session_address = __psp_pa(session_data); 1246 data.session_len = params.session_len; 1247 data.handle = sev->handle; 1248 1249 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1250 1251 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1252 session_data, params.session_len)) { 1253 ret = -EFAULT; 1254 goto e_free_amd_cert; 1255 } 1256 1257 params.policy = data.policy; 1258 params.session_len = data.session_len; 1259 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1260 sizeof(struct kvm_sev_send_start))) 1261 ret = -EFAULT; 1262 1263 e_free_amd_cert: 1264 kfree(amd_certs); 1265 e_free_plat_cert: 1266 kfree(plat_certs); 1267 e_free_pdh: 1268 kfree(pdh_cert); 1269 e_free_session: 1270 kfree(session_data); 1271 return ret; 1272 } 1273 1274 /* Userspace wants to query either header or trans length. */ 1275 static int 1276 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1277 struct kvm_sev_send_update_data *params) 1278 { 1279 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1280 struct sev_data_send_update_data data; 1281 int ret; 1282 1283 memset(&data, 0, sizeof(data)); 1284 data.handle = sev->handle; 1285 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1286 1287 params->hdr_len = data.hdr_len; 1288 params->trans_len = data.trans_len; 1289 1290 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1291 sizeof(struct kvm_sev_send_update_data))) 1292 ret = -EFAULT; 1293 1294 return ret; 1295 } 1296 1297 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1298 { 1299 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1300 struct sev_data_send_update_data data; 1301 struct kvm_sev_send_update_data params; 1302 void *hdr, *trans_data; 1303 struct page **guest_page; 1304 unsigned long n; 1305 int ret, offset; 1306 1307 if (!sev_guest(kvm)) 1308 return -ENOTTY; 1309 1310 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1311 sizeof(struct kvm_sev_send_update_data))) 1312 return -EFAULT; 1313 1314 /* userspace wants to query either header or trans length */ 1315 if (!params.trans_len || !params.hdr_len) 1316 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1317 1318 if (!params.trans_uaddr || !params.guest_uaddr || 1319 !params.guest_len || !params.hdr_uaddr) 1320 return -EINVAL; 1321 1322 /* Check if we are crossing the page boundary */ 1323 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1324 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1325 return -EINVAL; 1326 1327 /* Pin guest memory */ 1328 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1329 PAGE_SIZE, &n, 0); 1330 if (IS_ERR(guest_page)) 1331 return PTR_ERR(guest_page); 1332 1333 /* allocate memory for header and transport buffer */ 1334 ret = -ENOMEM; 1335 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1336 if (!hdr) 1337 goto e_unpin; 1338 1339 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1340 if (!trans_data) 1341 goto e_free_hdr; 1342 1343 memset(&data, 0, sizeof(data)); 1344 data.hdr_address = __psp_pa(hdr); 1345 data.hdr_len = params.hdr_len; 1346 data.trans_address = __psp_pa(trans_data); 1347 data.trans_len = params.trans_len; 1348 1349 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1350 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1351 data.guest_address |= sev_me_mask; 1352 data.guest_len = params.guest_len; 1353 data.handle = sev->handle; 1354 1355 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1356 1357 if (ret) 1358 goto e_free_trans_data; 1359 1360 /* copy transport buffer to user space */ 1361 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1362 trans_data, params.trans_len)) { 1363 ret = -EFAULT; 1364 goto e_free_trans_data; 1365 } 1366 1367 /* Copy packet header to userspace. */ 1368 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1369 params.hdr_len)) 1370 ret = -EFAULT; 1371 1372 e_free_trans_data: 1373 kfree(trans_data); 1374 e_free_hdr: 1375 kfree(hdr); 1376 e_unpin: 1377 sev_unpin_memory(kvm, guest_page, n); 1378 1379 return ret; 1380 } 1381 1382 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1383 { 1384 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1385 struct sev_data_send_finish data; 1386 1387 if (!sev_guest(kvm)) 1388 return -ENOTTY; 1389 1390 data.handle = sev->handle; 1391 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1392 } 1393 1394 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1395 { 1396 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1397 struct sev_data_send_cancel data; 1398 1399 if (!sev_guest(kvm)) 1400 return -ENOTTY; 1401 1402 data.handle = sev->handle; 1403 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1404 } 1405 1406 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1407 { 1408 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1409 struct sev_data_receive_start start; 1410 struct kvm_sev_receive_start params; 1411 int *error = &argp->error; 1412 void *session_data; 1413 void *pdh_data; 1414 int ret; 1415 1416 if (!sev_guest(kvm)) 1417 return -ENOTTY; 1418 1419 /* Get parameter from the userspace */ 1420 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1421 sizeof(struct kvm_sev_receive_start))) 1422 return -EFAULT; 1423 1424 /* some sanity checks */ 1425 if (!params.pdh_uaddr || !params.pdh_len || 1426 !params.session_uaddr || !params.session_len) 1427 return -EINVAL; 1428 1429 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1430 if (IS_ERR(pdh_data)) 1431 return PTR_ERR(pdh_data); 1432 1433 session_data = psp_copy_user_blob(params.session_uaddr, 1434 params.session_len); 1435 if (IS_ERR(session_data)) { 1436 ret = PTR_ERR(session_data); 1437 goto e_free_pdh; 1438 } 1439 1440 memset(&start, 0, sizeof(start)); 1441 start.handle = params.handle; 1442 start.policy = params.policy; 1443 start.pdh_cert_address = __psp_pa(pdh_data); 1444 start.pdh_cert_len = params.pdh_len; 1445 start.session_address = __psp_pa(session_data); 1446 start.session_len = params.session_len; 1447 1448 /* create memory encryption context */ 1449 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1450 error); 1451 if (ret) 1452 goto e_free_session; 1453 1454 /* Bind ASID to this guest */ 1455 ret = sev_bind_asid(kvm, start.handle, error); 1456 if (ret) { 1457 sev_decommission(start.handle); 1458 goto e_free_session; 1459 } 1460 1461 params.handle = start.handle; 1462 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1463 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1464 ret = -EFAULT; 1465 sev_unbind_asid(kvm, start.handle); 1466 goto e_free_session; 1467 } 1468 1469 sev->handle = start.handle; 1470 sev->fd = argp->sev_fd; 1471 1472 e_free_session: 1473 kfree(session_data); 1474 e_free_pdh: 1475 kfree(pdh_data); 1476 1477 return ret; 1478 } 1479 1480 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1481 { 1482 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1483 struct kvm_sev_receive_update_data params; 1484 struct sev_data_receive_update_data data; 1485 void *hdr = NULL, *trans = NULL; 1486 struct page **guest_page; 1487 unsigned long n; 1488 int ret, offset; 1489 1490 if (!sev_guest(kvm)) 1491 return -EINVAL; 1492 1493 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1494 sizeof(struct kvm_sev_receive_update_data))) 1495 return -EFAULT; 1496 1497 if (!params.hdr_uaddr || !params.hdr_len || 1498 !params.guest_uaddr || !params.guest_len || 1499 !params.trans_uaddr || !params.trans_len) 1500 return -EINVAL; 1501 1502 /* Check if we are crossing the page boundary */ 1503 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1504 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1505 return -EINVAL; 1506 1507 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1508 if (IS_ERR(hdr)) 1509 return PTR_ERR(hdr); 1510 1511 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1512 if (IS_ERR(trans)) { 1513 ret = PTR_ERR(trans); 1514 goto e_free_hdr; 1515 } 1516 1517 memset(&data, 0, sizeof(data)); 1518 data.hdr_address = __psp_pa(hdr); 1519 data.hdr_len = params.hdr_len; 1520 data.trans_address = __psp_pa(trans); 1521 data.trans_len = params.trans_len; 1522 1523 /* Pin guest memory */ 1524 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1525 PAGE_SIZE, &n, 1); 1526 if (IS_ERR(guest_page)) { 1527 ret = PTR_ERR(guest_page); 1528 goto e_free_trans; 1529 } 1530 1531 /* 1532 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1533 * encrypts the written data with the guest's key, and the cache may 1534 * contain dirty, unencrypted data. 1535 */ 1536 sev_clflush_pages(guest_page, n); 1537 1538 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1539 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1540 data.guest_address |= sev_me_mask; 1541 data.guest_len = params.guest_len; 1542 data.handle = sev->handle; 1543 1544 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1545 &argp->error); 1546 1547 sev_unpin_memory(kvm, guest_page, n); 1548 1549 e_free_trans: 1550 kfree(trans); 1551 e_free_hdr: 1552 kfree(hdr); 1553 1554 return ret; 1555 } 1556 1557 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1558 { 1559 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1560 struct sev_data_receive_finish data; 1561 1562 if (!sev_guest(kvm)) 1563 return -ENOTTY; 1564 1565 data.handle = sev->handle; 1566 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1567 } 1568 1569 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1570 { 1571 /* 1572 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1573 * active mirror VMs. Also allow the debugging and status commands. 1574 */ 1575 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1576 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1577 cmd_id == KVM_SEV_DBG_ENCRYPT) 1578 return true; 1579 1580 return false; 1581 } 1582 1583 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1584 { 1585 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1586 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1587 int r = -EBUSY; 1588 1589 if (dst_kvm == src_kvm) 1590 return -EINVAL; 1591 1592 /* 1593 * Bail if these VMs are already involved in a migration to avoid 1594 * deadlock between two VMs trying to migrate to/from each other. 1595 */ 1596 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1597 return -EBUSY; 1598 1599 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1600 goto release_dst; 1601 1602 r = -EINTR; 1603 if (mutex_lock_killable(&dst_kvm->lock)) 1604 goto release_src; 1605 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1606 goto unlock_dst; 1607 return 0; 1608 1609 unlock_dst: 1610 mutex_unlock(&dst_kvm->lock); 1611 release_src: 1612 atomic_set_release(&src_sev->migration_in_progress, 0); 1613 release_dst: 1614 atomic_set_release(&dst_sev->migration_in_progress, 0); 1615 return r; 1616 } 1617 1618 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1619 { 1620 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1621 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1622 1623 mutex_unlock(&dst_kvm->lock); 1624 mutex_unlock(&src_kvm->lock); 1625 atomic_set_release(&dst_sev->migration_in_progress, 0); 1626 atomic_set_release(&src_sev->migration_in_progress, 0); 1627 } 1628 1629 /* vCPU mutex subclasses. */ 1630 enum sev_migration_role { 1631 SEV_MIGRATION_SOURCE = 0, 1632 SEV_MIGRATION_TARGET, 1633 SEV_NR_MIGRATION_ROLES, 1634 }; 1635 1636 static int sev_lock_vcpus_for_migration(struct kvm *kvm, 1637 enum sev_migration_role role) 1638 { 1639 struct kvm_vcpu *vcpu; 1640 unsigned long i, j; 1641 1642 kvm_for_each_vcpu(i, vcpu, kvm) { 1643 if (mutex_lock_killable_nested(&vcpu->mutex, role)) 1644 goto out_unlock; 1645 1646 #ifdef CONFIG_PROVE_LOCKING 1647 if (!i) 1648 /* 1649 * Reset the role to one that avoids colliding with 1650 * the role used for the first vcpu mutex. 1651 */ 1652 role = SEV_NR_MIGRATION_ROLES; 1653 else 1654 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_); 1655 #endif 1656 } 1657 1658 return 0; 1659 1660 out_unlock: 1661 1662 kvm_for_each_vcpu(j, vcpu, kvm) { 1663 if (i == j) 1664 break; 1665 1666 #ifdef CONFIG_PROVE_LOCKING 1667 if (j) 1668 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_); 1669 #endif 1670 1671 mutex_unlock(&vcpu->mutex); 1672 } 1673 return -EINTR; 1674 } 1675 1676 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1677 { 1678 struct kvm_vcpu *vcpu; 1679 unsigned long i; 1680 bool first = true; 1681 1682 kvm_for_each_vcpu(i, vcpu, kvm) { 1683 if (first) 1684 first = false; 1685 else 1686 mutex_acquire(&vcpu->mutex.dep_map, 1687 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_); 1688 1689 mutex_unlock(&vcpu->mutex); 1690 } 1691 } 1692 1693 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1694 { 1695 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info; 1696 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info; 1697 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1698 struct vcpu_svm *dst_svm, *src_svm; 1699 struct kvm_sev_info *mirror; 1700 unsigned long i; 1701 1702 dst->active = true; 1703 dst->asid = src->asid; 1704 dst->handle = src->handle; 1705 dst->pages_locked = src->pages_locked; 1706 dst->enc_context_owner = src->enc_context_owner; 1707 dst->es_active = src->es_active; 1708 1709 src->asid = 0; 1710 src->active = false; 1711 src->handle = 0; 1712 src->pages_locked = 0; 1713 src->enc_context_owner = NULL; 1714 src->es_active = false; 1715 1716 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1717 1718 /* 1719 * If this VM has mirrors, "transfer" each mirror's refcount of the 1720 * source to the destination (this KVM). The caller holds a reference 1721 * to the source, so there's no danger of use-after-free. 1722 */ 1723 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 1724 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 1725 kvm_get_kvm(dst_kvm); 1726 kvm_put_kvm(src_kvm); 1727 mirror->enc_context_owner = dst_kvm; 1728 } 1729 1730 /* 1731 * If this VM is a mirror, remove the old mirror from the owners list 1732 * and add the new mirror to the list. 1733 */ 1734 if (is_mirroring_enc_context(dst_kvm)) { 1735 struct kvm_sev_info *owner_sev_info = 1736 &to_kvm_svm(dst->enc_context_owner)->sev_info; 1737 1738 list_del(&src->mirror_entry); 1739 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 1740 } 1741 1742 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 1743 dst_svm = to_svm(dst_vcpu); 1744 1745 sev_init_vmcb(dst_svm); 1746 1747 if (!dst->es_active) 1748 continue; 1749 1750 /* 1751 * Note, the source is not required to have the same number of 1752 * vCPUs as the destination when migrating a vanilla SEV VM. 1753 */ 1754 src_vcpu = kvm_get_vcpu(src_kvm, i); 1755 src_svm = to_svm(src_vcpu); 1756 1757 /* 1758 * Transfer VMSA and GHCB state to the destination. Nullify and 1759 * clear source fields as appropriate, the state now belongs to 1760 * the destination. 