1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM support 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Yaniv Kamay <yaniv@qumranet.com> 12 * Avi Kivity <avi@qumranet.com> 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/kvm_types.h> 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 21 #include <asm/msr-index.h> 22 #include <asm/debugreg.h> 23 24 #include "kvm_emulate.h" 25 #include "trace.h" 26 #include "mmu.h" 27 #include "x86.h" 28 #include "smm.h" 29 #include "cpuid.h" 30 #include "lapic.h" 31 #include "svm.h" 32 #include "hyperv.h" 33 34 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK 35 36 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, 37 struct x86_exception *fault) 38 { 39 struct vcpu_svm *svm = to_svm(vcpu); 40 struct vmcb *vmcb = svm->vmcb; 41 42 if (vmcb->control.exit_code != SVM_EXIT_NPF) { 43 /* 44 * TODO: track the cause of the nested page fault, and 45 * correctly fill in the high bits of exit_info_1. 46 */ 47 vmcb->control.exit_code = SVM_EXIT_NPF; 48 vmcb->control.exit_code_hi = 0; 49 vmcb->control.exit_info_1 = (1ULL << 32); 50 vmcb->control.exit_info_2 = fault->address; 51 } 52 53 vmcb->control.exit_info_1 &= ~0xffffffffULL; 54 vmcb->control.exit_info_1 |= fault->error_code; 55 56 nested_svm_vmexit(svm); 57 } 58 59 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index) 60 { 61 struct vcpu_svm *svm = to_svm(vcpu); 62 u64 cr3 = svm->nested.ctl.nested_cr3; 63 u64 pdpte; 64 int ret; 65 66 /* 67 * Note, nCR3 is "assumed" to be 32-byte aligned, i.e. the CPU ignores 68 * nCR3[4:0] when loading PDPTEs from memory. 69 */ 70 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte, 71 (cr3 & GENMASK(11, 5)) + index * 8, 8); 72 if (ret) 73 return 0; 74 return pdpte; 75 } 76 77 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) 78 { 79 struct vcpu_svm *svm = to_svm(vcpu); 80 81 return svm->nested.ctl.nested_cr3; 82 } 83 84 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) 85 { 86 struct vcpu_svm *svm = to_svm(vcpu); 87 88 WARN_ON(mmu_is_nested(vcpu)); 89 90 vcpu->arch.mmu = &vcpu->arch.guest_mmu; 91 92 /* 93 * The NPT format depends on L1's CR4 and EFER, which is in vmcb01. Note, 94 * when called via KVM_SET_NESTED_STATE, that state may _not_ match current 95 * vCPU state. CR0.WP is explicitly ignored, while CR0.PG is required. 96 */ 97 kvm_init_shadow_npt_mmu(vcpu, X86_CR0_PG, svm->vmcb01.ptr->save.cr4, 98 svm->vmcb01.ptr->save.efer, 99 svm->nested.ctl.nested_cr3); 100 vcpu->arch.mmu->get_guest_pgd = nested_svm_get_tdp_cr3; 101 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr; 102 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit; 103 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; 104 } 105 106 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) 107 { 108 vcpu->arch.mmu = &vcpu->arch.root_mmu; 109 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 110 } 111 112 static bool nested_vmcb_needs_vls_intercept(struct vcpu_svm *svm) 113 { 114 if (!guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_V_VMSAVE_VMLOAD)) 115 return true; 116 117 if (!nested_npt_enabled(svm)) 118 return true; 119 120 if (!(svm->nested.ctl.virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK)) 121 return true; 122 123 return false; 124 } 125 126 void recalc_intercepts(struct vcpu_svm *svm) 127 { 128 struct vmcb_control_area *c, *h; 129 struct vmcb_ctrl_area_cached *g; 130 unsigned int i; 131 132 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 133 134 if (!is_guest_mode(&svm->vcpu)) 135 return; 136 137 c = &svm->vmcb->control; 138 h = &svm->vmcb01.ptr->control; 139 g = &svm->nested.ctl; 140 141 for (i = 0; i < MAX_INTERCEPT; i++) 142 c->intercepts[i] = h->intercepts[i]; 143 144 if (g->int_ctl & V_INTR_MASKING_MASK) { 145 /* 146 * If L2 is active and V_INTR_MASKING is enabled in vmcb12, 147 * disable intercept of CR8 writes as L2's CR8 does not affect 148 * any interrupt KVM may want to inject. 149 * 150 * Similarly, disable intercept of virtual interrupts (used to 151 * detect interrupt windows) if the saved RFLAGS.IF is '0', as 152 * the effective RFLAGS.IF for L1 interrupts will never be set 153 * while L2 is running (L2's RFLAGS.IF doesn't affect L1 IRQs). 154 */ 155 vmcb_clr_intercept(c, INTERCEPT_CR8_WRITE); 156 if (!(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)) 157 vmcb_clr_intercept(c, INTERCEPT_VINTR); 158 } 159 160 /* 161 * We want to see VMMCALLs from a nested guest only when Hyper-V L2 TLB 162 * flush feature is enabled. 163 */ 164 if (!nested_svm_l2_tlb_flush_enabled(&svm->vcpu)) 165 vmcb_clr_intercept(c, INTERCEPT_VMMCALL); 166 167 for (i = 0; i < MAX_INTERCEPT; i++) 168 c->intercepts[i] |= g->intercepts[i]; 169 170 /* If SMI is not intercepted, ignore guest SMI intercept as well */ 171 if (!intercept_smi) 172 vmcb_clr_intercept(c, INTERCEPT_SMI); 173 174 if (nested_vmcb_needs_vls_intercept(svm)) { 175 /* 176 * If the virtual VMLOAD/VMSAVE is not enabled for the L2, 177 * we must intercept these instructions to correctly 178 * emulate them in case L1 doesn't intercept them. 179 */ 180 vmcb_set_intercept(c, INTERCEPT_VMLOAD); 181 vmcb_set_intercept(c, INTERCEPT_VMSAVE); 182 } else { 183 WARN_ON(!(c->virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK)); 184 } 185 } 186 187 /* 188 * Merge L0's (KVM) and L1's (Nested VMCB) MSR permission bitmaps. The function 189 * is optimized in that it only merges the parts where KVM MSR permission bitmap 190 * may contain zero bits. 191 */ 192 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) 193 { 194 int i; 195 196 /* 197 * MSR bitmap update can be skipped when: 198 * - MSR bitmap for L1 hasn't changed. 199 * - Nested hypervisor (L1) is attempting to launch the same L2 as 200 * before. 201 * - Nested hypervisor (L1) is using Hyper-V emulation interface and 202 * tells KVM (L0) there were no changes in MSR bitmap for L2. 203 */ 204 #ifdef CONFIG_KVM_HYPERV 205 if (!svm->nested.force_msr_bitmap_recalc) { 206 struct hv_vmcb_enlightenments *hve = &svm->nested.ctl.hv_enlightenments; 207 208 if (kvm_hv_hypercall_enabled(&svm->vcpu) && 209 hve->hv_enlightenments_control.msr_bitmap && 210 (svm->nested.ctl.clean & BIT(HV_VMCB_NESTED_ENLIGHTENMENTS))) 211 goto set_msrpm_base_pa; 212 } 213 #endif 214 215 if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))) 216 return true; 217 218 for (i = 0; i < MSRPM_OFFSETS; i++) { 219 u32 value, p; 220 u64 offset; 221 222 if (msrpm_offsets[i] == 0xffffffff) 223 break; 224 225 p = msrpm_offsets[i]; 226 227 /* x2apic msrs are intercepted always for the nested guest */ 228 if (is_x2apic_msrpm_offset(p)) 229 continue; 230 231 offset = svm->nested.ctl.msrpm_base_pa + (p * 4); 232 233 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4)) 234 return false; 235 236 svm->nested.msrpm[p] = svm->msrpm[p] | value; 237 } 238 239 svm->nested.force_msr_bitmap_recalc = false; 240 241 #ifdef CONFIG_KVM_HYPERV 242 set_msrpm_base_pa: 243 #endif 244 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm)); 245 246 return true; 247 } 248 249 /* 250 * Bits 11:0 of bitmap address are ignored by hardware 251 */ 252 static bool nested_svm_check_bitmap_pa(struct kvm_vcpu *vcpu, u64 pa, u32 size) 253 { 254 u64 addr = PAGE_ALIGN(pa); 255 256 return kvm_vcpu_is_legal_gpa(vcpu, addr) && 257 kvm_vcpu_is_legal_gpa(vcpu, addr + size - 1); 258 } 259 260 static bool __nested_vmcb_check_controls(struct kvm_vcpu *vcpu, 261 struct vmcb_ctrl_area_cached *control) 262 { 263 if (CC(!vmcb12_is_intercept(control, INTERCEPT_VMRUN))) 264 return false; 265 266 if (CC(control->asid == 0)) 267 return false; 268 269 if (CC((control->nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && !npt_enabled)) 270 return false; 271 272 if (CC(!nested_svm_check_bitmap_pa(vcpu, control->msrpm_base_pa, 273 MSRPM_SIZE))) 274 return false; 275 if (CC(!nested_svm_check_bitmap_pa(vcpu, control->iopm_base_pa, 276 IOPM_SIZE))) 277 return false; 278 279 if (CC((control->int_ctl & V_NMI_ENABLE_MASK) && 280 !vmcb12_is_intercept(control, INTERCEPT_NMI))) { 281 return false; 282 } 283 284 return true; 285 } 286 287 /* Common checks that apply to both L1 and L2 state. */ 288 static bool __nested_vmcb_check_save(struct kvm_vcpu *vcpu, 289 struct vmcb_save_area_cached *save) 290 { 291 if (CC(!