1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 21 #include <asm/pkru.h> 22 #include <asm/trapnr.h> 23 #include <asm/fpu/xcr.h> 24 25 #include "x86.h" 26 #include "svm.h" 27 #include "svm_ops.h" 28 #include "cpuid.h" 29 #include "trace.h" 30 31 #ifndef CONFIG_KVM_AMD_SEV 32 /* 33 * When this config is not defined, SEV feature is not supported and APIs in 34 * this file are not used but this file still gets compiled into the KVM AMD 35 * module. 36 * 37 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 38 * misc_res_type {} defined in linux/misc_cgroup.h. 39 * 40 * Below macros allow compilation to succeed. 41 */ 42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 44 #endif 45 46 #ifdef CONFIG_KVM_AMD_SEV 47 /* enable/disable SEV support */ 48 static bool sev_enabled = true; 49 module_param_named(sev, sev_enabled, bool, 0444); 50 51 /* enable/disable SEV-ES support */ 52 static bool sev_es_enabled = true; 53 module_param_named(sev_es, sev_es_enabled, bool, 0444); 54 #else 55 #define sev_enabled false 56 #define sev_es_enabled false 57 #endif /* CONFIG_KVM_AMD_SEV */ 58 59 static u8 sev_enc_bit; 60 static DECLARE_RWSEM(sev_deactivate_lock); 61 static DEFINE_MUTEX(sev_bitmap_lock); 62 unsigned int max_sev_asid; 63 static unsigned int min_sev_asid; 64 static unsigned long sev_me_mask; 65 static unsigned int nr_asids; 66 static unsigned long *sev_asid_bitmap; 67 static unsigned long *sev_reclaim_asid_bitmap; 68 69 struct enc_region { 70 struct list_head list; 71 unsigned long npages; 72 struct page **pages; 73 unsigned long uaddr; 74 unsigned long size; 75 }; 76 77 /* Called with the sev_bitmap_lock held, or on shutdown */ 78 static int sev_flush_asids(int min_asid, int max_asid) 79 { 80 int ret, asid, error = 0; 81 82 /* Check if there are any ASIDs to reclaim before performing a flush */ 83 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 84 if (asid > max_asid) 85 return -EBUSY; 86 87 /* 88 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 89 * so it must be guarded. 90 */ 91 down_write(&sev_deactivate_lock); 92 93 wbinvd_on_all_cpus(); 94 ret = sev_guest_df_flush(&error); 95 96 up_write(&sev_deactivate_lock); 97 98 if (ret) 99 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 100 101 return ret; 102 } 103 104 static inline bool is_mirroring_enc_context(struct kvm *kvm) 105 { 106 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 107 } 108 109 /* Must be called with the sev_bitmap_lock held */ 110 static bool __sev_recycle_asids(int min_asid, int max_asid) 111 { 112 if (sev_flush_asids(min_asid, max_asid)) 113 return false; 114 115 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 116 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 117 nr_asids); 118 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 119 120 return true; 121 } 122 123 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 124 { 125 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 126 return misc_cg_try_charge(type, sev->misc_cg, 1); 127 } 128 129 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 130 { 131 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 132 misc_cg_uncharge(type, sev->misc_cg, 1); 133 } 134 135 static int sev_asid_new(struct kvm_sev_info *sev) 136 { 137 int asid, min_asid, max_asid, ret; 138 bool retry = true; 139 140 WARN_ON(sev->misc_cg); 141 sev->misc_cg = get_current_misc_cg(); 142 ret = sev_misc_cg_try_charge(sev); 143 if (ret) { 144 put_misc_cg(sev->misc_cg); 145 sev->misc_cg = NULL; 146 return ret; 147 } 148 149 mutex_lock(&sev_bitmap_lock); 150 151 /* 152 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 153 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 154 */ 155 min_asid = sev->es_active ? 1 : min_sev_asid; 156 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 157 again: 158 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 159 if (asid > max_asid) { 160 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 161 retry = false; 162 goto again; 163 } 164 mutex_unlock(&sev_bitmap_lock); 165 ret = -EBUSY; 166 goto e_uncharge; 167 } 168 169 __set_bit(asid, sev_asid_bitmap); 170 171 mutex_unlock(&sev_bitmap_lock); 172 173 return asid; 174 e_uncharge: 175 sev_misc_cg_uncharge(sev); 176 put_misc_cg(sev->misc_cg); 177 sev->misc_cg = NULL; 178 return ret; 179 } 180 181 static int sev_get_asid(struct kvm *kvm) 182 { 183 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 184 185 return sev->asid; 186 } 187 188 static void sev_asid_free(struct kvm_sev_info *sev) 189 { 190 struct svm_cpu_data *sd; 191 int cpu; 192 193 mutex_lock(&sev_bitmap_lock); 194 195 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 196 197 for_each_possible_cpu(cpu) { 198 sd = per_cpu(svm_data, cpu); 199 sd->sev_vmcbs[sev->asid] = NULL; 200 } 201 202 mutex_unlock(&sev_bitmap_lock); 203 204 sev_misc_cg_uncharge(sev); 205 put_misc_cg(sev->misc_cg); 206 sev->misc_cg = NULL; 207 } 208 209 static void sev_decommission(unsigned int handle) 210 { 211 struct sev_data_decommission decommission; 212 213 if (!handle) 214 return; 215 216 decommission.handle = handle; 217 sev_guest_decommission(&decommission, NULL); 218 } 219 220 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 221 { 222 struct sev_data_deactivate deactivate; 223 224 if (!handle) 225 return; 226 227 deactivate.handle = handle; 228 229 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 230 down_read(&sev_deactivate_lock); 231 sev_guest_deactivate(&deactivate, NULL); 232 up_read(&sev_deactivate_lock); 233 234 sev_decommission(handle); 235 } 236 237 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 238 { 239 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 240 int asid, ret; 241 242 if (kvm->created_vcpus) 243 return -EINVAL; 244 245 ret = -EBUSY; 246 if (unlikely(sev->active)) 247 return ret; 248 249 sev->active = true; 250 sev->es_active = argp->id == KVM_SEV_ES_INIT; 251 asid = sev_asid_new(sev); 252 if (asid < 0) 253 goto e_no_asid; 254 sev->asid = asid; 255 256 ret = sev_platform_init(&argp->error); 257 if (ret) 258 goto e_free; 259 260 INIT_LIST_HEAD(&sev->regions_list); 261 262 return 0; 263 264 e_free: 265 sev_asid_free(sev); 266 sev->asid = 0; 267 e_no_asid: 268 sev->es_active = false; 269 sev->active = false; 270 return ret; 271 } 272 273 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 274 { 275 struct sev_data_activate activate; 276 int asid = sev_get_asid(kvm); 277 int ret; 278 279 /* activate ASID on the given handle */ 280 activate.handle = handle; 281 activate.asid = asid; 282 ret = sev_guest_activate(&activate, error); 283 284 return ret; 285 } 286 287 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 288 { 289 struct fd f; 290 int ret; 291 292 f = fdget(fd); 293 if (!f.file) 294 return -EBADF; 295 296 ret = sev_issue_cmd_external_user(f.file, id, data, error); 297 298 fdput(f); 299 return ret; 300 } 301 302 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 303 { 304 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 305 306 return __sev_issue_cmd(sev->fd, id, data, error); 307 } 308 309 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 310 { 311 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 312 struct sev_data_launch_start start; 313 struct kvm_sev_launch_start params; 314 void *dh_blob, *session_blob; 315 int *error = &argp->error; 316 int ret; 317 318 if (!sev_guest(kvm)) 319 return -ENOTTY; 320 321 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 322 return -EFAULT; 323 324 memset(&start, 0, sizeof(start)); 325 326 dh_blob = NULL; 327 if (params.dh_uaddr) { 328 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 329 if (IS_ERR(dh_blob)) 330 return PTR_ERR(dh_blob); 331 332 start.dh_cert_address = __sme_set(__pa(dh_blob)); 333 start.dh_cert_len = params.dh_len; 334 } 335 336 session_blob = NULL; 337 if (params.session_uaddr) { 338 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 339 if (IS_ERR(session_blob)) { 340 ret = PTR_ERR(session_blob); 341 goto e_free_dh; 342 } 343 344 start.session_address = __sme_set(__pa(session_blob)); 345 start.session_len = params.session_len; 346 } 347 348 start.handle = params.handle; 349 start.policy = params.policy; 350 351 /* create memory encryption context */ 352 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 353 if (ret) 354 goto e_free_session; 355 356 /* Bind ASID to this guest */ 357 ret = sev_bind_asid(kvm, start.handle, error); 358 if (ret) { 359 sev_decommission(start.handle); 360 goto e_free_session; 361 } 362 363 /* return handle to userspace */ 364 params.handle = start.handle; 365 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 366 sev_unbind_asid(kvm, start.handle); 367 ret = -EFAULT; 368 goto e_free_session; 369 } 370 371 sev->handle = start.handle; 372 sev->fd = argp->sev_fd; 373 374 e_free_session: 375 kfree(session_blob); 376 e_free_dh: 377 kfree(dh_blob); 378 return ret; 379 } 380 381 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 382 unsigned long ulen, unsigned long *n, 383 int write) 384 { 385 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 386 unsigned long npages, size; 387 int npinned; 388 unsigned long locked, lock_limit; 389 struct page **pages; 390 unsigned long first, last; 391 int ret; 392 393 lockdep_assert_held(&kvm->lock); 394 395 if (ulen == 0 || uaddr + ulen < uaddr) 396 return ERR_PTR(-EINVAL); 397 398 /* Calculate number of pages. */ 399 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 400 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 401 npages = (last - first + 1); 402 403 locked = sev->pages_locked + npages; 404 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 405 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 406 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 407 return ERR_PTR(-ENOMEM); 408 } 409 410 if (WARN_ON_ONCE(npages > INT_MAX)) 411 return ERR_PTR(-EINVAL); 412 413 /* Avoid using vmalloc for smaller buffers. */ 414 size = npages * sizeof(struct page *); 415 if (size > PAGE_SIZE) 416 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 417 else 418 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 419 420 if (!pages) 421 return ERR_PTR(-ENOMEM); 422 423 /* Pin the user virtual address. */ 424 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 425 if (npinned != npages) { 426 pr_err("SEV: Failure locking %lu pages.