xref: /linux/arch/x86/kvm/svm/sev.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 
23 #include <asm/pkru.h>
24 #include <asm/trapnr.h>
25 #include <asm/fpu/xcr.h>
26 #include <asm/fpu/xstate.h>
27 #include <asm/debugreg.h>
28 
29 #include "mmu.h"
30 #include "x86.h"
31 #include "svm.h"
32 #include "svm_ops.h"
33 #include "cpuid.h"
34 #include "trace.h"
35 
36 #define GHCB_VERSION_MAX	2ULL
37 #define GHCB_VERSION_DEFAULT	2ULL
38 #define GHCB_VERSION_MIN	1ULL
39 
40 #define GHCB_HV_FT_SUPPORTED	GHCB_HV_FT_SNP
41 
42 /* enable/disable SEV support */
43 static bool sev_enabled = true;
44 module_param_named(sev, sev_enabled, bool, 0444);
45 
46 /* enable/disable SEV-ES support */
47 static bool sev_es_enabled = true;
48 module_param_named(sev_es, sev_es_enabled, bool, 0444);
49 
50 /* enable/disable SEV-ES DebugSwap support */
51 static bool sev_es_debug_swap_enabled = true;
52 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
53 static u64 sev_supported_vmsa_features;
54 
55 #define AP_RESET_HOLD_NONE		0
56 #define AP_RESET_HOLD_NAE_EVENT		1
57 #define AP_RESET_HOLD_MSR_PROTO		2
58 
59 static u8 sev_enc_bit;
60 static DECLARE_RWSEM(sev_deactivate_lock);
61 static DEFINE_MUTEX(sev_bitmap_lock);
62 unsigned int max_sev_asid;
63 static unsigned int min_sev_asid;
64 static unsigned long sev_me_mask;
65 static unsigned int nr_asids;
66 static unsigned long *sev_asid_bitmap;
67 static unsigned long *sev_reclaim_asid_bitmap;
68 
69 struct enc_region {
70 	struct list_head list;
71 	unsigned long npages;
72 	struct page **pages;
73 	unsigned long uaddr;
74 	unsigned long size;
75 };
76 
77 /* Called with the sev_bitmap_lock held, or on shutdown  */
78 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
79 {
80 	int ret, error = 0;
81 	unsigned int asid;
82 
83 	/* Check if there are any ASIDs to reclaim before performing a flush */
84 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
85 	if (asid > max_asid)
86 		return -EBUSY;
87 
88 	/*
89 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
90 	 * so it must be guarded.
91 	 */
92 	down_write(&sev_deactivate_lock);
93 
94 	wbinvd_on_all_cpus();
95 	ret = sev_guest_df_flush(&error);
96 
97 	up_write(&sev_deactivate_lock);
98 
99 	if (ret)
100 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
101 
102 	return ret;
103 }
104 
105 static inline bool is_mirroring_enc_context(struct kvm *kvm)
106 {
107 	return !!to_kvm_sev_info(kvm)->enc_context_owner;
108 }
109 
110 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
111 {
112 	struct kvm_vcpu *vcpu = &svm->vcpu;
113 	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
114 
115 	return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
116 }
117 
118 /* Must be called with the sev_bitmap_lock held */
119 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
120 {
121 	if (sev_flush_asids(min_asid, max_asid))
122 		return false;
123 
124 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
125 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
126 		   nr_asids);
127 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
128 
129 	return true;
130 }
131 
132 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
133 {
134 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
135 	return misc_cg_try_charge(type, sev->misc_cg, 1);
136 }
137 
138 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
139 {
140 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
141 	misc_cg_uncharge(type, sev->misc_cg, 1);
142 }
143 
144 static int sev_asid_new(struct kvm_sev_info *sev)
145 {
146 	/*
147 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
148 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
149 	 * Note: min ASID can end up larger than the max if basic SEV support is
150 	 * effectively disabled by disallowing use of ASIDs for SEV guests.
151 	 */
152 	unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
153 	unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
154 	unsigned int asid;
155 	bool retry = true;
156 	int ret;
157 
158 	if (min_asid > max_asid)
159 		return -ENOTTY;
160 
161 	WARN_ON(sev->misc_cg);
162 	sev->misc_cg = get_current_misc_cg();
163 	ret = sev_misc_cg_try_charge(sev);
164 	if (ret) {
165 		put_misc_cg(sev->misc_cg);
166 		sev->misc_cg = NULL;
167 		return ret;
168 	}
169 
170 	mutex_lock(&sev_bitmap_lock);
171 
172 again:
173 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
174 	if (asid > max_asid) {
175 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
176 			retry = false;
177 			goto again;
178 		}
179 		mutex_unlock(&sev_bitmap_lock);
180 		ret = -EBUSY;
181 		goto e_uncharge;
182 	}
183 
184 	__set_bit(asid, sev_asid_bitmap);
185 
186 	mutex_unlock(&sev_bitmap_lock);
187 
188 	sev->asid = asid;
189 	return 0;
190 e_uncharge:
191 	sev_misc_cg_uncharge(sev);
192 	put_misc_cg(sev->misc_cg);
193 	sev->misc_cg = NULL;
194 	return ret;
195 }
196 
197 static unsigned int sev_get_asid(struct kvm *kvm)
198 {
199 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
200 
201 	return sev->asid;
202 }
203 
204 static void sev_asid_free(struct kvm_sev_info *sev)
205 {
206 	struct svm_cpu_data *sd;
207 	int cpu;
208 
209 	mutex_lock(&sev_bitmap_lock);
210 
211 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
212 
213 	for_each_possible_cpu(cpu) {
214 		sd = per_cpu_ptr(&svm_data, cpu);
215 		sd->sev_vmcbs[sev->asid] = NULL;
216 	}
217 
218 	mutex_unlock(&sev_bitmap_lock);
219 
220 	sev_misc_cg_uncharge(sev);
221 	put_misc_cg(sev->misc_cg);
222 	sev->misc_cg = NULL;
223 }
224 
225 static void sev_decommission(unsigned int handle)
226 {
227 	struct sev_data_decommission decommission;
228 
229 	if (!handle)
230 		return;
231 
232 	decommission.handle = handle;
233 	sev_guest_decommission(&decommission, NULL);
234 }
235 
236 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
237 {
238 	struct sev_data_deactivate deactivate;
239 
240 	if (!handle)
241 		return;
242 
243 	deactivate.handle = handle;
244 
245 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
246 	down_read(&sev_deactivate_lock);
247 	sev_guest_deactivate(&deactivate, NULL);
248 	up_read(&sev_deactivate_lock);
249 
250 	sev_decommission(handle);
251 }
252 
253 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
254 			    struct kvm_sev_init *data,
255 			    unsigned long vm_type)
256 {
257 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
258 	struct sev_platform_init_args init_args = {0};
259 	bool es_active = vm_type != KVM_X86_SEV_VM;
260 	u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
261 	int ret;
262 
263 	if (kvm->created_vcpus)
264 		return -EINVAL;
265 
266 	if (data->flags)
267 		return -EINVAL;
268 
269 	if (data->vmsa_features & ~valid_vmsa_features)
270 		return -EINVAL;
271 
272 	if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
273 		return -EINVAL;
274 
275 	if (unlikely(sev->active))
276 		return -EINVAL;
277 
278 	sev->active = true;
279 	sev->es_active = es_active;
280 	sev->vmsa_features = data->vmsa_features;
281 	sev->ghcb_version = data->ghcb_version;
282 
283 	/*
284 	 * Currently KVM supports the full range of mandatory features defined
285 	 * by version 2 of the GHCB protocol, so default to that for SEV-ES
286 	 * guests created via KVM_SEV_INIT2.
287 	 */
288 	if (sev->es_active && !sev->ghcb_version)
289 		sev->ghcb_version = GHCB_VERSION_DEFAULT;
290 
291 	ret = sev_asid_new(sev);
292 	if (ret)
293 		goto e_no_asid;
294 
295 	init_args.probe = false;
296 	ret = sev_platform_init(&init_args);
297 	if (ret)
298 		goto e_free;
299 
300 	INIT_LIST_HEAD(&sev->regions_list);
301 	INIT_LIST_HEAD(&sev->mirror_vms);
302 	sev->need_init = false;
303 
304 	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
305 
306 	return 0;
307 
308 e_free:
309 	argp->error = init_args.error;
310 	sev_asid_free(sev);
311 	sev->asid = 0;
312 e_no_asid:
313 	sev->vmsa_features = 0;
314 	sev->es_active = false;
315 	sev->active = false;
316 	return ret;
317 }
318 
319 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
320 {
321 	struct kvm_sev_init data = {
322 		.vmsa_features = 0,
323 		.ghcb_version = 0,
324 	};
325 	unsigned long vm_type;
326 
327 	if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
328 		return -EINVAL;
329 
330 	vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
331 
332 	/*
333 	 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
334 	 * continue to only ever support the minimal GHCB protocol version.
335 	 */
336 	if (vm_type == KVM_X86_SEV_ES_VM)
337 		data.ghcb_version = GHCB_VERSION_MIN;
338 
339 	return __sev_guest_init(kvm, argp, &data, vm_type);
340 }
341 
342 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
343 {
344 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
345 	struct kvm_sev_init data;
346 
347 	if (!sev->need_init)
348 		return -EINVAL;
349 
350 	if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
351 	    kvm->arch.vm_type != KVM_X86_SEV_ES_VM)
352 		return -EINVAL;
353 
354 	if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
355 		return -EFAULT;
356 
357 	return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
358 }
359 
360 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
361 {
362 	unsigned int asid = sev_get_asid(kvm);
363 	struct sev_data_activate activate;
364 	int ret;
365 
366 	/* activate ASID on the given handle */
367 	activate.handle = handle;
368 	activate.asid   = asid;
369 	ret = sev_guest_activate(&activate, error);
370 
371 	return ret;
372 }
373 
374 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
375 {
376 	struct fd f;
377 	int ret;
378 
379 	f = fdget(fd);
380 	if (!f.file)
381 		return -EBADF;
382 
383 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
384 
385 	fdput(f);
386 	return ret;
387 }
388 
389 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
390 {
391 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
392 
393 	return __sev_issue_cmd(sev->fd, id, data, error);
394 }
395 
396 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
397 {
398 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
399 	struct sev_data_launch_start start;
400 	struct kvm_sev_launch_start params;
401 	void *dh_blob, *session_blob;
402 	int *error = &argp->error;
403 	int ret;
404 
405 	if (!sev_guest(kvm))
406 		return -ENOTTY;
407 
408 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
409 		return -EFAULT;
410 
411 	memset(&start, 0, sizeof(start));
412 
413 	dh_blob = NULL;
414 	if (params.dh_uaddr) {
415 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
416 		if (IS_ERR(dh_blob))
417 			return PTR_ERR(dh_blob);
418 
419 		start.dh_cert_address = __sme_set(__pa(dh_blob));
420 		start.dh_cert_len = params.dh_len;
421 	}
422 
423 	session_blob = NULL;
424 	if (params.session_uaddr) {
425 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
426 		if (IS_ERR(session_blob)) {
427 			ret = PTR_ERR(session_blob);
428 			goto e_free_dh;
429 		}
430 
431 		start.session_address = __sme_set(__pa(session_blob));
432 		start.session_len = params.session_len;
433 	}
434 
435 	start.handle = params.handle;
436 	start.policy = params.policy;
437 
438 	/* create memory encryption context */
439 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
440 	if (ret)
441 		goto e_free_session;
442 
443 	/* Bind ASID to this guest */
444 	ret = sev_bind_asid(kvm, start.handle, error);
445 	if (ret) {
446 		sev_decommission(start.handle);
447 		goto e_free_session;
448 	}
449 
450 	/* return handle to userspace */
451 	params.handle = start.handle;
452 	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params))) {
453 		sev_unbind_asid(kvm, start.handle);
454 		ret = -EFAULT;
455 		goto e_free_session;
456 	}
457 
458 	sev->handle = start.handle;
459 	sev->fd = argp->sev_fd;
460 
461 e_free_session:
462 	kfree(session_blob);
463 e_free_dh:
464 	kfree(dh_blob);
465 	return ret;
466 }
467 
468 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
469 				    unsigned long ulen, unsigned long *n,
470 				    int write)
471 {
472 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
473 	unsigned long npages, size;
474 	int npinned;
475 	unsigned long locked, lock_limit;
476 	struct page **pages;
477 	unsigned long first, last;
478 	int ret;
479 
480 	lockdep_assert_held(&kvm->lock);
481 
482 	if (ulen == 0 || uaddr + ulen < uaddr)
483 		return ERR_PTR(-EINVAL);
484 
485 	/* Calculate number of pages. */
486 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
487 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
488 	npages = (last - first + 1);
489 
490 	locked = sev->pages_locked + npages;
491 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
492 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
493 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
494 		return ERR_PTR(-ENOMEM);
495 	}
496 
497 	if (WARN_ON_ONCE(npages > INT_MAX))
498 		return ERR_PTR(-EINVAL);
499 
500 	/* Avoid using vmalloc for smaller buffers. */
501 	size = npages * sizeof(struct page *);
502 	if (size > PAGE_SIZE)
503 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
504 	else
505 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
506 
507 	if (!pages)
508 		return ERR_PTR(-ENOMEM);
509 
510 	/* Pin the user virtual address. */
511 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
512 	if (npinned != npages) {
513 		pr_err("SEV: Failure locking %lu pages.\n", npages);
514 		ret = -ENOMEM;
515 		goto err;
516 	}
517 
518 	*n = npages;
519 	sev->pages_locked = locked;
520 
521 	return pages;
522 
523 err:
524 	if (npinned > 0)
525 		unpin_user_pages(pages, npinned);
526 
527 	kvfree(pages);
528 	return ERR_PTR(ret);
529 }
530 
531 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
532 			     unsigned long npages)
533 {
534 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
535 
536 	unpin_user_pages(pages, npages);
537 	kvfree(pages);
538 	sev->pages_locked -= npages;
539 }
540 
541 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
542 {
543 	uint8_t *page_virtual;
544 	unsigned long i;
545 
546 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
547 	    pages == NULL)
548 		return;
549 
550 	for (i = 0; i < npages; i++) {
551 		page_virtual = kmap_local_page(pages[i]);
552 		clflush_cache_range(page_virtual, PAGE_SIZE);
553 		kunmap_local(page_virtual);
554 		cond_resched();
555 	}
556 }
557 
558 static unsigned long get_num_contig_pages(unsigned long idx,
559 				struct page **inpages, unsigned long npages)
560 {
561 	unsigned long paddr, next_paddr;
562 	unsigned long i = idx + 1, pages = 1;
563 
564 	/* find the number of contiguous pages starting from idx */
565 	paddr = __sme_page_pa(inpages[idx]);
566 	while (i < npages) {
567 		next_paddr = __sme_page_pa(inpages[i++]);
568 		if ((paddr + PAGE_SIZE) == next_paddr) {
569 			pages++;
570 			paddr = next_paddr;
571 			continue;
572 		}
573 		break;
574 	}
575 
576 	return pages;
577 }
578 
579 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
580 {
581 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
582 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
583 	struct kvm_sev_launch_update_data params;
584 	struct sev_data_launch_update_data data;
585 	struct page **inpages;
586 	int ret;
587 
588 	if (!sev_guest(kvm))
589 		return -ENOTTY;
590 
591 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
592 		return -EFAULT;
593 
594 	vaddr = params.uaddr;
595 	size = params.len;
596 	vaddr_end = vaddr + size;
597 
598 	/* Lock the user memory. */
599 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
600 	if (IS_ERR(inpages))
601 		return PTR_ERR(inpages);
602 
603 	/*
604 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
605 	 * place; the cache may contain the data that was written unencrypted.