1761 */ 1762 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 1763 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 1764 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 1765 dst_vcpu->arch.guest_state_protected = true; 1766 1767 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 1768 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 1769 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 1770 src_vcpu->arch.guest_state_protected = false; 1771 } 1772 } 1773 1774 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 1775 { 1776 struct kvm_vcpu *src_vcpu; 1777 unsigned long i; 1778 1779 if (!sev_es_guest(src)) 1780 return 0; 1781 1782 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 1783 return -EINVAL; 1784 1785 kvm_for_each_vcpu(i, src_vcpu, src) { 1786 if (!src_vcpu->arch.guest_state_protected) 1787 return -EINVAL; 1788 } 1789 1790 return 0; 1791 } 1792 1793 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 1794 { 1795 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 1796 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 1797 struct fd f = fdget(source_fd); 1798 struct kvm *source_kvm; 1799 bool charged = false; 1800 int ret; 1801 1802 if (!f.file) 1803 return -EBADF; 1804 1805 if (!file_is_kvm(f.file)) { 1806 ret = -EBADF; 1807 goto out_fput; 1808 } 1809 1810 source_kvm = f.file->private_data; 1811 ret = sev_lock_two_vms(kvm, source_kvm); 1812 if (ret) 1813 goto out_fput; 1814 1815 if (sev_guest(kvm) || !sev_guest(source_kvm)) { 1816 ret = -EINVAL; 1817 goto out_unlock; 1818 } 1819 1820 src_sev = &to_kvm_svm(source_kvm)->sev_info; 1821 1822 dst_sev->misc_cg = get_current_misc_cg(); 1823 cg_cleanup_sev = dst_sev; 1824 if (dst_sev->misc_cg != src_sev->misc_cg) { 1825 ret = sev_misc_cg_try_charge(dst_sev); 1826 if (ret) 1827 goto out_dst_cgroup; 1828 charged = true; 1829 } 1830 1831 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE); 1832 if (ret) 1833 goto out_dst_cgroup; 1834 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET); 1835 if (ret) 1836 goto out_dst_vcpu; 1837 1838 ret = sev_check_source_vcpus(kvm, source_kvm); 1839 if (ret) 1840 goto out_source_vcpu; 1841 1842 sev_migrate_from(kvm, source_kvm); 1843 kvm_vm_dead(source_kvm); 1844 cg_cleanup_sev = src_sev; 1845 ret = 0; 1846 1847 out_source_vcpu: 1848 sev_unlock_vcpus_for_migration(source_kvm); 1849 out_dst_vcpu: 1850 sev_unlock_vcpus_for_migration(kvm); 1851 out_dst_cgroup: 1852 /* Operates on the source on success, on the destination on failure. */ 1853 if (charged) 1854 sev_misc_cg_uncharge(cg_cleanup_sev); 1855 put_misc_cg(cg_cleanup_sev->misc_cg); 1856 cg_cleanup_sev->misc_cg = NULL; 1857 out_unlock: 1858 sev_unlock_two_vms(kvm, source_kvm); 1859 out_fput: 1860 fdput(f); 1861 return ret; 1862 } 1863 1864 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 1865 { 1866 struct kvm_sev_cmd sev_cmd; 1867 int r; 1868 1869 if (!sev_enabled) 1870 return -ENOTTY; 1871 1872 if (!argp) 1873 return 0; 1874 1875 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1876 return -EFAULT; 1877 1878 mutex_lock(&kvm->lock); 1879 1880 /* Only the enc_context_owner handles some memory enc operations. */ 1881 if (is_mirroring_enc_context(kvm) && 1882 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 1883 r = -EINVAL; 1884 goto out; 1885 } 1886 1887 switch (sev_cmd.id) { 1888 case KVM_SEV_ES_INIT: 1889 if (!sev_es_enabled) { 1890 r = -ENOTTY; 1891 goto out; 1892 } 1893 fallthrough; 1894 case KVM_SEV_INIT: 1895 r = sev_guest_init(kvm, &sev_cmd); 1896 break; 1897 case KVM_SEV_LAUNCH_START: 1898 r = sev_launch_start(kvm, &sev_cmd); 1899 break; 1900 case KVM_SEV_LAUNCH_UPDATE_DATA: 1901 r = sev_launch_update_data(kvm, &sev_cmd); 1902 break; 1903 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1904 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1905 break; 1906 case KVM_SEV_LAUNCH_MEASURE: 1907 r = sev_launch_measure(kvm, &sev_cmd); 1908 break; 1909 case KVM_SEV_LAUNCH_FINISH: 1910 r = sev_launch_finish(kvm, &sev_cmd); 1911 break; 1912 case KVM_SEV_GUEST_STATUS: 1913 r = sev_guest_status(kvm, &sev_cmd); 1914 break; 1915 case KVM_SEV_DBG_DECRYPT: 1916 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1917 break; 1918 case KVM_SEV_DBG_ENCRYPT: 1919 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1920 break; 1921 case KVM_SEV_LAUNCH_SECRET: 1922 r = sev_launch_secret(kvm, &sev_cmd); 1923 break; 1924 case KVM_SEV_GET_ATTESTATION_REPORT: 1925 r = sev_get_attestation_report(kvm, &sev_cmd); 1926 break; 1927 case KVM_SEV_SEND_START: 1928 r = sev_send_start(kvm, &sev_cmd); 1929 break; 1930 case KVM_SEV_SEND_UPDATE_DATA: 1931 r = sev_send_update_data(kvm, &sev_cmd); 1932 break; 1933 case KVM_SEV_SEND_FINISH: 1934 r = sev_send_finish(kvm, &sev_cmd); 1935 break; 1936 case KVM_SEV_SEND_CANCEL: 1937 r = sev_send_cancel(kvm, &sev_cmd); 1938 break; 1939 case KVM_SEV_RECEIVE_START: 1940 r = sev_receive_start(kvm, &sev_cmd); 1941 break; 1942 case KVM_SEV_RECEIVE_UPDATE_DATA: 1943 r = sev_receive_update_data(kvm, &sev_cmd); 1944 break; 1945 case KVM_SEV_RECEIVE_FINISH: 1946 r = sev_receive_finish(kvm, &sev_cmd); 1947 break; 1948 default: 1949 r = -EINVAL; 1950 goto out; 1951 } 1952 1953 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1954 r = -EFAULT; 1955 1956 out: 1957 mutex_unlock(&kvm->lock); 1958 return r; 1959 } 1960 1961 int sev_mem_enc_register_region(struct kvm *kvm, 1962 struct kvm_enc_region *range) 1963 { 1964 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1965 struct enc_region *region; 1966 int ret = 0; 1967 1968 if (!sev_guest(kvm)) 1969 return -ENOTTY; 1970 1971 /* If kvm is mirroring encryption context it isn't responsible for it */ 1972 if (is_mirroring_enc_context(kvm)) 1973 return -EINVAL; 1974 1975 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1976 return -EINVAL; 1977 1978 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1979 if (!region) 1980 return -ENOMEM; 1981 1982 mutex_lock(&kvm->lock); 1983 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1984 if (IS_ERR(region->pages)) { 1985 ret = PTR_ERR(region->pages); 1986 mutex_unlock(&kvm->lock); 1987 goto e_free; 1988 } 1989 1990 /* 1991 * The guest may change the memory encryption attribute from C=0 -> C=1 1992 * or vice versa for this memory range. Lets make sure caches are 1993 * flushed to ensure that guest data gets written into memory with 1994 * correct C-bit. Note, this must be done before dropping kvm->lock, 1995 * as region and its array of pages can be freed by a different task 1996 * once kvm->lock is released. 