\n", npages); 427 ret = -ENOMEM; 428 goto err; 429 } 430 431 *n = npages; 432 sev->pages_locked = locked; 433 434 return pages; 435 436 err: 437 if (npinned > 0) 438 unpin_user_pages(pages, npinned); 439 440 kvfree(pages); 441 return ERR_PTR(ret); 442 } 443 444 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 445 unsigned long npages) 446 { 447 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 448 449 unpin_user_pages(pages, npages); 450 kvfree(pages); 451 sev->pages_locked -= npages; 452 } 453 454 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 455 { 456 uint8_t *page_virtual; 457 unsigned long i; 458 459 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 460 pages == NULL) 461 return; 462 463 for (i = 0; i < npages; i++) { 464 page_virtual = kmap_atomic(pages[i]); 465 clflush_cache_range(page_virtual, PAGE_SIZE); 466 kunmap_atomic(page_virtual); 467 } 468 } 469 470 static unsigned long get_num_contig_pages(unsigned long idx, 471 struct page **inpages, unsigned long npages) 472 { 473 unsigned long paddr, next_paddr; 474 unsigned long i = idx + 1, pages = 1; 475 476 /* find the number of contiguous pages starting from idx */ 477 paddr = __sme_page_pa(inpages[idx]); 478 while (i < npages) { 479 next_paddr = __sme_page_pa(inpages[i++]); 480 if ((paddr + PAGE_SIZE) == next_paddr) { 481 pages++; 482 paddr = next_paddr; 483 continue; 484 } 485 break; 486 } 487 488 return pages; 489 } 490 491 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 492 { 493 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 494 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 495 struct kvm_sev_launch_update_data params; 496 struct sev_data_launch_update_data data; 497 struct page **inpages; 498 int ret; 499 500 if (!sev_guest(kvm)) 501 return -ENOTTY; 502 503 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 504 return -EFAULT; 505 506 vaddr = params.uaddr; 507 size = params.len; 508 vaddr_end = vaddr + size; 509 510 /* Lock the user memory. */ 511 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 512 if (IS_ERR(inpages)) 513 return PTR_ERR(inpages); 514 515 /* 516 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 517 * place; the cache may contain the data that was written unencrypted. 518 */ 519 sev_clflush_pages(inpages, npages); 520 521 data.reserved = 0; 522 data.handle = sev->handle; 523 524 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 525 int offset, len; 526 527 /* 528 * If the user buffer is not page-aligned, calculate the offset 529 * within the page. 530 */ 531 offset = vaddr & (PAGE_SIZE - 1); 532 533 /* Calculate the number of pages that can be encrypted in one go. */ 534 pages = get_num_contig_pages(i, inpages, npages); 535 536 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 537 538 data.len = len; 539 data.address = __sme_page_pa(inpages[i]) + offset; 540 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 541 if (ret) 542 goto e_unpin; 543 544 size -= len; 545 next_vaddr = vaddr + len; 546 } 547 548 e_unpin: 549 /* content of memory is updated, mark pages dirty */ 550 for (i = 0; i < npages; i++) { 551 set_page_dirty_lock(inpages[i]); 552 mark_page_accessed(inpages[i]); 553 } 554 /* unlock the user pages */ 555 sev_unpin_memory(kvm, inpages, npages); 556 return ret; 557 } 558 559 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 560 { 561 struct vmcb_save_area *save = &svm->vmcb->save; 562 563 /* Check some debug related fields before encrypting the VMSA */ 564 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 565 return -EINVAL; 566 567 /* Sync registgers */ 568 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 569 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 570 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 571 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 572 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 573 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 574 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 575 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 576 #ifdef CONFIG_X86_64 577 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 578 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 579 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 580 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 581 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 582 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 583 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 584 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 585 #endif 586 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 587 588 /* Sync some non-GPR registers before encrypting */ 589 save->xcr0 = svm->vcpu.arch.xcr0; 590 save->pkru = svm->vcpu.arch.pkru; 591 save->xss = svm->vcpu.arch.ia32_xss; 592 save->dr6 = svm->vcpu.arch.dr6; 593 594 /* 595 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 596 * the traditional VMSA that is part of the VMCB. Copy the 597 * traditional VMSA as it has been built so far (in prep 598 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 599 */ 600 memcpy(svm->sev_es.vmsa, save, sizeof(*save)); 601 602 return 0; 603 } 604 605 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 606 int *error) 607 { 608 struct sev_data_launch_update_vmsa vmsa; 609 struct vcpu_svm *svm = to_svm(vcpu); 610 int ret; 611 612 /* Perform some pre-encryption checks against the VMSA */ 613 ret = sev_es_sync_vmsa(svm); 614 if (ret) 615 return ret; 616 617 /* 618 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 619 * the VMSA memory content (i.e it will write the same memory region 620 * with the guest's key), so invalidate it first. 621 */ 622 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 623 624 vmsa.reserved = 0; 625 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle; 626 vmsa.address = __sme_pa(svm->sev_es.vmsa); 627 vmsa.len = PAGE_SIZE; 628 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 629 if (ret) 630 return ret; 631 632 vcpu->arch.guest_state_protected = true; 633 return 0; 634 } 635 636 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 637 { 638 struct kvm_vcpu *vcpu; 639 unsigned long i; 640 int ret; 641 642 if (!sev_es_guest(kvm)) 643 return -ENOTTY; 644 645 kvm_for_each_vcpu(i, vcpu, kvm) { 646 ret = mutex_lock_killable(&vcpu->mutex); 647 if (ret) 648 return ret; 649 650 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 651 652 mutex_unlock(&vcpu->mutex); 653 if (ret) 654 return ret; 655 } 656 657 return 0; 658 } 659 660 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 661 { 662 void __user *measure = (void __user *)(uintptr_t)argp->data; 663 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 664 struct sev_data_launch_measure data; 665 struct kvm_sev_launch_measure params; 666 void __user *p = NULL; 667 void *blob = NULL; 668 int ret; 669 670 if (!sev_guest(kvm)) 671 return -ENOTTY; 672 673 if (copy_from_user(¶ms, measure, sizeof(params))) 674 return -EFAULT; 675 676 memset(&data, 0, sizeof(data)); 677 678 /* User wants to query the blob length */ 679 if (!params.len) 680 goto cmd; 681 682 p = (void __user *)(uintptr_t)params.uaddr; 683 if (p) { 684 if (params.len > SEV_FW_BLOB_MAX_SIZE) 685 return -EINVAL; 686 687 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 688 if (!blob) 689 return -ENOMEM; 690 691 data.address = __psp_pa(blob); 692 data.len = params.len; 693 } 694 695 cmd: 696 data.handle = sev->handle; 697 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 698 699 /* 700 * If we query the session length, FW responded with expected data. 701 */ 702 if (!params.len) 703 goto done; 704 705 if (ret) 706 goto e_free_blob; 707 708 if (blob) { 709 if (copy_to_user(p, blob, params.len)) 710 ret = -EFAULT; 711 } 712 713 done: 714 params.len = data.len; 715 if (copy_to_user(measure, ¶ms, sizeof(params))) 716 ret = -EFAULT; 717 e_free_blob: 718 kfree(blob); 719 return ret; 720 } 721 722 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 723 { 724 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 725 struct sev_data_launch_finish data; 726 727 if (!sev_guest(kvm)) 728 return -ENOTTY; 729 730 data.handle = sev->handle; 731 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 732 } 733 734 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 735 { 736 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 737 struct kvm_sev_guest_status params; 738 struct sev_data_guest_status data; 739 int ret; 740 741 if (!sev_guest(kvm)) 742 return -ENOTTY; 743 744 memset(&data, 0, sizeof(data)); 745 746 data.handle = sev->handle; 747 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 748 if (ret) 749 return ret; 750 751 params.policy = data.policy; 752 params.state = data.state; 753 params.handle = data.handle; 754 755 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 756 ret = -EFAULT; 757 758 return ret; 759 } 760 761 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 762 unsigned long dst, int size, 763 int *error, bool enc) 764 { 765 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 766 struct sev_data_dbg data; 767 768 data.reserved = 0; 769 data.handle = sev->handle; 770 data.dst_addr = dst; 771 data.src_addr = src; 772 data.len = size; 773 774 return sev_issue_cmd(kvm, 775 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 776 &data, error); 777 } 778 779 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 780 unsigned long dst_paddr, int sz, int *err) 781 { 782 int offset; 783 784 /* 785 * Its safe to read more than we are asked, caller should ensure that 786 * destination has enough space. 