606 	 */
607 	sev_clflush_pages(inpages, npages);
608 
609 	data.reserved = 0;
610 	data.handle = sev->handle;
611 
612 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
613 		int offset, len;
614 
615 		/*
616 		 * If the user buffer is not page-aligned, calculate the offset
617 		 * within the page.
618 		 */
619 		offset = vaddr & (PAGE_SIZE - 1);
620 
621 		/* Calculate the number of pages that can be encrypted in one go. */
622 		pages = get_num_contig_pages(i, inpages, npages);
623 
624 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
625 
626 		data.len = len;
627 		data.address = __sme_page_pa(inpages[i]) + offset;
628 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
629 		if (ret)
630 			goto e_unpin;
631 
632 		size -= len;
633 		next_vaddr = vaddr + len;
634 	}
635 
636 e_unpin:
637 	/* content of memory is updated, mark pages dirty */
638 	for (i = 0; i < npages; i++) {
639 		set_page_dirty_lock(inpages[i]);
640 		mark_page_accessed(inpages[i]);
641 	}
642 	/* unlock the user pages */
643 	sev_unpin_memory(kvm, inpages, npages);
644 	return ret;
645 }
646 
647 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
648 {
649 	struct kvm_vcpu *vcpu = &svm->vcpu;
650 	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
651 	struct sev_es_save_area *save = svm->sev_es.vmsa;
652 	struct xregs_state *xsave;
653 	const u8 *s;
654 	u8 *d;
655 	int i;
656 
657 	/* Check some debug related fields before encrypting the VMSA */
658 	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
659 		return -EINVAL;
660 
661 	/*
662 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
663 	 * the traditional VMSA that is part of the VMCB. Copy the
664 	 * traditional VMSA as it has been built so far (in prep
665 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
666 	 */
667 	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
668 
669 	/* Sync registgers */
670 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
671 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
672 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
673 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
674 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
675 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
676 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
677 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
678 #ifdef CONFIG_X86_64
679 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
680 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
681 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
682 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
683 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
684 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
685 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
686 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
687 #endif
688 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
689 
690 	/* Sync some non-GPR registers before encrypting */
691 	save->xcr0 = svm->vcpu.arch.xcr0;
692 	save->pkru = svm->vcpu.arch.pkru;
693 	save->xss  = svm->vcpu.arch.ia32_xss;
694 	save->dr6  = svm->vcpu.arch.dr6;
695 
696 	save->sev_features = sev->vmsa_features;
697 
698 	/*
699 	 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
700 	 * breaking older measurements.
701 	 */
702 	if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
703 		xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
704 		save->x87_dp = xsave->i387.rdp;
705 		save->mxcsr = xsave->i387.mxcsr;
706 		save->x87_ftw = xsave->i387.twd;
707 		save->x87_fsw = xsave->i387.swd;
708 		save->x87_fcw = xsave->i387.cwd;
709 		save->x87_fop = xsave->i387.fop;
710 		save->x87_ds = 0;
711 		save->x87_cs = 0;
712 		save->x87_rip = xsave->i387.rip;
713 
714 		for (i = 0; i < 8; i++) {
715 			/*
716 			 * The format of the x87 save area is undocumented and
717 			 * definitely not what you would expect.  It consists of
718 			 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
719 			 * area with bytes 8-9 of each register.
720 			 */
721 			d = save->fpreg_x87 + i * 8;
722 			s = ((u8 *)xsave->i387.st_space) + i * 16;
723 			memcpy(d, s, 8);
724 			save->fpreg_x87[64 + i * 2] = s[8];
725 			save->fpreg_x87[64 + i * 2 + 1] = s[9];
726 		}
727 		memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
728 
729 		s = get_xsave_addr(xsave, XFEATURE_YMM);
730 		if (s)
731 			memcpy(save->fpreg_ymm, s, 256);
732 		else
733 			memset(save->fpreg_ymm, 0, 256);
734 	}
735 
736 	pr_debug("Virtual Machine Save Area (VMSA):\n");
737 	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
738 
739 	return 0;
740 }
741 
742 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
743 				    int *error)
744 {
745 	struct sev_data_launch_update_vmsa vmsa;
746 	struct vcpu_svm *svm = to_svm(vcpu);
747 	int ret;
748 
749 	if (vcpu->guest_debug) {
750 		pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
751 		return -EINVAL;
752 	}
753 
754 	/* Perform some pre-encryption checks against the VMSA */
755 	ret = sev_es_sync_vmsa(svm);
756 	if (ret)
757 		return ret;
758 
759 	/*
760 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
761 	 * the VMSA memory content (i.e it will write the same memory region
762 	 * with the guest's key), so invalidate it first.
763 	 */
764 	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
765 
766 	vmsa.reserved = 0;
767 	vmsa.handle = to_kvm_sev_info(kvm)->handle;
768 	vmsa.address = __sme_pa(svm->sev_es.vmsa);
769 	vmsa.len = PAGE_SIZE;
770 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
771 	if (ret)
772 	  return ret;
773 
774 	/*
775 	 * SEV-ES guests maintain an encrypted version of their FPU
776 	 * state which is restored and saved on VMRUN and VMEXIT.
777 	 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
778 	 * do xsave/xrstor on it.
779 	 */
780 	fpstate_set_confidential(&vcpu->arch.guest_fpu);
781 	vcpu->arch.guest_state_protected = true;
782 
783 	/*
784 	 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
785 	 * only after setting guest_state_protected because KVM_SET_MSRS allows
786 	 * dynamic toggling of LBRV (for performance reason) on write access to
787 	 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
788 	 */
789 	svm_enable_lbrv(vcpu);
790 	return 0;
791 }
792 
793 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
794 {
795 	struct kvm_vcpu *vcpu;
796 	unsigned long i;
797 	int ret;
798 
799 	if (!sev_es_guest(kvm))
800 		return -ENOTTY;
801 
802 	kvm_for_each_vcpu(i, vcpu, kvm) {
803 		ret = mutex_lock_killable(&vcpu->mutex);
804 		if (ret)
805 			return ret;
806 
807 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
808 
809 		mutex_unlock(&vcpu->mutex);
810 		if (ret)
811 			return ret;
812 	}
813 
814 	return 0;
815 }
816 
817 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
818 {
819 	void __user *measure = u64_to_user_ptr(argp->data);
820 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
821 	struct sev_data_launch_measure data;
822 	struct kvm_sev_launch_measure params;
823 	void __user *p = NULL;
824 	void *blob = NULL;
825 	int ret;
826 
827 	if (!sev_guest(kvm))
828 		return -ENOTTY;
829 
830 	if (copy_from_user(&params, measure, sizeof(params)))
831 		return -EFAULT;
832 
833 	memset(&data, 0, sizeof(data));
834 
835 	/* User wants to query the blob length */
836 	if (!params.len)
837 		goto cmd;
838 
839 	p = u64_to_user_ptr(params.uaddr);
840 	if (p) {
841 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
842 			return -EINVAL;
843 
844 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
845 		if (!blob)
846 			return -ENOMEM;
847 
848 		data.address = __psp_pa(blob);
849 		data.len = params.len;
850 	}
851 
852 cmd:
853 	data.handle = sev->handle;
854 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
855 
856 	/*
857 	 * If we query the session length, FW responded with expected data.
858 	 */
859 	if (!params.len)
860 		goto done;
861 
862 	if (ret)
863 		goto e_free_blob;
864 
865 	if (blob) {
866 		if (copy_to_user(p, blob, params.len))
867 			ret = -EFAULT;
868 	}
869 
870 done:
871 	params.len = data.len;
872 	if (copy_to_user(measure, &params, sizeof(params)))
873 		ret = -EFAULT;
874 e_free_blob:
875 	kfree(blob);
876 	return ret;
877 }
878 
879 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
880 {
881 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
882 	struct sev_data_launch_finish data;
883 
884 	if (!sev_guest(kvm))
885 		return -ENOTTY;
886 
887 	data.handle = sev->handle;
888 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
889 }
890 
891 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
892 {
893 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
894 	struct kvm_sev_guest_status params;
895 	struct sev_data_guest_status data;
896 	int ret;
897 
898 	if (!sev_guest(kvm))
899 		return -ENOTTY;
900 
901 	memset(&data, 0, sizeof(data));
902 
903 	data.handle = sev->handle;
904 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
905 	if (ret)
906 		return ret;
907 
908 	params.policy = data.policy;
909 	params.state = data.state;
910 	params.handle = data.handle;
911 
912 	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
913 		ret = -EFAULT;
914 
915 	return ret;
916 }
917 
918 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
919 			       unsigned long dst, int size,
920 			       int *error, bool enc)
921 {
922 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
923 	struct sev_data_dbg data;
924 
925 	data.reserved = 0;
926 	data.handle = sev->handle;
927 	data.dst_addr = dst;
928 	data.src_addr = src;
929 	data.len = size;
930 
931 	return sev_issue_cmd(kvm,
932 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
933 			     &data, error);
934 }
935 
936 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
937 			     unsigned long dst_paddr, int sz, int *err)
938 {
939 	int offset;
940 
941 	/*
942 	 * Its safe to read more than we are asked, caller should ensure that
943 	 * destination has enough space.