(save->efer & EFER_SVME))) 292 return false; 293 294 if (CC((save->cr0 & X86_CR0_CD) == 0 && (save->cr0 & X86_CR0_NW)) || 295 CC(save->cr0 & ~0xffffffffULL)) 296 return false; 297 298 if (CC(!kvm_dr6_valid(save->dr6)) || CC(!kvm_dr7_valid(save->dr7))) 299 return false; 300 301 /* 302 * These checks are also performed by KVM_SET_SREGS, 303 * except that EFER.LMA is not checked by SVM against 304 * CR0.PG && EFER.LME. 305 */ 306 if ((save->efer & EFER_LME) && (save->cr0 & X86_CR0_PG)) { 307 if (CC(!(save->cr4 & X86_CR4_PAE)) || 308 CC(!(save->cr0 & X86_CR0_PE)) || 309 CC(!kvm_vcpu_is_legal_cr3(vcpu, save->cr3))) 310 return false; 311 } 312 313 /* Note, SVM doesn't have any additional restrictions on CR4. */ 314 if (CC(!__kvm_is_valid_cr4(vcpu, save->cr4))) 315 return false; 316 317 if (CC(!kvm_valid_efer(vcpu, save->efer))) 318 return false; 319 320 return true; 321 } 322 323 static bool nested_vmcb_check_save(struct kvm_vcpu *vcpu) 324 { 325 struct vcpu_svm *svm = to_svm(vcpu); 326 struct vmcb_save_area_cached *save = &svm->nested.save; 327 328 return __nested_vmcb_check_save(vcpu, save); 329 } 330 331 static bool nested_vmcb_check_controls(struct kvm_vcpu *vcpu) 332 { 333 struct vcpu_svm *svm = to_svm(vcpu); 334 struct vmcb_ctrl_area_cached *ctl = &svm->nested.ctl; 335 336 return __nested_vmcb_check_controls(vcpu, ctl); 337 } 338 339 static 340 void __nested_copy_vmcb_control_to_cache(struct kvm_vcpu *vcpu, 341 struct vmcb_ctrl_area_cached *to, 342 struct vmcb_control_area *from) 343 { 344 unsigned int i; 345 346 for (i = 0; i < MAX_INTERCEPT; i++) 347 to->intercepts[i] = from->intercepts[i]; 348 349 to->iopm_base_pa = from->iopm_base_pa; 350 to->msrpm_base_pa = from->msrpm_base_pa; 351 to->tsc_offset = from->tsc_offset; 352 to->tlb_ctl = from->tlb_ctl; 353 to->int_ctl = from->int_ctl; 354 to->int_vector = from->int_vector; 355 to->int_state = from->int_state; 356 to->exit_code = from->exit_code; 357 to->exit_code_hi = from->exit_code_hi; 358 to->exit_info_1 = from->exit_info_1; 359 to->exit_info_2 = from->exit_info_2; 360 to->exit_int_info = from->exit_int_info; 361 to->exit_int_info_err = from->exit_int_info_err; 362 to->nested_ctl = from->nested_ctl; 363 to->event_inj = from->event_inj; 364 to->event_inj_err = from->event_inj_err; 365 to->next_rip = from->next_rip; 366 to->nested_cr3 = from->nested_cr3; 367 to->virt_ext = from->virt_ext; 368 to->pause_filter_count = from->pause_filter_count; 369 to->pause_filter_thresh = from->pause_filter_thresh; 370 371 /* Copy asid here because nested_vmcb_check_controls will check it. */ 372 to->asid = from->asid; 373 to->msrpm_base_pa &= ~0x0fffULL; 374 to->iopm_base_pa &= ~0x0fffULL; 375 376 #ifdef CONFIG_KVM_HYPERV 377 /* Hyper-V extensions (Enlightened VMCB) */ 378 if (kvm_hv_hypercall_enabled(vcpu)) { 379 to->clean = from->clean; 380 memcpy(&to->hv_enlightenments, &from->hv_enlightenments, 381 sizeof(to->hv_enlightenments)); 382 } 383 #endif 384 } 385 386 void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm, 387 struct vmcb_control_area *control) 388 { 389 __nested_copy_vmcb_control_to_cache(&svm->vcpu, &svm->nested.ctl, control); 390 } 391 392 static void __nested_copy_vmcb_save_to_cache(struct vmcb_save_area_cached *to, 393 struct vmcb_save_area *from) 394 { 395 /* 396 * Copy only fields that are validated, as we need them 397 * to avoid TOC/TOU races. 398 */ 399 to->efer = from->efer; 400 to->cr0 = from->cr0; 401 to->cr3 = from->cr3; 402 to->cr4 = from->cr4; 403 404 to->dr6 = from->dr6; 405 to->dr7 = from->dr7; 406 } 407 408 void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm, 409 struct vmcb_save_area *save) 410 { 411 __nested_copy_vmcb_save_to_cache(&svm->nested.save, save); 412 } 413 414 /* 415 * Synchronize fields that are written by the processor, so that 416 * they can be copied back into the vmcb12. 417 */ 418 void nested_sync_control_from_vmcb02(struct vcpu_svm *svm) 419 { 420 u32 mask; 421 svm->nested.ctl.event_inj = svm->vmcb->control.event_inj; 422 svm->nested.ctl.event_inj_err = svm->vmcb->control.event_inj_err; 423 424 /* Only a few fields of int_ctl are written by the processor. */ 425 mask = V_IRQ_MASK | V_TPR_MASK; 426 /* 427 * Don't sync vmcb02 V_IRQ back to vmcb12 if KVM (L0) is intercepting 428 * virtual interrupts in order to request an interrupt window, as KVM 429 * has usurped vmcb02's int_ctl. If an interrupt window opens before 430 * the next VM-Exit, svm_clear_vintr() will restore vmcb12's int_ctl. 431 * If no window opens, V_IRQ will be correctly preserved in vmcb12's 432 * int_ctl (because it was never recognized while L2 was running). 433 */ 434 if (svm_is_intercept(svm, INTERCEPT_VINTR) && 435 !test_bit(INTERCEPT_VINTR, (unsigned long *)svm->nested.ctl.intercepts)) 436 mask &= ~V_IRQ_MASK; 437 438 if (nested_vgif_enabled(svm)) 439 mask |= V_GIF_MASK; 440 441 if (nested_vnmi_enabled(svm)) 442 mask |= V_NMI_BLOCKING_MASK | V_NMI_PENDING_MASK; 443 444 svm->nested.ctl.int_ctl &= ~mask; 445 svm->nested.ctl.int_ctl |= svm->vmcb->control.int_ctl & mask; 446 } 447 448 /* 449 * Transfer any event that L0 or L1 wanted to inject into L2 to 450 * EXIT_INT_INFO. 451 */ 452 static void nested_save_pending_event_to_vmcb12(struct vcpu_svm *svm, 453 struct vmcb *vmcb12) 454 { 455 struct kvm_vcpu *vcpu = &svm->vcpu; 456 u32 exit_int_info = 0; 457 unsigned int nr; 458 459 if (vcpu->arch.exception.injected) { 460 nr = vcpu->arch.exception.vector; 461 exit_int_info = nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT; 462 463 if (vcpu->arch.exception.has_error_code) { 464 exit_int_info |= SVM_EVTINJ_VALID_ERR; 465 vmcb12->control.exit_int_info_err = 466 vcpu->arch.exception.error_code; 467 } 468 469 } else if (vcpu->arch.nmi_injected) { 470 exit_int_info = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 471 472 } else if (vcpu->arch.interrupt.injected) { 473 nr = vcpu->arch.interrupt.nr; 474 exit_int_info = nr | SVM_EVTINJ_VALID; 475 476 if (vcpu->arch.interrupt.soft) 477 exit_int_info |= SVM_EVTINJ_TYPE_SOFT; 478 else 479 exit_int_info |= SVM_EVTINJ_TYPE_INTR; 480 } 481 482 vmcb12->control.exit_int_info = exit_int_info; 483 } 484 485 static void nested_svm_transition_tlb_flush(struct kvm_vcpu *vcpu) 486 { 487 /* Handle pending Hyper-V TLB flush requests */ 488 kvm_hv_nested_transtion_tlb_flush(vcpu, npt_enabled); 489 490 /* 491 * TODO: optimize unconditional TLB flush/MMU sync. A partial list of 492 * things to fix before this can be conditional: 493 * 494 * - Flush TLBs for both L1 and L2 remote TLB flush 495 * - Honor L1's request to flush an ASID on nested VMRUN 496 * - Sync nested NPT MMU on VMRUN that flushes L2's ASID[*] 497 * - Don't crush a pending TLB flush in vmcb02 on nested VMRUN 498 * - Flush L1's ASID on KVM_REQ_TLB_FLUSH_GUEST 499 * 500 * [*] Unlike nested EPT, SVM's ASID management can invalidate nested 501 * NPT guest-physical mappings on VMRUN. 