1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 #include <uapi/linux/sev-guest.h> 23 24 #include <asm/pkru.h> 25 #include <asm/trapnr.h> 26 #include <asm/fpu/xcr.h> 27 #include <asm/fpu/xstate.h> 28 #include <asm/debugreg.h> 29 #include <asm/msr.h> 30 #include <asm/sev.h> 31 32 #include "mmu.h" 33 #include "x86.h" 34 #include "svm.h" 35 #include "svm_ops.h" 36 #include "cpuid.h" 37 #include "trace.h" 38 39 #define GHCB_VERSION_MAX 2ULL 40 #define GHCB_VERSION_DEFAULT 2ULL 41 #define GHCB_VERSION_MIN 1ULL 42 43 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION) 44 45 /* enable/disable SEV support */ 46 static bool sev_enabled = true; 47 module_param_named(sev, sev_enabled, bool, 0444); 48 49 /* enable/disable SEV-ES support */ 50 static bool sev_es_enabled = true; 51 module_param_named(sev_es, sev_es_enabled, bool, 0444); 52 53 /* enable/disable SEV-SNP support */ 54 static bool sev_snp_enabled = true; 55 module_param_named(sev_snp, sev_snp_enabled, bool, 0444); 56 57 /* enable/disable SEV-ES DebugSwap support */ 58 static bool sev_es_debug_swap_enabled = true; 59 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 60 static u64 sev_supported_vmsa_features; 61 62 #define AP_RESET_HOLD_NONE 0 63 #define AP_RESET_HOLD_NAE_EVENT 1 64 #define AP_RESET_HOLD_MSR_PROTO 2 65 66 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */ 67 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0) 68 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8) 69 #define SNP_POLICY_MASK_SMT BIT_ULL(16) 70 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17) 71 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19) 72 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20) 73 74 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \ 75 SNP_POLICY_MASK_API_MAJOR | \ 76 SNP_POLICY_MASK_SMT | \ 77 SNP_POLICY_MASK_RSVD_MBO | \ 78 SNP_POLICY_MASK_DEBUG | \ 79 SNP_POLICY_MASK_SINGLE_SOCKET) 80 81 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000 82 83 static u8 sev_enc_bit; 84 static DECLARE_RWSEM(sev_deactivate_lock); 85 static DEFINE_MUTEX(sev_bitmap_lock); 86 unsigned int max_sev_asid; 87 static unsigned int min_sev_asid; 88 static unsigned long sev_me_mask; 89 static unsigned int nr_asids; 90 static unsigned long *sev_asid_bitmap; 91 static unsigned long *sev_reclaim_asid_bitmap; 92 93 static int snp_decommission_context(struct kvm *kvm); 94 95 struct enc_region { 96 struct list_head list; 97 unsigned long npages; 98 struct page **pages; 99 unsigned long uaddr; 100 unsigned long size; 101 }; 102 103 /* Called with the sev_bitmap_lock held, or on shutdown */ 104 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) 105 { 106 int ret, error = 0; 107 unsigned int asid; 108 109 /* Check if there are any ASIDs to reclaim before performing a flush */ 110 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 111 if (asid > max_asid) 112 return -EBUSY; 113 114 /* 115 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 116 * so it must be guarded. 117 */ 118 down_write(&sev_deactivate_lock); 119 120 wbinvd_on_all_cpus(); 121 122 if (sev_snp_enabled) 123 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error); 124 else 125 ret = sev_guest_df_flush(&error); 126 127 up_write(&sev_deactivate_lock); 128 129 if (ret) 130 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n", 131 sev_snp_enabled ? "-SNP" : "", ret, error); 132 133 return ret; 134 } 135 136 static inline bool is_mirroring_enc_context(struct kvm *kvm) 137 { 138 return !!to_kvm_sev_info(kvm)->enc_context_owner; 139 } 140 141 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm) 142 { 143 struct kvm_vcpu *vcpu = &svm->vcpu; 144 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 145 146 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP; 147 } 148 149 /* Must be called with the sev_bitmap_lock held */ 150 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) 151 { 152 if (sev_flush_asids(min_asid, max_asid)) 153 return false; 154 155 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 156 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 157 nr_asids); 158 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 159 160 return true; 161 } 162 163 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 164 { 165 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 166 return misc_cg_try_charge(type, sev->misc_cg, 1); 167 } 168 169 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 170 { 171 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 172 misc_cg_uncharge(type, sev->misc_cg, 1); 173 } 174 175 static int sev_asid_new(struct kvm_sev_info *sev) 176 { 177 /* 178 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 179 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 180 * Note: min ASID can end up larger than the max if basic SEV support is 181 * effectively disabled by disallowing use of ASIDs for SEV guests. 182 */ 183 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; 184 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 185 unsigned int asid; 186 bool retry = true; 187 int ret; 188 189 if (min_asid > max_asid) 190 return -ENOTTY; 191 192 WARN_ON(sev->misc_cg); 193 sev->misc_cg = get_current_misc_cg(); 194 ret = sev_misc_cg_try_charge(sev); 195 if (ret) { 196 put_misc_cg(sev->misc_cg); 197 sev->misc_cg = NULL; 198 return ret; 199 } 200 201 mutex_lock(&sev_bitmap_lock); 202 203 again: 204 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 205 if (asid > max_asid) { 206 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 207 retry = false; 208 goto again; 209 } 210 mutex_unlock(&sev_bitmap_lock); 211 ret = -EBUSY; 212 goto e_uncharge; 213 } 214 215 __set_bit(asid, sev_asid_bitmap); 216 217 mutex_unlock(&sev_bitmap_lock); 218 219 sev->asid = asid; 220 return 0; 221 e_uncharge: 222 sev_misc_cg_uncharge(sev); 223 put_misc_cg(sev->misc_cg); 224 sev->misc_cg = NULL; 225 return ret; 226 } 227 228 static unsigned int sev_get_asid(struct kvm *kvm) 229 { 230 return to_kvm_sev_info(kvm)->asid; 231 } 232 233 static void sev_asid_free(struct kvm_sev_info *sev) 234 { 235 struct svm_cpu_data *sd; 236 int cpu; 237 238 mutex_lock(&sev_bitmap_lock); 239 240 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 241 242 for_each_possible_cpu(cpu) { 243 sd = per_cpu_ptr(&svm_data, cpu); 244 sd->sev_vmcbs[sev->asid] = NULL; 245 } 246 247 mutex_unlock(&sev_bitmap_lock); 248 249 sev_misc_cg_uncharge(sev); 250 put_misc_cg(sev->misc_cg); 251 sev->misc_cg = NULL; 252 } 253 254 static void sev_decommission(unsigned int handle) 255 { 256 struct sev_data_decommission decommission; 257 258 if (!handle) 259 return; 260 261 decommission.handle = handle; 262 sev_guest_decommission(&decommission, NULL); 263 } 264 265 /* 266 * Transition a page to hypervisor-owned/shared state in the RMP table. This 267 * should not fail under normal conditions, but leak the page should that 268 * happen since it will no longer be usable by the host due to RMP protections. 269 */ 270 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level) 271 { 272 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) { 273 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT); 274 return -EIO; 275 } 276 277 return 0; 278 } 279 280 /* 281 * Certain page-states, such as Pre-Guest and Firmware pages (as documented 282 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be 283 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE 284 * unless they are reclaimed first. 285 * 286 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they 287 * might not be usable by the host due to being set as immutable or still 288 * being associated with a guest ASID. 289 * 290 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be 291 * converted back to shared, as the page is no longer usable due to RMP 292 * protections, and it's infeasible for the guest to continue on. 293 */ 294 static int snp_page_reclaim(struct kvm *kvm, u64 pfn) 295 { 296 struct sev_data_snp_page_reclaim data = {0}; 297 int fw_err, rc; 298 299 data.paddr = __sme_set(pfn << PAGE_SHIFT); 300 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err); 301 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) { 302 snp_leak_pages(pfn, 1); 303 return -EIO; 304 } 305 306 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K)) 307 return -EIO; 308 309 return rc; 310 } 311 312 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 313 { 314 struct sev_data_deactivate deactivate; 315 316 if (!handle) 317 return; 318 319 deactivate.handle = handle; 320 321 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 322 down_read(&sev_deactivate_lock); 323 sev_guest_deactivate(&deactivate, NULL); 324 up_read(&sev_deactivate_lock); 325 326 sev_decommission(handle); 327 } 328 329 /* 330 * This sets up bounce buffers/firmware pages to handle SNP Guest Request 331 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB 332 * 2.0 specification for more details. 333 * 334 * Technically, when an SNP Guest Request is issued, the guest will provide its 335 * own request/response pages, which could in theory be passed along directly 336 * to firmware rather than using bounce pages. However, these pages would need 337 * special care: 338 * 339 * - Both pages are from shared guest memory, so they need to be protected 340 * from migration/etc. occurring while firmware reads/writes to them. At a 341 * minimum, this requires elevating the ref counts and potentially needing 342 * an explicit pinning of the memory. This places additional restrictions 343 * on what type of memory backends userspace can use for shared guest 344 * memory since there is some reliance on using refcounted pages. 345 * 346 * - The response page needs to be switched to Firmware-owned[1] state 347 * before the firmware can write to it, which can lead to potential 348 * host RMP #PFs if the guest is misbehaved and hands the host a 349 * guest page that KVM might write to for other reasons (e.g. virtio 350 * buffers/etc.). 351 * 352 * Both of these issues can be avoided completely by using separately-allocated 353 * bounce pages for both the request/response pages and passing those to 354 * firmware instead. So that's what is being set up here. 355 * 356 * Guest requests rely on message sequence numbers to ensure requests are 357 * issued to firmware in the order the guest issues them, so concurrent guest 358 * requests generally shouldn't happen. But a misbehaved guest could issue 359 * concurrent guest requests in theory, so a mutex is used to serialize 360 * access to the bounce buffers. 361 * 362 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more 363 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks" 364 * in the APM for details on the related RMP restrictions. 365 */ 366 static int snp_guest_req_init(struct kvm *kvm) 367 { 368 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 369 struct page *req_page; 370 371 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 372 if (!req_page) 373 return -ENOMEM; 374 375 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 376 if (!sev->guest_resp_buf) { 377 __free_page(req_page); 378 return -EIO; 379 } 380 381 sev->guest_req_buf = page_address(req_page); 382 mutex_init(&sev->guest_req_mutex); 383 384 return 0; 385 } 386 387 static void snp_guest_req_cleanup(struct kvm *kvm) 388 { 389 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 390 391 if (sev->guest_resp_buf) 392 snp_free_firmware_page(sev->guest_resp_buf); 393 394 if (sev->guest_req_buf) 395 __free_page(virt_to_page(sev->guest_req_buf)); 396 397 sev->guest_req_buf = NULL; 398 sev->guest_resp_buf = NULL; 399 } 400 401 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp, 402 struct kvm_sev_init *data, 403 unsigned long vm_type) 404 { 405 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 406 struct sev_platform_init_args init_args = {0}; 407 bool es_active = vm_type != KVM_X86_SEV_VM; 408 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0; 409 int ret; 410 411 if (kvm->created_vcpus) 412 return -EINVAL; 413 414 if (data->flags) 415 return -EINVAL; 416 417 if (data->vmsa_features & ~valid_vmsa_features) 418 return -EINVAL; 419 420 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version)) 421 return -EINVAL; 422 423 if (unlikely(sev->active)) 424 return -EINVAL; 425 426 sev->active = true; 427 sev->es_active = es_active; 428 sev->vmsa_features = data->vmsa_features; 429 sev->ghcb_version = data->ghcb_version; 430 431 /* 432 * Currently KVM supports the full range of mandatory features defined 433 * by version 2 of the GHCB protocol, so default to that for SEV-ES 434 * guests created via KVM_SEV_INIT2. 435 */ 436 if (sev->es_active && !sev->ghcb_version) 437 sev->ghcb_version = GHCB_VERSION_DEFAULT; 438 439 if (vm_type == KVM_X86_SNP_VM) 440 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE; 441 442 ret = sev_asid_new(sev); 443 if (ret) 444 goto e_no_asid; 445 446 init_args.probe = false; 447 ret = sev_platform_init(&init_args); 448 if (ret) 449 goto e_free; 450 451 /* This needs to happen after SEV/SNP firmware initialization. */ 452 if (vm_type == KVM_X86_SNP_VM) { 453 ret = snp_guest_req_init(kvm); 454 if (ret) 455 goto e_free; 456 } 457 458 INIT_LIST_HEAD(&sev->regions_list); 459 INIT_LIST_HEAD(&sev->mirror_vms); 460 sev->need_init = false; 461 462 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 463 464 return 0; 465 466 e_free: 467 argp->error = init_args.error; 468 sev_asid_free(sev); 469 sev->asid = 0; 470 e_no_asid: 471 sev->vmsa_features = 0; 472 sev->es_active = false; 473 sev->active = false; 474 return ret; 475 } 476 477 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 478 { 479 struct kvm_sev_init data = { 480 .vmsa_features = 0, 481 .ghcb_version = 0, 482 }; 483 unsigned long vm_type; 484 485 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM) 486 return -EINVAL; 487 488 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM); 489 490 /* 491 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will 492 * continue to only ever support the minimal GHCB protocol version. 493 */ 494 if (vm_type == KVM_X86_SEV_ES_VM) 495 data.ghcb_version = GHCB_VERSION_MIN; 496 497 return __sev_guest_init(kvm, argp, &data, vm_type); 498 } 499 500 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp) 501 { 502 struct kvm_sev_init data; 503 504 if (!to_kvm_sev_info(kvm)->need_init) 505 return -EINVAL; 506 507 if (kvm->arch.vm_type != KVM_X86_SEV_VM && 508 kvm->arch.vm_type != KVM_X86_SEV_ES_VM && 509 kvm->arch.vm_type != KVM_X86_SNP_VM) 510 return -EINVAL; 511 512 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data))) 513 return -EFAULT; 514 515 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type); 516 } 517 518 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 519 { 520 unsigned int asid = sev_get_asid(kvm); 521 struct sev_data_activate activate; 522 int ret; 523 524 /* activate ASID on the given handle */ 525 activate.handle = handle; 526 activate.asid = asid; 527 ret = sev_guest_activate(&activate, error); 528 529 return ret; 530 } 531 532 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 533 { 534 CLASS(fd, f)(fd); 535 536 if (fd_empty(f)) 537 return -EBADF; 538 539 return sev_issue_cmd_external_user(fd_file(f), id, data, error); 540 } 541 542 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 543 { 544 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 545 546 return __sev_issue_cmd(sev->fd, id, data, error); 547 } 548 549 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 550 { 551 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 552 struct sev_data_launch_start start; 553 struct kvm_sev_launch_start params; 554 void *dh_blob, *session_blob; 555 int *error = &argp->error; 556 int ret; 557 558 if (!sev_guest(kvm)) 559 return -ENOTTY; 560 561 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 562 return -EFAULT; 563 564 sev->policy = params.policy; 565 566 memset(&start, 0, sizeof(start)); 567 568 dh_blob = NULL; 569 if (params.dh_uaddr) { 570 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 571 if (IS_ERR(dh_blob)) 572 return PTR_ERR(dh_blob); 573 574 start.dh_cert_address = __sme_set(__pa(dh_blob)); 575 start.dh_cert_len = params.dh_len; 576 } 577 578 session_blob = NULL; 579 if (params.session_uaddr) { 580 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 581 if (IS_ERR(session_blob)) { 582 ret = PTR_ERR(session_blob); 583 goto e_free_dh; 584 } 585 586 start.session_address = __sme_set(__pa(session_blob)); 587 start.session_len = params.session_len; 588 } 589 590 start.handle = params.handle; 591 start.policy = params.policy; 592 593 /* create memory encryption context */ 594 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 595 if (ret) 596 goto e_free_session; 597 598 /* Bind ASID to this guest */ 599 ret = sev_bind_asid(kvm, start.handle, error); 600 if (ret) { 601 sev_decommission(start.handle); 602 goto e_free_session; 603 } 604 605 /* return handle to userspace */ 606 params.handle = start.handle; 607 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) { 608 sev_unbind_asid(kvm, start.handle); 609 ret = -EFAULT; 610 goto e_free_session; 611 } 612 613 sev->handle = start.handle; 614 sev->fd = argp->sev_fd; 615 616 e_free_session: 617 kfree(session_blob); 618 e_free_dh: 619 kfree(dh_blob); 620 return ret; 621 } 622 623 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 624 unsigned long ulen, unsigned long *n, 625 unsigned int flags) 626 { 627 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 628 unsigned long npages, size; 629 int npinned; 630 unsigned long locked, lock_limit; 631 struct page **pages; 632 unsigned long first, last; 633 int ret; 634 635 lockdep_assert_held(&kvm->lock); 636 637 if (ulen == 0 || uaddr + ulen < uaddr) 638 return ERR_PTR(-EINVAL); 639 640 /* Calculate number of pages. */ 641 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 642 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 643 npages = (last - first + 1); 644 645 locked = sev->pages_locked + npages; 646 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 647 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 648 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 649 return ERR_PTR(-ENOMEM); 650 } 651 652 if (WARN_ON_ONCE(npages > INT_MAX)) 653 return ERR_PTR(-EINVAL); 654 655 /* Avoid using vmalloc for smaller buffers. */ 656 size = npages * sizeof(struct page *); 657 if (size > PAGE_SIZE) 658 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT); 659 else 660 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 661 662 if (!pages) 663 return ERR_PTR(-ENOMEM); 664 665 /* Pin the user virtual address. */ 666 npinned = pin_user_pages_fast(uaddr, npages, flags, pages); 667 if (npinned != npages) { 668 pr_err("SEV: Failure locking %lu pages.