944 	 */
945 	offset = src_paddr & 15;
946 	src_paddr = round_down(src_paddr, 16);
947 	sz = round_up(sz + offset, 16);
948 
949 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
950 }
951 
952 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
953 				  void __user *dst_uaddr,
954 				  unsigned long dst_paddr,
955 				  int size, int *err)
956 {
957 	struct page *tpage = NULL;
958 	int ret, offset;
959 
960 	/* if inputs are not 16-byte then use intermediate buffer */
961 	if (!IS_ALIGNED(dst_paddr, 16) ||
962 	    !IS_ALIGNED(paddr,     16) ||
963 	    !IS_ALIGNED(size,      16)) {
964 		tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
965 		if (!tpage)
966 			return -ENOMEM;
967 
968 		dst_paddr = __sme_page_pa(tpage);
969 	}
970 
971 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
972 	if (ret)
973 		goto e_free;
974 
975 	if (tpage) {
976 		offset = paddr & 15;
977 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
978 			ret = -EFAULT;
979 	}
980 
981 e_free:
982 	if (tpage)
983 		__free_page(tpage);
984 
985 	return ret;
986 }
987 
988 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
989 				  void __user *vaddr,
990 				  unsigned long dst_paddr,
991 				  void __user *dst_vaddr,
992 				  int size, int *error)
993 {
994 	struct page *src_tpage = NULL;
995 	struct page *dst_tpage = NULL;
996 	int ret, len = size;
997 
998 	/* If source buffer is not aligned then use an intermediate buffer */
999 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1000 		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1001 		if (!src_tpage)
1002 			return -ENOMEM;
1003 
1004 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1005 			__free_page(src_tpage);
1006 			return -EFAULT;
1007 		}
1008 
1009 		paddr = __sme_page_pa(src_tpage);
1010 	}
1011 
1012 	/*
1013 	 *  If destination buffer or length is not aligned then do read-modify-write:
1014 	 *   - decrypt destination in an intermediate buffer
1015 	 *   - copy the source buffer in an intermediate buffer
1016 	 *   - use the intermediate buffer as source buffer
1017 	 */
1018 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1019 		int dst_offset;
1020 
1021 		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1022 		if (!dst_tpage) {
1023 			ret = -ENOMEM;
1024 			goto e_free;
1025 		}
1026 
1027 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
1028 					__sme_page_pa(dst_tpage), size, error);
1029 		if (ret)
1030 			goto e_free;
1031 
1032 		/*
1033 		 *  If source is kernel buffer then use memcpy() otherwise
1034 		 *  copy_from_user().
1035 		 */
1036 		dst_offset = dst_paddr & 15;
1037 
1038 		if (src_tpage)
1039 			memcpy(page_address(dst_tpage) + dst_offset,
1040 			       page_address(src_tpage), size);
1041 		else {
1042 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
1043 					   vaddr, size)) {
1044 				ret = -EFAULT;
1045 				goto e_free;
1046 			}
1047 		}
1048 
1049 		paddr = __sme_page_pa(dst_tpage);
1050 		dst_paddr = round_down(dst_paddr, 16);
1051 		len = round_up(size, 16);
1052 	}
1053 
1054 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1055 
1056 e_free:
1057 	if (src_tpage)
1058 		__free_page(src_tpage);
1059 	if (dst_tpage)
1060 		__free_page(dst_tpage);
1061 	return ret;
1062 }
1063 
1064 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1065 {
1066 	unsigned long vaddr, vaddr_end, next_vaddr;
1067 	unsigned long dst_vaddr;
1068 	struct page **src_p, **dst_p;
1069 	struct kvm_sev_dbg debug;
1070 	unsigned long n;
1071 	unsigned int size;
1072 	int ret;
1073 
1074 	if (!sev_guest(kvm))
1075 		return -ENOTTY;
1076 
1077 	if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1078 		return -EFAULT;
1079 
1080 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1081 		return -EINVAL;
1082 	if (!debug.dst_uaddr)
1083 		return -EINVAL;
1084 
1085 	vaddr = debug.src_uaddr;
1086 	size = debug.len;
1087 	vaddr_end = vaddr + size;
1088 	dst_vaddr = debug.dst_uaddr;
1089 
1090 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1091 		int len, s_off, d_off;
1092 
1093 		/* lock userspace source and destination page */
1094 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1095 		if (IS_ERR(src_p))
1096 			return PTR_ERR(src_p);
1097 
1098 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
1099 		if (IS_ERR(dst_p)) {
1100 			sev_unpin_memory(kvm, src_p, n);
1101 			return PTR_ERR(dst_p);
1102 		}
1103 
1104 		/*
1105 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1106 		 * the pages; flush the destination too so that future accesses do not
1107 		 * see stale data.
1108 		 */
1109 		sev_clflush_pages(src_p, 1);
1110 		sev_clflush_pages(dst_p, 1);
1111 
1112 		/*
1113 		 * Since user buffer may not be page aligned, calculate the
1114 		 * offset within the page.
1115 		 */
1116 		s_off = vaddr & ~PAGE_MASK;
1117 		d_off = dst_vaddr & ~PAGE_MASK;
1118 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
1119 
1120 		if (dec)
1121 			ret = __sev_dbg_decrypt_user(kvm,
1122 						     __sme_page_pa(src_p[0]) + s_off,
1123 						     (void __user *)dst_vaddr,
1124 						     __sme_page_pa(dst_p[0]) + d_off,
1125 						     len, &argp->error);
1126 		else
1127 			ret = __sev_dbg_encrypt_user(kvm,
1128 						     __sme_page_pa(src_p[0]) + s_off,
1129 						     (void __user *)vaddr,
1130 						     __sme_page_pa(dst_p[0]) + d_off,
1131 						     (void __user *)dst_vaddr,
1132 						     len, &argp->error);
1133 
1134 		sev_unpin_memory(kvm, src_p, n);
1135 		sev_unpin_memory(kvm, dst_p, n);
1136 
1137 		if (ret)
1138 			goto err;
1139 
1140 		next_vaddr = vaddr + len;
1141 		dst_vaddr = dst_vaddr + len;
1142 		size -= len;
1143 	}
1144 err:
1145 	return ret;
1146 }
1147 
1148 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1149 {
1150 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1151 	struct sev_data_launch_secret data;
1152 	struct kvm_sev_launch_secret params;
1153 	struct page **pages;
1154 	void *blob, *hdr;
1155 	unsigned long n, i;
1156 	int ret, offset;
1157 
1158 	if (!sev_guest(kvm))
1159 		return -ENOTTY;
1160 
1161 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1162 		return -EFAULT;
1163 
1164 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1165 	if (IS_ERR(pages))
1166 		return PTR_ERR(pages);
1167 
1168 	/*
1169 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1170 	 * place; the cache may contain the data that was written unencrypted.
1171 	 */
1172 	sev_clflush_pages(pages, n);
1173 
1174 	/*
1175 	 * The secret must be copied into contiguous memory region, lets verify
1176 	 * that userspace memory pages are contiguous before we issue command.
1177 	 */
1178 	if (get_num_contig_pages(0, pages, n) != n) {
1179 		ret = -EINVAL;
1180 		goto e_unpin_memory;
1181 	}
1182 
1183 	memset(&data, 0, sizeof(data));
1184 
1185 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1186 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1187 	data.guest_len = params.guest_len;
1188 
1189 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1190 	if (IS_ERR(blob)) {
1191 		ret = PTR_ERR(blob);
1192 		goto e_unpin_memory;
1193 	}
1194 
1195 	data.trans_address = __psp_pa(blob);
1196 	data.trans_len = params.trans_len;
1197 
1198 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1199 	if (IS_ERR(hdr)) {
1200 		ret = PTR_ERR(hdr);
1201 		goto e_free_blob;
1202 	}
1203 	data.hdr_address = __psp_pa(hdr);
1204 	data.hdr_len = params.hdr_len;
1205 
1206 	data.handle = sev->handle;
1207 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1208 
1209 	kfree(hdr);
1210 
1211 e_free_blob:
1212 	kfree(blob);
1213 e_unpin_memory:
1214 	/* content of memory is updated, mark pages dirty */
1215 	for (i = 0; i < n; i++) {
1216 		set_page_dirty_lock(pages[i]);
1217 		mark_page_accessed(pages[i]);
1218 	}
1219 	sev_unpin_memory(kvm, pages, n);
1220 	return ret;
1221 }
1222 
1223 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1224 {
1225 	void __user *report = u64_to_user_ptr(argp->data);
1226 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1227 	struct sev_data_attestation_report data;
1228 	struct kvm_sev_attestation_report params;
1229 	void __user *p;
1230 	void *blob = NULL;
1231 	int ret;
1232 
1233 	if (!sev_guest(kvm))
1234 		return -ENOTTY;
1235 
1236 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1237 		return -EFAULT;
1238 
1239 	memset(&data, 0, sizeof(data));
1240 
1241 	/* User wants to query the blob length */
1242 	if (!params.len)
1243 		goto cmd;
1244 
1245 	p = u64_to_user_ptr(params.uaddr);
1246 	if (p) {
1247 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1248 			return -EINVAL;
1249 
1250 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1251 		if (!blob)
1252 			return -ENOMEM;
1253 
1254 		data.address = __psp_pa(blob);
1255 		data.len = params.len;
1256 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1257 	}
1258 cmd:
1259 	data.handle = sev->handle;
1260 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1261 	/*
1262 	 * If we query the session length, FW responded with expected data.
1263 	 */
1264 	if (!params.len)
1265 		goto done;
1266 
1267 	if (ret)
1268 		goto e_free_blob;
1269 
1270 	if (blob) {
1271 		if (copy_to_user(p, blob, params.len))
1272 			ret = -EFAULT;
1273 	}
1274 
1275 done:
1276 	params.len = data.len;
1277 	if (copy_to_user(report, &params, sizeof(params)))
1278 		ret = -EFAULT;
1279 e_free_blob:
1280 	kfree(blob);
1281 	return ret;
1282 }
1283 
1284 /* Userspace wants to query session length. */
1285 static int
1286 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1287 				      struct kvm_sev_send_start *params)
1288 {
1289 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1290 	struct sev_data_send_start data;
1291 	int ret;
1292 
1293 	memset(&data, 0, sizeof(data));
1294 	data.handle = sev->handle;
1295 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1296 
1297 	params->session_len = data.session_len;
1298 	if (copy_to_user(u64_to_user_ptr(argp->data), params,
1299 				sizeof(struct kvm_sev_send_start)))
1300 		ret = -EFAULT;
1301 
1302 	return ret;
1303 }
1304 
1305 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1306 {
1307 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1308 	struct sev_data_send_start data;
1309 	struct kvm_sev_send_start params;
1310 	void *amd_certs, *session_data;
1311 	void *pdh_cert, *plat_certs;
1312 	int ret;
1313 
1314 	if (!sev_guest(kvm))
1315 		return -ENOTTY;
1316 
1317 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1318 				sizeof(struct kvm_sev_send_start)))
1319 		return -EFAULT;
1320 
1321 	/* if session_len is zero, userspace wants to query the session length */
1322 	if (!params.session_len)
1323 		return __sev_send_start_query_session_length(kvm, argp,
1324 				&params);
1325 
1326 	/* some sanity checks */
1327 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1328 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1329 		return -EINVAL;
1330 
1331 	/* allocate the memory to hold the session data blob */
1332 	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1333 	if (!session_data)
1334 		return -ENOMEM;
1335 
1336 	/* copy the certificate blobs from userspace */
1337 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1338 				params.pdh_cert_len);
1339 	if (IS_ERR(pdh_cert)) {
1340 		ret = PTR_ERR(pdh_cert);
1341 		goto e_free_session;
1342 	}
1343 
1344 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1345 				params.plat_certs_len);
1346 	if (IS_ERR(plat_certs)) {
1347 		ret = PTR_ERR(plat_certs);
1348 		goto e_free_pdh;
1349 	}
1350 
1351 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1352 				params.amd_certs_len);
1353 	if (IS_ERR(amd_certs)) {
1354 		ret = PTR_ERR(amd_certs);
1355 		goto e_free_plat_cert;
1356 	}
1357 
1358 	/* populate the FW SEND_START field with system physical address */
1359 	memset(&data, 0, sizeof(data));
1360 	data.pdh_cert_address = __psp_pa(pdh_cert);
1361 	data.pdh_cert_len = params.pdh_cert_len;
1362 	data.plat_certs_address = __psp_pa(plat_certs);
1363 	data.plat_certs_len = params.plat_certs_len;
1364 	data.amd_certs_address = __psp_pa(amd_certs);
1365 	data.amd_certs_len = params.amd_certs_len;
1366 	data.session_address = __psp_pa(session_data);
1367 	data.session_len = params.session_len;
1368 	data.handle = sev->handle;
1369 
1370 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1371 
1372 	if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1373 			session_data, params.session_len)) {
1374 		ret = -EFAULT;
1375 		goto e_free_amd_cert;
1376 	}
1377 
1378 	params.policy = data.policy;
1379 	params.session_len = data.session_len;
1380 	if (copy_to_user(u64_to_user_ptr(argp->data), &params,
1381 				sizeof(struct kvm_sev_send_start)))
1382 		ret = -EFAULT;
1383 
1384 e_free_amd_cert:
1385 	kfree(amd_certs);
1386 e_free_plat_cert:
1387 	kfree(plat_certs);
1388 e_free_pdh:
1389 	kfree(pdh_cert);
1390 e_free_session:
1391 	kfree(session_data);
1392 	return ret;
1393 }
1394 
1395 /* Userspace wants to query either header or trans length. */
1396 static int
1397 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1398 				     struct kvm_sev_send_update_data *params)