502 */ 503 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 504 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 505 } 506 507 /* 508 * Load guest's/host's cr3 on nested vmentry or vmexit. @nested_npt is true 509 * if we are emulating VM-Entry into a guest with NPT enabled. 510 */ 511 static int nested_svm_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, 512 bool nested_npt, bool reload_pdptrs) 513 { 514 if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) 515 return -EINVAL; 516 517 if (reload_pdptrs && !nested_npt && is_pae_paging(vcpu) && 518 CC(!load_pdptrs(vcpu, cr3))) 519 return -EINVAL; 520 521 vcpu->arch.cr3 = cr3; 522 523 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */ 524 kvm_init_mmu(vcpu); 525 526 if (!nested_npt) 527 kvm_mmu_new_pgd(vcpu, cr3); 528 529 return 0; 530 } 531 532 void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm) 533 { 534 if (!svm->nested.vmcb02.ptr) 535 return; 536 537 /* FIXME: merge g_pat from vmcb01 and vmcb12. */ 538 svm->nested.vmcb02.ptr->save.g_pat = svm->vmcb01.ptr->save.g_pat; 539 } 540 541 static void nested_vmcb02_prepare_save(struct vcpu_svm *svm, struct vmcb *vmcb12) 542 { 543 bool new_vmcb12 = false; 544 struct vmcb *vmcb01 = svm->vmcb01.ptr; 545 struct vmcb *vmcb02 = svm->nested.vmcb02.ptr; 546 struct kvm_vcpu *vcpu = &svm->vcpu; 547 548 nested_vmcb02_compute_g_pat(svm); 549 550 /* Load the nested guest state */ 551 if (svm->nested.vmcb12_gpa != svm->nested.last_vmcb12_gpa) { 552 new_vmcb12 = true; 553 svm->nested.last_vmcb12_gpa = svm->nested.vmcb12_gpa; 554 svm->nested.force_msr_bitmap_recalc = true; 555 } 556 557 if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_SEG))) { 558 vmcb02->save.es = vmcb12->save.es; 559 vmcb02->save.cs = vmcb12->save.cs; 560 vmcb02->save.ss = vmcb12->save.ss; 561 vmcb02->save.ds = vmcb12->save.ds; 562 vmcb02->save.cpl = vmcb12->save.cpl; 563 vmcb_mark_dirty(vmcb02, VMCB_SEG); 564 } 565 566 if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DT))) { 567 vmcb02->save.gdtr = vmcb12->save.gdtr; 568 vmcb02->save.idtr = vmcb12->save.idtr; 569 vmcb_mark_dirty(vmcb02, VMCB_DT); 570 } 571 572 kvm_set_rflags(vcpu, vmcb12->save.rflags | X86_EFLAGS_FIXED); 573 574 svm_set_efer(vcpu, svm->nested.save.efer); 575 576 svm_set_cr0(vcpu, svm->nested.save.cr0); 577 svm_set_cr4(vcpu, svm->nested.save.cr4); 578 579 svm->vcpu.arch.cr2 = vmcb12->save.cr2; 580 581 kvm_rax_write(vcpu, vmcb12->save.rax); 582 kvm_rsp_write(vcpu, vmcb12->save.rsp); 583 kvm_rip_write(vcpu, vmcb12->save.rip); 584 585 /* In case we don't even reach vcpu_run, the fields are not updated */ 586 vmcb02->save.rax = vmcb12->save.rax; 587 vmcb02->save.rsp = vmcb12->save.rsp; 588 vmcb02->save.rip = vmcb12->save.rip; 589 590 /* These bits will be set properly on the first execution when new_vmc12 is true */ 591 if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DR))) { 592 vmcb02->save.dr7 = svm->nested.save.dr7 | DR7_FIXED_1; 593 svm->vcpu.arch.dr6 = svm->nested.save.dr6 | DR6_ACTIVE_LOW; 594 vmcb_mark_dirty(vmcb02, VMCB_DR); 595 } 596 597 if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 598 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) { 599 /* 600 * Reserved bits of DEBUGCTL are ignored. Be consistent with 601 * svm_set_msr's definition of reserved bits. 602 */ 603 svm_copy_lbrs(vmcb02, vmcb12); 604 vmcb02->save.dbgctl &= ~DEBUGCTL_RESERVED_BITS; 605 svm_update_lbrv(&svm->vcpu); 606 607 } else if (unlikely(vmcb01->control.virt_ext & LBR_CTL_ENABLE_MASK)) { 608 svm_copy_lbrs(vmcb02, vmcb01); 609 } 610 } 611 612 static inline bool is_evtinj_soft(u32 evtinj) 613 { 614 u32 type = evtinj & SVM_EVTINJ_TYPE_MASK; 615 u8 vector = evtinj & SVM_EVTINJ_VEC_MASK; 616 617 if (!(evtinj & SVM_EVTINJ_VALID)) 618 return false; 619 620 if (type == SVM_EVTINJ_TYPE_SOFT) 621 return true; 622 623 return type == SVM_EVTINJ_TYPE_EXEPT && kvm_exception_is_soft(vector); 624 } 625 626 static bool is_evtinj_nmi(u32 evtinj) 627 { 628 u32 type = evtinj & SVM_EVTINJ_TYPE_MASK; 629 630 if (!(evtinj & SVM_EVTINJ_VALID)) 631 return false; 632 633 return type == SVM_EVTINJ_TYPE_NMI; 634 } 635 636 static void nested_vmcb02_prepare_control(struct vcpu_svm *svm, 637 unsigned long vmcb12_rip, 638 unsigned long vmcb12_csbase) 639 { 640 u32 int_ctl_vmcb01_bits = V_INTR_MASKING_MASK; 641 u32 int_ctl_vmcb12_bits = V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK; 642 643 struct kvm_vcpu *vcpu = &svm->vcpu; 644 struct vmcb *vmcb01 = svm->vmcb01.ptr; 645 struct vmcb *vmcb02 = svm->nested.vmcb02.ptr; 646 u32 pause_count12; 647 u32 pause_thresh12; 648 649 nested_svm_transition_tlb_flush(vcpu); 650 651 /* Enter Guest-Mode */ 652 enter_guest_mode(vcpu); 653 654 /* 655 * Filled at exit: exit_code, exit_code_hi, exit_info_1, exit_info_2, 656 * exit_int_info, exit_int_info_err, next_rip, insn_len, insn_bytes. 657 */ 658 659 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VGIF) && 660 (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK)) 661 int_ctl_vmcb12_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK); 662 else 663 int_ctl_vmcb01_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK); 664 665 if (vnmi) { 666 if (vmcb01->control.int_ctl & V_NMI_PENDING_MASK) { 667 svm->vcpu.arch.nmi_pending++; 668 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 669 } 670 if (nested_vnmi_enabled(svm)) 671 int_ctl_vmcb12_bits |= (V_NMI_PENDING_MASK | 672 V_NMI_ENABLE_MASK | 673 V_NMI_BLOCKING_MASK); 674 } 675 676 /* Copied from vmcb01. msrpm_base can be overwritten later. */ 677 vmcb02->control.nested_ctl = vmcb01->control.nested_ctl; 678 vmcb02->control.iopm_base_pa = vmcb01->control.iopm_base_pa; 679 vmcb02->control.msrpm_base_pa = vmcb01->control.msrpm_base_pa; 680 681 /* 682 * Stash vmcb02's counter if the guest hasn't moved past the guilty 683 * instruction; otherwise, reset the counter to '0'. 684 * 685 * In order to detect if L2 has made forward progress or not, track the 686 * RIP at which a bus lock has occurred on a per-vmcb12 basis. If RIP 687 * is changed, guest has clearly made forward progress, bus_lock_counter 688 * still remained '1', so reset bus_lock_counter to '0'. Eg. In the 689 * scenario, where a buslock happened in L1 before VMRUN, the bus lock 690 * firmly happened on an instruction in the past. Even if vmcb01's 691 * counter is still '1', (because the guilty instruction got patched), 692 * the vCPU has clearly made forward progress and so KVM should reset 693 * vmcb02's counter to '0'. 