\n", npages); 669 ret = -ENOMEM; 670 goto err; 671 } 672 673 *n = npages; 674 sev->pages_locked = locked; 675 676 return pages; 677 678 err: 679 if (npinned > 0) 680 unpin_user_pages(pages, npinned); 681 682 kvfree(pages); 683 return ERR_PTR(ret); 684 } 685 686 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 687 unsigned long npages) 688 { 689 unpin_user_pages(pages, npages); 690 kvfree(pages); 691 to_kvm_sev_info(kvm)->pages_locked -= npages; 692 } 693 694 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 695 { 696 uint8_t *page_virtual; 697 unsigned long i; 698 699 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 700 pages == NULL) 701 return; 702 703 for (i = 0; i < npages; i++) { 704 page_virtual = kmap_local_page(pages[i]); 705 clflush_cache_range(page_virtual, PAGE_SIZE); 706 kunmap_local(page_virtual); 707 cond_resched(); 708 } 709 } 710 711 static unsigned long get_num_contig_pages(unsigned long idx, 712 struct page **inpages, unsigned long npages) 713 { 714 unsigned long paddr, next_paddr; 715 unsigned long i = idx + 1, pages = 1; 716 717 /* find the number of contiguous pages starting from idx */ 718 paddr = __sme_page_pa(inpages[idx]); 719 while (i < npages) { 720 next_paddr = __sme_page_pa(inpages[i++]); 721 if ((paddr + PAGE_SIZE) == next_paddr) { 722 pages++; 723 paddr = next_paddr; 724 continue; 725 } 726 break; 727 } 728 729 return pages; 730 } 731 732 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 733 { 734 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 735 struct kvm_sev_launch_update_data params; 736 struct sev_data_launch_update_data data; 737 struct page **inpages; 738 int ret; 739 740 if (!sev_guest(kvm)) 741 return -ENOTTY; 742 743 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 744 return -EFAULT; 745 746 vaddr = params.uaddr; 747 size = params.len; 748 vaddr_end = vaddr + size; 749 750 /* Lock the user memory. */ 751 inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE); 752 if (IS_ERR(inpages)) 753 return PTR_ERR(inpages); 754 755 /* 756 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 757 * place; the cache may contain the data that was written unencrypted. 758 */ 759 sev_clflush_pages(inpages, npages); 760 761 data.reserved = 0; 762 data.handle = to_kvm_sev_info(kvm)->handle; 763 764 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 765 int offset, len; 766 767 /* 768 * If the user buffer is not page-aligned, calculate the offset 769 * within the page. 770 */ 771 offset = vaddr & (PAGE_SIZE - 1); 772 773 /* Calculate the number of pages that can be encrypted in one go. */ 774 pages = get_num_contig_pages(i, inpages, npages); 775 776 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 777 778 data.len = len; 779 data.address = __sme_page_pa(inpages[i]) + offset; 780 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 781 if (ret) 782 goto e_unpin; 783 784 size -= len; 785 next_vaddr = vaddr + len; 786 } 787 788 e_unpin: 789 /* content of memory is updated, mark pages dirty */ 790 for (i = 0; i < npages; i++) { 791 set_page_dirty_lock(inpages[i]); 792 mark_page_accessed(inpages[i]); 793 } 794 /* unlock the user pages */ 795 sev_unpin_memory(kvm, inpages, npages); 796 return ret; 797 } 798 799 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 800 { 801 struct kvm_vcpu *vcpu = &svm->vcpu; 802 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 803 struct sev_es_save_area *save = svm->sev_es.vmsa; 804 struct xregs_state *xsave; 805 const u8 *s; 806 u8 *d; 807 int i; 808 809 /* Check some debug related fields before encrypting the VMSA */ 810 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 811 return -EINVAL; 812 813 /* 814 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 815 * the traditional VMSA that is part of the VMCB. Copy the 816 * traditional VMSA as it has been built so far (in prep 817 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 818 */ 819 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 820 821 /* Sync registgers */ 822 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 823 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 824 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 825 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 826 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 827 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 828 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 829 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 830 #ifdef CONFIG_X86_64 831 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 832 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 833 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 834 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 835 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 836 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 837 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 838 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 839 #endif 840 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 841 842 /* Sync some non-GPR registers before encrypting */ 843 save->xcr0 = svm->vcpu.arch.xcr0; 844 save->pkru = svm->vcpu.arch.pkru; 845 save->xss = svm->vcpu.arch.ia32_xss; 846 save->dr6 = svm->vcpu.arch.dr6; 847 848 save->sev_features = sev->vmsa_features; 849 850 /* 851 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid 852 * breaking older measurements. 853 */ 854 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) { 855 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave; 856 save->x87_dp = xsave->i387.rdp; 857 save->mxcsr = xsave->i387.mxcsr; 858 save->x87_ftw = xsave->i387.twd; 859 save->x87_fsw = xsave->i387.swd; 860 save->x87_fcw = xsave->i387.cwd; 861 save->x87_fop = xsave->i387.fop; 862 save->x87_ds = 0; 863 save->x87_cs = 0; 864 save->x87_rip = xsave->i387.rip; 865 866 for (i = 0; i < 8; i++) { 867 /* 868 * The format of the x87 save area is undocumented and 869 * definitely not what you would expect. It consists of 870 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes 871 * area with bytes 8-9 of each register. 872 */ 873 d = save->fpreg_x87 + i * 8; 874 s = ((u8 *)xsave->i387.st_space) + i * 16; 875 memcpy(d, s, 8); 876 save->fpreg_x87[64 + i * 2] = s[8]; 877 save->fpreg_x87[64 + i * 2 + 1] = s[9]; 878 } 879 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256); 880 881 s = get_xsave_addr(xsave, XFEATURE_YMM); 882 if (s) 883 memcpy(save->fpreg_ymm, s, 256); 884 else 885 memset(save->fpreg_ymm, 0, 256); 886 } 887 888 pr_debug("Virtual Machine Save Area (VMSA):\n"); 889 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 890 891 return 0; 892 } 893 894 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 895 int *error) 896 { 897 struct sev_data_launch_update_vmsa vmsa; 898 struct vcpu_svm *svm = to_svm(vcpu); 899 int ret; 900 901 if (vcpu->guest_debug) { 902 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 903 return -EINVAL; 904 } 905 906 /* Perform some pre-encryption checks against the VMSA */ 907 ret = sev_es_sync_vmsa(svm); 908 if (ret) 909 return ret; 910 911 /* 912 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 913 * the VMSA memory content (i.e it will write the same memory region 914 * with the guest's key), so invalidate it first. 915 */ 916 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 917 918 vmsa.reserved = 0; 919 vmsa.handle = to_kvm_sev_info(kvm)->handle; 920 vmsa.address = __sme_pa(svm->sev_es.vmsa); 921 vmsa.len = PAGE_SIZE; 922 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 923 if (ret) 924 return ret; 925 926 /* 927 * SEV-ES guests maintain an encrypted version of their FPU 928 * state which is restored and saved on VMRUN and VMEXIT. 929 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 930 * do xsave/xrstor on it. 931 */ 932 fpstate_set_confidential(&vcpu->arch.guest_fpu); 933 vcpu->arch.guest_state_protected = true; 934 935 /* 936 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it 937 * only after setting guest_state_protected because KVM_SET_MSRS allows 938 * dynamic toggling of LBRV (for performance reason) on write access to 939 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 940 */ 941 svm_enable_lbrv(vcpu); 942 return 0; 943 } 944 945 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 946 { 947 struct kvm_vcpu *vcpu; 948 unsigned long i; 949 int ret; 950 951 if (!sev_es_guest(kvm)) 952 return -ENOTTY; 953 954 kvm_for_each_vcpu(i, vcpu, kvm) { 955 ret = mutex_lock_killable(&vcpu->mutex); 956 if (ret) 957 return ret; 958 959 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 960 961 mutex_unlock(&vcpu->mutex); 962 if (ret) 963 return ret; 964 } 965 966 return 0; 967 } 968 969 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 970 { 971 void __user *measure = u64_to_user_ptr(argp->data); 972 struct sev_data_launch_measure data; 973 struct kvm_sev_launch_measure params; 974 void __user *p = NULL; 975 void *blob = NULL; 976 int ret; 977 978 if (!sev_guest(kvm)) 979 return -ENOTTY; 980 981 if (copy_from_user(¶ms, measure, sizeof(params))) 982 return -EFAULT; 983 984 memset(&data, 0, sizeof(data)); 985 986 /* User wants to query the blob length */ 987 if (!params.len) 988 goto cmd; 989 990 p = u64_to_user_ptr(params.uaddr); 991 if (p) { 992 if (params.len > SEV_FW_BLOB_MAX_SIZE) 993 return -EINVAL; 994 995 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 996 if (!blob) 997 return -ENOMEM; 998 999 data.address = __psp_pa(blob); 1000 data.len = params.len; 1001 } 1002 1003 cmd: 1004 data.handle = to_kvm_sev_info(kvm)->handle; 1005 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 1006 1007 /* 1008 * If we query the session length, FW responded with expected data. 1009 */ 1010 if (!params.len) 1011 goto done; 1012 1013 if (ret) 1014 goto e_free_blob; 1015 1016 if (blob) { 1017 if (copy_to_user(p, blob, params.len)) 1018 ret = -EFAULT; 1019 } 1020 1021 done: 1022 params.len = data.len; 1023 if (copy_to_user(measure, ¶ms, sizeof(params))) 1024 ret = -EFAULT; 1025 e_free_blob: 1026 kfree(blob); 1027 return ret; 1028 } 1029 1030 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1031 { 1032 struct sev_data_launch_finish data; 1033 1034 if (!sev_guest(kvm)) 1035 return -ENOTTY; 1036 1037 data.handle = to_kvm_sev_info(kvm)->handle; 1038 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 1039 } 1040 1041 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 1042 { 1043 struct kvm_sev_guest_status params; 1044 struct sev_data_guest_status data; 1045 int ret; 1046 1047 if (!sev_guest(kvm)) 1048 return -ENOTTY; 1049 1050 memset(&data, 0, sizeof(data)); 1051 1052 data.handle = to_kvm_sev_info(kvm)->handle; 1053 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 1054 if (ret) 1055 return ret; 1056 1057 params.policy = data.policy; 1058 params.state = data.state; 1059 params.handle = data.handle; 1060 1061 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 1062 ret = -EFAULT; 1063 1064 return ret; 1065 } 1066 1067 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 1068 unsigned long dst, int size, 1069 int *error, bool enc) 1070 { 1071 struct sev_data_dbg data; 1072 1073 data.reserved = 0; 1074 data.handle = to_kvm_sev_info(kvm)->handle; 1075 data.dst_addr = dst; 1076 data.src_addr = src; 1077 data.len = size; 1078 1079 return sev_issue_cmd(kvm, 1080 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 1081 &data, error); 1082 } 1083 1084 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 1085 unsigned long dst_paddr, int sz, int *err) 1086 { 1087 int offset; 1088 1089 /* 1090 * Its safe to read more than we are asked, caller should ensure that 1091 * destination has enough space. 1092 */ 1093 offset = src_paddr & 15; 1094 src_paddr = round_down(src_paddr, 16); 1095 sz = round_up(sz + offset, 16); 1096 1097 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 1098 } 1099 1100 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 1101 void __user *dst_uaddr, 1102 unsigned long dst_paddr, 1103 int size, int *err) 1104 { 1105 struct page *tpage = NULL; 1106 int ret, offset; 1107 1108 /* if inputs are not 16-byte then use intermediate buffer */ 1109 if (!IS_ALIGNED(dst_paddr, 16) || 1110 !IS_ALIGNED(paddr, 16) || 1111 !IS_ALIGNED(size, 16)) { 1112 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1113 if (!tpage) 1114 return -ENOMEM; 1115 1116 dst_paddr = __sme_page_pa(tpage); 1117 } 1118 1119 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 1120 if (ret) 1121 goto e_free; 1122 1123 if (tpage) { 1124 offset = paddr & 15; 1125 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 1126 ret = -EFAULT; 1127 } 1128 1129 e_free: 1130 if (tpage) 1131 __free_page(tpage); 1132 1133 return ret; 1134 } 1135 1136 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 1137 void __user *vaddr, 1138 unsigned long dst_paddr, 1139 void __user *dst_vaddr, 1140 int size, int *error) 1141 { 1142 struct page *src_tpage = NULL; 1143 struct page *dst_tpage = NULL; 1144 int ret, len = size; 1145 1146 /* If source buffer is not aligned then use an intermediate buffer */ 1147 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 1148 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1149 if (!src_tpage) 1150 return -ENOMEM; 1151 1152 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 1153 __free_page(src_tpage); 1154 return -EFAULT; 1155 } 1156 1157 paddr = __sme_page_pa(src_tpage); 1158 } 1159 1160 /* 1161 * If destination buffer or length is not aligned then do read-modify-write: 1162 * - decrypt destination in an intermediate buffer 1163 * - copy the source buffer in an intermediate buffer 1164 * - use the intermediate buffer as source buffer 1165 */ 1166 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 1167 int dst_offset; 1168 1169 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1170 if (!dst_tpage) { 1171 ret = -ENOMEM; 1172 goto e_free; 1173 } 1174 1175 ret = __sev_dbg_decrypt(kvm, dst_paddr, 1176 __sme_page_pa(dst_tpage), size, error); 1177 if (ret) 1178 goto e_free; 1179 1180 /* 1181 * If source is kernel buffer then use memcpy() otherwise 1182 * copy_from_user(). 1183 */ 1184 dst_offset = dst_paddr & 15; 1185 1186 if (src_tpage) 1187 memcpy(page_address(dst_tpage) + dst_offset, 1188 page_address(src_tpage), size); 1189 else { 1190 if (copy_from_user(page_address(dst_tpage) + dst_offset, 1191 vaddr, size)) { 1192 ret = -EFAULT; 1193 goto e_free; 1194 } 1195 } 1196 1197 paddr = __sme_page_pa(dst_tpage); 1198 dst_paddr = round_down(dst_paddr, 16); 1199 len = round_up(size, 16); 1200 } 1201 1202 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 1203 1204 e_free: 1205 if (src_tpage) 1206 __free_page(src_tpage); 1207 if (dst_tpage) 1208 __free_page(dst_tpage); 1209 return ret; 1210 } 1211 1212 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 1213 { 1214 unsigned long vaddr, vaddr_end, next_vaddr; 1215 unsigned long dst_vaddr; 1216 struct page **src_p, **dst_p; 1217 struct kvm_sev_dbg debug; 1218 unsigned long n; 1219 unsigned int size; 1220 int ret; 1221 1222 if (!sev_guest(kvm)) 1223 return -ENOTTY; 1224 1225 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug))) 1226 return -EFAULT; 1227 1228 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 1229 return -EINVAL; 1230 if (!debug.dst_uaddr) 1231 return -EINVAL; 1232 1233 vaddr = debug.src_uaddr; 1234 size = debug.len; 1235 vaddr_end = vaddr + size; 1236 dst_vaddr = debug.dst_uaddr; 1237 1238 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 1239 int len, s_off, d_off; 1240 1241 /* lock userspace source and destination page */ 1242 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 1243 if (IS_ERR(src_p)) 1244 return PTR_ERR(src_p); 1245 1246 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE); 1247 if (IS_ERR(dst_p)) { 1248 sev_unpin_memory(kvm, src_p, n); 1249 return PTR_ERR(dst_p); 1250 } 1251 1252 /* 1253 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 1254 * the pages; flush the destination too so that future accesses do not 1255 * see stale data. 1256 */ 1257 sev_clflush_pages(src_p, 1); 1258 sev_clflush_pages(dst_p, 1); 1259 1260 /* 1261 * Since user buffer may not be page aligned, calculate the 1262 * offset within the page. 1263 */ 1264 s_off = vaddr & ~PAGE_MASK; 1265 d_off = dst_vaddr & ~PAGE_MASK; 1266 len = min_t(size_t, (PAGE_SIZE - s_off), size); 1267 1268 if (dec) 1269 ret = __sev_dbg_decrypt_user(kvm, 1270 __sme_page_pa(src_p[0]) + s_off, 1271 (void __user *)dst_vaddr, 1272 __sme_page_pa(dst_p[0]) + d_off, 1273 len, &argp->error); 1274 else 1275 ret = __sev_dbg_encrypt_user(kvm, 1276 __sme_page_pa(src_p[0]) + s_off, 1277 (void __user *)vaddr, 1278 __sme_page_pa(dst_p[0]) + d_off, 1279 (void __user *)dst_vaddr, 1280 len, &argp->error); 1281 1282 sev_unpin_memory(kvm, src_p, n); 1283 sev_unpin_memory(kvm, dst_p, n); 1284 1285 if (ret) 1286 goto err; 1287 1288 next_vaddr = vaddr + len; 1289 dst_vaddr = dst_vaddr + len; 1290 size -= len; 1291 } 1292 err: 1293 return ret; 1294 } 1295 1296 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1297 { 1298 struct sev_data_launch_secret data; 1299 struct kvm_sev_launch_secret params; 1300 struct page **pages; 1301 void *blob, *hdr; 1302 unsigned long n, i; 1303 int ret, offset; 1304 1305 if (!sev_guest(kvm)) 1306 return -ENOTTY; 1307 1308 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1309 return -EFAULT; 1310 1311 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE); 1312 if (IS_ERR(pages)) 1313 return PTR_ERR(pages); 1314 1315 /* 1316 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1317 * place; the cache may contain the data that was written unencrypted. 1318 */ 1319 sev_clflush_pages(pages, n); 1320 1321 /* 1322 * The secret must be copied into contiguous memory region, lets verify 1323 * that userspace memory pages are contiguous before we issue command. 