1399 {
1400 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1401 	struct sev_data_send_update_data data;
1402 	int ret;
1403 
1404 	memset(&data, 0, sizeof(data));
1405 	data.handle = sev->handle;
1406 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1407 
1408 	params->hdr_len = data.hdr_len;
1409 	params->trans_len = data.trans_len;
1410 
1411 	if (copy_to_user(u64_to_user_ptr(argp->data), params,
1412 			 sizeof(struct kvm_sev_send_update_data)))
1413 		ret = -EFAULT;
1414 
1415 	return ret;
1416 }
1417 
1418 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1419 {
1420 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1421 	struct sev_data_send_update_data data;
1422 	struct kvm_sev_send_update_data params;
1423 	void *hdr, *trans_data;
1424 	struct page **guest_page;
1425 	unsigned long n;
1426 	int ret, offset;
1427 
1428 	if (!sev_guest(kvm))
1429 		return -ENOTTY;
1430 
1431 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1432 			sizeof(struct kvm_sev_send_update_data)))
1433 		return -EFAULT;
1434 
1435 	/* userspace wants to query either header or trans length */
1436 	if (!params.trans_len || !params.hdr_len)
1437 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1438 
1439 	if (!params.trans_uaddr || !params.guest_uaddr ||
1440 	    !params.guest_len || !params.hdr_uaddr)
1441 		return -EINVAL;
1442 
1443 	/* Check if we are crossing the page boundary */
1444 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1445 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1446 		return -EINVAL;
1447 
1448 	/* Pin guest memory */
1449 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1450 				    PAGE_SIZE, &n, 0);
1451 	if (IS_ERR(guest_page))
1452 		return PTR_ERR(guest_page);
1453 
1454 	/* allocate memory for header and transport buffer */
1455 	ret = -ENOMEM;
1456 	hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1457 	if (!hdr)
1458 		goto e_unpin;
1459 
1460 	trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1461 	if (!trans_data)
1462 		goto e_free_hdr;
1463 
1464 	memset(&data, 0, sizeof(data));
1465 	data.hdr_address = __psp_pa(hdr);
1466 	data.hdr_len = params.hdr_len;
1467 	data.trans_address = __psp_pa(trans_data);
1468 	data.trans_len = params.trans_len;
1469 
1470 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1471 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1472 	data.guest_address |= sev_me_mask;
1473 	data.guest_len = params.guest_len;
1474 	data.handle = sev->handle;
1475 
1476 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1477 
1478 	if (ret)
1479 		goto e_free_trans_data;
1480 
1481 	/* copy transport buffer to user space */
1482 	if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1483 			 trans_data, params.trans_len)) {
1484 		ret = -EFAULT;
1485 		goto e_free_trans_data;
1486 	}
1487 
1488 	/* Copy packet header to userspace. */
1489 	if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1490 			 params.hdr_len))
1491 		ret = -EFAULT;
1492 
1493 e_free_trans_data:
1494 	kfree(trans_data);
1495 e_free_hdr:
1496 	kfree(hdr);
1497 e_unpin:
1498 	sev_unpin_memory(kvm, guest_page, n);
1499 
1500 	return ret;
1501 }
1502 
1503 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1504 {
1505 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1506 	struct sev_data_send_finish data;
1507 
1508 	if (!sev_guest(kvm))
1509 		return -ENOTTY;
1510 
1511 	data.handle = sev->handle;
1512 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1513 }
1514 
1515 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1516 {
1517 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1518 	struct sev_data_send_cancel data;
1519 
1520 	if (!sev_guest(kvm))
1521 		return -ENOTTY;
1522 
1523 	data.handle = sev->handle;
1524 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1525 }
1526 
1527 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1528 {
1529 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1530 	struct sev_data_receive_start start;
1531 	struct kvm_sev_receive_start params;
1532 	int *error = &argp->error;
1533 	void *session_data;
1534 	void *pdh_data;
1535 	int ret;
1536 
1537 	if (!sev_guest(kvm))
1538 		return -ENOTTY;
1539 
1540 	/* Get parameter from the userspace */
1541 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1542 			sizeof(struct kvm_sev_receive_start)))
1543 		return -EFAULT;
1544 
1545 	/* some sanity checks */
1546 	if (!params.pdh_uaddr || !params.pdh_len ||
1547 	    !params.session_uaddr || !params.session_len)
1548 		return -EINVAL;
1549 
1550 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1551 	if (IS_ERR(pdh_data))
1552 		return PTR_ERR(pdh_data);
1553 
1554 	session_data = psp_copy_user_blob(params.session_uaddr,
1555 			params.session_len);
1556 	if (IS_ERR(session_data)) {
1557 		ret = PTR_ERR(session_data);
1558 		goto e_free_pdh;
1559 	}
1560 
1561 	memset(&start, 0, sizeof(start));
1562 	start.handle = params.handle;
1563 	start.policy = params.policy;
1564 	start.pdh_cert_address = __psp_pa(pdh_data);
1565 	start.pdh_cert_len = params.pdh_len;
1566 	start.session_address = __psp_pa(session_data);
1567 	start.session_len = params.session_len;
1568 
1569 	/* create memory encryption context */
1570 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1571 				error);
1572 	if (ret)
1573 		goto e_free_session;
1574 
1575 	/* Bind ASID to this guest */
1576 	ret = sev_bind_asid(kvm, start.handle, error);
1577 	if (ret) {
1578 		sev_decommission(start.handle);
1579 		goto e_free_session;
1580 	}
1581 
1582 	params.handle = start.handle;
1583 	if (copy_to_user(u64_to_user_ptr(argp->data),
1584 			 &params, sizeof(struct kvm_sev_receive_start))) {
1585 		ret = -EFAULT;
1586 		sev_unbind_asid(kvm, start.handle);
1587 		goto e_free_session;
1588 	}
1589 
1590     	sev->handle = start.handle;
1591 	sev->fd = argp->sev_fd;
1592 
1593 e_free_session:
1594 	kfree(session_data);
1595 e_free_pdh:
1596 	kfree(pdh_data);
1597 
1598 	return ret;
1599 }
1600 
1601 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1602 {
1603 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1604 	struct kvm_sev_receive_update_data params;
1605 	struct sev_data_receive_update_data data;
1606 	void *hdr = NULL, *trans = NULL;
1607 	struct page **guest_page;
1608 	unsigned long n;
1609 	int ret, offset;
1610 
1611 	if (!sev_guest(kvm))
1612 		return -EINVAL;
1613 
1614 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1615 			sizeof(struct kvm_sev_receive_update_data)))
1616 		return -EFAULT;
1617 
1618 	if (!params.hdr_uaddr || !params.hdr_len ||
1619 	    !params.guest_uaddr || !params.guest_len ||
1620 	    !params.trans_uaddr || !params.trans_len)
1621 		return -EINVAL;
1622 
1623 	/* Check if we are crossing the page boundary */
1624 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1625 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1626 		return -EINVAL;
1627 
1628 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1629 	if (IS_ERR(hdr))
1630 		return PTR_ERR(hdr);
1631 
1632 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1633 	if (IS_ERR(trans)) {
1634 		ret = PTR_ERR(trans);
1635 		goto e_free_hdr;
1636 	}
1637 
1638 	memset(&data, 0, sizeof(data));
1639 	data.hdr_address = __psp_pa(hdr);
1640 	data.hdr_len = params.hdr_len;
1641 	data.trans_address = __psp_pa(trans);
1642 	data.trans_len = params.trans_len;
1643 
1644 	/* Pin guest memory */
1645 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1646 				    PAGE_SIZE, &n, 1);
1647 	if (IS_ERR(guest_page)) {
1648 		ret = PTR_ERR(guest_page);
1649 		goto e_free_trans;
1650 	}
1651 
1652 	/*
1653 	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1654 	 * encrypts the written data with the guest's key, and the cache may
1655 	 * contain dirty, unencrypted data.
1656 	 */
1657 	sev_clflush_pages(guest_page, n);
1658 
1659 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1660 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1661 	data.guest_address |= sev_me_mask;
1662 	data.guest_len = params.guest_len;
1663 	data.handle = sev->handle;
1664 
1665 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1666 				&argp->error);
1667 
1668 	sev_unpin_memory(kvm, guest_page, n);
1669 
1670 e_free_trans:
1671 	kfree(trans);
1672 e_free_hdr:
1673 	kfree(hdr);
1674 
1675 	return ret;
1676 }
1677 
1678 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1679 {
1680 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1681 	struct sev_data_receive_finish data;
1682 
1683 	if (!sev_guest(kvm))
1684 		return -ENOTTY;
1685 
1686 	data.handle = sev->handle;
1687 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1688 }
1689 
1690 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1691 {
1692 	/*
1693 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1694 	 * active mirror VMs. Also allow the debugging and status commands.
1695 	 */
1696 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1697 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1698 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1699 		return true;
1700 
1701 	return false;
1702 }
1703 
1704 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1705 {
1706 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1707 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1708 	int r = -EBUSY;
1709 
1710 	if (dst_kvm == src_kvm)
1711 		return -EINVAL;
1712 
1713 	/*
1714 	 * Bail if these VMs are already involved in a migration to avoid
1715 	 * deadlock between two VMs trying to migrate to/from each other.
1716 	 */
1717 	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1718 		return -EBUSY;
1719 
1720 	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1721 		goto release_dst;
1722 
1723 	r = -EINTR;
1724 	if (mutex_lock_killable(&dst_kvm->lock))
1725 		goto release_src;
1726 	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1727 		goto unlock_dst;
1728 	return 0;
1729 
1730 unlock_dst:
1731 	mutex_unlock(&dst_kvm->lock);
1732 release_src:
1733 	atomic_set_release(&src_sev->migration_in_progress, 0);
1734 release_dst:
1735 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1736 	return r;
1737 }
1738 
1739 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1740 {
1741 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1742 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1743 
1744 	mutex_unlock(&dst_kvm->lock);
1745 	mutex_unlock(&src_kvm->lock);
1746 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1747 	atomic_set_release(&src_sev->migration_in_progress, 0);
1748 }
1749 
1750 /* vCPU mutex subclasses.  */
1751 enum sev_migration_role {
1752 	SEV_MIGRATION_SOURCE = 0,
1753 	SEV_MIGRATION_TARGET,
1754 	SEV_NR_MIGRATION_ROLES,
1755 };
1756 
1757 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1758 					enum sev_migration_role role)
1759 {
1760 	struct kvm_vcpu *vcpu;
1761 	unsigned long i, j;
1762 
1763 	kvm_for_each_vcpu(i, vcpu, kvm) {
1764 		if (mutex_lock_killable_nested(&vcpu->mutex, role))
1765 			goto out_unlock;
1766 
1767 #ifdef CONFIG_PROVE_LOCKING
1768 		if (!i)
1769 			/*
1770 			 * Reset the role to one that avoids colliding with
1771 			 * the role used for the first vcpu mutex.
1772 			 */
1773 			role = SEV_NR_MIGRATION_ROLES;
1774 		else
1775 			mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1776 #endif
1777 	}
1778 
1779 	return 0;
1780 
1781 out_unlock:
1782 
1783 	kvm_for_each_vcpu(j, vcpu, kvm) {
1784 		if (i == j)
1785 			break;
1786 
1787 #ifdef CONFIG_PROVE_LOCKING
1788 		if (j)
1789 			mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1790 #endif
1791 
1792 		mutex_unlock(&vcpu->mutex);
1793 	}
1794 	return -EINTR;
1795 }
1796 
1797 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1798 {
1799 	struct kvm_vcpu *vcpu;
1800 	unsigned long i;
1801 	bool first = true;
1802 
1803 	kvm_for_each_vcpu(i, vcpu, kvm) {
1804 		if (first)
1805 			first = false;
1806 		else
1807 			mutex_acquire(&vcpu->mutex.dep_map,
1808 				      SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1809 
1810 		mutex_unlock(&vcpu->mutex);
1811 	}
1812 }
1813 
1814 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1815 {
1816 	struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1817 	struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1818 	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1819 	struct vcpu_svm *dst_svm, *src_svm;
1820 	struct kvm_sev_info *mirror;
1821 	unsigned long i;
1822 
1823 	dst->active = true;
1824 	dst->asid = src->asid;
1825 	dst->handle = src->handle;
1826 	dst->pages_locked = src->pages_locked;
1827 	dst->enc_context_owner = src->enc_context_owner;
1828 	dst->es_active = src->es_active;
1829 	dst->vmsa_features = src->vmsa_features;
1830 
1831 	src->asid = 0;
1832 	src->active = false;
1833 	src->handle = 0;
1834 	src->pages_locked = 0;
1835 	src->enc_context_owner = NULL;
1836 	src->es_active = false;
1837 
1838 	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1839 
1840 	/*
1841 	 * If this VM has mirrors, "transfer" each mirror's refcount of the
1842 	 * source to the destination (this KVM).  The caller holds a reference
1843 	 * to the source, so there's no danger of use-after-free.