694 * 695 * If the RIP hasn't changed, stash the bus lock counter at nested VMRUN 696 * to prevent the same guilty instruction from triggering a VM-Exit. Eg. 697 * if userspace rate-limits the vCPU, then it's entirely possible that 698 * L1's tick interrupt is pending by the time userspace re-runs the 699 * vCPU. If KVM unconditionally clears the counter on VMRUN, then when 700 * L1 re-enters L2, the same instruction will trigger a VM-Exit and the 701 * entire cycle start over. 702 */ 703 if (vmcb02->save.rip && (svm->nested.ctl.bus_lock_rip == vmcb02->save.rip)) 704 vmcb02->control.bus_lock_counter = 1; 705 else 706 vmcb02->control.bus_lock_counter = 0; 707 708 /* Done at vmrun: asid. */ 709 710 /* Also overwritten later if necessary. */ 711 vmcb02->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 712 713 /* nested_cr3. */ 714 if (nested_npt_enabled(svm)) 715 nested_svm_init_mmu_context(vcpu); 716 717 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 718 vcpu->arch.l1_tsc_offset, 719 svm->nested.ctl.tsc_offset, 720 svm->tsc_ratio_msr); 721 722 vmcb02->control.tsc_offset = vcpu->arch.tsc_offset; 723 724 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) && 725 svm->tsc_ratio_msr != kvm_caps.default_tsc_scaling_ratio) 726 nested_svm_update_tsc_ratio_msr(vcpu); 727 728 vmcb02->control.int_ctl = 729 (svm->nested.ctl.int_ctl & int_ctl_vmcb12_bits) | 730 (vmcb01->control.int_ctl & int_ctl_vmcb01_bits); 731 732 vmcb02->control.int_vector = svm->nested.ctl.int_vector; 733 vmcb02->control.int_state = svm->nested.ctl.int_state; 734 vmcb02->control.event_inj = svm->nested.ctl.event_inj; 735 vmcb02->control.event_inj_err = svm->nested.ctl.event_inj_err; 736 737 /* 738 * next_rip is consumed on VMRUN as the return address pushed on the 739 * stack for injected soft exceptions/interrupts. If nrips is exposed 740 * to L1, take it verbatim from vmcb12. If nrips is supported in 741 * hardware but not exposed to L1, stuff the actual L2 RIP to emulate 742 * what a nrips=0 CPU would do (L1 is responsible for advancing RIP 743 * prior to injecting the event). 744 */ 745 if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS)) 746 vmcb02->control.next_rip = svm->nested.ctl.next_rip; 747 else if (boot_cpu_has(X86_FEATURE_NRIPS)) 748 vmcb02->control.next_rip = vmcb12_rip; 749 750 svm->nmi_l1_to_l2 = is_evtinj_nmi(vmcb02->control.event_inj); 751 if (is_evtinj_soft(vmcb02->control.event_inj)) { 752 svm->soft_int_injected = true; 753 svm->soft_int_csbase = vmcb12_csbase; 754 svm->soft_int_old_rip = vmcb12_rip; 755 if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS)) 756 svm->soft_int_next_rip = svm->nested.ctl.next_rip; 757 else 758 svm->soft_int_next_rip = vmcb12_rip; 759 } 760 761 vmcb02->control.virt_ext = vmcb01->control.virt_ext & 762 LBR_CTL_ENABLE_MASK; 763 if (guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV)) 764 vmcb02->control.virt_ext |= 765 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK); 766 767 if (!nested_vmcb_needs_vls_intercept(svm)) 768 vmcb02->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 769 770 if (guest_cpu_cap_has(vcpu, X86_FEATURE_PAUSEFILTER)) 771 pause_count12 = svm->nested.ctl.pause_filter_count; 772 else 773 pause_count12 = 0; 774 if (guest_cpu_cap_has(vcpu, X86_FEATURE_PFTHRESHOLD)) 775 pause_thresh12 = svm->nested.ctl.pause_filter_thresh; 776 else 777 pause_thresh12 = 0; 778 if (kvm_pause_in_guest(svm->vcpu.kvm)) { 779 /* use guest values since host doesn't intercept PAUSE */ 780 vmcb02->control.pause_filter_count = pause_count12; 781 vmcb02->control.pause_filter_thresh = pause_thresh12; 782 783 } else { 784 /* start from host values otherwise */ 785 vmcb02->control.pause_filter_count = vmcb01->control.pause_filter_count; 786 vmcb02->control.pause_filter_thresh = vmcb01->control.pause_filter_thresh; 787 788 /* ... but ensure filtering is disabled if so requested. */ 789 if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_PAUSE)) { 790 if (!pause_count12) 791 vmcb02->control.pause_filter_count = 0; 792 if (!pause_thresh12) 793 vmcb02->control.pause_filter_thresh = 0; 794 } 795 } 796 797 /* 798 * Merge guest and host intercepts - must be called with vcpu in 799 * guest-mode to take effect. 800 */ 801 recalc_intercepts(svm); 802 } 803 804 static void nested_svm_copy_common_state(struct vmcb *from_vmcb, struct vmcb *to_vmcb) 805 { 806 /* 807 * Some VMCB state is shared between L1 and L2 and thus has to be 808 * moved at the time of nested vmrun and vmexit. 809 * 810 * VMLOAD/VMSAVE state would also belong in this category, but KVM 811 * always performs VMLOAD and VMSAVE from the VMCB01. 812 */ 813 to_vmcb->save.spec_ctrl = from_vmcb->save.spec_ctrl; 814 } 815 816 int enter_svm_guest_mode(struct kvm_vcpu *vcpu, u64 vmcb12_gpa, 817 struct vmcb *vmcb12, bool from_vmrun) 818 { 819 struct vcpu_svm *svm = to_svm(vcpu); 820 int ret; 821 822 trace_kvm_nested_vmenter(svm->vmcb->save.rip, 823 vmcb12_gpa, 824 vmcb12->save.rip, 825 vmcb12->control.int_ctl, 826 vmcb12->control.event_inj, 827 vmcb12->control.nested_ctl, 828 vmcb12->control.nested_cr3, 829 vmcb12->save.cr3, 830 KVM_ISA_SVM); 831 832 trace_kvm_nested_intercepts(vmcb12->control.intercepts[INTERCEPT_CR] & 0xffff, 833 vmcb12->control.intercepts[INTERCEPT_CR] >> 16, 834 vmcb12->control.intercepts[INTERCEPT_EXCEPTION], 835 vmcb12->control.intercepts[INTERCEPT_WORD3], 836 vmcb12->control.intercepts[INTERCEPT_WORD4], 837 vmcb12->control.intercepts[INTERCEPT_WORD5]); 838 839 840 svm->nested.vmcb12_gpa = vmcb12_gpa; 841 842 WARN_ON(svm->vmcb == svm->nested.vmcb02.ptr); 843 844 nested_svm_copy_common_state(svm->vmcb01.ptr, svm->nested.vmcb02.ptr); 845 846 svm_switch_vmcb(svm, &svm->nested.vmcb02); 847 nested_vmcb02_prepare_control(svm, vmcb12->save.rip, vmcb12->save.cs.base); 848 nested_vmcb02_prepare_save(svm, vmcb12); 849 850 ret = nested_svm_load_cr3(&svm->vcpu, svm->nested.save.cr3, 851 nested_npt_enabled(svm), from_vmrun); 852 if (ret) 853 return ret; 854 855 if (!from_vmrun) 856 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 857 858 svm_set_gif(svm, true); 859 860 if (kvm_vcpu_apicv_active(vcpu)) 861 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 862 863 nested_svm_hv_update_vm_vp_ids(vcpu); 864 865 return 0; 866 } 867 868 int nested_svm_vmrun(struct kvm_vcpu *vcpu) 869 { 870 struct vcpu_svm *svm = to_svm(vcpu); 871 int ret; 872 struct vmcb *vmcb12; 873 struct kvm_host_map map; 874 u64 vmcb12_gpa; 875 struct vmcb *vmcb01 = svm->vmcb01.ptr; 876 877 if (!svm->nested.hsave_msr) { 878 kvm_inject_gp(vcpu, 0); 879 return 1; 880 } 881 882 if (is_smm(vcpu)) { 883 kvm_queue_exception(vcpu, UD_VECTOR); 884 return 1; 885 } 886 887 /* This fails when VP assist page is enabled but the supplied GPA is bogus */ 888 ret = kvm_hv_verify_vp_assist(vcpu); 889 if (ret) { 890 kvm_inject_gp(vcpu, 0); 891 return ret; 892 } 893 894 vmcb12_gpa = svm->vmcb->save.rax; 895 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map); 896 if (ret == -EINVAL) { 897 kvm_inject_gp(vcpu, 0); 898 return 1; 899 } else if (ret) { 900 return kvm_skip_emulated_instruction(vcpu); 901 } 902 903 ret = kvm_skip_emulated_instruction(vcpu); 904 905 vmcb12 = map.hva; 906 907 if (WARN_ON_ONCE(!svm->nested.initialized)) 908 return -EINVAL; 909 910 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 911 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 912 913 if (!nested_vmcb_check_save(vcpu) || 914 !nested_vmcb_check_controls(vcpu)) { 915 vmcb12->control.exit_code = SVM_EXIT_ERR; 916 vmcb12->control.exit_code_hi = 0; 917 vmcb12->control.exit_info_1 = 0; 918 vmcb12->control.exit_info_2 = 0; 919 goto out; 920 } 921 922 /* 923 * Since vmcb01 is not in use, we can use it to store some of the L1 924 * state. 