787 */ 788 offset = src_paddr & 15; 789 src_paddr = round_down(src_paddr, 16); 790 sz = round_up(sz + offset, 16); 791 792 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 793 } 794 795 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 796 void __user *dst_uaddr, 797 unsigned long dst_paddr, 798 int size, int *err) 799 { 800 struct page *tpage = NULL; 801 int ret, offset; 802 803 /* if inputs are not 16-byte then use intermediate buffer */ 804 if (!IS_ALIGNED(dst_paddr, 16) || 805 !IS_ALIGNED(paddr, 16) || 806 !IS_ALIGNED(size, 16)) { 807 tpage = (void *)alloc_page(GFP_KERNEL); 808 if (!tpage) 809 return -ENOMEM; 810 811 dst_paddr = __sme_page_pa(tpage); 812 } 813 814 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 815 if (ret) 816 goto e_free; 817 818 if (tpage) { 819 offset = paddr & 15; 820 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 821 ret = -EFAULT; 822 } 823 824 e_free: 825 if (tpage) 826 __free_page(tpage); 827 828 return ret; 829 } 830 831 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 832 void __user *vaddr, 833 unsigned long dst_paddr, 834 void __user *dst_vaddr, 835 int size, int *error) 836 { 837 struct page *src_tpage = NULL; 838 struct page *dst_tpage = NULL; 839 int ret, len = size; 840 841 /* If source buffer is not aligned then use an intermediate buffer */ 842 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 843 src_tpage = alloc_page(GFP_KERNEL); 844 if (!src_tpage) 845 return -ENOMEM; 846 847 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 848 __free_page(src_tpage); 849 return -EFAULT; 850 } 851 852 paddr = __sme_page_pa(src_tpage); 853 } 854 855 /* 856 * If destination buffer or length is not aligned then do read-modify-write: 857 * - decrypt destination in an intermediate buffer 858 * - copy the source buffer in an intermediate buffer 859 * - use the intermediate buffer as source buffer 860 */ 861 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 862 int dst_offset; 863 864 dst_tpage = alloc_page(GFP_KERNEL); 865 if (!dst_tpage) { 866 ret = -ENOMEM; 867 goto e_free; 868 } 869 870 ret = __sev_dbg_decrypt(kvm, dst_paddr, 871 __sme_page_pa(dst_tpage), size, error); 872 if (ret) 873 goto e_free; 874 875 /* 876 * If source is kernel buffer then use memcpy() otherwise 877 * copy_from_user(). 878 */ 879 dst_offset = dst_paddr & 15; 880 881 if (src_tpage) 882 memcpy(page_address(dst_tpage) + dst_offset, 883 page_address(src_tpage), size); 884 else { 885 if (copy_from_user(page_address(dst_tpage) + dst_offset, 886 vaddr, size)) { 887 ret = -EFAULT; 888 goto e_free; 889 } 890 } 891 892 paddr = __sme_page_pa(dst_tpage); 893 dst_paddr = round_down(dst_paddr, 16); 894 len = round_up(size, 16); 895 } 896 897 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 898 899 e_free: 900 if (src_tpage) 901 __free_page(src_tpage); 902 if (dst_tpage) 903 __free_page(dst_tpage); 904 return ret; 905 } 906 907 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 908 { 909 unsigned long vaddr, vaddr_end, next_vaddr; 910 unsigned long dst_vaddr; 911 struct page **src_p, **dst_p; 912 struct kvm_sev_dbg debug; 913 unsigned long n; 914 unsigned int size; 915 int ret; 916 917 if (!sev_guest(kvm)) 918 return -ENOTTY; 919 920 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 921 return -EFAULT; 922 923 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 924 return -EINVAL; 925 if (!debug.dst_uaddr) 926 return -EINVAL; 927 928 vaddr = debug.src_uaddr; 929 size = debug.len; 930 vaddr_end = vaddr + size; 931 dst_vaddr = debug.dst_uaddr; 932 933 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 934 int len, s_off, d_off; 935 936 /* lock userspace source and destination page */ 937 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 938 if (IS_ERR(src_p)) 939 return PTR_ERR(src_p); 940 941 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 942 if (IS_ERR(dst_p)) { 943 sev_unpin_memory(kvm, src_p, n); 944 return PTR_ERR(dst_p); 945 } 946 947 /* 948 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 949 * the pages; flush the destination too so that future accesses do not 950 * see stale data. 951 */ 952 sev_clflush_pages(src_p, 1); 953 sev_clflush_pages(dst_p, 1); 954 955 /* 956 * Since user buffer may not be page aligned, calculate the 957 * offset within the page. 958 */ 959 s_off = vaddr & ~PAGE_MASK; 960 d_off = dst_vaddr & ~PAGE_MASK; 961 len = min_t(size_t, (PAGE_SIZE - s_off), size); 962 963 if (dec) 964 ret = __sev_dbg_decrypt_user(kvm, 965 __sme_page_pa(src_p[0]) + s_off, 966 (void __user *)dst_vaddr, 967 __sme_page_pa(dst_p[0]) + d_off, 968 len, &argp->error); 969 else 970 ret = __sev_dbg_encrypt_user(kvm, 971 __sme_page_pa(src_p[0]) + s_off, 972 (void __user *)vaddr, 973 __sme_page_pa(dst_p[0]) + d_off, 974 (void __user *)dst_vaddr, 975 len, &argp->error); 976 977 sev_unpin_memory(kvm, src_p, n); 978 sev_unpin_memory(kvm, dst_p, n); 979 980 if (ret) 981 goto err; 982 983 next_vaddr = vaddr + len; 984 dst_vaddr = dst_vaddr + len; 985 size -= len; 986 } 987 err: 988 return ret; 989 } 990 991 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 992 { 993 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 994 struct sev_data_launch_secret data; 995 struct kvm_sev_launch_secret params; 996 struct page **pages; 997 void *blob, *hdr; 998 unsigned long n, i; 999 int ret, offset; 1000 1001 if (!sev_guest(kvm)) 1002 return -ENOTTY; 1003 1004 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1005 return -EFAULT; 1006 1007 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1008 if (IS_ERR(pages)) 1009 return PTR_ERR(pages); 1010 1011 /* 1012 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1013 * place; the cache may contain the data that was written unencrypted. 1014 */ 1015 sev_clflush_pages(pages, n); 1016 1017 /* 1018 * The secret must be copied into contiguous memory region, lets verify 1019 * that userspace memory pages are contiguous before we issue command. 1020 */ 1021 if (get_num_contig_pages(0, pages, n) != n) { 1022 ret = -EINVAL; 1023 goto e_unpin_memory; 1024 } 1025 1026 memset(&data, 0, sizeof(data)); 1027 1028 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1029 data.guest_address = __sme_page_pa(pages[0]) + offset; 1030 data.guest_len = params.guest_len; 1031 1032 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1033 if (IS_ERR(blob)) { 1034 ret = PTR_ERR(blob); 1035 goto e_unpin_memory; 1036 } 1037 1038 data.trans_address = __psp_pa(blob); 1039 data.trans_len = params.trans_len; 1040 1041 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1042 if (IS_ERR(hdr)) { 1043 ret = PTR_ERR(hdr); 1044 goto e_free_blob; 1045 } 1046 data.hdr_address = __psp_pa(hdr); 1047 data.hdr_len = params.hdr_len; 1048 1049 data.handle = sev->handle; 1050 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1051 1052 kfree(hdr); 1053 1054 e_free_blob: 1055 kfree(blob); 1056 e_unpin_memory: 1057 /* content of memory is updated, mark pages dirty */ 1058 for (i = 0; i < n; i++) { 1059 set_page_dirty_lock(pages[i]); 1060 mark_page_accessed(pages[i]); 1061 } 1062 sev_unpin_memory(kvm, pages, n); 1063 return ret; 1064 } 1065 1066 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1067 { 1068 void __user *report = (void __user *)(uintptr_t)argp->data; 1069 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1070 struct sev_data_attestation_report data; 1071 struct kvm_sev_attestation_report params; 1072 void __user *p; 1073 void *blob = NULL; 1074 int ret; 1075 1076 if (!sev_guest(kvm)) 1077 return -ENOTTY; 1078 1079 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1080 return -EFAULT; 1081 1082 memset(&data, 0, sizeof(data)); 1083 1084 /* User wants to query the blob length */ 1085 if (!params.len) 1086 goto cmd; 1087 1088 p = (void __user *)(uintptr_t)params.uaddr; 1089 if (p) { 1090 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1091 return -EINVAL; 1092 1093 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 1094 if (!blob) 1095 return -ENOMEM; 1096 1097 data.address = __psp_pa(blob); 1098 data.len = params.len; 1099 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1100 } 1101 cmd: 1102 data.handle = sev->handle; 1103 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1104 /* 1105 * If we query the session length, FW responded with expected data. 1106 */ 1107 if (!params.len) 1108 goto done; 1109 1110 if (ret) 1111 goto e_free_blob; 1112 1113 if (blob) { 1114 if (copy_to_user(p, blob, params.len)) 1115 ret = -EFAULT; 1116 } 1117 1118 done: 1119 params.len = data.len; 1120 if (copy_to_user(report, ¶ms, sizeof(params))) 1121 ret = -EFAULT; 1122 e_free_blob: 1123 kfree(blob); 1124 return ret; 1125 } 1126 1127 /* Userspace wants to query session length. */ 1128 static int 1129 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1130 struct kvm_sev_send_start *params) 1131 { 1132 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1133 struct sev_data_send_start data; 1134 int ret; 1135 1136 memset(&data, 0, sizeof(data)); 1137 data.handle = sev->handle; 1138 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1139 1140 params->session_len = data.session_len; 1141 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1142 sizeof(struct kvm_sev_send_start))) 1143 ret = -EFAULT; 1144 1145 return ret; 1146 } 1147 1148 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1149 { 1150 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1151 struct sev_data_send_start data; 1152 struct kvm_sev_send_start params; 1153 void *amd_certs, *session_data; 1154 void *pdh_cert, *plat_certs; 1155 int ret; 1156 1157 if (!sev_guest(kvm)) 1158 return -ENOTTY; 1159 1160 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1161 sizeof(struct kvm_sev_send_start))) 1162 return -EFAULT; 1163 1164 /* if session_len is zero, userspace wants to query the session length */ 1165 if (!params.session_len) 1166 return __sev_send_start_query_session_length(kvm, argp, 1167 ¶ms); 1168 1169 /* some sanity checks */ 1170 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1171 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1172 return -EINVAL; 1173 1174 /* allocate the memory to hold the session data blob */ 1175 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1176 if (!session_data) 1177 return -ENOMEM; 1178 1179 /* copy the certificate blobs from userspace */ 1180 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1181 params.pdh_cert_len); 1182 if (IS_ERR(pdh_cert)) { 1183 ret = PTR_ERR(pdh_cert); 1184 goto e_free_session; 1185 } 1186 1187 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1188 params.plat_certs_len); 1189 if (IS_ERR(plat_certs)) { 1190 ret = PTR_ERR(plat_certs); 1191 goto e_free_pdh; 1192 } 1193 1194 