1324 */ 1325 if (get_num_contig_pages(0, pages, n) != n) { 1326 ret = -EINVAL; 1327 goto e_unpin_memory; 1328 } 1329 1330 memset(&data, 0, sizeof(data)); 1331 1332 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1333 data.guest_address = __sme_page_pa(pages[0]) + offset; 1334 data.guest_len = params.guest_len; 1335 1336 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1337 if (IS_ERR(blob)) { 1338 ret = PTR_ERR(blob); 1339 goto e_unpin_memory; 1340 } 1341 1342 data.trans_address = __psp_pa(blob); 1343 data.trans_len = params.trans_len; 1344 1345 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1346 if (IS_ERR(hdr)) { 1347 ret = PTR_ERR(hdr); 1348 goto e_free_blob; 1349 } 1350 data.hdr_address = __psp_pa(hdr); 1351 data.hdr_len = params.hdr_len; 1352 1353 data.handle = to_kvm_sev_info(kvm)->handle; 1354 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1355 1356 kfree(hdr); 1357 1358 e_free_blob: 1359 kfree(blob); 1360 e_unpin_memory: 1361 /* content of memory is updated, mark pages dirty */ 1362 for (i = 0; i < n; i++) { 1363 set_page_dirty_lock(pages[i]); 1364 mark_page_accessed(pages[i]); 1365 } 1366 sev_unpin_memory(kvm, pages, n); 1367 return ret; 1368 } 1369 1370 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1371 { 1372 void __user *report = u64_to_user_ptr(argp->data); 1373 struct sev_data_attestation_report data; 1374 struct kvm_sev_attestation_report params; 1375 void __user *p; 1376 void *blob = NULL; 1377 int ret; 1378 1379 if (!sev_guest(kvm)) 1380 return -ENOTTY; 1381 1382 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1383 return -EFAULT; 1384 1385 memset(&data, 0, sizeof(data)); 1386 1387 /* User wants to query the blob length */ 1388 if (!params.len) 1389 goto cmd; 1390 1391 p = u64_to_user_ptr(params.uaddr); 1392 if (p) { 1393 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1394 return -EINVAL; 1395 1396 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1397 if (!blob) 1398 return -ENOMEM; 1399 1400 data.address = __psp_pa(blob); 1401 data.len = params.len; 1402 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1403 } 1404 cmd: 1405 data.handle = to_kvm_sev_info(kvm)->handle; 1406 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1407 /* 1408 * If we query the session length, FW responded with expected data. 1409 */ 1410 if (!params.len) 1411 goto done; 1412 1413 if (ret) 1414 goto e_free_blob; 1415 1416 if (blob) { 1417 if (copy_to_user(p, blob, params.len)) 1418 ret = -EFAULT; 1419 } 1420 1421 done: 1422 params.len = data.len; 1423 if (copy_to_user(report, ¶ms, sizeof(params))) 1424 ret = -EFAULT; 1425 e_free_blob: 1426 kfree(blob); 1427 return ret; 1428 } 1429 1430 /* Userspace wants to query session length. */ 1431 static int 1432 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1433 struct kvm_sev_send_start *params) 1434 { 1435 struct sev_data_send_start data; 1436 int ret; 1437 1438 memset(&data, 0, sizeof(data)); 1439 data.handle = to_kvm_sev_info(kvm)->handle; 1440 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1441 1442 params->session_len = data.session_len; 1443 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1444 sizeof(struct kvm_sev_send_start))) 1445 ret = -EFAULT; 1446 1447 return ret; 1448 } 1449 1450 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1451 { 1452 struct sev_data_send_start data; 1453 struct kvm_sev_send_start params; 1454 void *amd_certs, *session_data; 1455 void *pdh_cert, *plat_certs; 1456 int ret; 1457 1458 if (!sev_guest(kvm)) 1459 return -ENOTTY; 1460 1461 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1462 sizeof(struct kvm_sev_send_start))) 1463 return -EFAULT; 1464 1465 /* if session_len is zero, userspace wants to query the session length */ 1466 if (!params.session_len) 1467 return __sev_send_start_query_session_length(kvm, argp, 1468 ¶ms); 1469 1470 /* some sanity checks */ 1471 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1472 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1473 return -EINVAL; 1474 1475 /* allocate the memory to hold the session data blob */ 1476 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1477 if (!session_data) 1478 return -ENOMEM; 1479 1480 /* copy the certificate blobs from userspace */ 1481 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1482 params.pdh_cert_len); 1483 if (IS_ERR(pdh_cert)) { 1484 ret = PTR_ERR(pdh_cert); 1485 goto e_free_session; 1486 } 1487 1488 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1489 params.plat_certs_len); 1490 if (IS_ERR(plat_certs)) { 1491 ret = PTR_ERR(plat_certs); 1492 goto e_free_pdh; 1493 } 1494 1495 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1496 params.amd_certs_len); 1497 if (IS_ERR(amd_certs)) { 1498 ret = PTR_ERR(amd_certs); 1499 goto e_free_plat_cert; 1500 } 1501 1502 /* populate the FW SEND_START field with system physical address */ 1503 memset(&data, 0, sizeof(data)); 1504 data.pdh_cert_address = __psp_pa(pdh_cert); 1505 data.pdh_cert_len = params.pdh_cert_len; 1506 data.plat_certs_address = __psp_pa(plat_certs); 1507 data.plat_certs_len = params.plat_certs_len; 1508 data.amd_certs_address = __psp_pa(amd_certs); 1509 data.amd_certs_len = params.amd_certs_len; 1510 data.session_address = __psp_pa(session_data); 1511 data.session_len = params.session_len; 1512 data.handle = to_kvm_sev_info(kvm)->handle; 1513 1514 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1515 1516 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr), 1517 session_data, params.session_len)) { 1518 ret = -EFAULT; 1519 goto e_free_amd_cert; 1520 } 1521 1522 params.policy = data.policy; 1523 params.session_len = data.session_len; 1524 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, 1525 sizeof(struct kvm_sev_send_start))) 1526 ret = -EFAULT; 1527 1528 e_free_amd_cert: 1529 kfree(amd_certs); 1530 e_free_plat_cert: 1531 kfree(plat_certs); 1532 e_free_pdh: 1533 kfree(pdh_cert); 1534 e_free_session: 1535 kfree(session_data); 1536 return ret; 1537 } 1538 1539 /* Userspace wants to query either header or trans length. */ 1540 static int 1541 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1542 struct kvm_sev_send_update_data *params) 1543 { 1544 struct sev_data_send_update_data data; 1545 int ret; 1546 1547 memset(&data, 0, sizeof(data)); 1548 data.handle = to_kvm_sev_info(kvm)->handle; 1549 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1550 1551 params->hdr_len = data.hdr_len; 1552 params->trans_len = data.trans_len; 1553 1554 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1555 sizeof(struct kvm_sev_send_update_data))) 1556 ret = -EFAULT; 1557 1558 return ret; 1559 } 1560 1561 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1562 { 1563 struct sev_data_send_update_data data; 1564 struct kvm_sev_send_update_data params; 1565 void *hdr, *trans_data; 1566 struct page **guest_page; 1567 unsigned long n; 1568 int ret, offset; 1569 1570 if (!sev_guest(kvm)) 1571 return -ENOTTY; 1572 1573 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1574 sizeof(struct kvm_sev_send_update_data))) 1575 return -EFAULT; 1576 1577 /* userspace wants to query either header or trans length */ 1578 if (!params.trans_len || !params.hdr_len) 1579 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1580 1581 if (!params.trans_uaddr || !params.guest_uaddr || 1582 !params.guest_len || !params.hdr_uaddr) 1583 return -EINVAL; 1584 1585 /* Check if we are crossing the page boundary */ 1586 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1587 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1588 return -EINVAL; 1589 1590 /* Pin guest memory */ 1591 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1592 PAGE_SIZE, &n, 0); 1593 if (IS_ERR(guest_page)) 1594 return PTR_ERR(guest_page); 1595 1596 /* allocate memory for header and transport buffer */ 1597 ret = -ENOMEM; 1598 hdr = kzalloc(params.hdr_len, GFP_KERNEL); 1599 if (!hdr) 1600 goto e_unpin; 1601 1602 trans_data = kzalloc(params.trans_len, GFP_KERNEL); 1603 if (!trans_data) 1604 goto e_free_hdr; 1605 1606 memset(&data, 0, sizeof(data)); 1607 data.hdr_address = __psp_pa(hdr); 1608 data.hdr_len = params.hdr_len; 1609 data.trans_address = __psp_pa(trans_data); 1610 data.trans_len = params.trans_len; 1611 1612 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1613 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1614 data.guest_address |= sev_me_mask; 1615 data.guest_len = params.guest_len; 1616 data.handle = to_kvm_sev_info(kvm)->handle; 1617 1618 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1619 1620 if (ret) 1621 goto e_free_trans_data; 1622 1623 /* copy transport buffer to user space */ 1624 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr), 1625 trans_data, params.trans_len)) { 1626 ret = -EFAULT; 1627 goto e_free_trans_data; 1628 } 1629 1630 /* Copy packet header to userspace. */ 1631 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr, 1632 params.hdr_len)) 1633 ret = -EFAULT; 1634 1635 e_free_trans_data: 1636 kfree(trans_data); 1637 e_free_hdr: 1638 kfree(hdr); 1639 e_unpin: 1640 sev_unpin_memory(kvm, guest_page, n); 1641 1642 return ret; 1643 } 1644 1645 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1646 { 1647 struct sev_data_send_finish data; 1648 1649 if (!sev_guest(kvm)) 1650 return -ENOTTY; 1651 1652 data.handle = to_kvm_sev_info(kvm)->handle; 1653 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1654 } 1655 1656 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1657 { 1658 struct sev_data_send_cancel data; 1659 1660 if (!sev_guest(kvm)) 1661 return -ENOTTY; 1662 1663 data.handle = to_kvm_sev_info(kvm)->handle; 1664 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1665 } 1666 1667 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1668 { 1669 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 1670 struct sev_data_receive_start start; 1671 struct kvm_sev_receive_start params; 1672 int *error = &argp->error; 1673 void *session_data; 1674 void *pdh_data; 1675 int ret; 1676 1677 if (!sev_guest(kvm)) 1678 return -ENOTTY; 1679 1680 /* Get parameter from the userspace */ 1681 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1682 sizeof(struct kvm_sev_receive_start))) 1683 return -EFAULT; 1684 1685 /* some sanity checks */ 1686 if (!params.pdh_uaddr || !params.pdh_len || 1687 !params.session_uaddr || !params.session_len) 1688 return -EINVAL; 1689 1690 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1691 if (IS_ERR(pdh_data)) 1692 return PTR_ERR(pdh_data); 1693 1694 session_data = psp_copy_user_blob(params.session_uaddr, 1695 params.session_len); 1696 if (IS_ERR(session_data)) { 1697 ret = PTR_ERR(session_data); 1698 goto e_free_pdh; 1699 } 1700 1701 memset(&start, 0, sizeof(start)); 1702 start.handle = params.handle; 1703 start.policy = params.policy; 1704 start.pdh_cert_address = __psp_pa(pdh_data); 1705 start.pdh_cert_len = params.pdh_len; 1706 start.session_address = __psp_pa(session_data); 1707 start.session_len = params.session_len; 1708 1709 /* create memory encryption context */ 1710 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1711 error); 1712 if (ret) 1713 goto e_free_session; 1714 1715 /* Bind ASID to this guest */ 1716 ret = sev_bind_asid(kvm, start.handle, error); 1717 if (ret) { 1718 sev_decommission(start.handle); 1719 goto e_free_session; 1720 } 1721 1722 params.handle = start.handle; 1723 if (copy_to_user(u64_to_user_ptr(argp->data), 1724 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1725 ret = -EFAULT; 1726 sev_unbind_asid(kvm, start.handle); 1727 goto e_free_session; 1728 } 1729 1730 sev->handle = start.handle; 1731 sev->fd = argp->sev_fd; 1732 1733 e_free_session: 1734 kfree(session_data); 1735 e_free_pdh: 1736 kfree(pdh_data); 1737 1738 return ret; 1739 } 1740 1741 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1742 { 1743 struct kvm_sev_receive_update_data params; 1744 struct sev_data_receive_update_data data; 1745 void *hdr = NULL, *trans = NULL; 1746 struct page **guest_page; 1747 unsigned long n; 1748 int ret, offset; 1749 1750 if (!sev_guest(kvm)) 1751 return -EINVAL; 1752 1753 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1754 sizeof(struct kvm_sev_receive_update_data))) 1755 return -EFAULT; 1756 1757 if (!params.hdr_uaddr || !params.hdr_len || 1758 !params.guest_uaddr || !params.guest_len || 1759 !params.trans_uaddr || !params.trans_len) 1760 return -EINVAL; 1761 1762 /* Check if we are crossing the page boundary */ 1763 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1764 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1765 return -EINVAL; 1766 1767 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1768 if (IS_ERR(hdr)) 1769 return PTR_ERR(hdr); 1770 1771 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1772 if (IS_ERR(trans)) { 1773 ret = PTR_ERR(trans); 1774 goto e_free_hdr; 1775 } 1776 1777 memset(&data, 0, sizeof(data)); 1778 data.hdr_address = __psp_pa(hdr); 1779 data.hdr_len = params.hdr_len; 1780 data.trans_address = __psp_pa(trans); 1781 data.trans_len = params.trans_len; 1782 1783 /* Pin guest memory */ 1784 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1785 PAGE_SIZE, &n, FOLL_WRITE); 1786 if (IS_ERR(guest_page)) { 1787 ret = PTR_ERR(guest_page); 1788 goto e_free_trans; 1789 } 1790 1791 /* 1792 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1793 * encrypts the written data with the guest's key, and the cache may 1794 * contain dirty, unencrypted data. 1795 */ 1796 sev_clflush_pages(guest_page, n); 1797 1798 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1799 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1800 data.guest_address |= sev_me_mask; 1801 data.guest_len = params.guest_len; 1802 data.handle = to_kvm_sev_info(kvm)->handle; 1803 1804 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1805 &argp->error); 1806 1807 sev_unpin_memory(kvm, guest_page, n); 1808 1809 e_free_trans: 1810 kfree(trans); 1811 e_free_hdr: 1812 kfree(hdr); 1813 1814 return ret; 1815 } 1816 1817 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1818 { 1819 struct sev_data_receive_finish data; 1820 1821 if (!sev_guest(kvm)) 1822 return -ENOTTY; 1823 1824 data.handle = to_kvm_sev_info(kvm)->handle; 1825 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1826 } 1827 1828 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1829 { 1830 /* 1831 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1832 * active mirror VMs. Also allow the debugging and status commands. 1833 */ 1834 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1835 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1836 cmd_id == KVM_SEV_DBG_ENCRYPT) 1837 return true; 1838 1839 return false; 1840 } 1841 1842 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1843 { 1844 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm); 1845 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm); 1846 int r = -EBUSY; 1847 1848 if (dst_kvm == src_kvm) 1849 return -EINVAL; 1850 1851 /* 1852 * Bail if these VMs are already involved in a migration to avoid 1853 * deadlock between two VMs trying to migrate to/from each other. 1854 */ 1855 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1856 return -EBUSY; 1857 1858 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1859 goto release_dst; 1860 1861 r = -EINTR; 1862 if (mutex_lock_killable(&dst_kvm->lock)) 1863 goto release_src; 1864 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1865 goto unlock_dst; 1866 return 0; 1867 1868 unlock_dst: 1869 mutex_unlock(&dst_kvm->lock); 1870 release_src: 1871 atomic_set_release(&src_sev->migration_in_progress, 0); 1872 release_dst: 1873 atomic_set_release(&dst_sev->migration_in_progress, 0); 1874 return r; 1875 } 1876 1877 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1878 { 1879 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm); 1880 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm); 1881 1882 mutex_unlock(&dst_kvm->lock); 1883 mutex_unlock(&src_kvm->lock); 1884 atomic_set_release(&dst_sev->migration_in_progress, 0); 1885 atomic_set_release(&src_sev->migration_in_progress, 0); 1886 } 1887 1888 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1889 { 1890 struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm); 1891 struct kvm_sev_info *src = to_kvm_sev_info(src_kvm); 1892 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1893 struct vcpu_svm *dst_svm, *src_svm; 1894 struct kvm_sev_info *mirror; 1895 unsigned long i; 1896 1897 dst->active = true; 1898 dst->asid = src->asid; 1899 dst->handle = src->handle; 1900 dst->pages_locked = src->pages_locked; 1901 dst->enc_context_owner = src->enc_context_owner; 1902 dst->es_active = src->es_active; 1903 dst->vmsa_features = src->vmsa_features; 1904 1905 src->asid = 0; 1906 src->active = false; 1907 src->handle = 0; 1908 src->pages_locked = 0; 1909 src->enc_context_owner = NULL; 1910 src->es_active = false; 1911 1912 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1913 1914 /* 1915 * If this VM has mirrors, "transfer" each mirror's refcount of the 1916 * source to the destination (this KVM). The caller holds a reference 1917 * to the source, so there's no danger of use-after-free. 1918 */ 1919 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 1920 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 1921 kvm_get_kvm(dst_kvm); 1922 kvm_put_kvm(src_kvm); 1923 mirror->enc_context_owner = dst_kvm; 1924 } 1925 1926 /* 1927 * If this VM is a mirror, remove the old mirror from the owners list 1928 * and add the new mirror to the list. 1929 */ 1930 if (is_mirroring_enc_context(dst_kvm)) { 1931 struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner); 1932 1933 list_del(&src->mirror_entry); 1934 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 1935 } 1936 1937 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 1938 dst_svm = to_svm(dst_vcpu); 1939 1940 sev_init_vmcb(dst_svm); 1941 1942 if (!dst->es_active) 1943 continue; 1944 1945 /* 1946 * Note, the source is not required to have the same number of 1947 * vCPUs as the destination when migrating a vanilla SEV VM. 1948 */ 1949 src_vcpu = kvm_get_vcpu(src_kvm, i); 1950 src_svm = to_svm(src_vcpu); 1951 1952 /* 1953 * Transfer VMSA and GHCB state to the destination. Nullify and 1954 * clear source fields as appropriate, the state now belongs to 1955 * the destination. 