1844 	 */
1845 	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1846 	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1847 		kvm_get_kvm(dst_kvm);
1848 		kvm_put_kvm(src_kvm);
1849 		mirror->enc_context_owner = dst_kvm;
1850 	}
1851 
1852 	/*
1853 	 * If this VM is a mirror, remove the old mirror from the owners list
1854 	 * and add the new mirror to the list.
1855 	 */
1856 	if (is_mirroring_enc_context(dst_kvm)) {
1857 		struct kvm_sev_info *owner_sev_info =
1858 			&to_kvm_svm(dst->enc_context_owner)->sev_info;
1859 
1860 		list_del(&src->mirror_entry);
1861 		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1862 	}
1863 
1864 	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1865 		dst_svm = to_svm(dst_vcpu);
1866 
1867 		sev_init_vmcb(dst_svm);
1868 
1869 		if (!dst->es_active)
1870 			continue;
1871 
1872 		/*
1873 		 * Note, the source is not required to have the same number of
1874 		 * vCPUs as the destination when migrating a vanilla SEV VM.
1875 		 */
1876 		src_vcpu = kvm_get_vcpu(src_kvm, i);
1877 		src_svm = to_svm(src_vcpu);
1878 
1879 		/*
1880 		 * Transfer VMSA and GHCB state to the destination.  Nullify and
1881 		 * clear source fields as appropriate, the state now belongs to
1882 		 * the destination.
1883 		 */
1884 		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1885 		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1886 		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1887 		dst_vcpu->arch.guest_state_protected = true;
1888 
1889 		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1890 		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1891 		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1892 		src_vcpu->arch.guest_state_protected = false;
1893 	}
1894 }
1895 
1896 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1897 {
1898 	struct kvm_vcpu *src_vcpu;
1899 	unsigned long i;
1900 
1901 	if (!sev_es_guest(src))
1902 		return 0;
1903 
1904 	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1905 		return -EINVAL;
1906 
1907 	kvm_for_each_vcpu(i, src_vcpu, src) {
1908 		if (!src_vcpu->arch.guest_state_protected)
1909 			return -EINVAL;
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1916 {
1917 	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1918 	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1919 	struct fd f = fdget(source_fd);
1920 	struct kvm *source_kvm;
1921 	bool charged = false;
1922 	int ret;
1923 
1924 	if (!f.file)
1925 		return -EBADF;
1926 
1927 	if (!file_is_kvm(f.file)) {
1928 		ret = -EBADF;
1929 		goto out_fput;
1930 	}
1931 
1932 	source_kvm = f.file->private_data;
1933 	ret = sev_lock_two_vms(kvm, source_kvm);
1934 	if (ret)
1935 		goto out_fput;
1936 
1937 	if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
1938 	    sev_guest(kvm) || !sev_guest(source_kvm)) {
1939 		ret = -EINVAL;
1940 		goto out_unlock;
1941 	}
1942 
1943 	src_sev = &to_kvm_svm(source_kvm)->sev_info;
1944 
1945 	dst_sev->misc_cg = get_current_misc_cg();
1946 	cg_cleanup_sev = dst_sev;
1947 	if (dst_sev->misc_cg != src_sev->misc_cg) {
1948 		ret = sev_misc_cg_try_charge(dst_sev);
1949 		if (ret)
1950 			goto out_dst_cgroup;
1951 		charged = true;
1952 	}
1953 
1954 	ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1955 	if (ret)
1956 		goto out_dst_cgroup;
1957 	ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1958 	if (ret)
1959 		goto out_dst_vcpu;
1960 
1961 	ret = sev_check_source_vcpus(kvm, source_kvm);
1962 	if (ret)
1963 		goto out_source_vcpu;
1964 
1965 	sev_migrate_from(kvm, source_kvm);
1966 	kvm_vm_dead(source_kvm);
1967 	cg_cleanup_sev = src_sev;
1968 	ret = 0;
1969 
1970 out_source_vcpu:
1971 	sev_unlock_vcpus_for_migration(source_kvm);
1972 out_dst_vcpu:
1973 	sev_unlock_vcpus_for_migration(kvm);
1974 out_dst_cgroup:
1975 	/* Operates on the source on success, on the destination on failure.  */
1976 	if (charged)
1977 		sev_misc_cg_uncharge(cg_cleanup_sev);
1978 	put_misc_cg(cg_cleanup_sev->misc_cg);
1979 	cg_cleanup_sev->misc_cg = NULL;
1980 out_unlock:
1981 	sev_unlock_two_vms(kvm, source_kvm);
1982 out_fput:
1983 	fdput(f);
1984 	return ret;
1985 }
1986 
1987 int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
1988 {
1989 	if (group != KVM_X86_GRP_SEV)
1990 		return -ENXIO;
1991 
1992 	switch (attr) {
1993 	case KVM_X86_SEV_VMSA_FEATURES:
1994 		*val = sev_supported_vmsa_features;
1995 		return 0;
1996 
1997 	default:
1998 		return -ENXIO;
1999 	}
2000 }
2001 
2002 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2003 {
2004 	struct kvm_sev_cmd sev_cmd;
2005 	int r;
2006 
2007 	if (!sev_enabled)
2008 		return -ENOTTY;
2009 
2010 	if (!argp)
2011 		return 0;
2012 
2013 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2014 		return -EFAULT;
2015 
2016 	mutex_lock(&kvm->lock);
2017 
2018 	/* Only the enc_context_owner handles some memory enc operations. */
2019 	if (is_mirroring_enc_context(kvm) &&
2020 	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2021 		r = -EINVAL;
2022 		goto out;
2023 	}
2024 
2025 	switch (sev_cmd.id) {
2026 	case KVM_SEV_ES_INIT:
2027 		if (!sev_es_enabled) {
2028 			r = -ENOTTY;
2029 			goto out;
2030 		}
2031 		fallthrough;
2032 	case KVM_SEV_INIT:
2033 		r = sev_guest_init(kvm, &sev_cmd);
2034 		break;
2035 	case KVM_SEV_INIT2:
2036 		r = sev_guest_init2(kvm, &sev_cmd);
2037 		break;
2038 	case KVM_SEV_LAUNCH_START:
2039 		r = sev_launch_start(kvm, &sev_cmd);
2040 		break;
2041 	case KVM_SEV_LAUNCH_UPDATE_DATA:
2042 		r = sev_launch_update_data(kvm, &sev_cmd);
2043 		break;
2044 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
2045 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
2046 		break;
2047 	case KVM_SEV_LAUNCH_MEASURE:
2048 		r = sev_launch_measure(kvm, &sev_cmd);
2049 		break;
2050 	case KVM_SEV_LAUNCH_FINISH:
2051 		r = sev_launch_finish(kvm, &sev_cmd);
2052 		break;
2053 	case KVM_SEV_GUEST_STATUS:
2054 		r = sev_guest_status(kvm, &sev_cmd);
2055 		break;
2056 	case KVM_SEV_DBG_DECRYPT:
2057 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
2058 		break;
2059 	case KVM_SEV_DBG_ENCRYPT:
2060 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
2061 		break;
2062 	case KVM_SEV_LAUNCH_SECRET:
2063 		r = sev_launch_secret(kvm, &sev_cmd);
2064 		break;
2065 	case KVM_SEV_GET_ATTESTATION_REPORT:
2066 		r = sev_get_attestation_report(kvm, &sev_cmd);
2067 		break;
2068 	case KVM_SEV_SEND_START:
2069 		r = sev_send_start(kvm, &sev_cmd);
2070 		break;
2071 	case KVM_SEV_SEND_UPDATE_DATA:
2072 		r = sev_send_update_data(kvm, &sev_cmd);
2073 		break;
2074 	case KVM_SEV_SEND_FINISH:
2075 		r = sev_send_finish(kvm, &sev_cmd);
2076 		break;
2077 	case KVM_SEV_SEND_CANCEL:
2078 		r = sev_send_cancel(kvm, &sev_cmd);
2079 		break;
2080 	case KVM_SEV_RECEIVE_START:
2081 		r = sev_receive_start(kvm, &sev_cmd);
2082 		break;
2083 	case KVM_SEV_RECEIVE_UPDATE_DATA:
2084 		r = sev_receive_update_data(kvm, &sev_cmd);
2085 		break;
2086 	case KVM_SEV_RECEIVE_FINISH:
2087 		r = sev_receive_finish(kvm, &sev_cmd);
2088 		break;
2089 	default:
2090 		r = -EINVAL;
2091 		goto out;
2092 	}
2093 
2094 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2095 		r = -EFAULT;
2096 
2097 out:
2098 	mutex_unlock(&kvm->lock);
2099 	return r;
2100 }
2101 
2102 int sev_mem_enc_register_region(struct kvm *kvm,
2103 				struct kvm_enc_region *range)
2104 {
2105 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2106 	struct enc_region *region;
2107 	int ret = 0;
2108 
2109 	if (!sev_guest(kvm))
2110 		return -ENOTTY;
2111 
2112 	/* If kvm is mirroring encryption context it isn't responsible for it */
2113 	if (is_mirroring_enc_context(kvm))
2114 		return -EINVAL;
2115 
2116 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2117 		return -EINVAL;
2118 
2119 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2120 	if (!region)
2121 		return -ENOMEM;
2122 
2123 	mutex_lock(&kvm->lock);
2124 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
2125 	if (IS_ERR(region->pages)) {
2126 		ret = PTR_ERR(region->pages);
2127 		mutex_unlock(&kvm->lock);
2128 		goto e_free;
2129 	}
2130 
2131 	/*
2132 	 * The guest may change the memory encryption attribute from C=0 -> C=1
2133 	 * or vice versa for this memory range. Lets make sure caches are
2134 	 * flushed to ensure that guest data gets written into memory with
2135 	 * correct C-bit.  Note, this must be done before dropping kvm->lock,
2136 	 * as region and its array of pages can be freed by a different task
2137 	 * once kvm->lock is released.
2138 	 */
2139 	sev_clflush_pages(region->pages, region->npages);
2140 
2141 	region->uaddr = range->addr;
2142 	region->size = range->size;
2143 
2144 	list_add_tail(&region->list, &sev->regions_list);
2145 	mutex_unlock(&kvm->lock);
2146 
2147 	return ret;
2148 
2149 e_free:
2150 	kfree(region);
2151 	return ret;
2152 }
2153 
2154 static struct enc_region *
2155 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2156 {
2157 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2158 	struct list_head *head = &sev->regions_list;
2159 	struct enc_region *i;
2160 
2161 	list_for_each_entry(i, head, list) {
2162 		if (i->uaddr == range->addr &&
2163 		    i->size == range->size)
2164 			return i;
2165 	}
2166 
2167 	return NULL;
2168 }
2169 
2170 static void __unregister_enc_region_locked(struct kvm *kvm,
2171 					   struct enc_region *region)
2172 {
2173 	sev_unpin_memory(kvm, region->pages, region->npages);
2174 	list_del(&region->list);
2175 	kfree(region);
2176 }
2177 
2178 int sev_mem_enc_unregister_region(struct kvm *kvm,
2179 				  struct kvm_enc_region *range)
2180 {
2181 	struct enc_region *region;
2182 	int ret;
2183 
2184 	/* If kvm is mirroring encryption context it isn't responsible for it */
2185 	if (is_mirroring_enc_context(kvm))
2186 		return -EINVAL;
2187 
2188 	mutex_lock(&kvm->lock);
2189 
2190 	if (!sev_guest(kvm)) {
2191 		ret = -ENOTTY;
2192 		goto failed;
2193 	}
2194 
2195 	region = find_enc_region(kvm, range);
2196 	if (!region) {
2197 		ret = -EINVAL;
2198 		goto failed;
2199 	}
2200 
2201 	/*
2202 	 * Ensure that all guest tagged cache entries are flushed before
2203 	 * releasing the pages back to the system for use. CLFLUSH will
2204 	 * not do this, so issue a WBINVD.