1997 */ 1998 sev_clflush_pages(region->pages, region->npages); 1999 2000 region->uaddr = range->addr; 2001 region->size = range->size; 2002 2003 list_add_tail(®ion->list, &sev->regions_list); 2004 mutex_unlock(&kvm->lock); 2005 2006 return ret; 2007 2008 e_free: 2009 kfree(region); 2010 return ret; 2011 } 2012 2013 static struct enc_region * 2014 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2015 { 2016 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2017 struct list_head *head = &sev->regions_list; 2018 struct enc_region *i; 2019 2020 list_for_each_entry(i, head, list) { 2021 if (i->uaddr == range->addr && 2022 i->size == range->size) 2023 return i; 2024 } 2025 2026 return NULL; 2027 } 2028 2029 static void __unregister_enc_region_locked(struct kvm *kvm, 2030 struct enc_region *region) 2031 { 2032 sev_unpin_memory(kvm, region->pages, region->npages); 2033 list_del(®ion->list); 2034 kfree(region); 2035 } 2036 2037 int sev_mem_enc_unregister_region(struct kvm *kvm, 2038 struct kvm_enc_region *range) 2039 { 2040 struct enc_region *region; 2041 int ret; 2042 2043 /* If kvm is mirroring encryption context it isn't responsible for it */ 2044 if (is_mirroring_enc_context(kvm)) 2045 return -EINVAL; 2046 2047 mutex_lock(&kvm->lock); 2048 2049 if (!sev_guest(kvm)) { 2050 ret = -ENOTTY; 2051 goto failed; 2052 } 2053 2054 region = find_enc_region(kvm, range); 2055 if (!region) { 2056 ret = -EINVAL; 2057 goto failed; 2058 } 2059 2060 /* 2061 * Ensure that all guest tagged cache entries are flushed before 2062 * releasing the pages back to the system for use. CLFLUSH will 2063 * not do this, so issue a WBINVD. 2064 */ 2065 wbinvd_on_all_cpus(); 2066 2067 __unregister_enc_region_locked(kvm, region); 2068 2069 mutex_unlock(&kvm->lock); 2070 return 0; 2071 2072 failed: 2073 mutex_unlock(&kvm->lock); 2074 return ret; 2075 } 2076 2077 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2078 { 2079 struct fd f = fdget(source_fd); 2080 struct kvm *source_kvm; 2081 struct kvm_sev_info *source_sev, *mirror_sev; 2082 int ret; 2083 2084 if (!f.file) 2085 return -EBADF; 2086 2087 if (!file_is_kvm(f.file)) { 2088 ret = -EBADF; 2089 goto e_source_fput; 2090 } 2091 2092 source_kvm = f.file->private_data; 2093 ret = sev_lock_two_vms(kvm, source_kvm); 2094 if (ret) 2095 goto e_source_fput; 2096 2097 /* 2098 * Mirrors of mirrors should work, but let's not get silly. Also 2099 * disallow out-of-band SEV/SEV-ES init if the target is already an 2100 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2101 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2102 */ 2103 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2104 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2105 ret = -EINVAL; 2106 goto e_unlock; 2107 } 2108 2109 /* 2110 * The mirror kvm holds an enc_context_owner ref so its asid can't 2111 * disappear until we're done with it 2112 */ 2113 source_sev = &to_kvm_svm(source_kvm)->sev_info; 2114 kvm_get_kvm(source_kvm); 2115 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2116 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2117 2118 /* Set enc_context_owner and copy its encryption context over */ 2119 mirror_sev->enc_context_owner = source_kvm; 2120 mirror_sev->active = true; 2121 mirror_sev->asid = source_sev->asid; 2122 mirror_sev->fd = source_sev->fd; 2123 mirror_sev->es_active = source_sev->es_active; 2124 mirror_sev->handle = source_sev->handle; 2125 INIT_LIST_HEAD(&mirror_sev->regions_list); 2126 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2127 ret = 0; 2128 2129 /* 2130 * Do not copy ap_jump_table. Since the mirror does not share the same 2131 * KVM contexts as the original, and they may have different 2132 * memory-views. 2133 */ 2134 2135 e_unlock: 2136 sev_unlock_two_vms(kvm, source_kvm); 2137 e_source_fput: 2138 fdput(f); 2139 return ret; 2140 } 2141 2142 void sev_vm_destroy(struct kvm *kvm) 2143 { 2144 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2145 struct list_head *head = &sev->regions_list; 2146 struct list_head *pos, *q; 2147 2148 if (!sev_guest(kvm)) 2149 return; 2150 2151 WARN_ON(!list_empty(&sev->mirror_vms)); 2152 2153 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2154 if (is_mirroring_enc_context(kvm)) { 2155 struct kvm *owner_kvm = sev->enc_context_owner; 2156 2157 mutex_lock(&owner_kvm->lock); 2158 list_del(&sev->mirror_entry); 2159 mutex_unlock(&owner_kvm->lock); 2160 kvm_put_kvm(owner_kvm); 2161 return; 2162 } 2163 2164 /* 2165 * Ensure that all guest tagged cache entries are flushed before 2166 * releasing the pages back to the system for use. CLFLUSH will 2167 * not do this, so issue a WBINVD. 2168 */ 2169 wbinvd_on_all_cpus(); 2170 2171 /* 2172 * if userspace was terminated before unregistering the memory regions 2173 * then lets unpin all the registered memory. 2174 */ 2175 if (!list_empty(head)) { 2176 list_for_each_safe(pos, q, head) { 2177 __unregister_enc_region_locked(kvm, 2178 list_entry(pos, struct enc_region, list)); 2179 cond_resched(); 2180 } 2181 } 2182 2183 sev_unbind_asid(kvm, sev->handle); 2184 sev_asid_free(sev); 2185 } 2186 2187 void __init sev_set_cpu_caps(void) 2188 { 2189 if (!sev_enabled) 2190 kvm_cpu_cap_clear(X86_FEATURE_SEV); 2191 if (!sev_es_enabled) 2192 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 2193 } 2194 2195 void __init sev_hardware_setup(void) 2196 { 2197 #ifdef CONFIG_KVM_AMD_SEV 2198 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2199 bool sev_es_supported = false; 2200 bool sev_supported = false; 2201 2202 if (!sev_enabled || !npt_enabled || !nrips) 2203 goto out; 2204 2205 /* 2206 * SEV must obviously be supported in hardware. Sanity check that the 2207 * CPU supports decode assists, which is mandatory for SEV guests to 2208 * support instruction emulation. Ditto for flushing by ASID, as SEV 2209 * guests are bound to a single ASID, i.e. KVM can't rotate to a new 2210 * ASID to effect a TLB flush. 2211 */ 2212 if (!boot_cpu_has(X86_FEATURE_SEV) || 2213 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || 2214 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) 2215 goto out; 2216 2217 /* Retrieve SEV CPUID information */ 2218 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2219 2220 /* Set encryption bit location for SEV-ES guests */ 2221 sev_enc_bit = ebx & 0x3f; 2222 2223 /* Maximum number of encrypted guests supported simultaneously */ 2224 max_sev_asid = ecx; 2225 if (!max_sev_asid) 2226 goto out; 2227 2228 /* Minimum ASID value that should be used for SEV guest */ 2229 min_sev_asid = edx; 2230 sev_me_mask = 1UL << (ebx & 0x3f); 2231 2232 /* 2233 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2234 * even though it's never used, so that the bitmap is indexed by the 2235 * actual ASID. 2236 */ 2237 nr_asids = max_sev_asid + 1; 2238 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2239 if (!sev_asid_bitmap) 2240 goto out; 2241 2242 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2243 if (!sev_reclaim_asid_bitmap) { 2244 bitmap_free(sev_asid_bitmap); 2245 sev_asid_bitmap = NULL; 2246 goto out; 2247 } 2248 2249 if (min_sev_asid <= max_sev_asid) { 2250 sev_asid_count = max_sev_asid - min_sev_asid + 1; 2251 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 2252 } 2253 sev_supported = true; 2254 2255 /* SEV-ES support requested? */ 2256 if (!sev_es_enabled) 2257 goto out; 2258 2259 /* 2260 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 2261 * instruction stream, i.e. can't emulate in response to a #NPF and 2262 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 2263 * (the guest can then do a #VMGEXIT to request MMIO emulation). 