1956 */ 1957 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 1958 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 1959 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 1960 dst_vcpu->arch.guest_state_protected = true; 1961 1962 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 1963 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 1964 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 1965 src_vcpu->arch.guest_state_protected = false; 1966 } 1967 } 1968 1969 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 1970 { 1971 struct kvm_vcpu *src_vcpu; 1972 unsigned long i; 1973 1974 if (!sev_es_guest(src)) 1975 return 0; 1976 1977 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 1978 return -EINVAL; 1979 1980 kvm_for_each_vcpu(i, src_vcpu, src) { 1981 if (!src_vcpu->arch.guest_state_protected) 1982 return -EINVAL; 1983 } 1984 1985 return 0; 1986 } 1987 1988 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 1989 { 1990 struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm); 1991 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 1992 CLASS(fd, f)(source_fd); 1993 struct kvm *source_kvm; 1994 bool charged = false; 1995 int ret; 1996 1997 if (fd_empty(f)) 1998 return -EBADF; 1999 2000 if (!file_is_kvm(fd_file(f))) 2001 return -EBADF; 2002 2003 source_kvm = fd_file(f)->private_data; 2004 ret = sev_lock_two_vms(kvm, source_kvm); 2005 if (ret) 2006 return ret; 2007 2008 if (kvm->arch.vm_type != source_kvm->arch.vm_type || 2009 sev_guest(kvm) || !sev_guest(source_kvm)) { 2010 ret = -EINVAL; 2011 goto out_unlock; 2012 } 2013 2014 src_sev = to_kvm_sev_info(source_kvm); 2015 2016 dst_sev->misc_cg = get_current_misc_cg(); 2017 cg_cleanup_sev = dst_sev; 2018 if (dst_sev->misc_cg != src_sev->misc_cg) { 2019 ret = sev_misc_cg_try_charge(dst_sev); 2020 if (ret) 2021 goto out_dst_cgroup; 2022 charged = true; 2023 } 2024 2025 ret = kvm_lock_all_vcpus(kvm); 2026 if (ret) 2027 goto out_dst_cgroup; 2028 ret = kvm_lock_all_vcpus(source_kvm); 2029 if (ret) 2030 goto out_dst_vcpu; 2031 2032 ret = sev_check_source_vcpus(kvm, source_kvm); 2033 if (ret) 2034 goto out_source_vcpu; 2035 2036 sev_migrate_from(kvm, source_kvm); 2037 kvm_vm_dead(source_kvm); 2038 cg_cleanup_sev = src_sev; 2039 ret = 0; 2040 2041 out_source_vcpu: 2042 kvm_unlock_all_vcpus(source_kvm); 2043 out_dst_vcpu: 2044 kvm_unlock_all_vcpus(kvm); 2045 out_dst_cgroup: 2046 /* Operates on the source on success, on the destination on failure. */ 2047 if (charged) 2048 sev_misc_cg_uncharge(cg_cleanup_sev); 2049 put_misc_cg(cg_cleanup_sev->misc_cg); 2050 cg_cleanup_sev->misc_cg = NULL; 2051 out_unlock: 2052 sev_unlock_two_vms(kvm, source_kvm); 2053 return ret; 2054 } 2055 2056 int sev_dev_get_attr(u32 group, u64 attr, u64 *val) 2057 { 2058 if (group != KVM_X86_GRP_SEV) 2059 return -ENXIO; 2060 2061 switch (attr) { 2062 case KVM_X86_SEV_VMSA_FEATURES: 2063 *val = sev_supported_vmsa_features; 2064 return 0; 2065 2066 default: 2067 return -ENXIO; 2068 } 2069 } 2070 2071 /* 2072 * The guest context contains all the information, keys and metadata 2073 * associated with the guest that the firmware tracks to implement SEV 2074 * and SNP features. The firmware stores the guest context in hypervisor 2075 * provide page via the SNP_GCTX_CREATE command. 2076 */ 2077 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp) 2078 { 2079 struct sev_data_snp_addr data = {}; 2080 void *context; 2081 int rc; 2082 2083 /* Allocate memory for context page */ 2084 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT); 2085 if (!context) 2086 return NULL; 2087 2088 data.address = __psp_pa(context); 2089 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error); 2090 if (rc) { 2091 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d", 2092 rc, argp->error); 2093 snp_free_firmware_page(context); 2094 return NULL; 2095 } 2096 2097 return context; 2098 } 2099 2100 static int snp_bind_asid(struct kvm *kvm, int *error) 2101 { 2102 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2103 struct sev_data_snp_activate data = {0}; 2104 2105 data.gctx_paddr = __psp_pa(sev->snp_context); 2106 data.asid = sev_get_asid(kvm); 2107 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error); 2108 } 2109 2110 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 2111 { 2112 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2113 struct sev_data_snp_launch_start start = {0}; 2114 struct kvm_sev_snp_launch_start params; 2115 int rc; 2116 2117 if (!sev_snp_guest(kvm)) 2118 return -ENOTTY; 2119 2120 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2121 return -EFAULT; 2122 2123 /* Don't allow userspace to allocate memory for more than 1 SNP context. */ 2124 if (sev->snp_context) 2125 return -EINVAL; 2126 2127 if (params.flags) 2128 return -EINVAL; 2129 2130 if (params.policy & ~SNP_POLICY_MASK_VALID) 2131 return -EINVAL; 2132 2133 /* Check for policy bits that must be set */ 2134 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) || 2135 !(params.policy & SNP_POLICY_MASK_SMT)) 2136 return -EINVAL; 2137 2138 if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET) 2139 return -EINVAL; 2140 2141 sev->policy = params.policy; 2142 2143 sev->snp_context = snp_context_create(kvm, argp); 2144 if (!sev->snp_context) 2145 return -ENOTTY; 2146 2147 start.gctx_paddr = __psp_pa(sev->snp_context); 2148 start.policy = params.policy; 2149 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw)); 2150 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error); 2151 if (rc) { 2152 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n", 2153 __func__, rc); 2154 goto e_free_context; 2155 } 2156 2157 sev->fd = argp->sev_fd; 2158 rc = snp_bind_asid(kvm, &argp->error); 2159 if (rc) { 2160 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n", 2161 __func__, rc); 2162 goto e_free_context; 2163 } 2164 2165 return 0; 2166 2167 e_free_context: 2168 snp_decommission_context(kvm); 2169 2170 return rc; 2171 } 2172 2173 struct sev_gmem_populate_args { 2174 __u8 type; 2175 int sev_fd; 2176 int fw_error; 2177 }; 2178 2179 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn, 2180 void __user *src, int order, void *opaque) 2181 { 2182 struct sev_gmem_populate_args *sev_populate_args = opaque; 2183 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2184 int n_private = 0, ret, i; 2185 int npages = (1 << order); 2186 gfn_t gfn; 2187 2188 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src)) 2189 return -EINVAL; 2190 2191 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) { 2192 struct sev_data_snp_launch_update fw_args = {0}; 2193 bool assigned = false; 2194 int level; 2195 2196 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level); 2197 if (ret || assigned) { 2198 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n", 2199 __func__, gfn, ret, assigned); 2200 ret = ret ? -EINVAL : -EEXIST; 2201 goto err; 2202 } 2203 2204 if (src) { 2205 void *vaddr = kmap_local_pfn(pfn + i); 2206 2207 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) { 2208 ret = -EFAULT; 2209 goto err; 2210 } 2211 kunmap_local(vaddr); 2212 } 2213 2214 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K, 2215 sev_get_asid(kvm), true); 2216 if (ret) 2217 goto err; 2218 2219 n_private++; 2220 2221 fw_args.gctx_paddr = __psp_pa(sev->snp_context); 2222 fw_args.address = __sme_set(pfn_to_hpa(pfn + i)); 2223 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K); 2224 fw_args.page_type = sev_populate_args->type; 2225 2226 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2227 &fw_args, &sev_populate_args->fw_error); 2228 if (ret) 2229 goto fw_err; 2230 } 2231 2232 return 0; 2233 2234 fw_err: 2235 /* 2236 * If the firmware command failed handle the reclaim and cleanup of that 2237 * PFN specially vs. prior pages which can be cleaned up below without 2238 * needing to reclaim in advance. 2239 * 2240 * Additionally, when invalid CPUID function entries are detected, 2241 * firmware writes the expected values into the page and leaves it 2242 * unencrypted so it can be used for debugging and error-reporting. 2243 * 2244 * Copy this page back into the source buffer so userspace can use this 2245 * information to provide information on which CPUID leaves/fields 2246 * failed CPUID validation. 2247 */ 2248 if (!snp_page_reclaim(kvm, pfn + i) && 2249 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID && 2250 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) { 2251 void *vaddr = kmap_local_pfn(pfn + i); 2252 2253 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE)) 2254 pr_debug("Failed to write CPUID page back to userspace\n"); 2255 2256 kunmap_local(vaddr); 2257 } 2258 2259 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */ 2260 n_private--; 2261 2262 err: 2263 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n", 2264 __func__, ret, sev_populate_args->fw_error, n_private); 2265 for (i = 0; i < n_private; i++) 2266 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K); 2267 2268 return ret; 2269 } 2270 2271 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp) 2272 { 2273 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2274 struct sev_gmem_populate_args sev_populate_args = {0}; 2275 struct kvm_sev_snp_launch_update params; 2276 struct kvm_memory_slot *memslot; 2277 long npages, count; 2278 void __user *src; 2279 int ret = 0; 2280 2281 if (!sev_snp_guest(kvm) || !sev->snp_context) 2282 return -EINVAL; 2283 2284 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2285 return -EFAULT; 2286 2287 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__, 2288 params.gfn_start, params.len, params.type, params.flags); 2289 2290 if (!PAGE_ALIGNED(params.len) || params.flags || 2291 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL && 2292 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO && 2293 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED && 2294 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS && 2295 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID)) 2296 return -EINVAL; 2297 2298 npages = params.len / PAGE_SIZE; 2299 2300 /* 2301 * For each GFN that's being prepared as part of the initial guest 2302 * state, the following pre-conditions are verified: 2303 * 2304 * 1) The backing memslot is a valid private memslot. 2305 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES 2306 * beforehand. 2307 * 3) The PFN of the guest_memfd has not already been set to private 2308 * in the RMP table. 2309 * 2310 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page 2311 * faults if there's a race between a fault and an attribute update via 2312 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized 2313 * here. However, kvm->slots_lock guards against both this as well as 2314 * concurrent memslot updates occurring while these checks are being 2315 * performed, so use that here to make it easier to reason about the 2316 * initial expected state and better guard against unexpected 2317 * situations. 2318 */ 2319 mutex_lock(&kvm->slots_lock); 2320 2321 memslot = gfn_to_memslot(kvm, params.gfn_start); 2322 if (!kvm_slot_can_be_private(memslot)) { 2323 ret = -EINVAL; 2324 goto out; 2325 } 2326 2327 sev_populate_args.sev_fd = argp->sev_fd; 2328 sev_populate_args.type = params.type; 2329 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr); 2330 2331 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages, 2332 sev_gmem_post_populate, &sev_populate_args); 2333 if (count < 0) { 2334 argp->error = sev_populate_args.fw_error; 2335 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n", 2336 __func__, count, argp->error); 2337 ret = -EIO; 2338 } else { 2339 params.gfn_start += count; 2340 params.len -= count * PAGE_SIZE; 2341 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO) 2342 params.uaddr += count * PAGE_SIZE; 2343 2344 ret = 0; 2345 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 2346 ret = -EFAULT; 2347 } 2348 2349 out: 2350 mutex_unlock(&kvm->slots_lock); 2351 2352 return ret; 2353 } 2354 2355 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 2356 { 2357 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2358 struct sev_data_snp_launch_update data = {}; 2359 struct kvm_vcpu *vcpu; 2360 unsigned long i; 2361 int ret; 2362 2363 data.gctx_paddr = __psp_pa(sev->snp_context); 2364 data.page_type = SNP_PAGE_TYPE_VMSA; 2365 2366 kvm_for_each_vcpu(i, vcpu, kvm) { 2367 struct vcpu_svm *svm = to_svm(vcpu); 2368 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 2369 2370 ret = sev_es_sync_vmsa(svm); 2371 if (ret) 2372 return ret; 2373 2374 /* Transition the VMSA page to a firmware state. */ 2375 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true); 2376 if (ret) 2377 return ret; 2378 2379 /* Issue the SNP command to encrypt the VMSA */ 2380 data.address = __sme_pa(svm->sev_es.vmsa); 2381 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2382 &data, &argp->error); 2383 if (ret) { 2384 snp_page_reclaim(kvm, pfn); 2385 2386 return ret; 2387 } 2388 2389 svm->vcpu.arch.guest_state_protected = true; 2390 /* 2391 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to 2392 * be _always_ ON. Enable it only after setting 2393 * guest_state_protected because KVM_SET_MSRS allows dynamic 2394 * toggling of LBRV (for performance reason) on write access to 2395 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 2396 */ 2397 svm_enable_lbrv(vcpu); 2398 } 2399 2400 return 0; 2401 } 2402 2403 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 2404 { 2405 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2406 struct kvm_sev_snp_launch_finish params; 2407 struct sev_data_snp_launch_finish *data; 2408 void *id_block = NULL, *id_auth = NULL; 2409 int ret; 2410 2411 if (!sev_snp_guest(kvm)) 2412 return -ENOTTY; 2413 2414 if (!sev->snp_context) 2415 return -EINVAL; 2416 2417 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2418 return -EFAULT; 2419 2420 if (params.flags) 2421 return -EINVAL; 2422 2423 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */ 2424 ret = snp_launch_update_vmsa(kvm, argp); 2425 if (ret) 2426 return ret; 2427 2428 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 2429 if (!data) 2430 return -ENOMEM; 2431 2432 if (params.id_block_en) { 2433 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE); 2434 if (IS_ERR(id_block)) { 2435 ret = PTR_ERR(id_block); 2436 goto e_free; 2437 } 2438 2439 data->id_block_en = 1; 2440 data->id_block_paddr = __sme_pa(id_block); 2441 2442 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE); 2443 if (IS_ERR(id_auth)) { 2444 ret = PTR_ERR(id_auth); 2445 goto e_free_id_block; 2446 } 2447 2448 data->id_auth_paddr = __sme_pa(id_auth); 2449 2450 if (params.auth_key_en) 2451 data->auth_key_en = 1; 2452 } 2453 2454 data->vcek_disabled = params.vcek_disabled; 2455 2456 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE); 2457 data->gctx_paddr = __psp_pa(sev->snp_context); 2458 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error); 2459 2460 /* 2461 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages 2462 * can be given to the guest simply by marking the RMP entry as private. 2463 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY. 2464 */ 2465 if (!ret) 2466 kvm->arch.pre_fault_allowed = true; 2467 2468 kfree(id_auth); 2469 2470 e_free_id_block: 2471 kfree(id_block); 2472 2473 e_free: 2474 kfree(data); 2475 2476 return ret; 2477 } 2478 2479 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 2480 { 2481 struct kvm_sev_cmd sev_cmd; 2482 int r; 2483 2484 if (!sev_enabled) 2485 return -ENOTTY; 2486 2487 if (!argp) 2488 return 0; 2489 2490 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 2491 return -EFAULT; 2492 2493 mutex_lock(&kvm->lock); 2494 2495 /* Only the enc_context_owner handles some memory enc operations. */ 2496 if (is_mirroring_enc_context(kvm) && 2497 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 2498 r = -EINVAL; 2499 goto out; 2500 } 2501 2502 /* 2503 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only 2504 * allow the use of SNP-specific commands. 2505 */ 2506 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) { 2507 r = -EPERM; 2508 goto out; 2509 } 2510 2511 switch (sev_cmd.id) { 2512 case KVM_SEV_ES_INIT: 2513 if (!sev_es_enabled) { 2514 r = -ENOTTY; 2515 goto out; 2516 } 2517 fallthrough; 2518 case KVM_SEV_INIT: 2519 r = sev_guest_init(kvm, &sev_cmd); 2520 break; 2521 case KVM_SEV_INIT2: 2522 r = sev_guest_init2(kvm, &sev_cmd); 2523 break; 2524 case KVM_SEV_LAUNCH_START: 2525 r = sev_launch_start(kvm, &sev_cmd); 2526 break; 2527 case KVM_SEV_LAUNCH_UPDATE_DATA: 2528 r = sev_launch_update_data(kvm, &sev_cmd); 2529 break; 2530 case KVM_SEV_LAUNCH_UPDATE_VMSA: 2531 r = sev_launch_update_vmsa(kvm, &sev_cmd); 2532 break; 2533 case KVM_SEV_LAUNCH_MEASURE: 2534 r = sev_launch_measure(kvm, &sev_cmd); 2535 break; 2536 case KVM_SEV_LAUNCH_FINISH: 2537 r = sev_launch_finish(kvm, &sev_cmd); 2538 break; 2539 case KVM_SEV_GUEST_STATUS: 2540 r = sev_guest_status(kvm, &sev_cmd); 2541 break; 2542 case KVM_SEV_DBG_DECRYPT: 2543 r = sev_dbg_crypt(kvm, &sev_cmd, true); 2544 break; 2545 case KVM_SEV_DBG_ENCRYPT: 2546 r = sev_dbg_crypt(kvm, &sev_cmd, false); 2547 break; 2548 case KVM_SEV_LAUNCH_SECRET: 2549 r = sev_launch_secret(kvm, &sev_cmd); 2550 break; 2551 case KVM_SEV_GET_ATTESTATION_REPORT: 2552 r = sev_get_attestation_report(kvm, &sev_cmd); 2553 break; 2554 case KVM_SEV_SEND_START: 2555 r = sev_send_start(kvm, &sev_cmd); 2556 break; 2557 case KVM_SEV_SEND_UPDATE_DATA: 2558 r = sev_send_update_data(kvm, &sev_cmd); 2559 break; 2560 case KVM_SEV_SEND_FINISH: 2561 r = sev_send_finish(kvm, &sev_cmd); 2562 break; 2563 case KVM_SEV_SEND_CANCEL: 2564 r = sev_send_cancel(kvm, &sev_cmd); 2565 break; 2566 case KVM_SEV_RECEIVE_START: 2567 r = sev_receive_start(kvm, &sev_cmd); 2568 break; 2569 case KVM_SEV_RECEIVE_UPDATE_DATA: 2570 r = sev_receive_update_data(kvm, &sev_cmd); 2571 break; 2572 case KVM_SEV_RECEIVE_FINISH: 2573 r = sev_receive_finish(kvm, &sev_cmd); 2574 break; 2575 case KVM_SEV_SNP_LAUNCH_START: 2576 r = snp_launch_start(kvm, &sev_cmd); 2577 break; 2578 case KVM_SEV_SNP_LAUNCH_UPDATE: 2579 r = snp_launch_update(kvm, &sev_cmd); 2580 break; 2581 case KVM_SEV_SNP_LAUNCH_FINISH: 2582 r = snp_launch_finish(kvm, &sev_cmd); 2583 break; 2584 default: 2585 r = -EINVAL; 2586 goto out; 2587 } 2588 2589 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 2590 r = -EFAULT; 2591 2592 out: 2593 mutex_unlock(&kvm->lock); 2594 return r; 2595 } 2596 2597 int sev_mem_enc_register_region(struct kvm *kvm, 2598 struct kvm_enc_region *range) 2599 { 2600 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2601 struct enc_region *region; 2602 int ret = 0; 2603 2604 if (!sev_guest(kvm)) 2605 return -ENOTTY; 2606 2607 /* If kvm is mirroring encryption context it isn't responsible for it */ 2608 if (is_mirroring_enc_context(kvm)) 2609 return -EINVAL; 2610 2611 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 2612 return -EINVAL; 2613 2614 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 2615 if (!region) 2616 return -ENOMEM; 2617 2618 mutex_lock(&kvm->lock); 2619 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 2620 FOLL_WRITE | FOLL_LONGTERM); 2621 if (IS_ERR(region->pages)) { 2622 ret = PTR_ERR(region->pages); 2623 mutex_unlock(&kvm->lock); 2624 goto e_free; 2625 } 2626 2627 /* 2628 * The guest may change the memory encryption attribute from C=0 -> C=1 2629 * or vice versa for this memory range. Lets make sure caches are 2630 * flushed to ensure that guest data gets written into memory with 2631 * correct C-bit. Note, this must be done before dropping kvm->lock, 2632 * as region and its array of pages can be freed by a different task 2633 * once kvm->lock is released. 