2205 	 */
2206 	wbinvd_on_all_cpus();
2207 
2208 	__unregister_enc_region_locked(kvm, region);
2209 
2210 	mutex_unlock(&kvm->lock);
2211 	return 0;
2212 
2213 failed:
2214 	mutex_unlock(&kvm->lock);
2215 	return ret;
2216 }
2217 
2218 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2219 {
2220 	struct fd f = fdget(source_fd);
2221 	struct kvm *source_kvm;
2222 	struct kvm_sev_info *source_sev, *mirror_sev;
2223 	int ret;
2224 
2225 	if (!f.file)
2226 		return -EBADF;
2227 
2228 	if (!file_is_kvm(f.file)) {
2229 		ret = -EBADF;
2230 		goto e_source_fput;
2231 	}
2232 
2233 	source_kvm = f.file->private_data;
2234 	ret = sev_lock_two_vms(kvm, source_kvm);
2235 	if (ret)
2236 		goto e_source_fput;
2237 
2238 	/*
2239 	 * Mirrors of mirrors should work, but let's not get silly.  Also
2240 	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2241 	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2242 	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2243 	 */
2244 	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2245 	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2246 		ret = -EINVAL;
2247 		goto e_unlock;
2248 	}
2249 
2250 	/*
2251 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2252 	 * disappear until we're done with it
2253 	 */
2254 	source_sev = &to_kvm_svm(source_kvm)->sev_info;
2255 	kvm_get_kvm(source_kvm);
2256 	mirror_sev = &to_kvm_svm(kvm)->sev_info;
2257 	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2258 
2259 	/* Set enc_context_owner and copy its encryption context over */
2260 	mirror_sev->enc_context_owner = source_kvm;
2261 	mirror_sev->active = true;
2262 	mirror_sev->asid = source_sev->asid;
2263 	mirror_sev->fd = source_sev->fd;
2264 	mirror_sev->es_active = source_sev->es_active;
2265 	mirror_sev->need_init = false;
2266 	mirror_sev->handle = source_sev->handle;
2267 	INIT_LIST_HEAD(&mirror_sev->regions_list);
2268 	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2269 	ret = 0;
2270 
2271 	/*
2272 	 * Do not copy ap_jump_table. Since the mirror does not share the same
2273 	 * KVM contexts as the original, and they may have different
2274 	 * memory-views.
2275 	 */
2276 
2277 e_unlock:
2278 	sev_unlock_two_vms(kvm, source_kvm);
2279 e_source_fput:
2280 	fdput(f);
2281 	return ret;
2282 }
2283 
2284 void sev_vm_destroy(struct kvm *kvm)
2285 {
2286 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2287 	struct list_head *head = &sev->regions_list;
2288 	struct list_head *pos, *q;
2289 
2290 	if (!sev_guest(kvm))
2291 		return;
2292 
2293 	WARN_ON(!list_empty(&sev->mirror_vms));
2294 
2295 	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2296 	if (is_mirroring_enc_context(kvm)) {
2297 		struct kvm *owner_kvm = sev->enc_context_owner;
2298 
2299 		mutex_lock(&owner_kvm->lock);
2300 		list_del(&sev->mirror_entry);
2301 		mutex_unlock(&owner_kvm->lock);
2302 		kvm_put_kvm(owner_kvm);
2303 		return;
2304 	}
2305 
2306 	/*
2307 	 * Ensure that all guest tagged cache entries are flushed before
2308 	 * releasing the pages back to the system for use. CLFLUSH will
2309 	 * not do this, so issue a WBINVD.
2310 	 */
2311 	wbinvd_on_all_cpus();
2312 
2313 	/*
2314 	 * if userspace was terminated before unregistering the memory regions
2315 	 * then lets unpin all the registered memory.
2316 	 */
2317 	if (!list_empty(head)) {
2318 		list_for_each_safe(pos, q, head) {
2319 			__unregister_enc_region_locked(kvm,
2320 				list_entry(pos, struct enc_region, list));
2321 			cond_resched();
2322 		}
2323 	}
2324 
2325 	sev_unbind_asid(kvm, sev->handle);
2326 	sev_asid_free(sev);
2327 }
2328 
2329 void __init sev_set_cpu_caps(void)
2330 {
2331 	if (sev_enabled) {
2332 		kvm_cpu_cap_set(X86_FEATURE_SEV);
2333 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2334 	}
2335 	if (sev_es_enabled) {
2336 		kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2337 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2338 	}
2339 }
2340 
2341 void __init sev_hardware_setup(void)
2342 {
2343 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2344 	bool sev_es_supported = false;
2345 	bool sev_supported = false;
2346 
2347 	if (!sev_enabled || !npt_enabled || !nrips)
2348 		goto out;
2349 
2350 	/*
2351 	 * SEV must obviously be supported in hardware.  Sanity check that the
2352 	 * CPU supports decode assists, which is mandatory for SEV guests to
2353 	 * support instruction emulation.  Ditto for flushing by ASID, as SEV
2354 	 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2355 	 * ASID to effect a TLB flush.
2356 	 */
2357 	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2358 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2359 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2360 		goto out;
2361 
2362 	/* Retrieve SEV CPUID information */
2363 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2364 
2365 	/* Set encryption bit location for SEV-ES guests */
2366 	sev_enc_bit = ebx & 0x3f;
2367 
2368 	/* Maximum number of encrypted guests supported simultaneously */
2369 	max_sev_asid = ecx;
2370 	if (!max_sev_asid)
2371 		goto out;
2372 
2373 	/* Minimum ASID value that should be used for SEV guest */
2374 	min_sev_asid = edx;
2375 	sev_me_mask = 1UL << (ebx & 0x3f);
2376 
2377 	/*
2378 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2379 	 * even though it's never used, so that the bitmap is indexed by the
2380 	 * actual ASID.
2381 	 */
2382 	nr_asids = max_sev_asid + 1;
2383 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2384 	if (!sev_asid_bitmap)
2385 		goto out;
2386 
2387 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2388 	if (!sev_reclaim_asid_bitmap) {
2389 		bitmap_free(sev_asid_bitmap);
2390 		sev_asid_bitmap = NULL;
2391 		goto out;
2392 	}
2393 
2394 	if (min_sev_asid <= max_sev_asid) {
2395 		sev_asid_count = max_sev_asid - min_sev_asid + 1;
2396 		WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
2397 	}
2398 	sev_supported = true;
2399 
2400 	/* SEV-ES support requested? */
2401 	if (!sev_es_enabled)
2402 		goto out;
2403 
2404 	/*
2405 	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2406 	 * instruction stream, i.e. can't emulate in response to a #NPF and
2407 	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2408 	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2409 	 */
2410 	if (!enable_mmio_caching)
2411 		goto out;
2412 
2413 	/* Does the CPU support SEV-ES? */
2414 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2415 		goto out;
2416 
2417 	if (!lbrv) {
2418 		WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
2419 			  "LBRV must be present for SEV-ES support");
2420 		goto out;
2421 	}
2422 
2423 	/* Has the system been allocated ASIDs for SEV-ES? */
2424 	if (min_sev_asid == 1)
2425 		goto out;
2426 
2427 	sev_es_asid_count = min_sev_asid - 1;
2428 	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
2429 	sev_es_supported = true;
2430 
2431 out:
2432 	if (boot_cpu_has(X86_FEATURE_SEV))
2433 		pr_info("SEV %s (ASIDs %u - %u)\n",
2434 			sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
2435 								       "unusable" :
2436 								       "disabled",
2437 			min_sev_asid, max_sev_asid);
2438 	if (boot_cpu_has(X86_FEATURE_SEV_ES))
2439 		pr_info("SEV-ES %s (ASIDs %u - %u)\n",
2440 			sev_es_supported ? "enabled" : "disabled",
2441 			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
2442 
2443 	sev_enabled = sev_supported;
2444 	sev_es_enabled = sev_es_supported;
2445 	if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
2446 	    !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
2447 		sev_es_debug_swap_enabled = false;
2448 
2449 	sev_supported_vmsa_features = 0;
2450 	if (sev_es_debug_swap_enabled)
2451 		sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
2452 }
2453 
2454 void sev_hardware_unsetup(void)
2455 {
2456 	if (!sev_enabled)
2457 		return;
2458 
2459 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2460 	sev_flush_asids(1, max_sev_asid);
2461 
2462 	bitmap_free(sev_asid_bitmap);
2463 	bitmap_free(sev_reclaim_asid_bitmap);
2464 
2465 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2466 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2467 }
2468 
2469 int sev_cpu_init(struct svm_cpu_data *sd)
2470 {
2471 	if (!sev_enabled)
2472 		return 0;
2473 
2474 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2475 	if (!sd->sev_vmcbs)
2476 		return -ENOMEM;
2477 
2478 	return 0;
2479 }
2480 
2481 /*
2482  * Pages used by hardware to hold guest encrypted state must be flushed before
2483  * returning them to the system.
2484  */
2485 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2486 {
2487 	unsigned int asid = sev_get_asid(vcpu->kvm);
2488 
2489 	/*
2490 	 * Note!  The address must be a kernel address, as regular page walk
2491 	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2492 	 * address is non-deterministic and unsafe.  This function deliberately
2493 	 * takes a pointer to deter passing in a user address.
2494 	 */
2495 	unsigned long addr = (unsigned long)va;
2496 
2497 	/*
2498 	 * If CPU enforced cache coherency for encrypted mappings of the
2499 	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2500 	 * flush is still needed in order to work properly with DMA devices.
2501 	 */
2502 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2503 		clflush_cache_range(va, PAGE_SIZE);
2504 		return;
2505 	}
2506 
2507 	/*
2508 	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
2509 	 * back to WBINVD if this faults so as not to make any problems worse
2510 	 * by leaving stale encrypted data in the cache.
2511 	 */
2512 	if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2513 		goto do_wbinvd;
2514 
2515 	return;
2516 
2517 do_wbinvd:
2518 	wbinvd_on_all_cpus();
2519 }
2520 
2521 void sev_guest_memory_reclaimed(struct kvm *kvm)
2522 {
2523 	if (!sev_guest(kvm))
2524 		return;
2525 
2526 	wbinvd_on_all_cpus();
2527 }
2528 
2529 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2530 {
2531 	struct vcpu_svm *svm;
2532 
2533 	if (!sev_es_guest(vcpu->kvm))
2534 		return;
2535 
2536 	svm = to_svm(vcpu);
2537 
2538 	if (vcpu->arch.guest_state_protected)
2539 		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2540 
2541 	__free_page(virt_to_page(svm->sev_es.vmsa));
2542 
2543 	if (svm->sev_es.ghcb_sa_free)
2544 		kvfree(svm->sev_es.ghcb_sa);
2545 }
2546 
2547 static void dump_ghcb(struct vcpu_svm *svm)
2548 {
2549 	struct ghcb *ghcb = svm->sev_es.ghcb;
2550 	unsigned int nbits;
2551 
2552 	/* Re-use the dump_invalid_vmcb module parameter */
2553 	if (!dump_invalid_vmcb) {
2554 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2555 		return;
2556 	}
2557 
2558 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2559 
2560 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2561 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2562 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2563 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2564 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2565 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2566 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2567 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2568 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2569 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2570 }
2571 
2572 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2573 {
2574 	struct kvm_vcpu *vcpu = &svm->vcpu;
2575 	struct ghcb *ghcb = svm->sev_es.ghcb;
2576 
2577 	/*
2578 	 * The GHCB protocol so far allows for the following data
2579 	 * to be returned:
2580 	 *   GPRs RAX, RBX, RCX, RDX
2581 	 *
2582 	 * Copy their values, even if they may not have been written during the
2583 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2584 	 */
2585 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2586 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2587 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2588 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2589 }
2590 
2591 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2592 {
2593 	struct vmcb_control_area *control = &svm->vmcb->control;
2594 	struct kvm_vcpu *vcpu = &svm->vcpu;
2595 	struct ghcb *ghcb = svm->sev_es.ghcb;
2596 	u64 exit_code;
2597 
2598 	/*
2599 	 * The GHCB protocol so far allows for the following data
2600 	 * to be supplied:
2601 	 *   GPRs RAX, RBX, RCX, RDX
2602 	 *   XCR0
2603 	 *   CPL
2604 	 *
2605 	 * VMMCALL allows the guest to provide extra registers. KVM also
2606 	 * expects RSI for hypercalls, so include that, too.
2607 	 *
2608 	 * Copy their values to the appropriate location if supplied.
2609 	 */
2610 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2611 
2612 	BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
2613 	memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
2614 
2615 	vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
2616 	vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
2617 	vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
2618 	vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
2619 	vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
2620 
2621 	svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
2622 
2623 	if (kvm_ghcb_xcr0_is_valid(svm)) {
2624 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2625 		kvm_update_cpuid_runtime(vcpu);
2626 	}
2627 
2628 	/* Copy the GHCB exit information into the VMCB fields */
2629 	exit_code = ghcb_get_sw_exit_code(ghcb);
2630 	control->exit_code = lower_32_bits(exit_code);
2631 	control->exit_code_hi = upper_32_bits(exit_code);
2632 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2633 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2634 	svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
2635 
2636 	/* Clear the valid entries fields */
2637 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2638 }
2639 
2640 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
2641 {
2642 	return (((u64)control->exit_code_hi) << 32) | control->exit_code;
2643 }
2644 
2645 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2646 {
2647 	struct vmcb_control_area *control = &svm->vmcb->control;
2648 	struct kvm_vcpu *vcpu = &svm->vcpu;
2649 	u64 exit_code;
2650 	u64 reason;
2651 
2652 	/*
2653 	 * Retrieve the exit code now even though it may not be marked valid
2654 	 * as it could help with debugging.