2264 */ 2265 if (!enable_mmio_caching) 2266 goto out; 2267 2268 /* Does the CPU support SEV-ES? */ 2269 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 2270 goto out; 2271 2272 /* Has the system been allocated ASIDs for SEV-ES? */ 2273 if (min_sev_asid == 1) 2274 goto out; 2275 2276 sev_es_asid_count = min_sev_asid - 1; 2277 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 2278 sev_es_supported = true; 2279 2280 out: 2281 if (boot_cpu_has(X86_FEATURE_SEV)) 2282 pr_info("SEV %s (ASIDs %u - %u)\n", 2283 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : 2284 "unusable" : 2285 "disabled", 2286 min_sev_asid, max_sev_asid); 2287 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 2288 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 2289 sev_es_supported ? "enabled" : "disabled", 2290 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 2291 2292 sev_enabled = sev_supported; 2293 sev_es_enabled = sev_es_supported; 2294 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 2295 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 2296 sev_es_debug_swap_enabled = false; 2297 #endif 2298 } 2299 2300 void sev_hardware_unsetup(void) 2301 { 2302 if (!sev_enabled) 2303 return; 2304 2305 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 2306 sev_flush_asids(1, max_sev_asid); 2307 2308 bitmap_free(sev_asid_bitmap); 2309 bitmap_free(sev_reclaim_asid_bitmap); 2310 2311 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 2312 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 2313 } 2314 2315 int sev_cpu_init(struct svm_cpu_data *sd) 2316 { 2317 if (!sev_enabled) 2318 return 0; 2319 2320 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 2321 if (!sd->sev_vmcbs) 2322 return -ENOMEM; 2323 2324 return 0; 2325 } 2326 2327 /* 2328 * Pages used by hardware to hold guest encrypted state must be flushed before 2329 * returning them to the system. 2330 */ 2331 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 2332 { 2333 unsigned int asid = sev_get_asid(vcpu->kvm); 2334 2335 /* 2336 * Note! The address must be a kernel address, as regular page walk 2337 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 2338 * address is non-deterministic and unsafe. This function deliberately 2339 * takes a pointer to deter passing in a user address. 2340 */ 2341 unsigned long addr = (unsigned long)va; 2342 2343 /* 2344 * If CPU enforced cache coherency for encrypted mappings of the 2345 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 2346 * flush is still needed in order to work properly with DMA devices. 2347 */ 2348 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 2349 clflush_cache_range(va, PAGE_SIZE); 2350 return; 2351 } 2352 2353 /* 2354 * VM Page Flush takes a host virtual address and a guest ASID. Fall 2355 * back to WBINVD if this faults so as not to make any problems worse 2356 * by leaving stale encrypted data in the cache. 2357 */ 2358 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 2359 goto do_wbinvd; 2360 2361 return; 2362 2363 do_wbinvd: 2364 wbinvd_on_all_cpus(); 2365 } 2366 2367 void sev_guest_memory_reclaimed(struct kvm *kvm) 2368 { 2369 if (!sev_guest(kvm)) 2370 return; 2371 2372 wbinvd_on_all_cpus(); 2373 } 2374 2375 void sev_free_vcpu(struct kvm_vcpu *vcpu) 2376 { 2377 struct vcpu_svm *svm; 2378 2379 if (!sev_es_guest(vcpu->kvm)) 2380 return; 2381 2382 svm = to_svm(vcpu); 2383 2384 if (vcpu->arch.guest_state_protected) 2385 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 2386 2387 __free_page(virt_to_page(svm->sev_es.vmsa)); 2388 2389 if (svm->sev_es.ghcb_sa_free) 2390 kvfree(svm->sev_es.ghcb_sa); 2391 } 2392 2393 static void dump_ghcb(struct vcpu_svm *svm) 2394 { 2395 struct ghcb *ghcb = svm->sev_es.ghcb; 2396 unsigned int nbits; 2397 2398 /* Re-use the dump_invalid_vmcb module parameter */ 2399 if (!dump_invalid_vmcb) { 2400 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2401 return; 2402 } 2403 2404 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2405 2406 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2407 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2408 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2409 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2410 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2411 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2412 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2413 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2414 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2415 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2416 } 2417 2418 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2419 { 2420 struct kvm_vcpu *vcpu = &svm->vcpu; 2421 struct ghcb *ghcb = svm->sev_es.ghcb; 2422 2423 /* 2424 * The GHCB protocol so far allows for the following data 2425 * to be returned: 2426 * GPRs RAX, RBX, RCX, RDX 2427 * 2428 * Copy their values, even if they may not have been written during the 2429 * VM-Exit. It's the guest's responsibility to not consume random data. 2430 */ 2431 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2432 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2433 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2434 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2435 } 2436 2437 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2438 { 2439 struct vmcb_control_area *control = &svm->vmcb->control; 2440 struct kvm_vcpu *vcpu = &svm->vcpu; 2441 struct ghcb *ghcb = svm->sev_es.ghcb; 2442 u64 exit_code; 2443 2444 /* 2445 * The GHCB protocol so far allows for the following data 2446 * to be supplied: 2447 * GPRs RAX, RBX, RCX, RDX 2448 * XCR0 2449 * CPL 2450 * 2451 * VMMCALL allows the guest to provide extra registers. KVM also 2452 * expects RSI for hypercalls, so include that, too. 2453 * 2454 * Copy their values to the appropriate location if supplied. 2455 */ 2456 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2457 2458 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 2459 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 2460 2461 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); 2462 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); 2463 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); 2464 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); 2465 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); 2466 2467 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); 2468 2469 if (kvm_ghcb_xcr0_is_valid(svm)) { 2470 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2471 kvm_update_cpuid_runtime(vcpu); 2472 } 2473 2474 /* Copy the GHCB exit information into the VMCB fields */ 2475 exit_code = ghcb_get_sw_exit_code(ghcb); 2476 control->exit_code = lower_32_bits(exit_code); 2477 control->exit_code_hi = upper_32_bits(exit_code); 2478 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2479 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2480 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); 2481 2482 /* Clear the valid entries fields */ 2483 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2484 } 2485 2486 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) 2487 { 2488 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 2489 } 2490 2491 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2492 { 2493 struct vmcb_control_area *control = &svm->vmcb->control; 2494 struct kvm_vcpu *vcpu = &svm->vcpu; 2495 u64 exit_code; 2496 u64 reason; 2497 2498 /* 2499 * Retrieve the exit code now even though it may not be marked valid 2500 * as it could help with debugging. 