2634 */ 2635 sev_clflush_pages(region->pages, region->npages); 2636 2637 region->uaddr = range->addr; 2638 region->size = range->size; 2639 2640 list_add_tail(®ion->list, &sev->regions_list); 2641 mutex_unlock(&kvm->lock); 2642 2643 return ret; 2644 2645 e_free: 2646 kfree(region); 2647 return ret; 2648 } 2649 2650 static struct enc_region * 2651 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2652 { 2653 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2654 struct list_head *head = &sev->regions_list; 2655 struct enc_region *i; 2656 2657 list_for_each_entry(i, head, list) { 2658 if (i->uaddr == range->addr && 2659 i->size == range->size) 2660 return i; 2661 } 2662 2663 return NULL; 2664 } 2665 2666 static void __unregister_enc_region_locked(struct kvm *kvm, 2667 struct enc_region *region) 2668 { 2669 sev_unpin_memory(kvm, region->pages, region->npages); 2670 list_del(®ion->list); 2671 kfree(region); 2672 } 2673 2674 int sev_mem_enc_unregister_region(struct kvm *kvm, 2675 struct kvm_enc_region *range) 2676 { 2677 struct enc_region *region; 2678 int ret; 2679 2680 /* If kvm is mirroring encryption context it isn't responsible for it */ 2681 if (is_mirroring_enc_context(kvm)) 2682 return -EINVAL; 2683 2684 mutex_lock(&kvm->lock); 2685 2686 if (!sev_guest(kvm)) { 2687 ret = -ENOTTY; 2688 goto failed; 2689 } 2690 2691 region = find_enc_region(kvm, range); 2692 if (!region) { 2693 ret = -EINVAL; 2694 goto failed; 2695 } 2696 2697 /* 2698 * Ensure that all guest tagged cache entries are flushed before 2699 * releasing the pages back to the system for use. CLFLUSH will 2700 * not do this, so issue a WBINVD. 2701 */ 2702 wbinvd_on_all_cpus(); 2703 2704 __unregister_enc_region_locked(kvm, region); 2705 2706 mutex_unlock(&kvm->lock); 2707 return 0; 2708 2709 failed: 2710 mutex_unlock(&kvm->lock); 2711 return ret; 2712 } 2713 2714 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2715 { 2716 CLASS(fd, f)(source_fd); 2717 struct kvm *source_kvm; 2718 struct kvm_sev_info *source_sev, *mirror_sev; 2719 int ret; 2720 2721 if (fd_empty(f)) 2722 return -EBADF; 2723 2724 if (!file_is_kvm(fd_file(f))) 2725 return -EBADF; 2726 2727 source_kvm = fd_file(f)->private_data; 2728 ret = sev_lock_two_vms(kvm, source_kvm); 2729 if (ret) 2730 return ret; 2731 2732 /* 2733 * Mirrors of mirrors should work, but let's not get silly. Also 2734 * disallow out-of-band SEV/SEV-ES init if the target is already an 2735 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2736 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2737 */ 2738 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2739 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2740 ret = -EINVAL; 2741 goto e_unlock; 2742 } 2743 2744 /* 2745 * The mirror kvm holds an enc_context_owner ref so its asid can't 2746 * disappear until we're done with it 2747 */ 2748 source_sev = to_kvm_sev_info(source_kvm); 2749 kvm_get_kvm(source_kvm); 2750 mirror_sev = to_kvm_sev_info(kvm); 2751 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2752 2753 /* Set enc_context_owner and copy its encryption context over */ 2754 mirror_sev->enc_context_owner = source_kvm; 2755 mirror_sev->active = true; 2756 mirror_sev->asid = source_sev->asid; 2757 mirror_sev->fd = source_sev->fd; 2758 mirror_sev->es_active = source_sev->es_active; 2759 mirror_sev->need_init = false; 2760 mirror_sev->handle = source_sev->handle; 2761 INIT_LIST_HEAD(&mirror_sev->regions_list); 2762 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2763 ret = 0; 2764 2765 /* 2766 * Do not copy ap_jump_table. Since the mirror does not share the same 2767 * KVM contexts as the original, and they may have different 2768 * memory-views. 2769 */ 2770 2771 e_unlock: 2772 sev_unlock_two_vms(kvm, source_kvm); 2773 return ret; 2774 } 2775 2776 static int snp_decommission_context(struct kvm *kvm) 2777 { 2778 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2779 struct sev_data_snp_addr data = {}; 2780 int ret; 2781 2782 /* If context is not created then do nothing */ 2783 if (!sev->snp_context) 2784 return 0; 2785 2786 /* Do the decommision, which will unbind the ASID from the SNP context */ 2787 data.address = __sme_pa(sev->snp_context); 2788 down_write(&sev_deactivate_lock); 2789 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL); 2790 up_write(&sev_deactivate_lock); 2791 2792 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret)) 2793 return ret; 2794 2795 snp_free_firmware_page(sev->snp_context); 2796 sev->snp_context = NULL; 2797 2798 return 0; 2799 } 2800 2801 void sev_vm_destroy(struct kvm *kvm) 2802 { 2803 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2804 struct list_head *head = &sev->regions_list; 2805 struct list_head *pos, *q; 2806 2807 if (!sev_guest(kvm)) 2808 return; 2809 2810 WARN_ON(!list_empty(&sev->mirror_vms)); 2811 2812 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2813 if (is_mirroring_enc_context(kvm)) { 2814 struct kvm *owner_kvm = sev->enc_context_owner; 2815 2816 mutex_lock(&owner_kvm->lock); 2817 list_del(&sev->mirror_entry); 2818 mutex_unlock(&owner_kvm->lock); 2819 kvm_put_kvm(owner_kvm); 2820 return; 2821 } 2822 2823 /* 2824 * Ensure that all guest tagged cache entries are flushed before 2825 * releasing the pages back to the system for use. CLFLUSH will 2826 * not do this, so issue a WBINVD. 2827 */ 2828 wbinvd_on_all_cpus(); 2829 2830 /* 2831 * if userspace was terminated before unregistering the memory regions 2832 * then lets unpin all the registered memory. 2833 */ 2834 if (!list_empty(head)) { 2835 list_for_each_safe(pos, q, head) { 2836 __unregister_enc_region_locked(kvm, 2837 list_entry(pos, struct enc_region, list)); 2838 cond_resched(); 2839 } 2840 } 2841 2842 if (sev_snp_guest(kvm)) { 2843 snp_guest_req_cleanup(kvm); 2844 2845 /* 2846 * Decomission handles unbinding of the ASID. If it fails for 2847 * some unexpected reason, just leak the ASID. 2848 */ 2849 if (snp_decommission_context(kvm)) 2850 return; 2851 } else { 2852 sev_unbind_asid(kvm, sev->handle); 2853 } 2854 2855 sev_asid_free(sev); 2856 } 2857 2858 void __init sev_set_cpu_caps(void) 2859 { 2860 if (sev_enabled) { 2861 kvm_cpu_cap_set(X86_FEATURE_SEV); 2862 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM); 2863 } 2864 if (sev_es_enabled) { 2865 kvm_cpu_cap_set(X86_FEATURE_SEV_ES); 2866 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM); 2867 } 2868 if (sev_snp_enabled) { 2869 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP); 2870 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM); 2871 } 2872 } 2873 2874 static bool is_sev_snp_initialized(void) 2875 { 2876 struct sev_user_data_snp_status *status; 2877 struct sev_data_snp_addr buf; 2878 bool initialized = false; 2879 int ret, error = 0; 2880 2881 status = snp_alloc_firmware_page(GFP_KERNEL | __GFP_ZERO); 2882 if (!status) 2883 return false; 2884 2885 buf.address = __psp_pa(status); 2886 ret = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &error); 2887 if (ret) { 2888 pr_err("SEV: SNP_PLATFORM_STATUS failed ret=%d, fw_error=%d (%#x)\n", 2889 ret, error, error); 2890 goto out; 2891 } 2892 2893 initialized = !!status->state; 2894 2895 out: 2896 snp_free_firmware_page(status); 2897 2898 return initialized; 2899 } 2900 2901 void __init sev_hardware_setup(void) 2902 { 2903 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2904 struct sev_platform_init_args init_args = {0}; 2905 bool sev_snp_supported = false; 2906 bool sev_es_supported = false; 2907 bool sev_supported = false; 2908 2909 if (!sev_enabled || !npt_enabled || !nrips) 2910 goto out; 2911 2912 /* 2913 * SEV must obviously be supported in hardware. Sanity check that the 2914 * CPU supports decode assists, which is mandatory for SEV guests to 2915 * support instruction emulation. Ditto for flushing by ASID, as SEV 2916 * guests are bound to a single ASID, i.e. KVM can't rotate to a new 2917 * ASID to effect a TLB flush. 2918 */ 2919 if (!boot_cpu_has(X86_FEATURE_SEV) || 2920 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || 2921 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) 2922 goto out; 2923 2924 /* 2925 * The kernel's initcall infrastructure lacks the ability to express 2926 * dependencies between initcalls, whereas the modules infrastructure 2927 * automatically handles dependencies via symbol loading. Ensure the 2928 * PSP SEV driver is initialized before proceeding if KVM is built-in, 2929 * as the dependency isn't handled by the initcall infrastructure. 2930 */ 2931 if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init()) 2932 goto out; 2933 2934 /* Retrieve SEV CPUID information */ 2935 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2936 2937 /* Set encryption bit location for SEV-ES guests */ 2938 sev_enc_bit = ebx & 0x3f; 2939 2940 /* Maximum number of encrypted guests supported simultaneously */ 2941 max_sev_asid = ecx; 2942 if (!max_sev_asid) 2943 goto out; 2944 2945 /* Minimum ASID value that should be used for SEV guest */ 2946 min_sev_asid = edx; 2947 sev_me_mask = 1UL << (ebx & 0x3f); 2948 2949 /* 2950 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2951 * even though it's never used, so that the bitmap is indexed by the 2952 * actual ASID. 2953 */ 2954 nr_asids = max_sev_asid + 1; 2955 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2956 if (!sev_asid_bitmap) 2957 goto out; 2958 2959 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2960 if (!sev_reclaim_asid_bitmap) { 2961 bitmap_free(sev_asid_bitmap); 2962 sev_asid_bitmap = NULL; 2963 goto out; 2964 } 2965 2966 if (min_sev_asid <= max_sev_asid) { 2967 sev_asid_count = max_sev_asid - min_sev_asid + 1; 2968 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 2969 } 2970 sev_supported = true; 2971 2972 /* SEV-ES support requested? */ 2973 if (!sev_es_enabled) 2974 goto out; 2975 2976 /* 2977 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 2978 * instruction stream, i.e. can't emulate in response to a #NPF and 2979 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 2980 * (the guest can then do a #VMGEXIT to request MMIO emulation). 2981 */ 2982 if (!enable_mmio_caching) 2983 goto out; 2984 2985 /* Does the CPU support SEV-ES? */ 2986 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 2987 goto out; 2988 2989 if (!lbrv) { 2990 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV), 2991 "LBRV must be present for SEV-ES support"); 2992 goto out; 2993 } 2994 2995 /* Has the system been allocated ASIDs for SEV-ES? */ 2996 if (min_sev_asid == 1) 2997 goto out; 2998 2999 sev_es_asid_count = min_sev_asid - 1; 3000 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 3001 sev_es_supported = true; 3002 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP); 3003 3004 out: 3005 if (sev_enabled) { 3006 init_args.probe = true; 3007 if (sev_platform_init(&init_args)) 3008 sev_supported = sev_es_supported = sev_snp_supported = false; 3009 else if (sev_snp_supported) 3010 sev_snp_supported = is_sev_snp_initialized(); 3011 } 3012 3013 if (boot_cpu_has(X86_FEATURE_SEV)) 3014 pr_info("SEV %s (ASIDs %u - %u)\n", 3015 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : 3016 "unusable" : 3017 "disabled", 3018 min_sev_asid, max_sev_asid); 3019 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 3020 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 3021 str_enabled_disabled(sev_es_supported), 3022 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3023 if (boot_cpu_has(X86_FEATURE_SEV_SNP)) 3024 pr_info("SEV-SNP %s (ASIDs %u - %u)\n", 3025 str_enabled_disabled(sev_snp_supported), 3026 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3027 3028 sev_enabled = sev_supported; 3029 sev_es_enabled = sev_es_supported; 3030 sev_snp_enabled = sev_snp_supported; 3031 3032 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 3033 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 3034 sev_es_debug_swap_enabled = false; 3035 3036 sev_supported_vmsa_features = 0; 3037 if (sev_es_debug_swap_enabled) 3038 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP; 3039 } 3040 3041 void sev_hardware_unsetup(void) 3042 { 3043 if (!sev_enabled) 3044 return; 3045 3046 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 3047 sev_flush_asids(1, max_sev_asid); 3048 3049 bitmap_free(sev_asid_bitmap); 3050 bitmap_free(sev_reclaim_asid_bitmap); 3051 3052 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 3053 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 3054 3055 sev_platform_shutdown(); 3056 } 3057 3058 int sev_cpu_init(struct svm_cpu_data *sd) 3059 { 3060 if (!sev_enabled) 3061 return 0; 3062 3063 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 3064 if (!sd->sev_vmcbs) 3065 return -ENOMEM; 3066 3067 return 0; 3068 } 3069 3070 /* 3071 * Pages used by hardware to hold guest encrypted state must be flushed before 3072 * returning them to the system. 3073 */ 3074 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 3075 { 3076 unsigned int asid = sev_get_asid(vcpu->kvm); 3077 3078 /* 3079 * Note! The address must be a kernel address, as regular page walk 3080 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 3081 * address is non-deterministic and unsafe. This function deliberately 3082 * takes a pointer to deter passing in a user address. 3083 */ 3084 unsigned long addr = (unsigned long)va; 3085 3086 /* 3087 * If CPU enforced cache coherency for encrypted mappings of the 3088 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 3089 * flush is still needed in order to work properly with DMA devices. 3090 */ 3091 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 3092 clflush_cache_range(va, PAGE_SIZE); 3093 return; 3094 } 3095 3096 /* 3097 * VM Page Flush takes a host virtual address and a guest ASID. Fall 3098 * back to WBINVD if this faults so as not to make any problems worse 3099 * by leaving stale encrypted data in the cache. 3100 */ 3101 if (WARN_ON_ONCE(wrmsrq_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 3102 goto do_wbinvd; 3103 3104 return; 3105 3106 do_wbinvd: 3107 wbinvd_on_all_cpus(); 3108 } 3109 3110 void sev_guest_memory_reclaimed(struct kvm *kvm) 3111 { 3112 /* 3113 * With SNP+gmem, private/encrypted memory is unreachable via the 3114 * hva-based mmu notifiers, so these events are only actually 3115 * pertaining to shared pages where there is no need to perform 3116 * the WBINVD to flush associated caches. 3117 */ 3118 if (!sev_guest(kvm) || sev_snp_guest(kvm)) 3119 return; 3120 3121 wbinvd_on_all_cpus(); 3122 } 3123 3124 void sev_free_vcpu(struct kvm_vcpu *vcpu) 3125 { 3126 struct vcpu_svm *svm; 3127 3128 if (!sev_es_guest(vcpu->kvm)) 3129 return; 3130 3131 svm = to_svm(vcpu); 3132 3133 /* 3134 * If it's an SNP guest, then the VMSA was marked in the RMP table as 3135 * a guest-owned page. Transition the page to hypervisor state before 3136 * releasing it back to the system. 3137 */ 3138 if (sev_snp_guest(vcpu->kvm)) { 3139 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 3140 3141 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K)) 3142 goto skip_vmsa_free; 3143 } 3144 3145 if (vcpu->arch.guest_state_protected) 3146 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 3147 3148 __free_page(virt_to_page(svm->sev_es.vmsa)); 3149 3150 skip_vmsa_free: 3151 if (svm->sev_es.ghcb_sa_free) 3152 kvfree(svm->sev_es.ghcb_sa); 3153 } 3154 3155 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) 3156 { 3157 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 3158 } 3159 3160 static void dump_ghcb(struct vcpu_svm *svm) 3161 { 3162 struct vmcb_control_area *control = &svm->vmcb->control; 3163 unsigned int nbits; 3164 3165 /* Re-use the dump_invalid_vmcb module parameter */ 3166 if (!dump_invalid_vmcb) { 3167 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3168 return; 3169 } 3170 3171 nbits = sizeof(svm->sev_es.valid_bitmap) * 8; 3172 3173 /* 3174 * Print KVM's snapshot of the GHCB values that were (unsuccessfully) 3175 * used to handle the exit. If the guest has since modified the GHCB 3176 * itself, dumping the raw GHCB won't help debug why KVM was unable to 3177 * handle the VMGEXIT that KVM observed. 3178 */ 3179 pr_err("GHCB (GPA=%016llx) snapshot:\n", svm->vmcb->control.ghcb_gpa); 3180 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 3181 kvm_ghcb_get_sw_exit_code(control), kvm_ghcb_sw_exit_code_is_valid(svm)); 3182 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 3183 control->exit_info_1, kvm_ghcb_sw_exit_info_1_is_valid(svm)); 3184 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 3185 control->exit_info_2, kvm_ghcb_sw_exit_info_2_is_valid(svm)); 3186 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 3187 svm->sev_es.sw_scratch, kvm_ghcb_sw_scratch_is_valid(svm)); 3188 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, svm->sev_es.valid_bitmap); 3189 } 3190 3191 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 3192 { 3193 struct kvm_vcpu *vcpu = &svm->vcpu; 3194 struct ghcb *ghcb = svm->sev_es.ghcb; 3195 3196 /* 3197 * The GHCB protocol so far allows for the following data 3198 * to be returned: 3199 * GPRs RAX, RBX, RCX, RDX 3200 * 3201 * Copy their values, even if they may not have been written during the 3202 * VM-Exit. It's the guest's responsibility to not consume random data. 3203 */ 3204 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 3205 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 3206 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 3207 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 3208 } 3209 3210 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 3211 { 3212 struct vmcb_control_area *control = &svm->vmcb->control; 3213 struct kvm_vcpu *vcpu = &svm->vcpu; 3214 struct ghcb *ghcb = svm->sev_es.ghcb; 3215 u64 exit_code; 3216 3217 /* 3218 * The GHCB protocol so far allows for the following data 3219 * to be supplied: 3220 * GPRs RAX, RBX, RCX, RDX 3221 * XCR0 3222 * CPL 3223 * 3224 * VMMCALL allows the guest to provide extra registers. KVM also 3225 * expects RSI for hypercalls, so include that, too. 3226 * 3227 * Copy their values to the appropriate location if supplied. 