2655 	 */
2656 	exit_code = kvm_ghcb_get_sw_exit_code(control);
2657 
2658 	/* Only GHCB Usage code 0 is supported */
2659 	if (svm->sev_es.ghcb->ghcb_usage) {
2660 		reason = GHCB_ERR_INVALID_USAGE;
2661 		goto vmgexit_err;
2662 	}
2663 
2664 	reason = GHCB_ERR_MISSING_INPUT;
2665 
2666 	if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
2667 	    !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
2668 	    !kvm_ghcb_sw_exit_info_2_is_valid(svm))
2669 		goto vmgexit_err;
2670 
2671 	switch (exit_code) {
2672 	case SVM_EXIT_READ_DR7:
2673 		break;
2674 	case SVM_EXIT_WRITE_DR7:
2675 		if (!kvm_ghcb_rax_is_valid(svm))
2676 			goto vmgexit_err;
2677 		break;
2678 	case SVM_EXIT_RDTSC:
2679 		break;
2680 	case SVM_EXIT_RDPMC:
2681 		if (!kvm_ghcb_rcx_is_valid(svm))
2682 			goto vmgexit_err;
2683 		break;
2684 	case SVM_EXIT_CPUID:
2685 		if (!kvm_ghcb_rax_is_valid(svm) ||
2686 		    !kvm_ghcb_rcx_is_valid(svm))
2687 			goto vmgexit_err;
2688 		if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
2689 			if (!kvm_ghcb_xcr0_is_valid(svm))
2690 				goto vmgexit_err;
2691 		break;
2692 	case SVM_EXIT_INVD:
2693 		break;
2694 	case SVM_EXIT_IOIO:
2695 		if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
2696 			if (!kvm_ghcb_sw_scratch_is_valid(svm))
2697 				goto vmgexit_err;
2698 		} else {
2699 			if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
2700 				if (!kvm_ghcb_rax_is_valid(svm))
2701 					goto vmgexit_err;
2702 		}
2703 		break;
2704 	case SVM_EXIT_MSR:
2705 		if (!kvm_ghcb_rcx_is_valid(svm))
2706 			goto vmgexit_err;
2707 		if (control->exit_info_1) {
2708 			if (!kvm_ghcb_rax_is_valid(svm) ||
2709 			    !kvm_ghcb_rdx_is_valid(svm))
2710 				goto vmgexit_err;
2711 		}
2712 		break;
2713 	case SVM_EXIT_VMMCALL:
2714 		if (!kvm_ghcb_rax_is_valid(svm) ||
2715 		    !kvm_ghcb_cpl_is_valid(svm))
2716 			goto vmgexit_err;
2717 		break;
2718 	case SVM_EXIT_RDTSCP:
2719 		break;
2720 	case SVM_EXIT_WBINVD:
2721 		break;
2722 	case SVM_EXIT_MONITOR:
2723 		if (!kvm_ghcb_rax_is_valid(svm) ||
2724 		    !kvm_ghcb_rcx_is_valid(svm) ||
2725 		    !kvm_ghcb_rdx_is_valid(svm))
2726 			goto vmgexit_err;
2727 		break;
2728 	case SVM_EXIT_MWAIT:
2729 		if (!kvm_ghcb_rax_is_valid(svm) ||
2730 		    !kvm_ghcb_rcx_is_valid(svm))
2731 			goto vmgexit_err;
2732 		break;
2733 	case SVM_VMGEXIT_MMIO_READ:
2734 	case SVM_VMGEXIT_MMIO_WRITE:
2735 		if (!kvm_ghcb_sw_scratch_is_valid(svm))
2736 			goto vmgexit_err;
2737 		break;
2738 	case SVM_VMGEXIT_NMI_COMPLETE:
2739 	case SVM_VMGEXIT_AP_HLT_LOOP:
2740 	case SVM_VMGEXIT_AP_JUMP_TABLE:
2741 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2742 	case SVM_VMGEXIT_HV_FEATURES:
2743 	case SVM_VMGEXIT_TERM_REQUEST:
2744 		break;
2745 	default:
2746 		reason = GHCB_ERR_INVALID_EVENT;
2747 		goto vmgexit_err;
2748 	}
2749 
2750 	return 0;
2751 
2752 vmgexit_err:
2753 	if (reason == GHCB_ERR_INVALID_USAGE) {
2754 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2755 			    svm->sev_es.ghcb->ghcb_usage);
2756 	} else if (reason == GHCB_ERR_INVALID_EVENT) {
2757 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2758 			    exit_code);
2759 	} else {
2760 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2761 			    exit_code);
2762 		dump_ghcb(svm);
2763 	}
2764 
2765 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2766 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
2767 
2768 	/* Resume the guest to "return" the error code. */
2769 	return 1;
2770 }
2771 
2772 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2773 {
2774 	/* Clear any indication that the vCPU is in a type of AP Reset Hold */
2775 	svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
2776 
2777 	if (!svm->sev_es.ghcb)
2778 		return;
2779 
2780 	if (svm->sev_es.ghcb_sa_free) {
2781 		/*
2782 		 * The scratch area lives outside the GHCB, so there is a
2783 		 * buffer that, depending on the operation performed, may
2784 		 * need to be synced, then freed.
2785 		 */
2786 		if (svm->sev_es.ghcb_sa_sync) {
2787 			kvm_write_guest(svm->vcpu.kvm,
2788 					svm->sev_es.sw_scratch,
2789 					svm->sev_es.ghcb_sa,
2790 					svm->sev_es.ghcb_sa_len);
2791 			svm->sev_es.ghcb_sa_sync = false;
2792 		}
2793 
2794 		kvfree(svm->sev_es.ghcb_sa);
2795 		svm->sev_es.ghcb_sa = NULL;
2796 		svm->sev_es.ghcb_sa_free = false;
2797 	}
2798 
2799 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2800 
2801 	sev_es_sync_to_ghcb(svm);
2802 
2803 	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2804 	svm->sev_es.ghcb = NULL;
2805 }
2806 
2807 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2808 {
2809 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2810 	unsigned int asid = sev_get_asid(svm->vcpu.kvm);
2811 
2812 	/* Assign the asid allocated with this SEV guest */
2813 	svm->asid = asid;
2814 
2815 	/*
2816 	 * Flush guest TLB:
2817 	 *
2818 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2819 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2820 	 */
2821 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2822 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2823 		return;
2824 
2825 	sd->sev_vmcbs[asid] = svm->vmcb;
2826 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2827 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2828 }
2829 
2830 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
2831 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2832 {
2833 	struct vmcb_control_area *control = &svm->vmcb->control;
2834 	u64 ghcb_scratch_beg, ghcb_scratch_end;
2835 	u64 scratch_gpa_beg, scratch_gpa_end;
2836 	void *scratch_va;
2837 
2838 	scratch_gpa_beg = svm->sev_es.sw_scratch;
2839 	if (!scratch_gpa_beg) {
2840 		pr_err("vmgexit: scratch gpa not provided\n");
2841 		goto e_scratch;
2842 	}
2843 
2844 	scratch_gpa_end = scratch_gpa_beg + len;
2845 	if (scratch_gpa_end < scratch_gpa_beg) {
2846 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2847 		       len, scratch_gpa_beg);
2848 		goto e_scratch;
2849 	}
2850 
2851 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2852 		/* Scratch area begins within GHCB */
2853 		ghcb_scratch_beg = control->ghcb_gpa +
2854 				   offsetof(struct ghcb, shared_buffer);
2855 		ghcb_scratch_end = control->ghcb_gpa +
2856 				   offsetof(struct ghcb, reserved_0xff0);
2857 
2858 		/*
2859 		 * If the scratch area begins within the GHCB, it must be
2860 		 * completely contained in the GHCB shared buffer area.
2861 		 */
2862 		if (scratch_gpa_beg < ghcb_scratch_beg ||
2863 		    scratch_gpa_end > ghcb_scratch_end) {
2864 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2865 			       scratch_gpa_beg, scratch_gpa_end);
2866 			goto e_scratch;
2867 		}
2868 
2869 		scratch_va = (void *)svm->sev_es.ghcb;
2870 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2871 	} else {
2872 		/*
2873 		 * The guest memory must be read into a kernel buffer, so
2874 		 * limit the size
2875 		 */
2876 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2877 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2878 			       len, GHCB_SCRATCH_AREA_LIMIT);
2879 			goto e_scratch;
2880 		}
2881 		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2882 		if (!scratch_va)
2883 			return -ENOMEM;
2884 
2885 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2886 			/* Unable to copy scratch area from guest */
2887 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2888 
2889 			kvfree(scratch_va);
2890 			return -EFAULT;
2891 		}
2892 
2893 		/*
2894 		 * The scratch area is outside the GHCB. The operation will
2895 		 * dictate whether the buffer needs to be synced before running
2896 		 * the vCPU next time (i.e. a read was requested so the data
2897 		 * must be written back to the guest memory).
2898 		 */
2899 		svm->sev_es.ghcb_sa_sync = sync;
2900 		svm->sev_es.ghcb_sa_free = true;
2901 	}
2902 
2903 	svm->sev_es.ghcb_sa = scratch_va;
2904 	svm->sev_es.ghcb_sa_len = len;
2905 
2906 	return 0;
2907 
2908 e_scratch:
2909 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2910 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2911 
2912 	return 1;
2913 }
2914 
2915 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2916 			      unsigned int pos)
2917 {
2918 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2919 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2920 }
2921 
2922 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2923 {
2924 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2925 }
2926 
2927 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2928 {
2929 	svm->vmcb->control.ghcb_gpa = value;
2930 }
2931 
2932 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2933 {
2934 	struct vmcb_control_area *control = &svm->vmcb->control;
2935 	struct kvm_vcpu *vcpu = &svm->vcpu;
2936 	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2937 	u64 ghcb_info;
2938 	int ret = 1;
2939 
2940 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2941 
2942 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2943 					     control->ghcb_gpa);
2944 
2945 	switch (ghcb_info) {
2946 	case GHCB_MSR_SEV_INFO_REQ:
2947 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
2948 						    GHCB_VERSION_MIN,
2949 						    sev_enc_bit));
2950 		break;
2951 	case GHCB_MSR_CPUID_REQ: {
2952 		u64 cpuid_fn, cpuid_reg, cpuid_value;
2953 
2954 		cpuid_fn = get_ghcb_msr_bits(svm,
2955 					     GHCB_MSR_CPUID_FUNC_MASK,
2956 					     GHCB_MSR_CPUID_FUNC_POS);
2957 
2958 		/* Initialize the registers needed by the CPUID intercept */
2959 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2960 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2961 
2962 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2963 		if (!ret) {
2964 			/* Error, keep GHCB MSR value as-is */
2965 			break;
2966 		}
2967 
2968 		cpuid_reg = get_ghcb_msr_bits(svm,
2969 					      GHCB_MSR_CPUID_REG_MASK,
2970 					      GHCB_MSR_CPUID_REG_POS);
2971 		if (cpuid_reg == 0)
2972 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2973 		else if (cpuid_reg == 1)
2974 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2975 		else if (cpuid_reg == 2)
2976 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2977 		else
2978 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2979 
2980 		set_ghcb_msr_bits(svm, cpuid_value,
2981 				  GHCB_MSR_CPUID_VALUE_MASK,
2982 				  GHCB_MSR_CPUID_VALUE_POS);
2983 
2984 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2985 				  GHCB_MSR_INFO_MASK,
2986 				  GHCB_MSR_INFO_POS);
2987 		break;
2988 	}
2989 	case GHCB_MSR_AP_RESET_HOLD_REQ:
2990 		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
2991 		ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
2992 
2993 		/*
2994 		 * Preset the result to a non-SIPI return and then only set
2995 		 * the result to non-zero when delivering a SIPI.