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1195 params.amd_certs_len); 1196 if (IS_ERR(amd_certs)) { 1197 ret = PTR_ERR(amd_certs); 1198 goto e_free_plat_cert; 1199 } 1200 1201 /* populate the FW SEND_START field with system physical address */ 1202 memset(&data, 0, sizeof(data)); 1203 data.pdh_cert_address = __psp_pa(pdh_cert); 1204 data.pdh_cert_len = params.pdh_cert_len; 1205 data.plat_certs_address = __psp_pa(plat_certs); 1206 data.plat_certs_len = params.plat_certs_len; 1207 data.amd_certs_address = __psp_pa(amd_certs); 1208 data.amd_certs_len = params.amd_certs_len; 1209 data.session_address = __psp_pa(session_data); 1210 data.session_len = params.session_len; 1211 data.handle = sev->handle; 1212 1213 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1214 1215 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1216 session_data, params.session_len)) { 1217 ret = -EFAULT; 1218 goto e_free_amd_cert; 1219 } 1220 1221 params.policy = data.policy; 1222 params.session_len = data.session_len; 1223 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1224 sizeof(struct kvm_sev_send_start))) 1225 ret = -EFAULT; 1226 1227 e_free_amd_cert: 1228 kfree(amd_certs); 1229 e_free_plat_cert: 1230 kfree(plat_certs); 1231 e_free_pdh: 1232 kfree(pdh_cert); 1233 e_free_session: 1234 kfree(session_data); 1235 return ret; 1236 } 1237 1238 /* Userspace wants to query either header or trans length. */ 1239 static int 1240 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1241 struct kvm_sev_send_update_data *params) 1242 { 1243 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1244 struct sev_data_send_update_data data; 1245 int ret; 1246 1247 memset(&data, 0, sizeof(data)); 1248 data.handle = sev->handle; 1249 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1250 1251 params->hdr_len = data.hdr_len; 1252 params->trans_len = data.trans_len; 1253 1254 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1255 sizeof(struct kvm_sev_send_update_data))) 1256 ret = -EFAULT; 1257 1258 return ret; 1259 } 1260 1261 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1262 { 1263 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1264 struct sev_data_send_update_data data; 1265 struct kvm_sev_send_update_data params; 1266 void *hdr, *trans_data; 1267 struct page **guest_page; 1268 unsigned long n; 1269 int ret, offset; 1270 1271 if (!sev_guest(kvm)) 1272 return -ENOTTY; 1273 1274 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1275 sizeof(struct kvm_sev_send_update_data))) 1276 return -EFAULT; 1277 1278 /* userspace wants to query either header or trans length */ 1279 if (!params.trans_len || !params.hdr_len) 1280 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1281 1282 if (!params.trans_uaddr || !params.guest_uaddr || 1283 !params.guest_len || !params.hdr_uaddr) 1284 return -EINVAL; 1285 1286 /* Check if we are crossing the page boundary */ 1287 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1288 if ((params.guest_len + offset > PAGE_SIZE)) 1289 return -EINVAL; 1290 1291 /* Pin guest memory */ 1292 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1293 PAGE_SIZE, &n, 0); 1294 if (IS_ERR(guest_page)) 1295 return PTR_ERR(guest_page); 1296 1297 /* allocate memory for header and transport buffer */ 1298 ret = -ENOMEM; 1299 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1300 if (!hdr) 1301 goto e_unpin; 1302 1303 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1304 if (!trans_data) 1305 goto e_free_hdr; 1306 1307 memset(&data, 0, sizeof(data)); 1308 data.hdr_address = __psp_pa(hdr); 1309 data.hdr_len = params.hdr_len; 1310 data.trans_address = __psp_pa(trans_data); 1311 data.trans_len = params.trans_len; 1312 1313 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1314 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1315 data.guest_address |= sev_me_mask; 1316 data.guest_len = params.guest_len; 1317 data.handle = sev->handle; 1318 1319 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1320 1321 if (ret) 1322 goto e_free_trans_data; 1323 1324 /* copy transport buffer to user space */ 1325 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1326 trans_data, params.trans_len)) { 1327 ret = -EFAULT; 1328 goto e_free_trans_data; 1329 } 1330 1331 /* Copy packet header to userspace. */ 1332 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1333 params.hdr_len)) 1334 ret = -EFAULT; 1335 1336 e_free_trans_data: 1337 kfree(trans_data); 1338 e_free_hdr: 1339 kfree(hdr); 1340 e_unpin: 1341 sev_unpin_memory(kvm, guest_page, n); 1342 1343 return ret; 1344 } 1345 1346 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1347 { 1348 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1349 struct sev_data_send_finish data; 1350 1351 if (!sev_guest(kvm)) 1352 return -ENOTTY; 1353 1354 data.handle = sev->handle; 1355 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1356 } 1357 1358 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1359 { 1360 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1361 struct sev_data_send_cancel data; 1362 1363 if (!sev_guest(kvm)) 1364 return -ENOTTY; 1365 1366 data.handle = sev->handle; 1367 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1368 } 1369 1370 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1371 { 1372 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1373 struct sev_data_receive_start start; 1374 struct kvm_sev_receive_start params; 1375 int *error = &argp->error; 1376 void *session_data; 1377 void *pdh_data; 1378 int ret; 1379 1380 if (!sev_guest(kvm)) 1381 return -ENOTTY; 1382 1383 /* Get parameter from the userspace */ 1384 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1385 sizeof(struct kvm_sev_receive_start))) 1386 return -EFAULT; 1387 1388 /* some sanity checks */ 1389 if (!params.pdh_uaddr || !params.pdh_len || 1390 !params.session_uaddr || !params.session_len) 1391 return -EINVAL; 1392 1393 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1394 if (IS_ERR(pdh_data)) 1395 return PTR_ERR(pdh_data); 1396 1397 session_data = psp_copy_user_blob(params.session_uaddr, 1398 params.session_len); 1399 if (IS_ERR(session_data)) { 1400 ret = PTR_ERR(session_data); 1401 goto e_free_pdh; 1402 } 1403 1404 memset(&start, 0, sizeof(start)); 1405 start.handle = params.handle; 1406 start.policy = params.policy; 1407 start.pdh_cert_address = __psp_pa(pdh_data); 1408 start.pdh_cert_len = params.pdh_len; 1409 start.session_address = __psp_pa(session_data); 1410 start.session_len = params.session_len; 1411 1412 /* create memory encryption context */ 1413 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1414 error); 1415 if (ret) 1416 goto e_free_session; 1417 1418 /* Bind ASID to this guest */ 1419 ret = sev_bind_asid(kvm, start.handle, error); 1420 if (ret) { 1421 sev_decommission(start.handle); 1422 goto e_free_session; 1423 } 1424 1425 params.handle = start.handle; 1426 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1427 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1428 ret = -EFAULT; 1429 sev_unbind_asid(kvm, start.handle); 1430 goto e_free_session; 1431 } 1432 1433 sev->handle = start.handle; 1434 sev->fd = argp->sev_fd; 1435 1436 e_free_session: 1437 kfree(session_data); 1438 e_free_pdh: 1439 kfree(pdh_data); 1440 1441 return ret; 1442 } 1443 1444 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1445 { 1446 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1447 struct kvm_sev_receive_update_data params; 1448 struct sev_data_receive_update_data data; 1449 void *hdr = NULL, *trans = NULL; 1450 struct page **guest_page; 1451 unsigned long n; 1452 int ret, offset; 1453 1454 if (!sev_guest(kvm)) 1455 return -EINVAL; 1456 1457 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1458 sizeof(struct kvm_sev_receive_update_data))) 1459 return -EFAULT; 1460 1461 if (!params.hdr_uaddr || !params.hdr_len || 1462 !params.guest_uaddr || !params.guest_len || 1463 !params.trans_uaddr || !params.trans_len) 1464 return -EINVAL; 1465 1466 /* Check if we are crossing the page boundary */ 1467 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1468 if ((params.guest_len + offset > PAGE_SIZE)) 1469 return -EINVAL; 1470 1471 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1472 if (IS_ERR(hdr)) 1473 return PTR_ERR(hdr); 1474 1475 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1476 if (IS_ERR(trans)) { 1477 ret = PTR_ERR(trans); 1478 goto e_free_hdr; 1479 } 1480 1481 memset(&data, 0, sizeof(data)); 1482 data.hdr_address = __psp_pa(hdr); 1483 data.hdr_len = params.hdr_len; 1484 data.trans_address = __psp_pa(trans); 1485 data.trans_len = params.trans_len; 1486 1487 /* Pin guest memory */ 1488 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1489 PAGE_SIZE, &n, 1); 1490 if (IS_ERR(guest_page)) { 1491 ret = PTR_ERR(guest_page); 1492 goto e_free_trans; 1493 } 1494 1495 /* 1496 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1497 * encrypts the written data with the guest's key, and the cache may 1498 * contain dirty, unencrypted data. 1499 */ 1500 sev_clflush_pages(guest_page, n); 1501 1502 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1503 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1504 data.guest_address |= sev_me_mask; 1505 data.guest_len = params.guest_len; 1506 data.handle = sev->handle; 1507 1508 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1509 &argp->error); 1510 1511 sev_unpin_memory(kvm, guest_page, n); 1512 1513 e_free_trans: 1514 kfree(trans); 1515 e_free_hdr: 1516 kfree(hdr); 1517 1518 return ret; 1519 } 1520 1521 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1522 { 1523 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1524 struct sev_data_receive_finish data; 1525 1526 if (!sev_guest(kvm)) 1527 return -ENOTTY; 1528 1529 data.handle = sev->handle; 1530 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1531 } 1532 1533 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1534 { 1535 /* 1536 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1537 * active mirror VMs. Also allow the debugging and status commands. 