925 */ 926 vmcb01->save.efer = vcpu->arch.efer; 927 vmcb01->save.cr0 = kvm_read_cr0(vcpu); 928 vmcb01->save.cr4 = vcpu->arch.cr4; 929 vmcb01->save.rflags = kvm_get_rflags(vcpu); 930 vmcb01->save.rip = kvm_rip_read(vcpu); 931 932 if (!npt_enabled) 933 vmcb01->save.cr3 = kvm_read_cr3(vcpu); 934 935 svm->nested.nested_run_pending = 1; 936 937 if (enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, true)) 938 goto out_exit_err; 939 940 if (nested_svm_vmrun_msrpm(svm)) 941 goto out; 942 943 out_exit_err: 944 svm->nested.nested_run_pending = 0; 945 svm->nmi_l1_to_l2 = false; 946 svm->soft_int_injected = false; 947 948 svm->vmcb->control.exit_code = SVM_EXIT_ERR; 949 svm->vmcb->control.exit_code_hi = 0; 950 svm->vmcb->control.exit_info_1 = 0; 951 svm->vmcb->control.exit_info_2 = 0; 952 953 nested_svm_vmexit(svm); 954 955 out: 956 kvm_vcpu_unmap(vcpu, &map); 957 958 return ret; 959 } 960 961 /* Copy state save area fields which are handled by VMRUN */ 962 void svm_copy_vmrun_state(struct vmcb_save_area *to_save, 963 struct vmcb_save_area *from_save) 964 { 965 to_save->es = from_save->es; 966 to_save->cs = from_save->cs; 967 to_save->ss = from_save->ss; 968 to_save->ds = from_save->ds; 969 to_save->gdtr = from_save->gdtr; 970 to_save->idtr = from_save->idtr; 971 to_save->rflags = from_save->rflags | X86_EFLAGS_FIXED; 972 to_save->efer = from_save->efer; 973 to_save->cr0 = from_save->cr0; 974 to_save->cr3 = from_save->cr3; 975 to_save->cr4 = from_save->cr4; 976 to_save->rax = from_save->rax; 977 to_save->rsp = from_save->rsp; 978 to_save->rip = from_save->rip; 979 to_save->cpl = 0; 980 } 981 982 void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 983 { 984 to_vmcb->save.fs = from_vmcb->save.fs; 985 to_vmcb->save.gs = from_vmcb->save.gs; 986 to_vmcb->save.tr = from_vmcb->save.tr; 987 to_vmcb->save.ldtr = from_vmcb->save.ldtr; 988 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; 989 to_vmcb->save.star = from_vmcb->save.star; 990 to_vmcb->save.lstar = from_vmcb->save.lstar; 991 to_vmcb->save.cstar = from_vmcb->save.cstar; 992 to_vmcb->save.sfmask = from_vmcb->save.sfmask; 993 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; 994 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; 995 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; 996 } 997 998 int nested_svm_vmexit(struct vcpu_svm *svm) 999 { 1000 struct kvm_vcpu *vcpu = &svm->vcpu; 1001 struct vmcb *vmcb01 = svm->vmcb01.ptr; 1002 struct vmcb *vmcb02 = svm->nested.vmcb02.ptr; 1003 struct vmcb *vmcb12; 1004 struct kvm_host_map map; 1005 int rc; 1006 1007 rc = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.vmcb12_gpa), &map); 1008 if (rc) { 1009 if (rc == -EINVAL) 1010 kvm_inject_gp(vcpu, 0); 1011 return 1; 1012 } 1013 1014 vmcb12 = map.hva; 1015 1016 /* Exit Guest-Mode */ 1017 leave_guest_mode(vcpu); 1018 svm->nested.vmcb12_gpa = 0; 1019 WARN_ON_ONCE(svm->nested.nested_run_pending); 1020 1021 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 1022 1023 /* in case we halted in L2 */ 1024 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 1025 1026 /* Give the current vmcb to the guest */ 1027 1028 vmcb12->save.es = vmcb02->save.es; 1029 vmcb12->save.cs = vmcb02->save.cs; 1030 vmcb12->save.ss = vmcb02->save.ss; 1031 vmcb12->save.ds = vmcb02->save.ds; 1032 vmcb12->save.gdtr = vmcb02->save.gdtr; 1033 vmcb12->save.idtr = vmcb02->save.idtr; 1034 vmcb12->save.efer = svm->vcpu.arch.efer; 1035 vmcb12->save.cr0 = kvm_read_cr0(vcpu); 1036 vmcb12->save.cr3 = kvm_read_cr3(vcpu); 1037 vmcb12->save.cr2 = vmcb02->save.cr2; 1038 vmcb12->save.cr4 = svm->vcpu.arch.cr4; 1039 vmcb12->save.rflags = kvm_get_rflags(vcpu); 1040 vmcb12->save.rip = kvm_rip_read(vcpu); 1041 vmcb12->save.rsp = kvm_rsp_read(vcpu); 1042 vmcb12->save.rax = kvm_rax_read(vcpu); 1043 vmcb12->save.dr7 = vmcb02->save.dr7; 1044 vmcb12->save.dr6 = svm->vcpu.arch.dr6; 1045 vmcb12->save.cpl = vmcb02->save.cpl; 1046 1047 vmcb12->control.int_state = vmcb02->control.int_state; 1048 vmcb12->control.exit_code = vmcb02->control.exit_code; 1049 vmcb12->control.exit_code_hi = vmcb02->control.exit_code_hi; 1050 vmcb12->control.exit_info_1 = vmcb02->control.exit_info_1; 1051 vmcb12->control.exit_info_2 = vmcb02->control.exit_info_2; 1052 1053 if (vmcb12->control.exit_code != SVM_EXIT_ERR) 1054 nested_save_pending_event_to_vmcb12(svm, vmcb12); 1055 1056 if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS)) 1057 vmcb12->control.next_rip = vmcb02->control.next_rip; 1058 1059 vmcb12->control.int_ctl = svm->nested.ctl.int_ctl; 1060 vmcb12->control.event_inj = svm->nested.ctl.event_inj; 1061 vmcb12->control.event_inj_err = svm->nested.ctl.event_inj_err; 1062 1063 if (!kvm_pause_in_guest(vcpu->kvm)) { 1064 vmcb01->control.pause_filter_count = vmcb02->control.pause_filter_count; 1065 vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS); 1066 1067 } 1068 1069 /* 1070 * Invalidate bus_lock_rip unless KVM is still waiting for the guest 1071 * to make forward progress before re-enabling bus lock detection. 1072 */ 1073 if (!vmcb02->control.bus_lock_counter) 1074 svm->nested.ctl.bus_lock_rip = INVALID_GPA; 1075 1076 nested_svm_copy_common_state(svm->nested.vmcb02.ptr, svm->vmcb01.ptr); 1077 1078 kvm_nested_vmexit_handle_ibrs(vcpu); 1079 1080 svm_switch_vmcb(svm, &svm->vmcb01); 1081 1082 /* 1083 * Rules for synchronizing int_ctl bits from vmcb02 to vmcb01: 1084 * 1085 * V_IRQ, V_IRQ_VECTOR, V_INTR_PRIO_MASK, V_IGN_TPR: If L1 doesn't 1086 * intercept interrupts, then KVM will use vmcb02's V_IRQ (and related 1087 * flags) to detect interrupt windows for L1 IRQs (even if L1 uses 1088 * virtual interrupt masking). Raise KVM_REQ_EVENT to ensure that 1089 * KVM re-requests an interrupt window if necessary, which implicitly 1090 * copies this bits from vmcb02 to vmcb01. 1091 * 1092 * V_TPR: If L1 doesn't use virtual interrupt masking, then L1's vTPR 1093 * is stored in vmcb02, but its value doesn't need to be copied from/to 1094 * vmcb01 because it is copied from/to the virtual APIC's TPR register 1095 * on each VM entry/exit. 1096 * 1097 * V_GIF: If nested vGIF is not used, KVM uses vmcb02's V_GIF for L1's 1098 * V_GIF. However, GIF is architecturally clear on each VM exit, thus 1099 * there is no need to copy V_GIF from vmcb02 to vmcb01. 1100 */ 1101 if (!nested_exit_on_intr(svm)) 1102 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 1103 1104 if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 1105 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) { 1106 svm_copy_lbrs(vmcb12, vmcb02); 1107 svm_update_lbrv(vcpu); 1108 } else if (unlikely(vmcb01->control.virt_ext & LBR_CTL_ENABLE_MASK)) { 1109 svm_copy_lbrs(vmcb01, vmcb02); 1110 svm_update_lbrv(vcpu); 1111 } 1112 1113 if (vnmi) { 1114 if (vmcb02->control.int_ctl & V_NMI_BLOCKING_MASK) 1115 vmcb01->control.int_ctl |= V_NMI_BLOCKING_MASK; 1116 else 1117 vmcb01->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 1118 1119 if (vcpu->arch.nmi_pending) { 1120 vcpu->arch.nmi_pending--; 1121 vmcb01->control.int_ctl |= V_NMI_PENDING_MASK; 1122 } else { 1123 vmcb01->control.int_ctl &= ~V_NMI_PENDING_MASK; 1124 } 1125 } 1126 1127 /* 1128 * On vmexit the GIF is set to false and 1129 * no event can be injected in L1. 