3228 */ 3229 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 3230 3231 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 3232 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 3233 3234 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); 3235 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); 3236 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); 3237 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); 3238 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); 3239 3240 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); 3241 3242 if (kvm_ghcb_xcr0_is_valid(svm)) { 3243 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 3244 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3245 } 3246 3247 /* Copy the GHCB exit information into the VMCB fields */ 3248 exit_code = ghcb_get_sw_exit_code(ghcb); 3249 control->exit_code = lower_32_bits(exit_code); 3250 control->exit_code_hi = upper_32_bits(exit_code); 3251 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 3252 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 3253 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); 3254 3255 /* Clear the valid entries fields */ 3256 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 3257 } 3258 3259 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 3260 { 3261 struct vmcb_control_area *control = &svm->vmcb->control; 3262 struct kvm_vcpu *vcpu = &svm->vcpu; 3263 u64 exit_code; 3264 u64 reason; 3265 3266 /* 3267 * Retrieve the exit code now even though it may not be marked valid 3268 * as it could help with debugging. 3269 */ 3270 exit_code = kvm_ghcb_get_sw_exit_code(control); 3271 3272 /* Only GHCB Usage code 0 is supported */ 3273 if (svm->sev_es.ghcb->ghcb_usage) { 3274 reason = GHCB_ERR_INVALID_USAGE; 3275 goto vmgexit_err; 3276 } 3277 3278 reason = GHCB_ERR_MISSING_INPUT; 3279 3280 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 3281 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 3282 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 3283 goto vmgexit_err; 3284 3285 switch (exit_code) { 3286 case SVM_EXIT_READ_DR7: 3287 break; 3288 case SVM_EXIT_WRITE_DR7: 3289 if (!kvm_ghcb_rax_is_valid(svm)) 3290 goto vmgexit_err; 3291 break; 3292 case SVM_EXIT_RDTSC: 3293 break; 3294 case SVM_EXIT_RDPMC: 3295 if (!kvm_ghcb_rcx_is_valid(svm)) 3296 goto vmgexit_err; 3297 break; 3298 case SVM_EXIT_CPUID: 3299 if (!kvm_ghcb_rax_is_valid(svm) || 3300 !kvm_ghcb_rcx_is_valid(svm)) 3301 goto vmgexit_err; 3302 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 3303 if (!kvm_ghcb_xcr0_is_valid(svm)) 3304 goto vmgexit_err; 3305 break; 3306 case SVM_EXIT_INVD: 3307 break; 3308 case SVM_EXIT_IOIO: 3309 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 3310 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3311 goto vmgexit_err; 3312 } else { 3313 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 3314 if (!kvm_ghcb_rax_is_valid(svm)) 3315 goto vmgexit_err; 3316 } 3317 break; 3318 case SVM_EXIT_MSR: 3319 if (!kvm_ghcb_rcx_is_valid(svm)) 3320 goto vmgexit_err; 3321 if (control->exit_info_1) { 3322 if (!kvm_ghcb_rax_is_valid(svm) || 3323 !kvm_ghcb_rdx_is_valid(svm)) 3324 goto vmgexit_err; 3325 } 3326 break; 3327 case SVM_EXIT_VMMCALL: 3328 if (!kvm_ghcb_rax_is_valid(svm) || 3329 !kvm_ghcb_cpl_is_valid(svm)) 3330 goto vmgexit_err; 3331 break; 3332 case SVM_EXIT_RDTSCP: 3333 break; 3334 case SVM_EXIT_WBINVD: 3335 break; 3336 case SVM_EXIT_MONITOR: 3337 if (!kvm_ghcb_rax_is_valid(svm) || 3338 !kvm_ghcb_rcx_is_valid(svm) || 3339 !kvm_ghcb_rdx_is_valid(svm)) 3340 goto vmgexit_err; 3341 break; 3342 case SVM_EXIT_MWAIT: 3343 if (!kvm_ghcb_rax_is_valid(svm) || 3344 !kvm_ghcb_rcx_is_valid(svm)) 3345 goto vmgexit_err; 3346 break; 3347 case SVM_VMGEXIT_MMIO_READ: 3348 case SVM_VMGEXIT_MMIO_WRITE: 3349 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3350 goto vmgexit_err; 3351 break; 3352 case SVM_VMGEXIT_AP_CREATION: 3353 if (!sev_snp_guest(vcpu->kvm)) 3354 goto vmgexit_err; 3355 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY) 3356 if (!kvm_ghcb_rax_is_valid(svm)) 3357 goto vmgexit_err; 3358 break; 3359 case SVM_VMGEXIT_NMI_COMPLETE: 3360 case SVM_VMGEXIT_AP_HLT_LOOP: 3361 case SVM_VMGEXIT_AP_JUMP_TABLE: 3362 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 3363 case SVM_VMGEXIT_HV_FEATURES: 3364 case SVM_VMGEXIT_TERM_REQUEST: 3365 break; 3366 case SVM_VMGEXIT_PSC: 3367 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm)) 3368 goto vmgexit_err; 3369 break; 3370 case SVM_VMGEXIT_GUEST_REQUEST: 3371 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 3372 if (!sev_snp_guest(vcpu->kvm) || 3373 !PAGE_ALIGNED(control->exit_info_1) || 3374 !PAGE_ALIGNED(control->exit_info_2) || 3375 control->exit_info_1 == control->exit_info_2) 3376 goto vmgexit_err; 3377 break; 3378 default: 3379 reason = GHCB_ERR_INVALID_EVENT; 3380 goto vmgexit_err; 3381 } 3382 3383 return 0; 3384 3385 vmgexit_err: 3386 if (reason == GHCB_ERR_INVALID_USAGE) { 3387 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 3388 svm->sev_es.ghcb->ghcb_usage); 3389 } else if (reason == GHCB_ERR_INVALID_EVENT) { 3390 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 3391 exit_code); 3392 } else { 3393 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 3394 exit_code); 3395 dump_ghcb(svm); 3396 } 3397 3398 svm_vmgexit_bad_input(svm, reason); 3399 3400 /* Resume the guest to "return" the error code. */ 3401 return 1; 3402 } 3403 3404 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 3405 { 3406 /* Clear any indication that the vCPU is in a type of AP Reset Hold */ 3407 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE; 3408 3409 if (!svm->sev_es.ghcb) 3410 return; 3411 3412 if (svm->sev_es.ghcb_sa_free) { 3413 /* 3414 * The scratch area lives outside the GHCB, so there is a 3415 * buffer that, depending on the operation performed, may 3416 * need to be synced, then freed. 3417 */ 3418 if (svm->sev_es.ghcb_sa_sync) { 3419 kvm_write_guest(svm->vcpu.kvm, 3420 svm->sev_es.sw_scratch, 3421 svm->sev_es.ghcb_sa, 3422 svm->sev_es.ghcb_sa_len); 3423 svm->sev_es.ghcb_sa_sync = false; 3424 } 3425 3426 kvfree(svm->sev_es.ghcb_sa); 3427 svm->sev_es.ghcb_sa = NULL; 3428 svm->sev_es.ghcb_sa_free = false; 3429 } 3430 3431 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 3432 3433 sev_es_sync_to_ghcb(svm); 3434 3435 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map); 3436 svm->sev_es.ghcb = NULL; 3437 } 3438 3439 int pre_sev_run(struct vcpu_svm *svm, int cpu) 3440 { 3441 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 3442 struct kvm *kvm = svm->vcpu.kvm; 3443 unsigned int asid = sev_get_asid(kvm); 3444 3445 /* 3446 * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid 3447 * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP 3448 * AP Destroy event. 3449 */ 3450 if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa)) 3451 return -EINVAL; 3452 3453 /* Assign the asid allocated with this SEV guest */ 3454 svm->asid = asid; 3455 3456 /* 3457 * Flush guest TLB: 3458 * 3459 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 3460 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 3461 */ 3462 if (sd->sev_vmcbs[asid] == svm->vmcb && 3463 svm->vcpu.arch.last_vmentry_cpu == cpu) 3464 return 0; 3465 3466 sd->sev_vmcbs[asid] = svm->vmcb; 3467 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3468 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3469 return 0; 3470 } 3471 3472 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 3473 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 3474 { 3475 struct vmcb_control_area *control = &svm->vmcb->control; 3476 u64 ghcb_scratch_beg, ghcb_scratch_end; 3477 u64 scratch_gpa_beg, scratch_gpa_end; 3478 void *scratch_va; 3479 3480 scratch_gpa_beg = svm->sev_es.sw_scratch; 3481 if (!scratch_gpa_beg) { 3482 pr_err("vmgexit: scratch gpa not provided\n"); 3483 goto e_scratch; 3484 } 3485 3486 scratch_gpa_end = scratch_gpa_beg + len; 3487 if (scratch_gpa_end < scratch_gpa_beg) { 3488 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 3489 len, scratch_gpa_beg); 3490 goto e_scratch; 3491 } 3492 3493 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 3494 /* Scratch area begins within GHCB */ 3495 ghcb_scratch_beg = control->ghcb_gpa + 3496 offsetof(struct ghcb, shared_buffer); 3497 ghcb_scratch_end = control->ghcb_gpa + 3498 offsetof(struct ghcb, reserved_0xff0); 3499 3500 /* 3501 * If the scratch area begins within the GHCB, it must be 3502 * completely contained in the GHCB shared buffer area. 3503 */ 3504 if (scratch_gpa_beg < ghcb_scratch_beg || 3505 scratch_gpa_end > ghcb_scratch_end) { 3506 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 3507 scratch_gpa_beg, scratch_gpa_end); 3508 goto e_scratch; 3509 } 3510 3511 scratch_va = (void *)svm->sev_es.ghcb; 3512 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 3513 } else { 3514 /* 3515 * The guest memory must be read into a kernel buffer, so 3516 * limit the size 3517 */ 3518 if (len > GHCB_SCRATCH_AREA_LIMIT) { 3519 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 3520 len, GHCB_SCRATCH_AREA_LIMIT); 3521 goto e_scratch; 3522 } 3523 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 3524 if (!scratch_va) 3525 return -ENOMEM; 3526 3527 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 3528 /* Unable to copy scratch area from guest */ 3529 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 3530 3531 kvfree(scratch_va); 3532 return -EFAULT; 3533 } 3534 3535 /* 3536 * The scratch area is outside the GHCB. The operation will 3537 * dictate whether the buffer needs to be synced before running 3538 * the vCPU next time (i.e. a read was requested so the data 3539 * must be written back to the guest memory). 3540 */ 3541 svm->sev_es.ghcb_sa_sync = sync; 3542 svm->sev_es.ghcb_sa_free = true; 3543 } 3544 3545 svm->sev_es.ghcb_sa = scratch_va; 3546 svm->sev_es.ghcb_sa_len = len; 3547 3548 return 0; 3549 3550 e_scratch: 3551 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA); 3552 3553 return 1; 3554 } 3555 3556 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 3557 unsigned int pos) 3558 { 3559 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 3560 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 3561 } 3562 3563 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 3564 { 3565 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 3566 } 3567 3568 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 3569 { 3570 svm->vmcb->control.ghcb_gpa = value; 3571 } 3572 3573 static int snp_rmptable_psmash(kvm_pfn_t pfn) 3574 { 3575 int ret; 3576 3577 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1); 3578 3579 /* 3580 * PSMASH_FAIL_INUSE indicates another processor is modifying the 3581 * entry, so retry until that's no longer the case. 3582 */ 3583 do { 3584 ret = psmash(pfn); 3585 } while (ret == PSMASH_FAIL_INUSE); 3586 3587 return ret; 3588 } 3589 3590 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu) 3591 { 3592 struct vcpu_svm *svm = to_svm(vcpu); 3593 3594 if (vcpu->run->hypercall.ret) 3595 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3596 else 3597 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP); 3598 3599 return 1; /* resume guest */ 3600 } 3601 3602 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) 3603 { 3604 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr)); 3605 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr); 3606 struct kvm_vcpu *vcpu = &svm->vcpu; 3607 3608 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) { 3609 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3610 return 1; /* resume guest */ 3611 } 3612 3613 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { 3614 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3615 return 1; /* resume guest */ 3616 } 3617 3618 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3619 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3620 /* 3621 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 3622 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 3623 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 3624 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 3625 */ 3626 vcpu->run->hypercall.ret = 0; 3627 vcpu->run->hypercall.args[0] = gpa; 3628 vcpu->run->hypercall.args[1] = 1; 3629 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) 3630 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3631 : KVM_MAP_GPA_RANGE_DECRYPTED; 3632 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3633 3634 vcpu->arch.complete_userspace_io = snp_complete_psc_msr; 3635 3636 return 0; /* forward request to userspace */ 3637 } 3638 3639 struct psc_buffer { 3640 struct psc_hdr hdr; 3641 struct psc_entry entries[]; 3642 } __packed; 3643 3644 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc); 3645 3646 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret) 3647 { 3648 svm->sev_es.psc_inflight = 0; 3649 svm->sev_es.psc_idx = 0; 3650 svm->sev_es.psc_2m = false; 3651 3652 /* 3653 * PSC requests always get a "no action" response in SW_EXITINFO1, with 3654 * a PSC-specific return code in SW_EXITINFO2 that provides the "real" 3655 * return code. E.g. if the PSC request was interrupted, the need to 3656 * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1. 3657 */ 3658 svm_vmgexit_no_action(svm, psc_ret); 3659 } 3660 3661 static void __snp_complete_one_psc(struct vcpu_svm *svm) 3662 { 3663 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3664 struct psc_entry *entries = psc->entries; 3665 struct psc_hdr *hdr = &psc->hdr; 3666 __u16 idx; 3667 3668 /* 3669 * Everything in-flight has been processed successfully. Update the 3670 * corresponding entries in the guest's PSC buffer and zero out the 3671 * count of in-flight PSC entries. 3672 */ 3673 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight; 3674 svm->sev_es.psc_inflight--, idx++) { 3675 struct psc_entry *entry = &entries[idx]; 3676 3677 entry->cur_page = entry->pagesize ? 512 : 1; 3678 } 3679 3680 hdr->cur_entry = idx; 3681 } 3682 3683 static int snp_complete_one_psc(struct kvm_vcpu *vcpu) 3684 { 3685 struct vcpu_svm *svm = to_svm(vcpu); 3686 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3687 3688 if (vcpu->run->hypercall.ret) { 3689 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3690 return 1; /* resume guest */ 3691 } 3692 3693 __snp_complete_one_psc(svm); 3694 3695 /* Handle the next range (if any). */ 3696 return snp_begin_psc(svm, psc); 3697 } 3698 3699 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) 3700 { 3701 struct psc_entry *entries = psc->entries; 3702 struct kvm_vcpu *vcpu = &svm->vcpu; 3703 struct psc_hdr *hdr = &psc->hdr; 3704 struct psc_entry entry_start; 3705 u16 idx, idx_start, idx_end; 3706 int npages; 3707 bool huge; 3708 u64 gfn; 3709 3710 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { 3711 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3712 return 1; 3713 } 3714 3715 next_range: 3716 /* There should be no other PSCs in-flight at this point. */ 3717 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) { 3718 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3719 return 1; 3720 } 3721 3722 /* 3723 * The PSC descriptor buffer can be modified by a misbehaved guest after 3724 * validation, so take care to only use validated copies of values used 3725 * for things like array indexing. 3726 */ 3727 idx_start = hdr->cur_entry; 3728 idx_end = hdr->end_entry; 3729 3730 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) { 3731 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR); 3732 return 1; 3733 } 3734 3735 /* Find the start of the next range which needs processing. */ 3736 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) { 3737 entry_start = entries[idx]; 3738 3739 gfn = entry_start.gfn; 3740 huge = entry_start.pagesize; 3741 npages = huge ? 512 : 1; 3742 3743 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) { 3744 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY); 3745 return 1; 3746 } 3747 3748 if (entry_start.cur_page) { 3749 /* 3750 * If this is a partially-completed 2M range, force 4K handling 3751 * for the remaining pages since they're effectively split at 3752 * this point. Subsequent code should ensure this doesn't get 3753 * combined with adjacent PSC entries where 2M handling is still 3754 * possible. 3755 */ 3756 npages -= entry_start.cur_page; 3757 gfn += entry_start.cur_page; 3758 huge = false; 3759 } 3760 3761 if (npages) 3762 break; 3763 } 3764 3765 if (idx > idx_end) { 3766 /* Nothing more to process. */ 3767 snp_complete_psc(svm, 0); 3768 return 1; 3769 } 3770 3771 svm->sev_es.psc_2m = huge; 3772 svm->sev_es.psc_idx = idx; 3773 svm->sev_es.psc_inflight = 1; 3774 3775 /* 3776 * Find all subsequent PSC entries that contain adjacent GPA 3777 * ranges/operations and can be combined into a single 3778 * KVM_HC_MAP_GPA_RANGE exit. 3779 */ 3780 while (++idx <= idx_end) { 3781 struct psc_entry entry = entries[idx]; 3782 3783 if (entry.operation != entry_start.operation || 3784 entry.gfn != entry_start.gfn + npages || 3785 entry.cur_page || !!entry.pagesize != huge) 3786 break; 3787 3788 svm->sev_es.psc_inflight++; 3789 npages += huge ? 512 : 1; 3790 } 3791 3792 switch (entry_start.operation) { 3793 case VMGEXIT_PSC_OP_PRIVATE: 3794 case VMGEXIT_PSC_OP_SHARED: 3795 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3796 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3797 /* 3798 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 3799 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 3800 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 3801 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 3802 */ 3803 vcpu->run->hypercall.ret = 0; 3804 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); 3805 vcpu->run->hypercall.args[1] = npages; 3806 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE 3807 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3808 : KVM_MAP_GPA_RANGE_DECRYPTED; 3809 vcpu->run->hypercall.args[2] |= entry_start.pagesize 3810 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M 3811 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3812 vcpu->arch.complete_userspace_io = snp_complete_one_psc; 3813 return 0; /* forward request to userspace */ 3814 default: 3815 /* 3816 * Only shared/private PSC operations are currently supported, so if the 3817 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH), 3818 * then consider the entire range completed and avoid exiting to 3819 * userspace. In theory snp_complete_psc() can always be called directly 3820 * at this point to complete the current range and start the next one, 3821 * but that could lead to unexpected levels of recursion. 3822 */ 3823 __snp_complete_one_psc(svm); 3824 goto next_range; 3825 } 3826 3827 BUG(); 3828 } 3829 3830 /* 3831 * Invoked as part of svm_vcpu_reset() processing of an init event. 