1538 */ 1539 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1540 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1541 cmd_id == KVM_SEV_DBG_ENCRYPT) 1542 return true; 1543 1544 return false; 1545 } 1546 1547 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1548 { 1549 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1550 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1551 int r = -EBUSY; 1552 1553 if (dst_kvm == src_kvm) 1554 return -EINVAL; 1555 1556 /* 1557 * Bail if these VMs are already involved in a migration to avoid 1558 * deadlock between two VMs trying to migrate to/from each other. 1559 */ 1560 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1561 return -EBUSY; 1562 1563 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1564 goto release_dst; 1565 1566 r = -EINTR; 1567 if (mutex_lock_killable(&dst_kvm->lock)) 1568 goto release_src; 1569 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1570 goto unlock_dst; 1571 return 0; 1572 1573 unlock_dst: 1574 mutex_unlock(&dst_kvm->lock); 1575 release_src: 1576 atomic_set_release(&src_sev->migration_in_progress, 0); 1577 release_dst: 1578 atomic_set_release(&dst_sev->migration_in_progress, 0); 1579 return r; 1580 } 1581 1582 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1583 { 1584 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1585 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1586 1587 mutex_unlock(&dst_kvm->lock); 1588 mutex_unlock(&src_kvm->lock); 1589 atomic_set_release(&dst_sev->migration_in_progress, 0); 1590 atomic_set_release(&src_sev->migration_in_progress, 0); 1591 } 1592 1593 1594 static int sev_lock_vcpus_for_migration(struct kvm *kvm) 1595 { 1596 struct kvm_vcpu *vcpu; 1597 unsigned long i, j; 1598 1599 kvm_for_each_vcpu(i, vcpu, kvm) { 1600 if (mutex_lock_killable(&vcpu->mutex)) 1601 goto out_unlock; 1602 } 1603 1604 return 0; 1605 1606 out_unlock: 1607 kvm_for_each_vcpu(j, vcpu, kvm) { 1608 if (i == j) 1609 break; 1610 1611 mutex_unlock(&vcpu->mutex); 1612 } 1613 return -EINTR; 1614 } 1615 1616 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1617 { 1618 struct kvm_vcpu *vcpu; 1619 unsigned long i; 1620 1621 kvm_for_each_vcpu(i, vcpu, kvm) { 1622 mutex_unlock(&vcpu->mutex); 1623 } 1624 } 1625 1626 static void sev_migrate_from(struct kvm_sev_info *dst, 1627 struct kvm_sev_info *src) 1628 { 1629 dst->active = true; 1630 dst->asid = src->asid; 1631 dst->handle = src->handle; 1632 dst->pages_locked = src->pages_locked; 1633 dst->enc_context_owner = src->enc_context_owner; 1634 1635 src->asid = 0; 1636 src->active = false; 1637 src->handle = 0; 1638 src->pages_locked = 0; 1639 src->enc_context_owner = NULL; 1640 1641 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1642 } 1643 1644 static int sev_es_migrate_from(struct kvm *dst, struct kvm *src) 1645 { 1646 unsigned long i; 1647 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1648 struct vcpu_svm *dst_svm, *src_svm; 1649 1650 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 1651 return -EINVAL; 1652 1653 kvm_for_each_vcpu(i, src_vcpu, src) { 1654 if (!src_vcpu->arch.guest_state_protected) 1655 return -EINVAL; 1656 } 1657 1658 kvm_for_each_vcpu(i, src_vcpu, src) { 1659 src_svm = to_svm(src_vcpu); 1660 dst_vcpu = kvm_get_vcpu(dst, i); 1661 dst_svm = to_svm(dst_vcpu); 1662 1663 /* 1664 * Transfer VMSA and GHCB state to the destination. Nullify and 1665 * clear source fields as appropriate, the state now belongs to 1666 * the destination. 1667 */ 1668 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 1669 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 1670 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 1671 dst_vcpu->arch.guest_state_protected = true; 1672 1673 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 1674 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 1675 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 1676 src_vcpu->arch.guest_state_protected = false; 1677 } 1678 to_kvm_svm(src)->sev_info.es_active = false; 1679 to_kvm_svm(dst)->sev_info.es_active = true; 1680 1681 return 0; 1682 } 1683 1684 int svm_vm_migrate_from(struct kvm *kvm, unsigned int source_fd) 1685 { 1686 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 1687 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 1688 struct file *source_kvm_file; 1689 struct kvm *source_kvm; 1690 bool charged = false; 1691 int ret; 1692 1693 source_kvm_file = fget(source_fd); 1694 if (!file_is_kvm(source_kvm_file)) { 1695 ret = -EBADF; 1696 goto out_fput; 1697 } 1698 1699 source_kvm = source_kvm_file->private_data; 1700 ret = sev_lock_two_vms(kvm, source_kvm); 1701 if (ret) 1702 goto out_fput; 1703 1704 if (sev_guest(kvm) || !sev_guest(source_kvm)) { 1705 ret = -EINVAL; 1706 goto out_unlock; 1707 } 1708 1709 src_sev = &to_kvm_svm(source_kvm)->sev_info; 1710 1711 /* 1712 * VMs mirroring src's encryption context rely on it to keep the 1713 * ASID allocated, but below we are clearing src_sev->asid. 1714 */ 1715 if (src_sev->num_mirrored_vms) { 1716 ret = -EBUSY; 1717 goto out_unlock; 1718 } 1719 1720 dst_sev->misc_cg = get_current_misc_cg(); 1721 cg_cleanup_sev = dst_sev; 1722 if (dst_sev->misc_cg != src_sev->misc_cg) { 1723 ret = sev_misc_cg_try_charge(dst_sev); 1724 if (ret) 1725 goto out_dst_cgroup; 1726 charged = true; 1727 } 1728 1729 ret = sev_lock_vcpus_for_migration(kvm); 1730 if (ret) 1731 goto out_dst_cgroup; 1732 ret = sev_lock_vcpus_for_migration(source_kvm); 1733 if (ret) 1734 goto out_dst_vcpu; 1735 1736 if (sev_es_guest(source_kvm)) { 1737 ret = sev_es_migrate_from(kvm, source_kvm); 1738 if (ret) 1739 goto out_source_vcpu; 1740 } 1741 sev_migrate_from(dst_sev, src_sev); 1742 kvm_vm_dead(source_kvm); 1743 cg_cleanup_sev = src_sev; 1744 ret = 0; 1745 1746 out_source_vcpu: 1747 sev_unlock_vcpus_for_migration(source_kvm); 1748 out_dst_vcpu: 1749 sev_unlock_vcpus_for_migration(kvm); 1750 out_dst_cgroup: 1751 /* Operates on the source on success, on the destination on failure. */ 1752 if (charged) 1753 sev_misc_cg_uncharge(cg_cleanup_sev); 1754 put_misc_cg(cg_cleanup_sev->misc_cg); 1755 cg_cleanup_sev->misc_cg = NULL; 1756 out_unlock: 1757 sev_unlock_two_vms(kvm, source_kvm); 1758 out_fput: 1759 if (source_kvm_file) 1760 fput(source_kvm_file); 1761 return ret; 1762 } 1763 1764 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 1765 { 1766 struct kvm_sev_cmd sev_cmd; 1767 int r; 1768 1769 if (!sev_enabled) 1770 return -ENOTTY; 1771 1772 if (!argp) 1773 return 0; 1774 1775 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1776 return -EFAULT; 1777 1778 mutex_lock(&kvm->lock); 1779 1780 /* Only the enc_context_owner handles some memory enc operations. */ 1781 if (is_mirroring_enc_context(kvm) && 1782 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 1783 r = -EINVAL; 1784 goto out; 1785 } 1786 1787 switch (sev_cmd.id) { 1788 case KVM_SEV_ES_INIT: 1789 if (!sev_es_enabled) { 1790 r = -ENOTTY; 1791 goto out; 1792 } 1793 fallthrough; 1794 case KVM_SEV_INIT: 1795 r = sev_guest_init(kvm, &sev_cmd); 1796 break; 1797 case KVM_SEV_LAUNCH_START: 1798 r = sev_launch_start(kvm, &sev_cmd); 1799 break; 1800 case KVM_SEV_LAUNCH_UPDATE_DATA: 1801 r = sev_launch_update_data(kvm, &sev_cmd); 1802 break; 1803 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1804 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1805 break; 1806 case KVM_SEV_LAUNCH_MEASURE: 1807 r = sev_launch_measure(kvm, &sev_cmd); 1808 break; 1809 case KVM_SEV_LAUNCH_FINISH: 1810 r = sev_launch_finish(kvm, &sev_cmd); 1811 break; 1812 case KVM_SEV_GUEST_STATUS: 1813 r = sev_guest_status(kvm, &sev_cmd); 1814 break; 1815 case KVM_SEV_DBG_DECRYPT: 1816 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1817 break; 1818 case KVM_SEV_DBG_ENCRYPT: 1819 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1820 break; 1821 case KVM_SEV_LAUNCH_SECRET: 1822 r = sev_launch_secret(kvm, &sev_cmd); 1823 break; 1824 case KVM_SEV_GET_ATTESTATION_REPORT: 1825 r = sev_get_attestation_report(kvm, &sev_cmd); 1826 break; 1827 case KVM_SEV_SEND_START: 1828 r = sev_send_start(kvm, &sev_cmd); 1829 break; 1830 case KVM_SEV_SEND_UPDATE_DATA: 1831 r = sev_send_update_data(kvm, &sev_cmd); 1832 break; 1833 case KVM_SEV_SEND_FINISH: 1834 r = sev_send_finish(kvm, &sev_cmd); 1835 break; 1836 case KVM_SEV_SEND_CANCEL: 1837 r = sev_send_cancel(kvm, &sev_cmd); 1838 break; 1839 case KVM_SEV_RECEIVE_START: 1840 r = sev_receive_start(kvm, &sev_cmd); 1841 break; 1842 case KVM_SEV_RECEIVE_UPDATE_DATA: 1843 r = sev_receive_update_data(kvm, &sev_cmd); 1844 break; 1845 case KVM_SEV_RECEIVE_FINISH: 1846 r = sev_receive_finish(kvm, &sev_cmd); 1847 break; 1848 default: 1849 r = -EINVAL; 1850 goto out; 1851 } 1852 1853 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1854 r = -EFAULT; 1855 1856 out: 1857 mutex_unlock(&kvm->lock); 1858 return r; 1859 } 1860 1861 int svm_register_enc_region(struct kvm *kvm, 1862 struct kvm_enc_region *range) 1863 { 1864 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1865 struct enc_region *region; 1866 int ret = 0; 1867 1868 if (!sev_guest(kvm)) 1869 return -ENOTTY; 1870 1871 /* If kvm is mirroring encryption context it isn't responsible for it */ 1872 if (is_mirroring_enc_context(kvm)) 1873 return -EINVAL; 1874 1875 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1876 return -EINVAL; 1877 1878 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1879 if (!region) 1880 return -ENOMEM; 1881 1882 mutex_lock(&kvm->lock); 1883 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1884 if (IS_ERR(region->pages)) { 1885 ret = PTR_ERR(region->pages); 1886 mutex_unlock(&kvm->lock); 1887 goto e_free; 1888 } 1889 1890 region->uaddr = range->addr; 1891 region->size = range->size; 1892 1893 list_add_tail(®ion->list, &sev->regions_list); 1894 mutex_unlock(&kvm->lock); 1895 1896 /* 1897 * The guest may change the memory encryption attribute from C=0 -> C=1 1898 * or vice versa for this memory range. Lets make sure caches are 1899 * flushed to ensure that guest data gets written into memory with 1900 * correct C-bit. 1901 */ 1902 sev_clflush_pages(region->pages, region->npages); 1903 1904 return ret; 1905 1906 e_free: 1907 kfree(region); 1908 return ret; 1909 } 1910 1911 static struct enc_region * 1912 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1913 { 1914 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1915 struct list_head *head = &sev->regions_list; 1916 struct enc_region *i; 1917 1918 list_for_each_entry(i, head, list) { 1919 if (i->uaddr == range->addr && 1920 i->size == range->size) 1921 return i; 1922 } 1923 1924 return NULL; 1925 } 1926 1927 static void __unregister_enc_region_locked(struct kvm *kvm, 1928 struct enc_region *region) 1929 { 1930 sev_unpin_memory(kvm, region->pages, region->npages); 1931 list_del(®ion->list); 1932 kfree(region); 1933 } 1934 1935 int svm_unregister_enc_region(struct kvm *kvm, 1936 struct kvm_enc_region *range) 1937 { 1938 struct enc_region *region; 1939 int ret; 1940 1941 /* If kvm is mirroring encryption context it isn't responsible for it */ 1942 if (is_mirroring_enc_context(kvm)) 1943 return -EINVAL; 1944 1945 mutex_lock(&kvm->lock); 1946 1947 if (!sev_guest(kvm)) { 1948 ret = -ENOTTY; 1949 goto failed; 1950 } 1951 1952 region = find_enc_region(kvm, range); 1953 if (!region) { 1954 ret = -EINVAL; 1955 goto failed; 1956 } 1957 1958 /* 1959 * Ensure that all guest tagged cache entries are flushed before 1960 * releasing the pages back to the system for use. CLFLUSH will 1961 * not do this, so issue a WBINVD. 