1130 */ 1131 svm_set_gif(svm, false); 1132 vmcb01->control.exit_int_info = 0; 1133 1134 svm->vcpu.arch.tsc_offset = svm->vcpu.arch.l1_tsc_offset; 1135 if (vmcb01->control.tsc_offset != svm->vcpu.arch.tsc_offset) { 1136 vmcb01->control.tsc_offset = svm->vcpu.arch.tsc_offset; 1137 vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS); 1138 } 1139 1140 if (kvm_caps.has_tsc_control && 1141 vcpu->arch.tsc_scaling_ratio != vcpu->arch.l1_tsc_scaling_ratio) { 1142 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio; 1143 svm_write_tsc_multiplier(vcpu); 1144 } 1145 1146 svm->nested.ctl.nested_cr3 = 0; 1147 1148 /* 1149 * Restore processor state that had been saved in vmcb01 1150 */ 1151 kvm_set_rflags(vcpu, vmcb01->save.rflags); 1152 svm_set_efer(vcpu, vmcb01->save.efer); 1153 svm_set_cr0(vcpu, vmcb01->save.cr0 | X86_CR0_PE); 1154 svm_set_cr4(vcpu, vmcb01->save.cr4); 1155 kvm_rax_write(vcpu, vmcb01->save.rax); 1156 kvm_rsp_write(vcpu, vmcb01->save.rsp); 1157 kvm_rip_write(vcpu, vmcb01->save.rip); 1158 1159 svm->vcpu.arch.dr7 = DR7_FIXED_1; 1160 kvm_update_dr7(&svm->vcpu); 1161 1162 trace_kvm_nested_vmexit_inject(vmcb12->control.exit_code, 1163 vmcb12->control.exit_info_1, 1164 vmcb12->control.exit_info_2, 1165 vmcb12->control.exit_int_info, 1166 vmcb12->control.exit_int_info_err, 1167 KVM_ISA_SVM); 1168 1169 kvm_vcpu_unmap(vcpu, &map); 1170 1171 nested_svm_transition_tlb_flush(vcpu); 1172 1173 nested_svm_uninit_mmu_context(vcpu); 1174 1175 rc = nested_svm_load_cr3(vcpu, vmcb01->save.cr3, false, true); 1176 if (rc) 1177 return 1; 1178 1179 /* 1180 * Drop what we picked up for L2 via svm_complete_interrupts() so it 1181 * doesn't end up in L1. 1182 */ 1183 svm->vcpu.arch.nmi_injected = false; 1184 kvm_clear_exception_queue(vcpu); 1185 kvm_clear_interrupt_queue(vcpu); 1186 1187 /* 1188 * If we are here following the completion of a VMRUN that 1189 * is being single-stepped, queue the pending #DB intercept 1190 * right now so that it an be accounted for before we execute 1191 * L1's next instruction. 1192 */ 1193 if (unlikely(vmcb01->save.rflags & X86_EFLAGS_TF)) 1194 kvm_queue_exception(&(svm->vcpu), DB_VECTOR); 1195 1196 /* 1197 * Un-inhibit the AVIC right away, so that other vCPUs can start 1198 * to benefit from it right away. 1199 */ 1200 if (kvm_apicv_activated(vcpu->kvm)) 1201 __kvm_vcpu_update_apicv(vcpu); 1202 1203 return 0; 1204 } 1205 1206 static void nested_svm_triple_fault(struct kvm_vcpu *vcpu) 1207 { 1208 struct vcpu_svm *svm = to_svm(vcpu); 1209 1210 if (!vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SHUTDOWN)) 1211 return; 1212 1213 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 1214 nested_svm_simple_vmexit(to_svm(vcpu), SVM_EXIT_SHUTDOWN); 1215 } 1216 1217 int svm_allocate_nested(struct vcpu_svm *svm) 1218 { 1219 struct page *vmcb02_page; 1220 1221 if (svm->nested.initialized) 1222 return 0; 1223 1224 vmcb02_page = snp_safe_alloc_page(); 1225 if (!vmcb02_page) 1226 return -ENOMEM; 1227 svm->nested.vmcb02.ptr = page_address(vmcb02_page); 1228 svm->nested.vmcb02.pa = __sme_set(page_to_pfn(vmcb02_page) << PAGE_SHIFT); 1229 1230 svm->nested.msrpm = svm_vcpu_alloc_msrpm(); 1231 if (!svm->nested.msrpm) 1232 goto err_free_vmcb02; 1233 svm_vcpu_init_msrpm(&svm->vcpu, svm->nested.msrpm); 1234 1235 svm->nested.initialized = true; 1236 return 0; 1237 1238 err_free_vmcb02: 1239 __free_page(vmcb02_page); 1240 return -ENOMEM; 1241 } 1242 1243 void svm_free_nested(struct vcpu_svm *svm) 1244 { 1245 if (!svm->nested.initialized) 1246 return; 1247 1248 if (WARN_ON_ONCE(svm->vmcb != svm->vmcb01.ptr)) 1249 svm_switch_vmcb(svm, &svm->vmcb01); 1250 1251 svm_vcpu_free_msrpm(svm->nested.msrpm); 1252 svm->nested.msrpm = NULL; 1253 1254 __free_page(virt_to_page(svm->nested.vmcb02.ptr)); 1255 svm->nested.vmcb02.ptr = NULL; 1256 1257 /* 1258 * When last_vmcb12_gpa matches the current vmcb12 gpa, 1259 * some vmcb12 fields are not loaded if they are marked clean 1260 * in the vmcb12, since in this case they are up to date already. 1261 * 1262 * When the vmcb02 is freed, this optimization becomes invalid. 1263 */ 1264 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1265 1266 svm->nested.initialized = false; 1267 } 1268 1269 void svm_leave_nested(struct kvm_vcpu *vcpu) 1270 { 1271 struct vcpu_svm *svm = to_svm(vcpu); 1272 1273 if (is_guest_mode(vcpu)) { 1274 svm->nested.nested_run_pending = 0; 1275 svm->nested.vmcb12_gpa = INVALID_GPA; 1276 1277 leave_guest_mode(vcpu); 1278 1279 svm_switch_vmcb(svm, &svm->vmcb01); 1280 1281 nested_svm_uninit_mmu_context(vcpu); 1282 vmcb_mark_all_dirty(svm->vmcb); 1283 1284 if (kvm_apicv_activated(vcpu->kvm)) 1285 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 1286 } 1287 1288 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 1289 } 1290 1291 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) 1292 { 1293 u32 offset, msr, value; 1294 int write, mask; 1295 1296 if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))) 1297 return NESTED_EXIT_HOST; 1298 1299 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 1300 offset = svm_msrpm_offset(msr); 1301 write = svm->vmcb->control.exit_info_1 & 1; 1302 mask = 1 << ((2 * (msr & 0xf)) + write); 1303 1304 if (offset == MSR_INVALID) 1305 return NESTED_EXIT_DONE; 1306 1307 /* Offset is in 32 bit units but need in 8 bit units */ 1308 offset *= 4; 1309 1310 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.ctl.msrpm_base_pa + offset, &value, 4)) 1311 return NESTED_EXIT_DONE; 1312 1313 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; 1314 } 1315 1316 static int nested_svm_intercept_ioio(struct vcpu_svm *svm) 1317 { 1318 unsigned port, size, iopm_len; 1319 u16 val, mask; 1320 u8 start_bit; 1321 u64 gpa; 1322 1323 if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_IOIO_PROT))) 1324 return NESTED_EXIT_HOST; 1325 1326 port = svm->vmcb->control.exit_info_1 >> 16; 1327 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >> 1328 SVM_IOIO_SIZE_SHIFT; 1329 gpa = svm->nested.ctl.iopm_base_pa + (port / 8); 1330 start_bit = port % 8; 1331 iopm_len = (start_bit + size > 8) ? 2 : 1; 1332 mask = (0xf >> (4 - size)) << start_bit; 1333 val = 0; 1334 1335 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len)) 1336 return NESTED_EXIT_DONE; 1337 1338 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; 1339 } 1340 1341 static int nested_svm_intercept(struct vcpu_svm *svm) 1342 { 1343 u32 exit_code = svm->vmcb->control.exit_code; 1344 int vmexit = NESTED_EXIT_HOST; 1345 1346 switch (exit_code) { 1347 case SVM_EXIT_MSR: 1348 vmexit = nested_svm_exit_handled_msr(svm); 1349 break; 1350 case SVM_EXIT_IOIO: 1351 vmexit = nested_svm_intercept_ioio(svm); 1352 break; 1353 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: { 1354 if (vmcb12_is_intercept(&svm->nested.ctl, exit_code)) 1355 vmexit = NESTED_EXIT_DONE; 1356 break; 1357 } 1358 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: { 1359 if (vmcb12_is_intercept(&svm->nested.ctl, exit_code)) 1360 vmexit = NESTED_EXIT_DONE; 1361 break; 1362 } 1363 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { 1364 /* 1365 * Host-intercepted exceptions have been checked already in 1366 * nested_svm_exit_special. There is nothing to do here, 1367 * the vmexit is injected by svm_check_nested_events. 1368 */ 1369 vmexit = NESTED_EXIT_DONE; 1370 break; 1371 } 1372 case SVM_EXIT_ERR: { 1373 vmexit = NESTED_EXIT_DONE; 1374 break; 1375 } 1376 default: { 1377 if (vmcb12_is_intercept(&svm->nested.ctl, exit_code)) 1378 vmexit = NESTED_EXIT_DONE; 1379 } 1380 } 1381 1382 return vmexit; 1383 } 1384 1385 int nested_svm_exit_handled(struct vcpu_svm *svm) 1386 { 1387 int vmexit; 1388 1389 vmexit = nested_svm_intercept(svm); 1390 1391 if (vmexit == NESTED_EXIT_DONE) 1392 nested_svm_vmexit(svm); 1393 1394 return vmexit; 1395 } 1396 1397 int nested_svm_check_permissions(struct kvm_vcpu *vcpu) 1398 { 1399 if (!