2501 */ 2502 exit_code = kvm_ghcb_get_sw_exit_code(control); 2503 2504 /* Only GHCB Usage code 0 is supported */ 2505 if (svm->sev_es.ghcb->ghcb_usage) { 2506 reason = GHCB_ERR_INVALID_USAGE; 2507 goto vmgexit_err; 2508 } 2509 2510 reason = GHCB_ERR_MISSING_INPUT; 2511 2512 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 2513 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 2514 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 2515 goto vmgexit_err; 2516 2517 switch (exit_code) { 2518 case SVM_EXIT_READ_DR7: 2519 break; 2520 case SVM_EXIT_WRITE_DR7: 2521 if (!kvm_ghcb_rax_is_valid(svm)) 2522 goto vmgexit_err; 2523 break; 2524 case SVM_EXIT_RDTSC: 2525 break; 2526 case SVM_EXIT_RDPMC: 2527 if (!kvm_ghcb_rcx_is_valid(svm)) 2528 goto vmgexit_err; 2529 break; 2530 case SVM_EXIT_CPUID: 2531 if (!kvm_ghcb_rax_is_valid(svm) || 2532 !kvm_ghcb_rcx_is_valid(svm)) 2533 goto vmgexit_err; 2534 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 2535 if (!kvm_ghcb_xcr0_is_valid(svm)) 2536 goto vmgexit_err; 2537 break; 2538 case SVM_EXIT_INVD: 2539 break; 2540 case SVM_EXIT_IOIO: 2541 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 2542 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 2543 goto vmgexit_err; 2544 } else { 2545 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 2546 if (!kvm_ghcb_rax_is_valid(svm)) 2547 goto vmgexit_err; 2548 } 2549 break; 2550 case SVM_EXIT_MSR: 2551 if (!kvm_ghcb_rcx_is_valid(svm)) 2552 goto vmgexit_err; 2553 if (control->exit_info_1) { 2554 if (!kvm_ghcb_rax_is_valid(svm) || 2555 !kvm_ghcb_rdx_is_valid(svm)) 2556 goto vmgexit_err; 2557 } 2558 break; 2559 case SVM_EXIT_VMMCALL: 2560 if (!kvm_ghcb_rax_is_valid(svm) || 2561 !kvm_ghcb_cpl_is_valid(svm)) 2562 goto vmgexit_err; 2563 break; 2564 case SVM_EXIT_RDTSCP: 2565 break; 2566 case SVM_EXIT_WBINVD: 2567 break; 2568 case SVM_EXIT_MONITOR: 2569 if (!kvm_ghcb_rax_is_valid(svm) || 2570 !kvm_ghcb_rcx_is_valid(svm) || 2571 !kvm_ghcb_rdx_is_valid(svm)) 2572 goto vmgexit_err; 2573 break; 2574 case SVM_EXIT_MWAIT: 2575 if (!kvm_ghcb_rax_is_valid(svm) || 2576 !kvm_ghcb_rcx_is_valid(svm)) 2577 goto vmgexit_err; 2578 break; 2579 case SVM_VMGEXIT_MMIO_READ: 2580 case SVM_VMGEXIT_MMIO_WRITE: 2581 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 2582 goto vmgexit_err; 2583 break; 2584 case SVM_VMGEXIT_NMI_COMPLETE: 2585 case SVM_VMGEXIT_AP_HLT_LOOP: 2586 case SVM_VMGEXIT_AP_JUMP_TABLE: 2587 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2588 break; 2589 default: 2590 reason = GHCB_ERR_INVALID_EVENT; 2591 goto vmgexit_err; 2592 } 2593 2594 return 0; 2595 2596 vmgexit_err: 2597 if (reason == GHCB_ERR_INVALID_USAGE) { 2598 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2599 svm->sev_es.ghcb->ghcb_usage); 2600 } else if (reason == GHCB_ERR_INVALID_EVENT) { 2601 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 2602 exit_code); 2603 } else { 2604 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 2605 exit_code); 2606 dump_ghcb(svm); 2607 } 2608 2609 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 2610 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason); 2611 2612 /* Resume the guest to "return" the error code. */ 2613 return 1; 2614 } 2615 2616 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2617 { 2618 if (!svm->sev_es.ghcb) 2619 return; 2620 2621 if (svm->sev_es.ghcb_sa_free) { 2622 /* 2623 * The scratch area lives outside the GHCB, so there is a 2624 * buffer that, depending on the operation performed, may 2625 * need to be synced, then freed. 2626 */ 2627 if (svm->sev_es.ghcb_sa_sync) { 2628 kvm_write_guest(svm->vcpu.kvm, 2629 svm->sev_es.sw_scratch, 2630 svm->sev_es.ghcb_sa, 2631 svm->sev_es.ghcb_sa_len); 2632 svm->sev_es.ghcb_sa_sync = false; 2633 } 2634 2635 kvfree(svm->sev_es.ghcb_sa); 2636 svm->sev_es.ghcb_sa = NULL; 2637 svm->sev_es.ghcb_sa_free = false; 2638 } 2639 2640 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 2641 2642 sev_es_sync_to_ghcb(svm); 2643 2644 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); 2645 svm->sev_es.ghcb = NULL; 2646 } 2647 2648 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2649 { 2650 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 2651 unsigned int asid = sev_get_asid(svm->vcpu.kvm); 2652 2653 /* Assign the asid allocated with this SEV guest */ 2654 svm->asid = asid; 2655 2656 /* 2657 * Flush guest TLB: 2658 * 2659 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2660 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2661 */ 2662 if (sd->sev_vmcbs[asid] == svm->vmcb && 2663 svm->vcpu.arch.last_vmentry_cpu == cpu) 2664 return; 2665 2666 sd->sev_vmcbs[asid] = svm->vmcb; 2667 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2668 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2669 } 2670 2671 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2672 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2673 { 2674 struct vmcb_control_area *control = &svm->vmcb->control; 2675 u64 ghcb_scratch_beg, ghcb_scratch_end; 2676 u64 scratch_gpa_beg, scratch_gpa_end; 2677 void *scratch_va; 2678 2679 scratch_gpa_beg = svm->sev_es.sw_scratch; 2680 if (!scratch_gpa_beg) { 2681 pr_err("vmgexit: scratch gpa not provided\n"); 2682 goto e_scratch; 2683 } 2684 2685 scratch_gpa_end = scratch_gpa_beg + len; 2686 if (scratch_gpa_end < scratch_gpa_beg) { 2687 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2688 len, scratch_gpa_beg); 2689 goto e_scratch; 2690 } 2691 2692 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2693 /* Scratch area begins within GHCB */ 2694 ghcb_scratch_beg = control->ghcb_gpa + 2695 offsetof(struct ghcb, shared_buffer); 2696 ghcb_scratch_end = control->ghcb_gpa + 2697 offsetof(struct ghcb, reserved_0xff0); 2698 2699 /* 2700 * If the scratch area begins within the GHCB, it must be 2701 * completely contained in the GHCB shared buffer area. 2702 */ 2703 if (scratch_gpa_beg < ghcb_scratch_beg || 2704 scratch_gpa_end > ghcb_scratch_end) { 2705 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2706 scratch_gpa_beg, scratch_gpa_end); 2707 goto e_scratch; 2708 } 2709 2710 scratch_va = (void *)svm->sev_es.ghcb; 2711 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2712 } else { 2713 /* 2714 * The guest memory must be read into a kernel buffer, so 2715 * limit the size 2716 */ 2717 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2718 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2719 len, GHCB_SCRATCH_AREA_LIMIT); 2720 goto e_scratch; 2721 } 2722 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 2723 if (!scratch_va) 2724 return -ENOMEM; 2725 2726 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2727 /* Unable to copy scratch area from guest */ 2728 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2729 2730 kvfree(scratch_va); 2731 return -EFAULT; 2732 } 2733 2734 /* 2735 * The scratch area is outside the GHCB. The operation will 2736 * dictate whether the buffer needs to be synced before running 2737 * the vCPU next time (i.e. a read was requested so the data 2738 * must be written back to the guest memory). 