1962 */ 1963 wbinvd_on_all_cpus(); 1964 1965 __unregister_enc_region_locked(kvm, region); 1966 1967 mutex_unlock(&kvm->lock); 1968 return 0; 1969 1970 failed: 1971 mutex_unlock(&kvm->lock); 1972 return ret; 1973 } 1974 1975 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd) 1976 { 1977 struct file *source_kvm_file; 1978 struct kvm *source_kvm; 1979 struct kvm_sev_info *source_sev, *mirror_sev; 1980 int ret; 1981 1982 source_kvm_file = fget(source_fd); 1983 if (!file_is_kvm(source_kvm_file)) { 1984 ret = -EBADF; 1985 goto e_source_fput; 1986 } 1987 1988 source_kvm = source_kvm_file->private_data; 1989 ret = sev_lock_two_vms(kvm, source_kvm); 1990 if (ret) 1991 goto e_source_fput; 1992 1993 /* 1994 * Mirrors of mirrors should work, but let's not get silly. Also 1995 * disallow out-of-band SEV/SEV-ES init if the target is already an 1996 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 1997 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 1998 */ 1999 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2000 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2001 ret = -EINVAL; 2002 goto e_unlock; 2003 } 2004 2005 /* 2006 * The mirror kvm holds an enc_context_owner ref so its asid can't 2007 * disappear until we're done with it 2008 */ 2009 source_sev = &to_kvm_svm(source_kvm)->sev_info; 2010 kvm_get_kvm(source_kvm); 2011 source_sev->num_mirrored_vms++; 2012 2013 /* Set enc_context_owner and copy its encryption context over */ 2014 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2015 mirror_sev->enc_context_owner = source_kvm; 2016 mirror_sev->active = true; 2017 mirror_sev->asid = source_sev->asid; 2018 mirror_sev->fd = source_sev->fd; 2019 mirror_sev->es_active = source_sev->es_active; 2020 mirror_sev->handle = source_sev->handle; 2021 INIT_LIST_HEAD(&mirror_sev->regions_list); 2022 ret = 0; 2023 2024 /* 2025 * Do not copy ap_jump_table. Since the mirror does not share the same 2026 * KVM contexts as the original, and they may have different 2027 * memory-views. 2028 */ 2029 2030 e_unlock: 2031 sev_unlock_two_vms(kvm, source_kvm); 2032 e_source_fput: 2033 if (source_kvm_file) 2034 fput(source_kvm_file); 2035 return ret; 2036 } 2037 2038 void sev_vm_destroy(struct kvm *kvm) 2039 { 2040 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2041 struct list_head *head = &sev->regions_list; 2042 struct list_head *pos, *q; 2043 2044 WARN_ON(sev->num_mirrored_vms); 2045 2046 if (!sev_guest(kvm)) 2047 return; 2048 2049 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2050 if (is_mirroring_enc_context(kvm)) { 2051 struct kvm *owner_kvm = sev->enc_context_owner; 2052 struct kvm_sev_info *owner_sev = &to_kvm_svm(owner_kvm)->sev_info; 2053 2054 mutex_lock(&owner_kvm->lock); 2055 if (!WARN_ON(!owner_sev->num_mirrored_vms)) 2056 owner_sev->num_mirrored_vms--; 2057 mutex_unlock(&owner_kvm->lock); 2058 kvm_put_kvm(owner_kvm); 2059 return; 2060 } 2061 2062 /* 2063 * Ensure that all guest tagged cache entries are flushed before 2064 * releasing the pages back to the system for use. CLFLUSH will 2065 * not do this, so issue a WBINVD. 2066 */ 2067 wbinvd_on_all_cpus(); 2068 2069 /* 2070 * if userspace was terminated before unregistering the memory regions 2071 * then lets unpin all the registered memory. 2072 */ 2073 if (!list_empty(head)) { 2074 list_for_each_safe(pos, q, head) { 2075 __unregister_enc_region_locked(kvm, 2076 list_entry(pos, struct enc_region, list)); 2077 cond_resched(); 2078 } 2079 } 2080 2081 sev_unbind_asid(kvm, sev->handle); 2082 sev_asid_free(sev); 2083 } 2084 2085 void __init sev_set_cpu_caps(void) 2086 { 2087 if (!sev_enabled) 2088 kvm_cpu_cap_clear(X86_FEATURE_SEV); 2089 if (!sev_es_enabled) 2090 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 2091 } 2092 2093 void __init sev_hardware_setup(void) 2094 { 2095 #ifdef CONFIG_KVM_AMD_SEV 2096 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2097 bool sev_es_supported = false; 2098 bool sev_supported = false; 2099 2100 if (!sev_enabled || !npt_enabled) 2101 goto out; 2102 2103 /* 2104 * SEV must obviously be supported in hardware. Sanity check that the 2105 * CPU supports decode assists, which is mandatory for SEV guests to 2106 * support instruction emulation. 2107 */ 2108 if (!boot_cpu_has(X86_FEATURE_SEV) || 2109 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS))) 2110 goto out; 2111 2112 /* Retrieve SEV CPUID information */ 2113 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2114 2115 /* Set encryption bit location for SEV-ES guests */ 2116 sev_enc_bit = ebx & 0x3f; 2117 2118 /* Maximum number of encrypted guests supported simultaneously */ 2119 max_sev_asid = ecx; 2120 if (!max_sev_asid) 2121 goto out; 2122 2123 /* Minimum ASID value that should be used for SEV guest */ 2124 min_sev_asid = edx; 2125 sev_me_mask = 1UL << (ebx & 0x3f); 2126 2127 /* 2128 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2129 * even though it's never used, so that the bitmap is indexed by the 2130 * actual ASID. 2131 */ 2132 nr_asids = max_sev_asid + 1; 2133 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2134 if (!sev_asid_bitmap) 2135 goto out; 2136 2137 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2138 if (!sev_reclaim_asid_bitmap) { 2139 bitmap_free(sev_asid_bitmap); 2140 sev_asid_bitmap = NULL; 2141 goto out; 2142 } 2143 2144 sev_asid_count = max_sev_asid - min_sev_asid + 1; 2145 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 2146 goto out; 2147 2148 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 2149 sev_supported = true; 2150 2151 /* SEV-ES support requested? */ 2152 if (!sev_es_enabled) 2153 goto out; 2154 2155 /* Does the CPU support SEV-ES? */ 2156 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 2157 goto out; 2158 2159 /* Has the system been allocated ASIDs for SEV-ES? */ 2160 if (min_sev_asid == 1) 2161 goto out; 2162 2163 sev_es_asid_count = min_sev_asid - 1; 2164 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 2165 goto out; 2166 2167 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 2168 sev_es_supported = true; 2169 2170 out: 2171 sev_enabled = sev_supported; 2172 sev_es_enabled = sev_es_supported; 2173 #endif 2174 } 2175 2176 void sev_hardware_teardown(void) 2177 { 2178 if (!sev_enabled) 2179 return; 2180 2181 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 2182 sev_flush_asids(1, max_sev_asid); 2183 2184 bitmap_free(sev_asid_bitmap); 2185 bitmap_free(sev_reclaim_asid_bitmap); 2186 2187 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 2188 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 2189 } 2190 2191 int sev_cpu_init(struct svm_cpu_data *sd) 2192 { 2193 if (!sev_enabled) 2194 return 0; 2195 2196 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 2197 if (!sd->sev_vmcbs) 2198 return -ENOMEM; 2199 2200 return 0; 2201 } 2202 2203 /* 2204 * Pages used by hardware to hold guest encrypted state must be flushed before 2205 * returning them to the system. 2206 */ 2207 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 2208 unsigned long len) 2209 { 2210 /* 2211 * If hardware enforced cache coherency for encrypted mappings of the 2212 * same physical page is supported, nothing to do. 2213 */ 2214 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 2215 return; 2216 2217 /* 2218 * If the VM Page Flush MSR is supported, use it to flush the page 2219 * (using the page virtual address and the guest ASID). 2220 */ 2221 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 2222 struct kvm_sev_info *sev; 2223 unsigned long va_start; 2224 u64 start, stop; 2225 2226 /* Align start and stop to page boundaries. */ 2227 va_start = (unsigned long)va; 2228 start = (u64)va_start & PAGE_MASK; 2229 stop = PAGE_ALIGN((u64)va_start + len); 2230 2231 if (start < stop) { 2232 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 2233 2234 while (start < stop) { 2235 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 2236 start | sev->asid); 2237 2238 start += PAGE_SIZE; 2239 } 2240 2241 return; 2242 } 2243 2244 WARN(1, "Address overflow, using WBINVD\n"); 2245 } 2246 2247 /* 2248 * Hardware should always have one of the above features, 2249 * but if not, use WBINVD and issue a warning. 