(vcpu->arch.efer & EFER_SVME) || !is_paging(vcpu)) { 1400 kvm_queue_exception(vcpu, UD_VECTOR); 1401 return 1; 1402 } 1403 1404 if (to_svm(vcpu)->vmcb->save.cpl) { 1405 kvm_inject_gp(vcpu, 0); 1406 return 1; 1407 } 1408 1409 return 0; 1410 } 1411 1412 static bool nested_svm_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector, 1413 u32 error_code) 1414 { 1415 struct vcpu_svm *svm = to_svm(vcpu); 1416 1417 return (svm->nested.ctl.intercepts[INTERCEPT_EXCEPTION] & BIT(vector)); 1418 } 1419 1420 static void nested_svm_inject_exception_vmexit(struct kvm_vcpu *vcpu) 1421 { 1422 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 1423 struct vcpu_svm *svm = to_svm(vcpu); 1424 struct vmcb *vmcb = svm->vmcb; 1425 1426 vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + ex->vector; 1427 vmcb->control.exit_code_hi = 0; 1428 1429 if (ex->has_error_code) 1430 vmcb->control.exit_info_1 = ex->error_code; 1431 1432 /* 1433 * EXITINFO2 is undefined for all exception intercepts other 1434 * than #PF. 1435 */ 1436 if (ex->vector == PF_VECTOR) { 1437 if (ex->has_payload) 1438 vmcb->control.exit_info_2 = ex->payload; 1439 else 1440 vmcb->control.exit_info_2 = vcpu->arch.cr2; 1441 } else if (ex->vector == DB_VECTOR) { 1442 /* See kvm_check_and_inject_events(). */ 1443 kvm_deliver_exception_payload(vcpu, ex); 1444 1445 if (vcpu->arch.dr7 & DR7_GD) { 1446 vcpu->arch.dr7 &= ~DR7_GD; 1447 kvm_update_dr7(vcpu); 1448 } 1449 } else { 1450 WARN_ON(ex->has_payload); 1451 } 1452 1453 nested_svm_vmexit(svm); 1454 } 1455 1456 static inline bool nested_exit_on_init(struct vcpu_svm *svm) 1457 { 1458 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INIT); 1459 } 1460 1461 static int svm_check_nested_events(struct kvm_vcpu *vcpu) 1462 { 1463 struct kvm_lapic *apic = vcpu->arch.apic; 1464 struct vcpu_svm *svm = to_svm(vcpu); 1465 /* 1466 * Only a pending nested run blocks a pending exception. If there is a 1467 * previously injected event, the pending exception occurred while said 1468 * event was being delivered and thus needs to be handled. 1469 */ 1470 bool block_nested_exceptions = svm->nested.nested_run_pending; 1471 /* 1472 * New events (not exceptions) are only recognized at instruction 1473 * boundaries. If an event needs reinjection, then KVM is handling a 1474 * VM-Exit that occurred _during_ instruction execution; new events are 1475 * blocked until the instruction completes. 1476 */ 1477 bool block_nested_events = block_nested_exceptions || 1478 kvm_event_needs_reinjection(vcpu); 1479 1480 if (lapic_in_kernel(vcpu) && 1481 test_bit(KVM_APIC_INIT, &apic->pending_events)) { 1482 if (block_nested_events) 1483 return -EBUSY; 1484 if (!nested_exit_on_init(svm)) 1485 return 0; 1486 nested_svm_simple_vmexit(svm, SVM_EXIT_INIT); 1487 return 0; 1488 } 1489 1490 if (vcpu->arch.exception_vmexit.pending) { 1491 if (block_nested_exceptions) 1492 return -EBUSY; 1493 nested_svm_inject_exception_vmexit(vcpu); 1494 return 0; 1495 } 1496 1497 if (vcpu->arch.exception.pending) { 1498 if (block_nested_exceptions) 1499 return -EBUSY; 1500 return 0; 1501 } 1502 1503 #ifdef CONFIG_KVM_SMM 1504 if (vcpu->arch.smi_pending && !svm_smi_blocked(vcpu)) { 1505 if (block_nested_events) 1506 return -EBUSY; 1507 if (!nested_exit_on_smi(svm)) 1508 return 0; 1509 nested_svm_simple_vmexit(svm, SVM_EXIT_SMI); 1510 return 0; 1511 } 1512 #endif 1513 1514 if (vcpu->arch.nmi_pending && !svm_nmi_blocked(vcpu)) { 1515 if (block_nested_events) 1516 return -EBUSY; 1517 if (!nested_exit_on_nmi(svm)) 1518 return 0; 1519 nested_svm_simple_vmexit(svm, SVM_EXIT_NMI); 1520 return 0; 1521 } 1522 1523 if (kvm_cpu_has_interrupt(vcpu) && !svm_interrupt_blocked(vcpu)) { 1524 if (block_nested_events) 1525 return -EBUSY; 1526 if (!nested_exit_on_intr(svm)) 1527 return 0; 1528 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); 1529 nested_svm_simple_vmexit(svm, SVM_EXIT_INTR); 1530 return 0; 1531 } 1532 1533 return 0; 1534 } 1535 1536 int nested_svm_exit_special(struct vcpu_svm *svm) 1537 { 1538 u32 exit_code = svm->vmcb->control.exit_code; 1539 struct kvm_vcpu *vcpu = &svm->vcpu; 1540 1541 switch (exit_code) { 1542 case SVM_EXIT_INTR: 1543 case SVM_EXIT_NMI: 1544 case SVM_EXIT_NPF: 1545 return NESTED_EXIT_HOST; 1546 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { 1547 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); 1548 1549 if (svm->vmcb01.ptr->control.intercepts[INTERCEPT_EXCEPTION] & 1550 excp_bits) 1551 return NESTED_EXIT_HOST; 1552 else if (exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR && 1553 svm->vcpu.arch.apf.host_apf_flags) 1554 /* Trap async PF even if not shadowing */ 1555 return NESTED_EXIT_HOST; 1556 break; 1557 } 1558 case SVM_EXIT_VMMCALL: 1559 /* Hyper-V L2 TLB flush hypercall is handled by L0 */ 1560 if (guest_hv_cpuid_has_l2_tlb_flush(vcpu) && 1561 nested_svm_l2_tlb_flush_enabled(vcpu) && 1562 kvm_hv_is_tlb_flush_hcall(vcpu)) 1563 return NESTED_EXIT_HOST; 1564 break; 1565 default: 1566 break; 1567 } 1568 1569 return NESTED_EXIT_CONTINUE; 1570 } 1571 1572 void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu) 1573 { 1574 struct vcpu_svm *svm = to_svm(vcpu); 1575 1576 vcpu->arch.tsc_scaling_ratio = 1577 kvm_calc_nested_tsc_multiplier(vcpu->arch.l1_tsc_scaling_ratio, 1578 svm->tsc_ratio_msr); 1579 svm_write_tsc_multiplier(vcpu); 1580 } 1581 1582 /* Inverse operation of nested_copy_vmcb_control_to_cache(). asid is copied too. */ 1583 static void nested_copy_vmcb_cache_to_control(struct vmcb_control_area *dst, 1584 struct vmcb_ctrl_area_cached *from) 1585 { 1586 unsigned int i; 1587 1588 memset(dst, 0, sizeof(struct vmcb_control_area)); 1589 1590 for (i = 0; i < MAX_INTERCEPT; i++) 1591 dst->intercepts[i] = from->intercepts[i]; 1592 1593 dst->iopm_base_pa = from->iopm_base_pa; 1594 dst->msrpm_base_pa = from->msrpm_base_pa; 1595 dst->tsc_offset = from->tsc_offset; 1596 dst->asid = from->asid; 1597 dst->tlb_ctl = from->tlb_ctl; 1598 dst->int_ctl = from->int_ctl; 1599 dst->int_vector = from->int_vector; 1600 dst->int_state = from->int_state; 1601 dst->exit_code = from->exit_code; 1602 dst->exit_code_hi = from->exit_code_hi; 1603 dst->exit_info_1 = from->exit_info_1; 1604 dst->exit_info_2 = from->exit_info_2; 1605 dst->exit_int_info = from->exit_int_info; 1606 dst->exit_int_info_err = from->exit_int_info_err; 1607 dst->nested_ctl = from->nested_ctl; 1608 dst->event_inj = from->event_inj; 1609 dst->event_inj_err = from->event_inj_err; 1610 dst->next_rip = from->next_rip; 1611 dst->nested_cr3 = from->nested_cr3; 1612 dst->virt_ext = from->virt_ext; 1613 dst->pause_filter_count = from->pause_filter_count; 1614 dst->pause_filter_thresh = from->pause_filter_thresh; 1615 /* 'clean' and 'hv_enlightenments' are not changed by KVM */ 1616 } 1617 1618 static int svm_get_nested_state(struct kvm_vcpu *vcpu, 1619 struct kvm_nested_state __user *user_kvm_nested_state, 1620 u32 user_data_size) 1621 { 1622 struct vcpu_svm *svm; 1623 struct vmcb_control_area *ctl; 1624 unsigned long r; 1625 struct kvm_nested_state kvm_state = { 1626 .flags = 0, 1627 .format = KVM_STATE_NESTED_FORMAT_SVM, 1628 .size = sizeof(kvm_state), 1629 }; 1630 struct vmcb __user *user_vmcb = (struct vmcb __user *) 1631 &user_kvm_nested_state->data.svm[0]; 1632 1633 if (!vcpu) 1634 return kvm_state.size + KVM_STATE_NESTED_SVM_VMCB_SIZE; 1635 1636 svm = to_svm(vcpu); 1637 1638 if (user_data_size < kvm_state.size) 1639 goto out; 1640 1641 /* First fill in the header and copy it out. */ 1642 if (is_guest_mode(vcpu)) { 1643 kvm_state.hdr.svm.vmcb_pa = svm->nested.vmcb12_gpa; 1644 kvm_state.size += KVM_STATE_NESTED_SVM_VMCB_SIZE; 1645 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; 1646 1647 if (svm->nested.nested_run_pending) 1648 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; 1649 } 1650 1651 if (gif_set(svm)) 1652 kvm_state.flags |= KVM_STATE_NESTED_GIF_SET; 1653 1654 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) 1655 return -EFAULT; 1656 1657 if (!is_guest_mode(vcpu)) 1658 goto out; 1659 1660 /* 1661 * Copy over the full size of the VMCB rather than just the size 1662 * of the structs. 