2739 */ 2740 svm->sev_es.ghcb_sa_sync = sync; 2741 svm->sev_es.ghcb_sa_free = true; 2742 } 2743 2744 svm->sev_es.ghcb_sa = scratch_va; 2745 svm->sev_es.ghcb_sa_len = len; 2746 2747 return 0; 2748 2749 e_scratch: 2750 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 2751 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); 2752 2753 return 1; 2754 } 2755 2756 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2757 unsigned int pos) 2758 { 2759 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2760 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2761 } 2762 2763 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2764 { 2765 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2766 } 2767 2768 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2769 { 2770 svm->vmcb->control.ghcb_gpa = value; 2771 } 2772 2773 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2774 { 2775 struct vmcb_control_area *control = &svm->vmcb->control; 2776 struct kvm_vcpu *vcpu = &svm->vcpu; 2777 u64 ghcb_info; 2778 int ret = 1; 2779 2780 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2781 2782 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2783 control->ghcb_gpa); 2784 2785 switch (ghcb_info) { 2786 case GHCB_MSR_SEV_INFO_REQ: 2787 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2788 GHCB_VERSION_MIN, 2789 sev_enc_bit)); 2790 break; 2791 case GHCB_MSR_CPUID_REQ: { 2792 u64 cpuid_fn, cpuid_reg, cpuid_value; 2793 2794 cpuid_fn = get_ghcb_msr_bits(svm, 2795 GHCB_MSR_CPUID_FUNC_MASK, 2796 GHCB_MSR_CPUID_FUNC_POS); 2797 2798 /* Initialize the registers needed by the CPUID intercept */ 2799 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2800 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2801 2802 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2803 if (!ret) { 2804 /* Error, keep GHCB MSR value as-is */ 2805 break; 2806 } 2807 2808 cpuid_reg = get_ghcb_msr_bits(svm, 2809 GHCB_MSR_CPUID_REG_MASK, 2810 GHCB_MSR_CPUID_REG_POS); 2811 if (cpuid_reg == 0) 2812 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2813 else if (cpuid_reg == 1) 2814 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2815 else if (cpuid_reg == 2) 2816 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2817 else 2818 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2819 2820 set_ghcb_msr_bits(svm, cpuid_value, 2821 GHCB_MSR_CPUID_VALUE_MASK, 2822 GHCB_MSR_CPUID_VALUE_POS); 2823 2824 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2825 GHCB_MSR_INFO_MASK, 2826 GHCB_MSR_INFO_POS); 2827 break; 2828 } 2829 case GHCB_MSR_TERM_REQ: { 2830 u64 reason_set, reason_code; 2831 2832 reason_set = get_ghcb_msr_bits(svm, 2833 GHCB_MSR_TERM_REASON_SET_MASK, 2834 GHCB_MSR_TERM_REASON_SET_POS); 2835 reason_code = get_ghcb_msr_bits(svm, 2836 GHCB_MSR_TERM_REASON_MASK, 2837 GHCB_MSR_TERM_REASON_POS); 2838 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2839 reason_set, reason_code); 2840 2841 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 2842 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 2843 vcpu->run->system_event.ndata = 1; 2844 vcpu->run->system_event.data[0] = control->ghcb_gpa; 2845 2846 return 0; 2847 } 2848 default: 2849 /* Error, keep GHCB MSR value as-is */ 2850 break; 2851 } 2852 2853 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2854 control->ghcb_gpa, ret); 2855 2856 return ret; 2857 } 2858 2859 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2860 { 2861 struct vcpu_svm *svm = to_svm(vcpu); 2862 struct vmcb_control_area *control = &svm->vmcb->control; 2863 u64 ghcb_gpa, exit_code; 2864 int ret; 2865 2866 /* Validate the GHCB */ 2867 ghcb_gpa = control->ghcb_gpa; 2868 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2869 return sev_handle_vmgexit_msr_protocol(svm); 2870 2871 if (!ghcb_gpa) { 2872 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2873 2874 /* Without a GHCB, just return right back to the guest */ 2875 return 1; 2876 } 2877 2878 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 2879 /* Unable to map GHCB from guest */ 2880 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2881 ghcb_gpa); 2882 2883 /* Without a GHCB, just return right back to the guest */ 2884 return 1; 2885 } 2886 2887 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 2888 2889 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 2890 2891 sev_es_sync_from_ghcb(svm); 2892 ret = sev_es_validate_vmgexit(svm); 2893 if (ret) 2894 return ret; 2895 2896 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0); 2897 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0); 2898 2899 exit_code = kvm_ghcb_get_sw_exit_code(control); 2900 switch (exit_code) { 2901 case SVM_VMGEXIT_MMIO_READ: 2902 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 2903 if (ret) 2904 break; 2905 2906 ret = kvm_sev_es_mmio_read(vcpu, 2907 control->exit_info_1, 2908 control->exit_info_2, 2909 svm->sev_es.ghcb_sa); 2910 break; 2911 case SVM_VMGEXIT_MMIO_WRITE: 2912 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 2913 if (ret) 2914 break; 2915 2916 ret = kvm_sev_es_mmio_write(vcpu, 2917 control->exit_info_1, 2918 control->exit_info_2, 2919 svm->sev_es.ghcb_sa); 2920 break; 2921 case SVM_VMGEXIT_NMI_COMPLETE: 2922 ++vcpu->stat.nmi_window_exits; 2923 svm->nmi_masked = false; 2924 kvm_make_request(KVM_REQ_EVENT, vcpu); 2925 ret = 1; 2926 break; 2927 case SVM_VMGEXIT_AP_HLT_LOOP: 2928 ret = kvm_emulate_ap_reset_hold(vcpu); 2929 break; 2930 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2931 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2932 2933 switch (control->exit_info_1) { 2934 case 0: 2935 /* Set AP jump table address */ 2936 sev->ap_jump_table = control->exit_info_2; 2937 break; 2938 case 1: 2939 /* Get AP jump table address */ 2940 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table); 2941 break; 2942 default: 2943 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2944 control->exit_info_1); 2945 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 2946 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 2947 } 2948 2949 ret = 1; 2950 break; 2951 } 2952 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2953 vcpu_unimpl(vcpu, 2954 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2955 control->exit_info_1, control->exit_info_2); 2956 ret = -EINVAL; 2957 break; 2958 default: 2959 ret = svm_invoke_exit_handler(vcpu, exit_code); 2960 } 2961 2962 return ret; 2963 } 2964 2965 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2966 { 2967 int count; 2968 int bytes; 2969 int r; 2970 2971 if (svm->vmcb->control.exit_info_2 > INT_MAX) 2972 return -EINVAL; 2973 2974 count = svm->vmcb->control.exit_info_2; 2975 if (unlikely(check_mul_overflow(count, size, &bytes))) 2976 return -EINVAL; 2977 2978 r = setup_vmgexit_scratch(svm, in, bytes); 2979 if (r) 2980 return r; 2981 2982 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 2983 count, in); 2984 } 2985 2986 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) 2987 { 2988 struct kvm_vcpu *vcpu = &svm->vcpu; 2989 2990 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 2991 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 2992 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 2993 2994 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); 2995 } 2996 2997 /* 2998 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if 2999 * the host/guest supports its use. 3000 * 3001 * guest_can_use() checks a number of requirements on the host/guest to 3002 * ensure that MSR_IA32_XSS is available, but it might report true even 3003 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host 3004 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better 3005 * to further check that the guest CPUID actually supports 3006 