2250 */ 2251 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 2252 wbinvd_on_all_cpus(); 2253 } 2254 2255 void sev_free_vcpu(struct kvm_vcpu *vcpu) 2256 { 2257 struct vcpu_svm *svm; 2258 2259 if (!sev_es_guest(vcpu->kvm)) 2260 return; 2261 2262 svm = to_svm(vcpu); 2263 2264 if (vcpu->arch.guest_state_protected) 2265 sev_flush_guest_memory(svm, svm->sev_es.vmsa, PAGE_SIZE); 2266 __free_page(virt_to_page(svm->sev_es.vmsa)); 2267 2268 if (svm->sev_es.ghcb_sa_free) 2269 kvfree(svm->sev_es.ghcb_sa); 2270 } 2271 2272 static void dump_ghcb(struct vcpu_svm *svm) 2273 { 2274 struct ghcb *ghcb = svm->sev_es.ghcb; 2275 unsigned int nbits; 2276 2277 /* Re-use the dump_invalid_vmcb module parameter */ 2278 if (!dump_invalid_vmcb) { 2279 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2280 return; 2281 } 2282 2283 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2284 2285 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2286 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2287 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2288 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2289 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2290 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2291 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2292 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2293 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2294 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2295 } 2296 2297 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2298 { 2299 struct kvm_vcpu *vcpu = &svm->vcpu; 2300 struct ghcb *ghcb = svm->sev_es.ghcb; 2301 2302 /* 2303 * The GHCB protocol so far allows for the following data 2304 * to be returned: 2305 * GPRs RAX, RBX, RCX, RDX 2306 * 2307 * Copy their values, even if they may not have been written during the 2308 * VM-Exit. It's the guest's responsibility to not consume random data. 2309 */ 2310 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2311 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2312 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2313 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2314 } 2315 2316 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2317 { 2318 struct vmcb_control_area *control = &svm->vmcb->control; 2319 struct kvm_vcpu *vcpu = &svm->vcpu; 2320 struct ghcb *ghcb = svm->sev_es.ghcb; 2321 u64 exit_code; 2322 2323 /* 2324 * The GHCB protocol so far allows for the following data 2325 * to be supplied: 2326 * GPRs RAX, RBX, RCX, RDX 2327 * XCR0 2328 * CPL 2329 * 2330 * VMMCALL allows the guest to provide extra registers. KVM also 2331 * expects RSI for hypercalls, so include that, too. 2332 * 2333 * Copy their values to the appropriate location if supplied. 2334 */ 2335 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2336 2337 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 2338 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 2339 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 2340 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 2341 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 2342 2343 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 2344 2345 if (ghcb_xcr0_is_valid(ghcb)) { 2346 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2347 kvm_update_cpuid_runtime(vcpu); 2348 } 2349 2350 /* Copy the GHCB exit information into the VMCB fields */ 2351 exit_code = ghcb_get_sw_exit_code(ghcb); 2352 control->exit_code = lower_32_bits(exit_code); 2353 control->exit_code_hi = upper_32_bits(exit_code); 2354 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2355 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2356 2357 /* Clear the valid entries fields */ 2358 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2359 } 2360 2361 static bool sev_es_validate_vmgexit(struct vcpu_svm *svm) 2362 { 2363 struct kvm_vcpu *vcpu; 2364 struct ghcb *ghcb; 2365 u64 exit_code; 2366 u64 reason; 2367 2368 ghcb = svm->sev_es.ghcb; 2369 2370 /* 2371 * Retrieve the exit code now even though it may not be marked valid 2372 * as it could help with debugging. 2373 */ 2374 exit_code = ghcb_get_sw_exit_code(ghcb); 2375 2376 /* Only GHCB Usage code 0 is supported */ 2377 if (ghcb->ghcb_usage) { 2378 reason = GHCB_ERR_INVALID_USAGE; 2379 goto vmgexit_err; 2380 } 2381 2382 reason = GHCB_ERR_MISSING_INPUT; 2383 2384 if (!ghcb_sw_exit_code_is_valid(ghcb) || 2385 !ghcb_sw_exit_info_1_is_valid(ghcb) || 2386 !ghcb_sw_exit_info_2_is_valid(ghcb)) 2387 goto vmgexit_err; 2388 2389 switch (ghcb_get_sw_exit_code(ghcb)) { 2390 case SVM_EXIT_READ_DR7: 2391 break; 2392 case SVM_EXIT_WRITE_DR7: 2393 if (!ghcb_rax_is_valid(ghcb)) 2394 goto vmgexit_err; 2395 break; 2396 case SVM_EXIT_RDTSC: 2397 break; 2398 case SVM_EXIT_RDPMC: 2399 if (!ghcb_rcx_is_valid(ghcb)) 2400 goto vmgexit_err; 2401 break; 2402 case SVM_EXIT_CPUID: 2403 if (!ghcb_rax_is_valid(ghcb) || 2404 !ghcb_rcx_is_valid(ghcb)) 2405 goto vmgexit_err; 2406 if (ghcb_get_rax(ghcb) == 0xd) 2407 if (!ghcb_xcr0_is_valid(ghcb)) 2408 goto vmgexit_err; 2409 break; 2410 case SVM_EXIT_INVD: 2411 break; 2412 case SVM_EXIT_IOIO: 2413 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 2414 if (!ghcb_sw_scratch_is_valid(ghcb)) 2415 goto vmgexit_err; 2416 } else { 2417 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 2418 if (!ghcb_rax_is_valid(ghcb)) 2419 goto vmgexit_err; 2420 } 2421 break; 2422 case SVM_EXIT_MSR: 2423 if (!ghcb_rcx_is_valid(ghcb)) 2424 goto vmgexit_err; 2425 if (ghcb_get_sw_exit_info_1(ghcb)) { 2426 if (!ghcb_rax_is_valid(ghcb) || 2427 !ghcb_rdx_is_valid(ghcb)) 2428 goto vmgexit_err; 2429 } 2430 break; 2431 case SVM_EXIT_VMMCALL: 2432 if (!ghcb_rax_is_valid(ghcb) || 2433 !ghcb_cpl_is_valid(ghcb)) 2434 goto vmgexit_err; 2435 break; 2436 case SVM_EXIT_RDTSCP: 2437 break; 2438 case SVM_EXIT_WBINVD: 2439 break; 2440 case SVM_EXIT_MONITOR: 2441 if (!ghcb_rax_is_valid(ghcb) || 2442 !ghcb_rcx_is_valid(ghcb) || 2443 !ghcb_rdx_is_valid(ghcb)) 2444 goto vmgexit_err; 2445 break; 2446 case SVM_EXIT_MWAIT: 2447 if (!ghcb_rax_is_valid(ghcb) || 2448 !ghcb_rcx_is_valid(ghcb)) 2449 goto vmgexit_err; 2450 break; 2451 case SVM_VMGEXIT_MMIO_READ: 2452 case SVM_VMGEXIT_MMIO_WRITE: 2453 if (!ghcb_sw_scratch_is_valid(ghcb)) 2454 goto vmgexit_err; 2455 break; 2456 case SVM_VMGEXIT_NMI_COMPLETE: 2457 case SVM_VMGEXIT_AP_HLT_LOOP: 2458 case SVM_VMGEXIT_AP_JUMP_TABLE: 2459 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2460 break; 2461 default: 2462 reason = GHCB_ERR_INVALID_EVENT; 2463 goto vmgexit_err; 2464 } 2465 2466 return true; 2467 2468 vmgexit_err: 2469 vcpu = &svm->vcpu; 2470 2471 if (reason == GHCB_ERR_INVALID_USAGE) { 2472 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2473 ghcb->ghcb_usage); 2474 } else if (reason == GHCB_ERR_INVALID_EVENT) { 2475 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 2476 exit_code); 2477 } else { 2478 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 2479 exit_code); 2480 dump_ghcb(svm); 2481 } 2482 2483 /* Clear the valid entries fields */ 2484 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2485 2486 ghcb_set_sw_exit_info_1(ghcb, 2); 2487 ghcb_set_sw_exit_info_2(ghcb, reason); 2488 2489 return false; 2490 } 2491 2492 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2493 { 2494 if (!svm->sev_es.ghcb) 2495 return; 2496 2497 if (svm->sev_es.ghcb_sa_free) { 2498 /* 2499 * The scratch area lives outside the GHCB, so there is a 2500 * buffer that, depending on the operation performed, may 2501 * need to be synced, then freed. 2502 */ 2503 if (svm->sev_es.ghcb_sa_sync) { 2504 kvm_write_guest(svm->vcpu.kvm, 2505 ghcb_get_sw_scratch(svm->sev_es.ghcb), 2506 svm->sev_es.ghcb_sa, 2507 svm->sev_es.ghcb_sa_len); 2508 svm->sev_es.ghcb_sa_sync = false; 2509 } 2510 2511 kvfree(svm->sev_es.ghcb_sa); 2512 svm->sev_es.ghcb_sa = NULL; 2513 svm->sev_es.ghcb_sa_free = false; 2514 } 2515 2516 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 2517 2518 sev_es_sync_to_ghcb(svm); 2519 2520 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); 2521 svm->sev_es.ghcb = NULL; 2522 } 2523 2524 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2525 { 2526 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2527 int asid = sev_get_asid(svm->vcpu.kvm); 2528 2529 /* Assign the asid allocated with this SEV guest */ 2530 svm->asid = asid; 2531 2532 /* 2533 * Flush guest TLB: 2534 * 2535 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2536 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2537 */ 2538 if (sd->sev_vmcbs[asid] == svm->vmcb && 2539 svm->vcpu.arch.last_vmentry_cpu == cpu) 2540 return; 2541 2542 sd->sev_vmcbs[asid] = svm->vmcb; 2543 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2544 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2545 } 2546 2547 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2548 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2549 { 2550 struct vmcb_control_area *control = &svm->vmcb->control; 2551 struct ghcb *ghcb = svm->sev_es.ghcb; 2552 u64 ghcb_scratch_beg, ghcb_scratch_end; 2553 u64 scratch_gpa_beg, scratch_gpa_end; 2554 void *scratch_va; 2555 2556 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 2557 if (!scratch_gpa_beg) { 2558 pr_err("vmgexit: scratch gpa not provided\n"); 2559 goto e_scratch; 2560 } 2561 2562 scratch_gpa_end = scratch_gpa_beg + len; 2563 if (scratch_gpa_end < scratch_gpa_beg) { 2564 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2565 len, scratch_gpa_beg); 2566 goto e_scratch; 2567 } 2568 2569 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2570 /* Scratch area begins within GHCB */ 2571 ghcb_scratch_beg = control->ghcb_gpa + 2572 offsetof(struct ghcb, shared_buffer); 2573 ghcb_scratch_end = control->ghcb_gpa + 2574 offsetof(struct ghcb, reserved_1); 2575 2576 /* 2577 * If the scratch area begins within the GHCB, it must be 2578 * completely contained in the GHCB shared buffer area. 2579 */ 2580 if (scratch_gpa_beg < ghcb_scratch_beg || 2581 scratch_gpa_end > ghcb_scratch_end) { 2582 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2583 scratch_gpa_beg, scratch_gpa_end); 2584 goto e_scratch; 2585 } 2586 2587 scratch_va = (void *)svm->sev_es.ghcb; 2588 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2589 } else { 2590 /* 2591 * The guest memory must be read into a kernel buffer, so 2592 * limit the size 2593 */ 2594 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2595 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2596 len, GHCB_SCRATCH_AREA_LIMIT); 2597 goto e_scratch; 2598 } 2599 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 2600 if (!scratch_va) 2601 goto e_scratch; 2602 2603 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2604 /* Unable to copy scratch area from guest */ 2605 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2606 2607 kvfree(scratch_va); 2608 goto e_scratch; 2609 } 2610 2611 /* 2612 * The scratch area is outside the GHCB. The operation will 2613 * dictate whether the buffer needs to be synced before running 2614 * the vCPU next time (i.e. a read was requested so the data 2615 * must be written back to the guest memory). 