1663 */ 1664 if (clear_user(user_vmcb, KVM_STATE_NESTED_SVM_VMCB_SIZE)) 1665 return -EFAULT; 1666 1667 ctl = kzalloc(sizeof(*ctl), GFP_KERNEL); 1668 if (!ctl) 1669 return -ENOMEM; 1670 1671 nested_copy_vmcb_cache_to_control(ctl, &svm->nested.ctl); 1672 r = copy_to_user(&user_vmcb->control, ctl, 1673 sizeof(user_vmcb->control)); 1674 kfree(ctl); 1675 if (r) 1676 return -EFAULT; 1677 1678 if (copy_to_user(&user_vmcb->save, &svm->vmcb01.ptr->save, 1679 sizeof(user_vmcb->save))) 1680 return -EFAULT; 1681 out: 1682 return kvm_state.size; 1683 } 1684 1685 static int svm_set_nested_state(struct kvm_vcpu *vcpu, 1686 struct kvm_nested_state __user *user_kvm_nested_state, 1687 struct kvm_nested_state *kvm_state) 1688 { 1689 struct vcpu_svm *svm = to_svm(vcpu); 1690 struct vmcb __user *user_vmcb = (struct vmcb __user *) 1691 &user_kvm_nested_state->data.svm[0]; 1692 struct vmcb_control_area *ctl; 1693 struct vmcb_save_area *save; 1694 struct vmcb_save_area_cached save_cached; 1695 struct vmcb_ctrl_area_cached ctl_cached; 1696 unsigned long cr0; 1697 int ret; 1698 1699 BUILD_BUG_ON(sizeof(struct vmcb_control_area) + sizeof(struct vmcb_save_area) > 1700 KVM_STATE_NESTED_SVM_VMCB_SIZE); 1701 1702 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_SVM) 1703 return -EINVAL; 1704 1705 if (kvm_state->flags & ~(KVM_STATE_NESTED_GUEST_MODE | 1706 KVM_STATE_NESTED_RUN_PENDING | 1707 KVM_STATE_NESTED_GIF_SET)) 1708 return -EINVAL; 1709 1710 /* 1711 * If in guest mode, vcpu->arch.efer actually refers to the L2 guest's 1712 * EFER.SVME, but EFER.SVME still has to be 1 for VMRUN to succeed. 1713 */ 1714 if (!(vcpu->arch.efer & EFER_SVME)) { 1715 /* GIF=1 and no guest mode are required if SVME=0. */ 1716 if (kvm_state->flags != KVM_STATE_NESTED_GIF_SET) 1717 return -EINVAL; 1718 } 1719 1720 /* SMM temporarily disables SVM, so we cannot be in guest mode. */ 1721 if (is_smm(vcpu) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) 1722 return -EINVAL; 1723 1724 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) { 1725 svm_leave_nested(vcpu); 1726 svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET)); 1727 return 0; 1728 } 1729 1730 if (!page_address_valid(vcpu, kvm_state->hdr.svm.vmcb_pa)) 1731 return -EINVAL; 1732 if (kvm_state->size < sizeof(*kvm_state) + KVM_STATE_NESTED_SVM_VMCB_SIZE) 1733 return -EINVAL; 1734 1735 ret = -ENOMEM; 1736 ctl = kzalloc(sizeof(*ctl), GFP_KERNEL); 1737 save = kzalloc(sizeof(*save), GFP_KERNEL); 1738 if (!ctl || !save) 1739 goto out_free; 1740 1741 ret = -EFAULT; 1742 if (copy_from_user(ctl, &user_vmcb->control, sizeof(*ctl))) 1743 goto out_free; 1744 if (copy_from_user(save, &user_vmcb->save, sizeof(*save))) 1745 goto out_free; 1746 1747 ret = -EINVAL; 1748 __nested_copy_vmcb_control_to_cache(vcpu, &ctl_cached, ctl); 1749 if (!__nested_vmcb_check_controls(vcpu, &ctl_cached)) 1750 goto out_free; 1751 1752 /* 1753 * Processor state contains L2 state. Check that it is 1754 * valid for guest mode (see nested_vmcb_check_save). 1755 */ 1756 cr0 = kvm_read_cr0(vcpu); 1757 if (((cr0 & X86_CR0_CD) == 0) && (cr0 & X86_CR0_NW)) 1758 goto out_free; 1759 1760 /* 1761 * Validate host state saved from before VMRUN (see 1762 * nested_svm_check_permissions). 1763 */ 1764 __nested_copy_vmcb_save_to_cache(&save_cached, save); 1765 if (!(save->cr0 & X86_CR0_PG) || 1766 !(save->cr0 & X86_CR0_PE) || 1767 (save->rflags & X86_EFLAGS_VM) || 1768 !__nested_vmcb_check_save(vcpu, &save_cached)) 1769 goto out_free; 1770 1771 1772 /* 1773 * All checks done, we can enter guest mode. Userspace provides 1774 * vmcb12.control, which will be combined with L1 and stored into 1775 * vmcb02, and the L1 save state which we store in vmcb01. 1776 * L2 registers if needed are moved from the current VMCB to VMCB02. 1777 */ 1778 1779 if (is_guest_mode(vcpu)) 1780 svm_leave_nested(vcpu); 1781 else 1782 svm->nested.vmcb02.ptr->save = svm->vmcb01.ptr->save; 1783 1784 svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET)); 1785 1786 svm->nested.nested_run_pending = 1787 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); 1788 1789 svm->nested.vmcb12_gpa = kvm_state->hdr.svm.vmcb_pa; 1790 1791 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, save); 1792 nested_copy_vmcb_control_to_cache(svm, ctl); 1793 1794 svm_switch_vmcb(svm, &svm->nested.vmcb02); 1795 nested_vmcb02_prepare_control(svm, svm->vmcb->save.rip, svm->vmcb->save.cs.base); 1796 1797 /* 1798 * While the nested guest CR3 is already checked and set by 1799 * KVM_SET_SREGS, it was set when nested state was yet loaded, 1800 * thus MMU might not be initialized correctly. 1801 * Set it again to fix this. 1802 */ 1803 1804 ret = nested_svm_load_cr3(&svm->vcpu, vcpu->arch.cr3, 1805 nested_npt_enabled(svm), false); 1806 if (WARN_ON_ONCE(ret)) 1807 goto out_free; 1808 1809 svm->nested.force_msr_bitmap_recalc = true; 1810 1811 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 1812 ret = 0; 1813 out_free: 1814 kfree(save); 1815 kfree(ctl); 1816 1817 return ret; 1818 } 1819 1820 static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu) 1821 { 1822 struct vcpu_svm *svm = to_svm(vcpu); 1823 1824 if (WARN_ON(!is_guest_mode(vcpu))) 1825 return true; 1826 1827 if (!vcpu->arch.pdptrs_from_userspace && 1828 !nested_npt_enabled(svm) && is_pae_paging(vcpu)) 1829 /* 1830 * Reload the guest's PDPTRs since after a migration 1831 * the guest CR3 might be restored prior to setting the nested 1832 * state which can lead to a load of wrong PDPTRs. 1833 */ 1834 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3))) 1835 return false; 1836 1837 if (!nested_svm_vmrun_msrpm(svm)) { 1838 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1839 vcpu->run->internal.suberror = 1840 KVM_INTERNAL_ERROR_EMULATION; 1841 vcpu->run->internal.ndata = 0; 1842 return false; 1843 } 1844 1845 if (kvm_hv_verify_vp_assist(vcpu)) 1846 return false; 1847 1848 return true; 1849 } 1850 1851 struct kvm_x86_nested_ops svm_nested_ops = { 1852 .leave_nested = svm_leave_nested, 1853 .is_exception_vmexit = nested_svm_is_exception_vmexit, 1854 .check_events = svm_check_nested_events, 1855 .triple_fault = nested_svm_triple_fault, 1856 .get_nested_state_pages = svm_get_nested_state_pages, 1857 .get_state = svm_get_nested_state, 1858 .set_state = svm_set_nested_state, 1859 .hv_inject_synthetic_vmexit_post_tlb_flush = svm_hv_inject_synthetic_vmexit_post_tlb_flush, 1860 }; 1861