3832 */ 3833 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) 3834 { 3835 struct vcpu_svm *svm = to_svm(vcpu); 3836 struct kvm_memory_slot *slot; 3837 struct page *page; 3838 kvm_pfn_t pfn; 3839 gfn_t gfn; 3840 3841 if (!sev_snp_guest(vcpu->kvm)) 3842 return; 3843 3844 guard(mutex)(&svm->sev_es.snp_vmsa_mutex); 3845 3846 if (!svm->sev_es.snp_ap_waiting_for_reset) 3847 return; 3848 3849 svm->sev_es.snp_ap_waiting_for_reset = false; 3850 3851 /* Mark the vCPU as offline and not runnable */ 3852 vcpu->arch.pv.pv_unhalted = false; 3853 kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED); 3854 3855 /* Clear use of the VMSA */ 3856 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 3857 3858 /* 3859 * When replacing the VMSA during SEV-SNP AP creation, 3860 * mark the VMCB dirty so that full state is always reloaded. 3861 */ 3862 vmcb_mark_all_dirty(svm->vmcb); 3863 3864 if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) 3865 return; 3866 3867 gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa); 3868 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3869 3870 slot = gfn_to_memslot(vcpu->kvm, gfn); 3871 if (!slot) 3872 return; 3873 3874 /* 3875 * The new VMSA will be private memory guest memory, so retrieve the 3876 * PFN from the gmem backend. 3877 */ 3878 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL)) 3879 return; 3880 3881 /* 3882 * From this point forward, the VMSA will always be a guest-mapped page 3883 * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In 3884 * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but 3885 * that involves cleanups like wbinvd_on_all_cpus() which would ideally 3886 * be handled during teardown rather than guest boot. Deferring that 3887 * also allows the existing logic for SEV-ES VMSAs to be re-used with 3888 * minimal SNP-specific changes. 3889 */ 3890 svm->sev_es.snp_has_guest_vmsa = true; 3891 3892 /* Use the new VMSA */ 3893 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn); 3894 3895 /* Mark the vCPU as runnable */ 3896 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3897 3898 /* 3899 * gmem pages aren't currently migratable, but if this ever changes 3900 * then care should be taken to ensure svm->sev_es.vmsa is pinned 3901 * through some other means. 3902 */ 3903 kvm_release_page_clean(page); 3904 } 3905 3906 static int sev_snp_ap_creation(struct vcpu_svm *svm) 3907 { 3908 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm); 3909 struct kvm_vcpu *vcpu = &svm->vcpu; 3910 struct kvm_vcpu *target_vcpu; 3911 struct vcpu_svm *target_svm; 3912 unsigned int request; 3913 unsigned int apic_id; 3914 3915 request = lower_32_bits(svm->vmcb->control.exit_info_1); 3916 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1); 3917 3918 /* Validate the APIC ID */ 3919 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id); 3920 if (!target_vcpu) { 3921 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n", 3922 apic_id); 3923 return -EINVAL; 3924 } 3925 3926 target_svm = to_svm(target_vcpu); 3927 3928 guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex); 3929 3930 switch (request) { 3931 case SVM_VMGEXIT_AP_CREATE_ON_INIT: 3932 case SVM_VMGEXIT_AP_CREATE: 3933 if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) { 3934 vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n", 3935 vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features); 3936 return -EINVAL; 3937 } 3938 3939 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) { 3940 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n", 3941 svm->vmcb->control.exit_info_2); 3942 return -EINVAL; 3943 } 3944 3945 /* 3946 * Malicious guest can RMPADJUST a large page into VMSA which 3947 * will hit the SNP erratum where the CPU will incorrectly signal 3948 * an RMP violation #PF if a hugepage collides with the RMP entry 3949 * of VMSA page, reject the AP CREATE request if VMSA address from 3950 * guest is 2M aligned. 3951 */ 3952 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) { 3953 vcpu_unimpl(vcpu, 3954 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n", 3955 svm->vmcb->control.exit_info_2); 3956 return -EINVAL; 3957 } 3958 3959 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; 3960 break; 3961 case SVM_VMGEXIT_AP_DESTROY: 3962 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3963 break; 3964 default: 3965 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", 3966 request); 3967 return -EINVAL; 3968 } 3969 3970 target_svm->sev_es.snp_ap_waiting_for_reset = true; 3971 3972 /* 3973 * Unless Creation is deferred until INIT, signal the vCPU to update 3974 * its state. 3975 */ 3976 if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT) 3977 kvm_make_request_and_kick(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); 3978 3979 return 0; 3980 } 3981 3982 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 3983 { 3984 struct sev_data_snp_guest_request data = {0}; 3985 struct kvm *kvm = svm->vcpu.kvm; 3986 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 3987 sev_ret_code fw_err = 0; 3988 int ret; 3989 3990 if (!sev_snp_guest(kvm)) 3991 return -EINVAL; 3992 3993 mutex_lock(&sev->guest_req_mutex); 3994 3995 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) { 3996 ret = -EIO; 3997 goto out_unlock; 3998 } 3999 4000 data.gctx_paddr = __psp_pa(sev->snp_context); 4001 data.req_paddr = __psp_pa(sev->guest_req_buf); 4002 data.res_paddr = __psp_pa(sev->guest_resp_buf); 4003 4004 /* 4005 * Firmware failures are propagated on to guest, but any other failure 4006 * condition along the way should be reported to userspace. E.g. if 4007 * the PSP is dead and commands are timing out. 4008 */ 4009 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err); 4010 if (ret && !fw_err) 4011 goto out_unlock; 4012 4013 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) { 4014 ret = -EIO; 4015 goto out_unlock; 4016 } 4017 4018 /* No action is requested *from KVM* if there was a firmware error. */ 4019 svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err)); 4020 4021 ret = 1; /* resume guest */ 4022 4023 out_unlock: 4024 mutex_unlock(&sev->guest_req_mutex); 4025 return ret; 4026 } 4027 4028 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4029 { 4030 struct kvm *kvm = svm->vcpu.kvm; 4031 u8 msg_type; 4032 4033 if (!sev_snp_guest(kvm)) 4034 return -EINVAL; 4035 4036 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type), 4037 &msg_type, 1)) 4038 return -EIO; 4039 4040 /* 4041 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for 4042 * additional certificate data to be provided alongside the attestation 4043 * report via the guest-provided data pages indicated by RAX/RBX. The 4044 * certificate data is optional and requires additional KVM enablement 4045 * to provide an interface for userspace to provide it, but KVM still 4046 * needs to be able to handle extended guest requests either way. So 4047 * provide a stub implementation that will always return an empty 4048 * certificate table in the guest-provided data pages. 4049 */ 4050 if (msg_type == SNP_MSG_REPORT_REQ) { 4051 struct kvm_vcpu *vcpu = &svm->vcpu; 4052 u64 data_npages; 4053 gpa_t data_gpa; 4054 4055 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm)) 4056 goto request_invalid; 4057 4058 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX]; 4059 data_npages = vcpu->arch.regs[VCPU_REGS_RBX]; 4060 4061 if (!PAGE_ALIGNED(data_gpa)) 4062 goto request_invalid; 4063 4064 /* 4065 * As per GHCB spec (see "SNP Extended Guest Request"), the 4066 * certificate table is terminated by 24-bytes of zeroes. 4067 */ 4068 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24)) 4069 return -EIO; 4070 } 4071 4072 return snp_handle_guest_req(svm, req_gpa, resp_gpa); 4073 4074 request_invalid: 4075 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4076 return 1; /* resume guest */ 4077 } 4078 4079 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 4080 { 4081 struct vmcb_control_area *control = &svm->vmcb->control; 4082 struct kvm_vcpu *vcpu = &svm->vcpu; 4083 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4084 u64 ghcb_info; 4085 int ret = 1; 4086 4087 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 4088 4089 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 4090 control->ghcb_gpa); 4091 4092 switch (ghcb_info) { 4093 case GHCB_MSR_SEV_INFO_REQ: 4094 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4095 GHCB_VERSION_MIN, 4096 sev_enc_bit)); 4097 break; 4098 case GHCB_MSR_CPUID_REQ: { 4099 u64 cpuid_fn, cpuid_reg, cpuid_value; 4100 4101 cpuid_fn = get_ghcb_msr_bits(svm, 4102 GHCB_MSR_CPUID_FUNC_MASK, 4103 GHCB_MSR_CPUID_FUNC_POS); 4104 4105 /* Initialize the registers needed by the CPUID intercept */ 4106 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 4107 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 4108 4109 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 4110 if (!ret) { 4111 /* Error, keep GHCB MSR value as-is */ 4112 break; 4113 } 4114 4115 cpuid_reg = get_ghcb_msr_bits(svm, 4116 GHCB_MSR_CPUID_REG_MASK, 4117 GHCB_MSR_CPUID_REG_POS); 4118 if (cpuid_reg == 0) 4119 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 4120 else if (cpuid_reg == 1) 4121 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 4122 else if (cpuid_reg == 2) 4123 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 4124 else 4125 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 4126 4127 set_ghcb_msr_bits(svm, cpuid_value, 4128 GHCB_MSR_CPUID_VALUE_MASK, 4129 GHCB_MSR_CPUID_VALUE_POS); 4130 4131 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 4132 GHCB_MSR_INFO_MASK, 4133 GHCB_MSR_INFO_POS); 4134 break; 4135 } 4136 case GHCB_MSR_AP_RESET_HOLD_REQ: 4137 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO; 4138 ret = kvm_emulate_ap_reset_hold(&svm->vcpu); 4139 4140 /* 4141 * Preset the result to a non-SIPI return and then only set 4142 * the result to non-zero when delivering a SIPI. 4143 */ 4144 set_ghcb_msr_bits(svm, 0, 4145 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4146 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4147 4148 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4149 GHCB_MSR_INFO_MASK, 4150 GHCB_MSR_INFO_POS); 4151 break; 4152 case GHCB_MSR_HV_FT_REQ: 4153 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED, 4154 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS); 4155 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP, 4156 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); 4157 break; 4158 case GHCB_MSR_PREF_GPA_REQ: 4159 if (!sev_snp_guest(vcpu->kvm)) 4160 goto out_terminate; 4161 4162 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK, 4163 GHCB_MSR_GPA_VALUE_POS); 4164 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK, 4165 GHCB_MSR_INFO_POS); 4166 break; 4167 case GHCB_MSR_REG_GPA_REQ: { 4168 u64 gfn; 4169 4170 if (!sev_snp_guest(vcpu->kvm)) 4171 goto out_terminate; 4172 4173 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK, 4174 GHCB_MSR_GPA_VALUE_POS); 4175 4176 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn); 4177 4178 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK, 4179 GHCB_MSR_GPA_VALUE_POS); 4180 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK, 4181 GHCB_MSR_INFO_POS); 4182 break; 4183 } 4184 case GHCB_MSR_PSC_REQ: 4185 if (!sev_snp_guest(vcpu->kvm)) 4186 goto out_terminate; 4187 4188 ret = snp_begin_psc_msr(svm, control->ghcb_gpa); 4189 break; 4190 case GHCB_MSR_TERM_REQ: { 4191 u64 reason_set, reason_code; 4192 4193 reason_set = get_ghcb_msr_bits(svm, 4194 GHCB_MSR_TERM_REASON_SET_MASK, 4195 GHCB_MSR_TERM_REASON_SET_POS); 4196 reason_code = get_ghcb_msr_bits(svm, 4197 GHCB_MSR_TERM_REASON_MASK, 4198 GHCB_MSR_TERM_REASON_POS); 4199 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 4200 reason_set, reason_code); 4201 4202 goto out_terminate; 4203 } 4204 default: 4205 /* Error, keep GHCB MSR value as-is */ 4206 break; 4207 } 4208 4209 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 4210 control->ghcb_gpa, ret); 4211 4212 return ret; 4213 4214 out_terminate: 4215 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4216 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4217 vcpu->run->system_event.ndata = 1; 4218 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4219 4220 return 0; 4221 } 4222 4223 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 4224 { 4225 struct vcpu_svm *svm = to_svm(vcpu); 4226 struct vmcb_control_area *control = &svm->vmcb->control; 4227 u64 ghcb_gpa, exit_code; 4228 int ret; 4229 4230 /* Validate the GHCB */ 4231 ghcb_gpa = control->ghcb_gpa; 4232 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 4233 return sev_handle_vmgexit_msr_protocol(svm); 4234 4235 if (!ghcb_gpa) { 4236 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 4237 4238 /* Without a GHCB, just return right back to the guest */ 4239 return 1; 4240 } 4241 4242 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 4243 /* Unable to map GHCB from guest */ 4244 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 4245 ghcb_gpa); 4246 4247 /* Without a GHCB, just return right back to the guest */ 4248 return 1; 4249 } 4250 4251 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 4252 4253 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 4254 4255 sev_es_sync_from_ghcb(svm); 4256 4257 /* SEV-SNP guest requires that the GHCB GPA must be registered */ 4258 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) { 4259 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa); 4260 return -EINVAL; 4261 } 4262 4263 ret = sev_es_validate_vmgexit(svm); 4264 if (ret) 4265 return ret; 4266 4267 svm_vmgexit_success(svm, 0); 4268 4269 exit_code = kvm_ghcb_get_sw_exit_code(control); 4270 switch (exit_code) { 4271 case SVM_VMGEXIT_MMIO_READ: 4272 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4273 if (ret) 4274 break; 4275 4276 ret = kvm_sev_es_mmio_read(vcpu, 4277 control->exit_info_1, 4278 control->exit_info_2, 4279 svm->sev_es.ghcb_sa); 4280 break; 4281 case SVM_VMGEXIT_MMIO_WRITE: 4282 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 4283 if (ret) 4284 break; 4285 4286 ret = kvm_sev_es_mmio_write(vcpu, 4287 control->exit_info_1, 4288 control->exit_info_2, 4289 svm->sev_es.ghcb_sa); 4290 break; 4291 case SVM_VMGEXIT_NMI_COMPLETE: 4292 ++vcpu->stat.nmi_window_exits; 4293 svm->nmi_masked = false; 4294 kvm_make_request(KVM_REQ_EVENT, vcpu); 4295 ret = 1; 4296 break; 4297 case SVM_VMGEXIT_AP_HLT_LOOP: 4298 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT; 4299 ret = kvm_emulate_ap_reset_hold(vcpu); 4300 break; 4301 case SVM_VMGEXIT_AP_JUMP_TABLE: { 4302 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4303 4304 switch (control->exit_info_1) { 4305 case 0: 4306 /* Set AP jump table address */ 4307 sev->ap_jump_table = control->exit_info_2; 4308 break; 4309 case 1: 4310 /* Get AP jump table address */ 4311 svm_vmgexit_success(svm, sev->ap_jump_table); 4312 break; 4313 default: 4314 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 4315 control->exit_info_1); 4316 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4317 } 4318 4319 ret = 1; 4320 break; 4321 } 4322 case SVM_VMGEXIT_HV_FEATURES: 4323 svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED); 4324 ret = 1; 4325 break; 4326 case SVM_VMGEXIT_TERM_REQUEST: 4327 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n", 4328 control->exit_info_1, control->exit_info_2); 4329 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4330 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4331 vcpu->run->system_event.ndata = 1; 4332 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4333 break; 4334 case SVM_VMGEXIT_PSC: 4335 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4336 if (ret) 4337 break; 4338 4339 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa); 4340 break; 4341 case SVM_VMGEXIT_AP_CREATION: 4342 ret = sev_snp_ap_creation(svm); 4343 if (ret) { 4344 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4345 } 4346 4347 ret = 1; 4348 break; 4349 case SVM_VMGEXIT_GUEST_REQUEST: 4350 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2); 4351 break; 4352 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 4353 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2); 4354 break; 4355 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 4356 vcpu_unimpl(vcpu, 4357 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 4358 control->exit_info_1, control->exit_info_2); 4359 ret = -EINVAL; 4360 break; 4361 default: 4362 ret = svm_invoke_exit_handler(vcpu, exit_code); 4363 } 4364 4365 return ret; 4366 } 4367 4368 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 4369 { 4370 int count; 4371 int bytes; 4372 int r; 4373 4374 if (svm->vmcb->control.exit_info_2 > INT_MAX) 4375 return -EINVAL; 4376 4377 count = svm->vmcb->control.exit_info_2; 4378 if (unlikely(check_mul_overflow(count, size, &bytes))) 4379 return -EINVAL; 4380 4381 r = setup_vmgexit_scratch(svm, in, bytes); 4382 if (r) 4383 return r; 4384 4385 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 4386 count, in); 4387 } 4388 4389 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4390 { 4391 struct kvm_vcpu *vcpu = &svm->vcpu; 4392 4393 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 4394 bool v_tsc_aux = guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) || 4395 guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID); 4396 4397 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); 4398 } 4399 4400 /* 4401 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if 4402 * the host/guest supports its use. 4403 * 4404 * KVM treats the guest as being capable of using XSAVES even if XSAVES 4405 * isn't enabled in guest CPUID as there is no intercept for XSAVES, 4406 * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is 4407 * exposed to the guest and XSAVES is supported in hardware. Condition 4408 * full XSS passthrough on the guest being able to use XSAVES *and* 4409 * XSAVES being exposed to the guest so that KVM can at least honor 4410 * guest CPUID for RDMSR and WRMSR. 