2616 */ 2617 svm->sev_es.ghcb_sa_sync = sync; 2618 svm->sev_es.ghcb_sa_free = true; 2619 } 2620 2621 svm->sev_es.ghcb_sa = scratch_va; 2622 svm->sev_es.ghcb_sa_len = len; 2623 2624 return true; 2625 2626 e_scratch: 2627 ghcb_set_sw_exit_info_1(ghcb, 2); 2628 ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); 2629 2630 return false; 2631 } 2632 2633 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2634 unsigned int pos) 2635 { 2636 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2637 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2638 } 2639 2640 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2641 { 2642 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2643 } 2644 2645 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2646 { 2647 svm->vmcb->control.ghcb_gpa = value; 2648 } 2649 2650 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2651 { 2652 struct vmcb_control_area *control = &svm->vmcb->control; 2653 struct kvm_vcpu *vcpu = &svm->vcpu; 2654 u64 ghcb_info; 2655 int ret = 1; 2656 2657 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2658 2659 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2660 control->ghcb_gpa); 2661 2662 switch (ghcb_info) { 2663 case GHCB_MSR_SEV_INFO_REQ: 2664 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2665 GHCB_VERSION_MIN, 2666 sev_enc_bit)); 2667 break; 2668 case GHCB_MSR_CPUID_REQ: { 2669 u64 cpuid_fn, cpuid_reg, cpuid_value; 2670 2671 cpuid_fn = get_ghcb_msr_bits(svm, 2672 GHCB_MSR_CPUID_FUNC_MASK, 2673 GHCB_MSR_CPUID_FUNC_POS); 2674 2675 /* Initialize the registers needed by the CPUID intercept */ 2676 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2677 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2678 2679 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2680 if (!ret) { 2681 /* Error, keep GHCB MSR value as-is */ 2682 break; 2683 } 2684 2685 cpuid_reg = get_ghcb_msr_bits(svm, 2686 GHCB_MSR_CPUID_REG_MASK, 2687 GHCB_MSR_CPUID_REG_POS); 2688 if (cpuid_reg == 0) 2689 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2690 else if (cpuid_reg == 1) 2691 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2692 else if (cpuid_reg == 2) 2693 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2694 else 2695 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2696 2697 set_ghcb_msr_bits(svm, cpuid_value, 2698 GHCB_MSR_CPUID_VALUE_MASK, 2699 GHCB_MSR_CPUID_VALUE_POS); 2700 2701 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2702 GHCB_MSR_INFO_MASK, 2703 GHCB_MSR_INFO_POS); 2704 break; 2705 } 2706 case GHCB_MSR_TERM_REQ: { 2707 u64 reason_set, reason_code; 2708 2709 reason_set = get_ghcb_msr_bits(svm, 2710 GHCB_MSR_TERM_REASON_SET_MASK, 2711 GHCB_MSR_TERM_REASON_SET_POS); 2712 reason_code = get_ghcb_msr_bits(svm, 2713 GHCB_MSR_TERM_REASON_MASK, 2714 GHCB_MSR_TERM_REASON_POS); 2715 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2716 reason_set, reason_code); 2717 2718 ret = -EINVAL; 2719 break; 2720 } 2721 default: 2722 /* Error, keep GHCB MSR value as-is */ 2723 break; 2724 } 2725 2726 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2727 control->ghcb_gpa, ret); 2728 2729 return ret; 2730 } 2731 2732 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2733 { 2734 struct vcpu_svm *svm = to_svm(vcpu); 2735 struct vmcb_control_area *control = &svm->vmcb->control; 2736 u64 ghcb_gpa, exit_code; 2737 struct ghcb *ghcb; 2738 int ret; 2739 2740 /* Validate the GHCB */ 2741 ghcb_gpa = control->ghcb_gpa; 2742 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2743 return sev_handle_vmgexit_msr_protocol(svm); 2744 2745 if (!ghcb_gpa) { 2746 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2747 2748 /* Without a GHCB, just return right back to the guest */ 2749 return 1; 2750 } 2751 2752 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 2753 /* Unable to map GHCB from guest */ 2754 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2755 ghcb_gpa); 2756 2757 /* Without a GHCB, just return right back to the guest */ 2758 return 1; 2759 } 2760 2761 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 2762 ghcb = svm->sev_es.ghcb_map.hva; 2763 2764 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); 2765 2766 exit_code = ghcb_get_sw_exit_code(ghcb); 2767 2768 if (!sev_es_validate_vmgexit(svm)) 2769 return 1; 2770 2771 sev_es_sync_from_ghcb(svm); 2772 ghcb_set_sw_exit_info_1(ghcb, 0); 2773 ghcb_set_sw_exit_info_2(ghcb, 0); 2774 2775 ret = 1; 2776 switch (exit_code) { 2777 case SVM_VMGEXIT_MMIO_READ: 2778 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) 2779 break; 2780 2781 ret = kvm_sev_es_mmio_read(vcpu, 2782 control->exit_info_1, 2783 control->exit_info_2, 2784 svm->sev_es.ghcb_sa); 2785 break; 2786 case SVM_VMGEXIT_MMIO_WRITE: 2787 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) 2788 break; 2789 2790 ret = kvm_sev_es_mmio_write(vcpu, 2791 control->exit_info_1, 2792 control->exit_info_2, 2793 svm->sev_es.ghcb_sa); 2794 break; 2795 case SVM_VMGEXIT_NMI_COMPLETE: 2796 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); 2797 break; 2798 case SVM_VMGEXIT_AP_HLT_LOOP: 2799 ret = kvm_emulate_ap_reset_hold(vcpu); 2800 break; 2801 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2802 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2803 2804 switch (control->exit_info_1) { 2805 case 0: 2806 /* Set AP jump table address */ 2807 sev->ap_jump_table = control->exit_info_2; 2808 break; 2809 case 1: 2810 /* Get AP jump table address */ 2811 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2812 break; 2813 default: 2814 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2815 control->exit_info_1); 2816 ghcb_set_sw_exit_info_1(ghcb, 2); 2817 ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT); 2818 } 2819 2820 break; 2821 } 2822 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2823 vcpu_unimpl(vcpu, 2824 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2825 control->exit_info_1, control->exit_info_2); 2826 ret = -EINVAL; 2827 break; 2828 default: 2829 ret = svm_invoke_exit_handler(vcpu, exit_code); 2830 } 2831 2832 return ret; 2833 } 2834 2835 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2836 { 2837 int count; 2838 int bytes; 2839 2840 if (svm->vmcb->control.exit_info_2 > INT_MAX) 2841 return -EINVAL; 2842 2843 count = svm->vmcb->control.exit_info_2; 2844 if (unlikely(check_mul_overflow(count, size, &bytes))) 2845 return -EINVAL; 2846 2847 if (!setup_vmgexit_scratch(svm, in, bytes)) 2848 return 1; 2849 2850 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 2851 count, in); 2852 } 2853 2854 void sev_es_init_vmcb(struct vcpu_svm *svm) 2855 { 2856 struct kvm_vcpu *vcpu = &svm->vcpu; 2857 2858 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2859 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2860 2861 /* 2862 * An SEV-ES guest requires a VMSA area that is a separate from the 2863 * VMCB page. Do not include the encryption mask on the VMSA physical 2864 * address since hardware will access it using the guest key. 2865 */ 2866 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 2867 2868 /* Can't intercept CR register access, HV can't modify CR registers */ 2869 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2870 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2871 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2872 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2873 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2874 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2875 2876 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2877 2878 /* Track EFER/CR register changes */ 2879 svm_set_intercept(svm, TRAP_EFER_WRITE); 2880 svm_set_intercept(svm, TRAP_CR0_WRITE); 2881 svm_set_intercept(svm, TRAP_CR4_WRITE); 2882 svm_set_intercept(svm, TRAP_CR8_WRITE); 2883 2884 /* No support for enable_vmware_backdoor */ 2885 clr_exception_intercept(svm, GP_VECTOR); 2886 2887 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2888 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2889 2890 /* Clear intercepts on selected MSRs */ 2891 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2892 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2893 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2894 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2895 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2896 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2897 } 2898 2899 void sev_es_vcpu_reset(struct vcpu_svm *svm) 2900 { 2901 /* 2902 * Set the GHCB MSR value as per the GHCB specification when emulating 2903 * vCPU RESET for an SEV-ES guest. 2904 */ 2905 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2906 GHCB_VERSION_MIN, 2907 sev_enc_bit)); 2908 } 2909 2910 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) 2911 { 2912 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2913 struct vmcb_save_area *hostsa; 2914 2915 /* 2916 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2917 * of which one step is to perform a VMLOAD. Since hardware does not 2918 * perform a VMSAVE on VMRUN, the host savearea must be updated. 2919 */ 2920 vmsave(__sme_page_pa(sd->save_area)); 2921 2922 /* XCR0 is restored on VMEXIT, save the current host value */ 2923 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 2924 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2925 2926 /* PKRU is restored on VMEXIT, save the current host value */ 2927 hostsa->pkru = read_pkru(); 2928 2929 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2930 hostsa->xss = host_xss; 2931 } 2932 2933 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2934 { 2935 struct vcpu_svm *svm = to_svm(vcpu); 2936 2937 /* First SIPI: Use the values as initially set by the VMM */ 2938 if (!svm->sev_es.received_first_sipi) { 2939 svm->sev_es.received_first_sipi = true; 2940 return; 2941 } 2942 2943 /* 2944 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2945 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2946 * non-zero value. 2947 */ 2948 if (!svm->sev_es.ghcb) 2949 return; 2950 2951 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 2952 } 2953