2996 		 */
2997 		set_ghcb_msr_bits(svm, 0,
2998 				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
2999 				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
3000 
3001 		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
3002 				  GHCB_MSR_INFO_MASK,
3003 				  GHCB_MSR_INFO_POS);
3004 		break;
3005 	case GHCB_MSR_HV_FT_REQ:
3006 		set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
3007 				  GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
3008 		set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
3009 				  GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
3010 		break;
3011 	case GHCB_MSR_TERM_REQ: {
3012 		u64 reason_set, reason_code;
3013 
3014 		reason_set = get_ghcb_msr_bits(svm,
3015 					       GHCB_MSR_TERM_REASON_SET_MASK,
3016 					       GHCB_MSR_TERM_REASON_SET_POS);
3017 		reason_code = get_ghcb_msr_bits(svm,
3018 						GHCB_MSR_TERM_REASON_MASK,
3019 						GHCB_MSR_TERM_REASON_POS);
3020 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
3021 			reason_set, reason_code);
3022 
3023 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
3024 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
3025 		vcpu->run->system_event.ndata = 1;
3026 		vcpu->run->system_event.data[0] = control->ghcb_gpa;
3027 
3028 		return 0;
3029 	}
3030 	default:
3031 		/* Error, keep GHCB MSR value as-is */
3032 		break;
3033 	}
3034 
3035 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
3036 					    control->ghcb_gpa, ret);
3037 
3038 	return ret;
3039 }
3040 
3041 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
3042 {
3043 	struct vcpu_svm *svm = to_svm(vcpu);
3044 	struct vmcb_control_area *control = &svm->vmcb->control;
3045 	u64 ghcb_gpa, exit_code;
3046 	int ret;
3047 
3048 	/* Validate the GHCB */
3049 	ghcb_gpa = control->ghcb_gpa;
3050 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
3051 		return sev_handle_vmgexit_msr_protocol(svm);
3052 
3053 	if (!ghcb_gpa) {
3054 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
3055 
3056 		/* Without a GHCB, just return right back to the guest */
3057 		return 1;
3058 	}
3059 
3060 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
3061 		/* Unable to map GHCB from guest */
3062 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
3063 			    ghcb_gpa);
3064 
3065 		/* Without a GHCB, just return right back to the guest */
3066 		return 1;
3067 	}
3068 
3069 	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
3070 
3071 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
3072 
3073 	sev_es_sync_from_ghcb(svm);
3074 	ret = sev_es_validate_vmgexit(svm);
3075 	if (ret)
3076 		return ret;
3077 
3078 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
3079 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
3080 
3081 	exit_code = kvm_ghcb_get_sw_exit_code(control);
3082 	switch (exit_code) {
3083 	case SVM_VMGEXIT_MMIO_READ:
3084 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
3085 		if (ret)
3086 			break;
3087 
3088 		ret = kvm_sev_es_mmio_read(vcpu,
3089 					   control->exit_info_1,
3090 					   control->exit_info_2,
3091 					   svm->sev_es.ghcb_sa);
3092 		break;
3093 	case SVM_VMGEXIT_MMIO_WRITE:
3094 		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
3095 		if (ret)
3096 			break;
3097 
3098 		ret = kvm_sev_es_mmio_write(vcpu,
3099 					    control->exit_info_1,
3100 					    control->exit_info_2,
3101 					    svm->sev_es.ghcb_sa);
3102 		break;
3103 	case SVM_VMGEXIT_NMI_COMPLETE:
3104 		++vcpu->stat.nmi_window_exits;
3105 		svm->nmi_masked = false;
3106 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3107 		ret = 1;
3108 		break;
3109 	case SVM_VMGEXIT_AP_HLT_LOOP:
3110 		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
3111 		ret = kvm_emulate_ap_reset_hold(vcpu);
3112 		break;
3113 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
3114 		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
3115 
3116 		switch (control->exit_info_1) {
3117 		case 0:
3118 			/* Set AP jump table address */
3119 			sev->ap_jump_table = control->exit_info_2;
3120 			break;
3121 		case 1:
3122 			/* Get AP jump table address */
3123 			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
3124 			break;
3125 		default:
3126 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
3127 			       control->exit_info_1);
3128 			ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
3129 			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
3130 		}
3131 
3132 		ret = 1;
3133 		break;
3134 	}
3135 	case SVM_VMGEXIT_HV_FEATURES:
3136 		ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED);
3137 
3138 		ret = 1;
3139 		break;
3140 	case SVM_VMGEXIT_TERM_REQUEST:
3141 		pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
3142 			control->exit_info_1, control->exit_info_2);
3143 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
3144 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
3145 		vcpu->run->system_event.ndata = 1;
3146 		vcpu->run->system_event.data[0] = control->ghcb_gpa;
3147 		break;
3148 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3149 		vcpu_unimpl(vcpu,
3150 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
3151 			    control->exit_info_1, control->exit_info_2);
3152 		ret = -EINVAL;
3153 		break;
3154 	default:
3155 		ret = svm_invoke_exit_handler(vcpu, exit_code);
3156 	}
3157 
3158 	return ret;
3159 }
3160 
3161 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
3162 {
3163 	int count;
3164 	int bytes;
3165 	int r;
3166 
3167 	if (svm->vmcb->control.exit_info_2 > INT_MAX)
3168 		return -EINVAL;
3169 
3170 	count = svm->vmcb->control.exit_info_2;
3171 	if (unlikely(check_mul_overflow(count, size, &bytes)))
3172 		return -EINVAL;
3173 
3174 	r = setup_vmgexit_scratch(svm, in, bytes);
3175 	if (r)
3176 		return r;
3177 
3178 	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
3179 				    count, in);
3180 }
3181 
3182 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
3183 {
3184 	struct kvm_vcpu *vcpu = &svm->vcpu;
3185 
3186 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
3187 		bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
3188 				 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
3189 
3190 		set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
3191 	}
3192 
3193 	/*
3194 	 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
3195 	 * the host/guest supports its use.
3196 	 *
3197 	 * guest_can_use() checks a number of requirements on the host/guest to
3198 	 * ensure that MSR_IA32_XSS is available, but it might report true even
3199 	 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
3200 	 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
3201 	 * to further check that the guest CPUID actually supports
3202 	 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
3203 	 * guests will still get intercepted and caught in the normal
3204 	 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
3205 	 */
3206 	if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
3207 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3208 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
3209 	else
3210 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
3211 }
3212 
3213 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
3214 {
3215 	struct kvm_vcpu *vcpu = &svm->vcpu;
3216 	struct kvm_cpuid_entry2 *best;
3217 
3218 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
3219 	best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
3220 	if (best)
3221 		vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3222 
3223 	if (sev_es_guest(svm->vcpu.kvm))
3224 		sev_es_vcpu_after_set_cpuid(svm);
3225 }
3226 
3227 static void sev_es_init_vmcb(struct vcpu_svm *svm)
3228 {
3229 	struct vmcb *vmcb = svm->vmcb01.ptr;
3230 	struct kvm_vcpu *vcpu = &svm->vcpu;
3231 
3232 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
3233 
3234 	/*
3235 	 * An SEV-ES guest requires a VMSA area that is a separate from the
3236 	 * VMCB page. Do not include the encryption mask on the VMSA physical
3237 	 * address since hardware will access it using the guest key.  Note,
3238 	 * the VMSA will be NULL if this vCPU is the destination for intrahost
3239 	 * migration, and will be copied later.
3240 	 */
3241 	if (svm->sev_es.vmsa)
3242 		svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
3243 
3244 	/* Can't intercept CR register access, HV can't modify CR registers */
3245 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
3246 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
3247 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
3248 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
3249 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
3250 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3251 
3252 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
3253 
3254 	/* Track EFER/CR register changes */
3255 	svm_set_intercept(svm, TRAP_EFER_WRITE);
3256 	svm_set_intercept(svm, TRAP_CR0_WRITE);
3257 	svm_set_intercept(svm, TRAP_CR4_WRITE);
3258 	svm_set_intercept(svm, TRAP_CR8_WRITE);
3259 
3260 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
3261 	if (!sev_vcpu_has_debug_swap(svm)) {
3262 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
3263 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
3264 		recalc_intercepts(svm);
3265 	} else {
3266 		/*
3267 		 * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
3268 		 * allow debugging SEV-ES guests, and enables DebugSwap iff
3269 		 * NO_NESTED_DATA_BP is supported, so there's no reason to
3270 		 * intercept #DB when DebugSwap is enabled.  For simplicity
3271 		 * with respect to guest debug, intercept #DB for other VMs
3272 		 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
3273 		 * guest can't DoS the CPU with infinite #DB vectoring.
3274 		 */
3275 		clr_exception_intercept(svm, DB_VECTOR);
3276 	}
3277 
3278 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
3279 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
3280 
3281 	/* Clear intercepts on selected MSRs */
3282 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
3283 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
3284 }
3285 
3286 void sev_init_vmcb(struct vcpu_svm *svm)
3287 {
3288 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
3289 	clr_exception_intercept(svm, UD_VECTOR);
3290 
3291 	/*
3292 	 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
3293 	 * KVM can't decrypt guest memory to decode the faulting instruction.
3294 	 */
3295 	clr_exception_intercept(svm, GP_VECTOR);
3296 
3297 	if (sev_es_guest(svm->vcpu.kvm))
3298 		sev_es_init_vmcb(svm);
3299 }
3300 
3301 void sev_es_vcpu_reset(struct vcpu_svm *svm)
3302 {
3303 	struct kvm_vcpu *vcpu = &svm->vcpu;
3304 	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
3305 
3306 	/*
3307 	 * Set the GHCB MSR value as per the GHCB specification when emulating
3308 	 * vCPU RESET for an SEV-ES guest.
3309 	 */
3310 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
3311 					    GHCB_VERSION_MIN,
3312 					    sev_enc_bit));
3313 }
3314 
3315 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
3316 {
3317 	/*
3318 	 * All host state for SEV-ES guests is categorized into three swap types
3319 	 * based on how it is handled by hardware during a world switch:
3320 	 *
3321 	 * A: VMRUN:   Host state saved in host save area
3322 	 *    VMEXIT:  Host state loaded from host save area
3323 	 *
3324 	 * B: VMRUN:   Host state _NOT_ saved in host save area
3325 	 *    VMEXIT:  Host state loaded from host save area
3326 	 *
3327 	 * C: VMRUN:   Host state _NOT_ saved in host save area
3328 	 *    VMEXIT:  Host state initialized to default(reset) values
3329 	 *
3330 	 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
3331 	 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
3332 	 * by common SVM code).
3333 	 */
3334 	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3335 	hostsa->pkru = read_pkru();
3336 	hostsa->xss = host_xss;
3337 
3338 	/*
3339 	 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
3340 	 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
3341 	 * saves and loads debug registers (Type-A).
3342 	 */
3343 	if (sev_vcpu_has_debug_swap(svm)) {
3344 		hostsa->dr0 = native_get_debugreg(0);
3345 		hostsa->dr1 = native_get_debugreg(1);
3346 		hostsa->dr2 = native_get_debugreg(2);
3347 		hostsa->dr3 = native_get_debugreg(3);
3348 		hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
3349 		hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
3350 		hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
3351 		hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
3352 	}
3353 }
3354 
3355 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3356 {
3357 	struct vcpu_svm *svm = to_svm(vcpu);
3358 
3359 	/* First SIPI: Use the values as initially set by the VMM */
3360 	if (!svm->sev_es.received_first_sipi) {
3361 		svm->sev_es.received_first_sipi = true;
3362 		return;
3363 	}
3364 
3365 	/* Subsequent SIPI */
3366 	switch (svm->sev_es.ap_reset_hold_type) {
3367 	case AP_RESET_HOLD_NAE_EVENT:
3368 		/*
3369 		 * Return from an AP Reset Hold VMGEXIT, where the guest will
3370 		 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
3371 		 */
3372 		ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3373 		break;
3374 	case AP_RESET_HOLD_MSR_PROTO:
3375 		/*
3376 		 * Return from an AP Reset Hold VMGEXIT, where the guest will
3377 		 * set the CS and RIP. Set GHCB data field to a non-zero value.
3378 		 */
3379 		set_ghcb_msr_bits(svm, 1,
3380 				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
3381 				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
3382 
3383 		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
3384 				  GHCB_MSR_INFO_MASK,
3385 				  GHCB_MSR_INFO_POS);
3386 		break;
3387 	default:
3388 		break;
3389 	}
3390 }
3391 
3392 struct page *snp_safe_alloc_page(struct kvm_vcpu *vcpu)
3393 {
3394 	unsigned long pfn;
3395 	struct page *p;
3396 
3397 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
3398 		return alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3399 
3400 	/*
3401 	 * Allocate an SNP-safe page to workaround the SNP erratum where
3402 	 * the CPU will incorrectly signal an RMP violation #PF if a
3403 	 * hugepage (2MB or 1GB) collides with the RMP entry of a
3404 	 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
3405 	 *
3406 	 * Allocate one extra page, choose a page which is not
3407 	 * 2MB-aligned, and free the other.
3408 	 */
3409 	p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
3410 	if (!p)
3411 		return NULL;
3412 
3413 	split_page(p, 1);
3414 
3415 	pfn = page_to_pfn(p);
3416 	if (IS_ALIGNED(pfn, PTRS_PER_PMD))
3417 		__free_page(p++);
3418 	else
3419 		__free_page(p + 1);
3420 
3421 	return p;
3422 }
3423