4411 */ 4412 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 4413 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4414 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); 4415 else 4416 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0); 4417 } 4418 4419 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4420 { 4421 struct kvm_vcpu *vcpu = &svm->vcpu; 4422 struct kvm_cpuid_entry2 *best; 4423 4424 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4425 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4426 if (best) 4427 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4428 4429 if (sev_es_guest(svm->vcpu.kvm)) 4430 sev_es_vcpu_after_set_cpuid(svm); 4431 } 4432 4433 static void sev_es_init_vmcb(struct vcpu_svm *svm) 4434 { 4435 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm); 4436 struct vmcb *vmcb = svm->vmcb01.ptr; 4437 struct kvm_vcpu *vcpu = &svm->vcpu; 4438 4439 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 4440 4441 /* 4442 * An SEV-ES guest requires a VMSA area that is a separate from the 4443 * VMCB page. Do not include the encryption mask on the VMSA physical 4444 * address since hardware will access it using the guest key. Note, 4445 * the VMSA will be NULL if this vCPU is the destination for intrahost 4446 * migration, and will be copied later. 4447 */ 4448 if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa) 4449 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 4450 4451 if (cpu_feature_enabled(X86_FEATURE_ALLOWED_SEV_FEATURES)) 4452 svm->vmcb->control.allowed_sev_features = sev->vmsa_features | 4453 VMCB_ALLOWED_SEV_FEATURES_VALID; 4454 4455 /* Can't intercept CR register access, HV can't modify CR registers */ 4456 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 4457 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 4458 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 4459 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 4460 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 4461 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 4462 4463 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 4464 4465 /* Track EFER/CR register changes */ 4466 svm_set_intercept(svm, TRAP_EFER_WRITE); 4467 svm_set_intercept(svm, TRAP_CR0_WRITE); 4468 svm_set_intercept(svm, TRAP_CR4_WRITE); 4469 svm_set_intercept(svm, TRAP_CR8_WRITE); 4470 4471 vmcb->control.intercepts[INTERCEPT_DR] = 0; 4472 if (!sev_vcpu_has_debug_swap(svm)) { 4473 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 4474 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 4475 recalc_intercepts(svm); 4476 } else { 4477 /* 4478 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 4479 * allow debugging SEV-ES guests, and enables DebugSwap iff 4480 * NO_NESTED_DATA_BP is supported, so there's no reason to 4481 * intercept #DB when DebugSwap is enabled. For simplicity 4482 * with respect to guest debug, intercept #DB for other VMs 4483 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 4484 * guest can't DoS the CPU with infinite #DB vectoring. 4485 */ 4486 clr_exception_intercept(svm, DB_VECTOR); 4487 } 4488 4489 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 4490 svm_clr_intercept(svm, INTERCEPT_XSETBV); 4491 4492 /* Clear intercepts on selected MSRs */ 4493 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 4494 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 4495 } 4496 4497 void sev_init_vmcb(struct vcpu_svm *svm) 4498 { 4499 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 4500 clr_exception_intercept(svm, UD_VECTOR); 4501 4502 /* 4503 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 4504 * KVM can't decrypt guest memory to decode the faulting instruction. 4505 */ 4506 clr_exception_intercept(svm, GP_VECTOR); 4507 4508 if (sev_es_guest(svm->vcpu.kvm)) 4509 sev_es_init_vmcb(svm); 4510 } 4511 4512 void sev_es_vcpu_reset(struct vcpu_svm *svm) 4513 { 4514 struct kvm_vcpu *vcpu = &svm->vcpu; 4515 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4516 4517 /* 4518 * Set the GHCB MSR value as per the GHCB specification when emulating 4519 * vCPU RESET for an SEV-ES guest. 4520 */ 4521 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4522 GHCB_VERSION_MIN, 4523 sev_enc_bit)); 4524 4525 mutex_init(&svm->sev_es.snp_vmsa_mutex); 4526 } 4527 4528 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa) 4529 { 4530 struct kvm *kvm = svm->vcpu.kvm; 4531 4532 /* 4533 * All host state for SEV-ES guests is categorized into three swap types 4534 * based on how it is handled by hardware during a world switch: 4535 * 4536 * A: VMRUN: Host state saved in host save area 4537 * VMEXIT: Host state loaded from host save area 4538 * 4539 * B: VMRUN: Host state _NOT_ saved in host save area 4540 * VMEXIT: Host state loaded from host save area 4541 * 4542 * C: VMRUN: Host state _NOT_ saved in host save area 4543 * VMEXIT: Host state initialized to default(reset) values 4544 * 4545 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 4546 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 4547 * by common SVM code). 4548 */ 4549 hostsa->xcr0 = kvm_host.xcr0; 4550 hostsa->pkru = read_pkru(); 4551 hostsa->xss = kvm_host.xss; 4552 4553 /* 4554 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 4555 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does 4556 * not save or load debug registers. Sadly, KVM can't prevent SNP 4557 * guests from lying about DebugSwap on secondary vCPUs, i.e. the 4558 * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what 4559 * the guest has actually enabled (or not!) in the VMSA. 4560 * 4561 * If DebugSwap is *possible*, save the masks so that they're restored 4562 * if the guest enables DebugSwap. But for the DRs themselves, do NOT 4563 * rely on the CPU to restore the host values; KVM will restore them as 4564 * needed in common code, via hw_breakpoint_restore(). Note, KVM does 4565 * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs 4566 * don't need to be restored per se, KVM just needs to ensure they are 4567 * loaded with the correct values *if* the CPU writes the MSRs. 4568 */ 4569 if (sev_vcpu_has_debug_swap(svm) || 4570 (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) { 4571 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 4572 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 4573 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 4574 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 4575 } 4576 } 4577 4578 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4579 { 4580 struct vcpu_svm *svm = to_svm(vcpu); 4581 4582 /* First SIPI: Use the values as initially set by the VMM */ 4583 if (!svm->sev_es.received_first_sipi) { 4584 svm->sev_es.received_first_sipi = true; 4585 return; 4586 } 4587 4588 /* Subsequent SIPI */ 4589 switch (svm->sev_es.ap_reset_hold_type) { 4590 case AP_RESET_HOLD_NAE_EVENT: 4591 /* 4592 * Return from an AP Reset Hold VMGEXIT, where the guest will 4593 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value. 4594 */ 4595 svm_vmgexit_success(svm, 1); 4596 break; 4597 case AP_RESET_HOLD_MSR_PROTO: 4598 /* 4599 * Return from an AP Reset Hold VMGEXIT, where the guest will 4600 * set the CS and RIP. Set GHCB data field to a non-zero value. 4601 */ 4602 set_ghcb_msr_bits(svm, 1, 4603 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4604 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4605 4606 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4607 GHCB_MSR_INFO_MASK, 4608 GHCB_MSR_INFO_POS); 4609 break; 4610 default: 4611 break; 4612 } 4613 } 4614 4615 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) 4616 { 4617 unsigned long pfn; 4618 struct page *p; 4619 4620 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4621 return alloc_pages_node(node, gfp | __GFP_ZERO, 0); 4622 4623 /* 4624 * Allocate an SNP-safe page to workaround the SNP erratum where 4625 * the CPU will incorrectly signal an RMP violation #PF if a 4626 * hugepage (2MB or 1GB) collides with the RMP entry of a 4627 * 2MB-aligned VMCB, VMSA, or AVIC backing page. 4628 * 4629 * Allocate one extra page, choose a page which is not 4630 * 2MB-aligned, and free the other. 4631 */ 4632 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1); 4633 if (!p) 4634 return NULL; 4635 4636 split_page(p, 1); 4637 4638 pfn = page_to_pfn(p); 4639 if (IS_ALIGNED(pfn, PTRS_PER_PMD)) 4640 __free_page(p++); 4641 else 4642 __free_page(p + 1); 4643 4644 return p; 4645 } 4646 4647 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) 4648 { 4649 struct kvm_memory_slot *slot; 4650 struct kvm *kvm = vcpu->kvm; 4651 int order, rmp_level, ret; 4652 struct page *page; 4653 bool assigned; 4654 kvm_pfn_t pfn; 4655 gfn_t gfn; 4656 4657 gfn = gpa >> PAGE_SHIFT; 4658 4659 /* 4660 * The only time RMP faults occur for shared pages is when the guest is 4661 * triggering an RMP fault for an implicit page-state change from 4662 * shared->private. Implicit page-state changes are forwarded to 4663 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults 4664 * for shared pages should not end up here. 4665 */ 4666 if (!kvm_mem_is_private(kvm, gfn)) { 4667 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n", 4668 gpa); 4669 return; 4670 } 4671 4672 slot = gfn_to_memslot(kvm, gfn); 4673 if (!kvm_slot_can_be_private(slot)) { 4674 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n", 4675 gpa); 4676 return; 4677 } 4678 4679 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order); 4680 if (ret) { 4681 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n", 4682 gpa); 4683 return; 4684 } 4685 4686 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4687 if (ret || !assigned) { 4688 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n", 4689 gpa, pfn, ret); 4690 goto out_no_trace; 4691 } 4692 4693 /* 4694 * There are 2 cases where a PSMASH may be needed to resolve an #NPF 4695 * with PFERR_GUEST_RMP_BIT set: 4696 * 4697 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM 4698 * bit set if the guest issues them with a smaller granularity than 4699 * what is indicated by the page-size bit in the 2MB RMP entry for 4700 * the PFN that backs the GPA. 4701 * 4702 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is 4703 * smaller than what is indicated by the 2MB RMP entry for the PFN 4704 * that backs the GPA. 4705 * 4706 * In both these cases, the corresponding 2M RMP entry needs to 4707 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already 4708 * split into 4K RMP entries, then this is likely a spurious case which 4709 * can occur when there are concurrent accesses by the guest to a 2MB 4710 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in 4711 * the process of being PMASH'd into 4K entries. These cases should 4712 * resolve automatically on subsequent accesses, so just ignore them 4713 * here. 4714 */ 4715 if (rmp_level == PG_LEVEL_4K) 4716 goto out; 4717 4718 ret = snp_rmptable_psmash(pfn); 4719 if (ret) { 4720 /* 4721 * Look it up again. If it's 4K now then the PSMASH may have 4722 * raced with another process and the issue has already resolved 4723 * itself. 4724 */ 4725 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) && 4726 assigned && rmp_level == PG_LEVEL_4K) 4727 goto out; 4728 4729 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n", 4730 gpa, pfn, ret); 4731 } 4732 4733 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD); 4734 out: 4735 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret); 4736 out_no_trace: 4737 kvm_release_page_unused(page); 4738 } 4739 4740 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end) 4741 { 4742 kvm_pfn_t pfn = start; 4743 4744 while (pfn < end) { 4745 int ret, rmp_level; 4746 bool assigned; 4747 4748 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4749 if (ret) { 4750 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n", 4751 pfn, start, end, rmp_level, ret); 4752 return false; 4753 } 4754 4755 if (assigned) { 4756 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n", 4757 __func__, pfn, start, end, rmp_level); 4758 return false; 4759 } 4760 4761 pfn++; 4762 } 4763 4764 return true; 4765 } 4766 4767 static u8 max_level_for_order(int order) 4768 { 4769 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4770 return PG_LEVEL_2M; 4771 4772 return PG_LEVEL_4K; 4773 } 4774 4775 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order) 4776 { 4777 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4778 4779 /* 4780 * If this is a large folio, and the entire 2M range containing the 4781 * PFN is currently shared, then the entire 2M-aligned range can be 4782 * set to private via a single 2M RMP entry. 4783 */ 4784 if (max_level_for_order(order) > PG_LEVEL_4K && 4785 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD)) 4786 return true; 4787 4788 return false; 4789 } 4790 4791 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) 4792 { 4793 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4794 kvm_pfn_t pfn_aligned; 4795 gfn_t gfn_aligned; 4796 int level, rc; 4797 bool assigned; 4798 4799 if (!sev_snp_guest(kvm)) 4800 return 0; 4801 4802 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4803 if (rc) { 4804 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n", 4805 gfn, pfn, rc); 4806 return -ENOENT; 4807 } 4808 4809 if (assigned) { 4810 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n", 4811 __func__, gfn, pfn, max_order, level); 4812 return 0; 4813 } 4814 4815 if (is_large_rmp_possible(kvm, pfn, max_order)) { 4816 level = PG_LEVEL_2M; 4817 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4818 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD); 4819 } else { 4820 level = PG_LEVEL_4K; 4821 pfn_aligned = pfn; 4822 gfn_aligned = gfn; 4823 } 4824 4825 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false); 4826 if (rc) { 4827 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n", 4828 gfn, pfn, level, rc); 4829 return -EINVAL; 4830 } 4831 4832 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n", 4833 __func__, gfn, pfn, pfn_aligned, max_order, level); 4834 4835 return 0; 4836 } 4837 4838 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 4839 { 4840 kvm_pfn_t pfn; 4841 4842 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4843 return; 4844 4845 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end); 4846 4847 for (pfn = start; pfn < end;) { 4848 bool use_2m_update = false; 4849 int rc, rmp_level; 4850 bool assigned; 4851 4852 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4853 if (rc || !assigned) 4854 goto next_pfn; 4855 4856 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) && 4857 end >= (pfn + PTRS_PER_PMD) && 4858 rmp_level > PG_LEVEL_4K; 4859 4860 /* 4861 * If an unaligned PFN corresponds to a 2M region assigned as a 4862 * large page in the RMP table, PSMASH the region into individual 4863 * 4K RMP entries before attempting to convert a 4K sub-page. 4864 */ 4865 if (!use_2m_update && rmp_level > PG_LEVEL_4K) { 4866 /* 4867 * This shouldn't fail, but if it does, report it, but 4868 * still try to update RMP entry to shared and pray this 4869 * was a spurious error that can be addressed later. 4870 */ 4871 rc = snp_rmptable_psmash(pfn); 4872 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n", 4873 pfn, rc); 4874 } 4875 4876 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K); 4877 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n", 4878 pfn, rc)) 4879 goto next_pfn; 4880 4881 /* 4882 * SEV-ES avoids host/guest cache coherency issues through 4883 * WBINVD hooks issued via MMU notifiers during run-time, and 4884 * KVM's VM destroy path at shutdown. Those MMU notifier events 4885 * don't cover gmem since there is no requirement to map pages 4886 * to a HVA in order to use them for a running guest. While the 4887 * shutdown path would still likely cover things for SNP guests, 4888 * userspace may also free gmem pages during run-time via 4889 * hole-punching operations on the guest_memfd, so flush the 4890 * cache entries for these pages before free'ing them back to 4891 * the host. 4892 */ 4893 clflush_cache_range(__va(pfn_to_hpa(pfn)), 4894 use_2m_update ? PMD_SIZE : PAGE_SIZE); 4895 next_pfn: 4896 pfn += use_2m_update ? PTRS_PER_PMD : 1; 4897 cond_resched(); 4898 } 4899 } 4900 4901 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn) 4902 { 4903 int level, rc; 4904 bool assigned; 4905 4906 if (!sev_snp_guest(kvm)) 4907 return 0; 4908 4909 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4910 if (rc || !assigned) 4911 return PG_LEVEL_4K; 4912 4913 return level; 4914 } 4915 4916 struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu) 4917 { 4918 struct vcpu_svm *svm = to_svm(vcpu); 4919 struct vmcb_save_area *vmsa; 4920 struct kvm_sev_info *sev; 4921 int error = 0; 4922 int ret; 4923 4924 if (!sev_es_guest(vcpu->kvm)) 4925 return NULL; 4926 4927 /* 4928 * If the VMSA has not yet been encrypted, return a pointer to the 4929 * current un-encrypted VMSA. 4930 */ 4931 if (!vcpu->arch.guest_state_protected) 4932 return (struct vmcb_save_area *)svm->sev_es.vmsa; 4933 4934 sev = to_kvm_sev_info(vcpu->kvm); 4935 4936 /* Check if the SEV policy allows debugging */ 4937 if (sev_snp_guest(vcpu->kvm)) { 4938 if (!(sev->policy & SNP_POLICY_DEBUG)) 4939 return NULL; 4940 } else { 4941 if (sev->policy & SEV_POLICY_NODBG) 4942 return NULL; 4943 } 4944 4945 if (sev_snp_guest(vcpu->kvm)) { 4946 struct sev_data_snp_dbg dbg = {0}; 4947 4948 vmsa = snp_alloc_firmware_page(__GFP_ZERO); 4949 if (!vmsa) 4950 return NULL; 4951 4952 dbg.gctx_paddr = __psp_pa(sev->snp_context); 4953 dbg.src_addr = svm->vmcb->control.vmsa_pa; 4954 dbg.dst_addr = __psp_pa(vmsa); 4955 4956 ret = sev_do_cmd(SEV_CMD_SNP_DBG_DECRYPT, &dbg, &error); 4957 4958 /* 4959 * Return the target page to a hypervisor page no matter what. 4960 * If this fails, the page can't be used, so leak it and don't 4961 * try to use it. 4962 */ 4963 if (snp_page_reclaim(vcpu->kvm, PHYS_PFN(__pa(vmsa)))) 4964 return NULL; 4965 4966 if (ret) { 4967 pr_err("SEV: SNP_DBG_DECRYPT failed ret=%d, fw_error=%d (%#x)\n", 4968 ret, error, error); 4969 free_page((unsigned long)vmsa); 4970 4971 return NULL; 4972 } 4973 } else { 4974 struct sev_data_dbg dbg = {0}; 4975 struct page *vmsa_page; 4976 4977 vmsa_page = alloc_page(GFP_KERNEL); 4978 if (!vmsa_page) 4979 return NULL; 4980 4981 vmsa = page_address(vmsa_page); 4982 4983 dbg.handle = sev->handle; 4984 dbg.src_addr = svm->vmcb->control.vmsa_pa; 4985 dbg.dst_addr = __psp_pa(vmsa); 4986 dbg.len = PAGE_SIZE; 4987 4988 ret = sev_do_cmd(SEV_CMD_DBG_DECRYPT, &dbg, &error); 4989 if (ret) { 4990 pr_err("SEV: SEV_CMD_DBG_DECRYPT failed ret=%d, fw_error=%d (0x%x)\n", 4991 ret, error, error); 4992 __free_page(vmsa_page); 4993 4994 return NULL; 4995 } 4996 } 4997 4998 return vmsa; 4999 } 5000 5001 void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa) 5002 { 5003 /* If the VMSA has not yet been encrypted, nothing was allocated */ 5004 if (!vcpu->arch.guest_state_protected || !vmsa) 5005 return; 5006 5007 free_page((unsigned long)vmsa); 5008 } 5009