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved 3007 * guests will still get intercepted and caught in the normal 3008 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths. 3009 */ 3010 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 3011 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3012 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); 3013 else 3014 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0); 3015 } 3016 3017 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 3018 { 3019 struct kvm_vcpu *vcpu = &svm->vcpu; 3020 struct kvm_cpuid_entry2 *best; 3021 3022 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 3023 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 3024 if (best) 3025 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 3026 3027 if (sev_es_guest(svm->vcpu.kvm)) 3028 sev_es_vcpu_after_set_cpuid(svm); 3029 } 3030 3031 static void sev_es_init_vmcb(struct vcpu_svm *svm) 3032 { 3033 struct vmcb *vmcb = svm->vmcb01.ptr; 3034 struct kvm_vcpu *vcpu = &svm->vcpu; 3035 3036 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 3037 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 3038 3039 /* 3040 * An SEV-ES guest requires a VMSA area that is a separate from the 3041 * VMCB page. Do not include the encryption mask on the VMSA physical 3042 * address since hardware will access it using the guest key. Note, 3043 * the VMSA will be NULL if this vCPU is the destination for intrahost 3044 * migration, and will be copied later. 3045 */ 3046 if (svm->sev_es.vmsa) 3047 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 3048 3049 /* Can't intercept CR register access, HV can't modify CR registers */ 3050 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 3051 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 3052 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 3053 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 3054 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 3055 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3056 3057 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 3058 3059 /* Track EFER/CR register changes */ 3060 svm_set_intercept(svm, TRAP_EFER_WRITE); 3061 svm_set_intercept(svm, TRAP_CR0_WRITE); 3062 svm_set_intercept(svm, TRAP_CR4_WRITE); 3063 svm_set_intercept(svm, TRAP_CR8_WRITE); 3064 3065 vmcb->control.intercepts[INTERCEPT_DR] = 0; 3066 if (!sev_es_debug_swap_enabled) { 3067 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 3068 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 3069 recalc_intercepts(svm); 3070 } else { 3071 /* 3072 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 3073 * allow debugging SEV-ES guests, and enables DebugSwap iff 3074 * NO_NESTED_DATA_BP is supported, so there's no reason to 3075 * intercept #DB when DebugSwap is enabled. For simplicity 3076 * with respect to guest debug, intercept #DB for other VMs 3077 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 3078 * guest can't DoS the CPU with infinite #DB vectoring. 3079 */ 3080 clr_exception_intercept(svm, DB_VECTOR); 3081 } 3082 3083 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 3084 svm_clr_intercept(svm, INTERCEPT_XSETBV); 3085 3086 /* Clear intercepts on selected MSRs */ 3087 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 3088 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 3089 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 3090 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 3091 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 3092 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 3093 } 3094 3095 void sev_init_vmcb(struct vcpu_svm *svm) 3096 { 3097 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 3098 clr_exception_intercept(svm, UD_VECTOR); 3099 3100 /* 3101 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 3102 * KVM can't decrypt guest memory to decode the faulting instruction. 3103 */ 3104 clr_exception_intercept(svm, GP_VECTOR); 3105 3106 if (sev_es_guest(svm->vcpu.kvm)) 3107 sev_es_init_vmcb(svm); 3108 } 3109 3110 void sev_es_vcpu_reset(struct vcpu_svm *svm) 3111 { 3112 /* 3113 * Set the GHCB MSR value as per the GHCB specification when emulating 3114 * vCPU RESET for an SEV-ES guest. 3115 */ 3116 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 3117 GHCB_VERSION_MIN, 3118 sev_enc_bit)); 3119 } 3120 3121 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa) 3122 { 3123 /* 3124 * All host state for SEV-ES guests is categorized into three swap types 3125 * based on how it is handled by hardware during a world switch: 3126 * 3127 * A: VMRUN: Host state saved in host save area 3128 * VMEXIT: Host state loaded from host save area 3129 * 3130 * B: VMRUN: Host state _NOT_ saved in host save area 3131 * VMEXIT: Host state loaded from host save area 3132 * 3133 * C: VMRUN: Host state _NOT_ saved in host save area 3134 * VMEXIT: Host state initialized to default(reset) values 3135 * 3136 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 3137 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 3138 * by common SVM code). 3139 */ 3140 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 3141 hostsa->pkru = read_pkru(); 3142 hostsa->xss = host_xss; 3143 3144 /* 3145 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 3146 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both 3147 * saves and loads debug registers (Type-A). 3148 */ 3149 if (sev_es_debug_swap_enabled) { 3150 hostsa->dr0 = native_get_debugreg(0); 3151 hostsa->dr1 = native_get_debugreg(1); 3152 hostsa->dr2 = native_get_debugreg(2); 3153 hostsa->dr3 = native_get_debugreg(3); 3154 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 3155 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 3156 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 3157 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 3158 } 3159 } 3160 3161 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 3162 { 3163 struct vcpu_svm *svm = to_svm(vcpu); 3164 3165 /* First SIPI: Use the values as initially set by the VMM */ 3166 if (!svm->sev_es.received_first_sipi) { 3167 svm->sev_es.received_first_sipi = true; 3168 return; 3169 } 3170 3171 /* 3172 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 3173 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 3174 * non-zero value. 3175 */ 3176 if (!svm->sev_es.ghcb) 3177 return; 3178 3179 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 3180 } 3181 3182 struct page *snp_safe_alloc_page(struct kvm_vcpu *vcpu) 3183 { 3184 unsigned long pfn; 3185 struct page *p; 3186 3187 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 3188 return alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3189 3190 /* 3191 * Allocate an SNP-safe page to workaround the SNP erratum where 3192 * the CPU will incorrectly signal an RMP violation #PF if a 3193 * hugepage (2MB or 1GB) collides with the RMP entry of a 3194 * 2MB-aligned VMCB, VMSA, or AVIC backing page. 3195 * 3196 * Allocate one extra page, choose a page which is not 3197 * 2MB-aligned, and free the other. 3198 */ 3199 p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1); 3200 if (!p) 3201 return NULL; 3202 3203 split_page(p, 1); 3204 3205 pfn = page_to_pfn(p); 3206 if (IS_ALIGNED(pfn, PTRS_PER_PMD)) 3207 __free_page(p++); 3208 else 3209 __free_page(p + 1); 3210 3211 return p; 3212 } 3213