1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM support 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Yaniv Kamay <yaniv@qumranet.com> 12 * Avi Kivity <avi@qumranet.com> 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/kvm_types.h> 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 21 #include <asm/msr-index.h> 22 #include <asm/debugreg.h> 23 24 #include "kvm_emulate.h" 25 #include "trace.h" 26 #include "mmu.h" 27 #include "x86.h" 28 #include "smm.h" 29 #include "cpuid.h" 30 #include "lapic.h" 31 #include "svm.h" 32 #include "hyperv.h" 33 34 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK 35 36 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, 37 struct x86_exception *fault) 38 { 39 struct vcpu_svm *svm = to_svm(vcpu); 40 struct vmcb *vmcb = svm->vmcb; 41 42 if (vmcb->control.exit_code != SVM_EXIT_NPF) { 43 /* 44 * TODO: track the cause of the nested page fault, and 45 * correctly fill in the high bits of exit_info_1. 46 */ 47 vmcb->control.exit_code = SVM_EXIT_NPF; 48 vmcb->control.exit_code_hi = 0; 49 vmcb->control.exit_info_1 = (1ULL << 32); 50 vmcb->control.exit_info_2 = fault->address; 51 } 52 53 vmcb->control.exit_info_1 &= ~0xffffffffULL; 54 vmcb->control.exit_info_1 |= fault->error_code; 55 56 nested_svm_vmexit(svm); 57 } 58 59 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index) 60 { 61 struct vcpu_svm *svm = to_svm(vcpu); 62 u64 cr3 = svm->nested.ctl.nested_cr3; 63 u64 pdpte; 64 int ret; 65 66 /* 67 * Note, nCR3 is "assumed" to be 32-byte aligned, i.e. the CPU ignores 68 * nCR3[4:0] when loading PDPTEs from memory. 69 */ 70 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte, 71 (cr3 & GENMASK(11, 5)) + index * 8, 8); 72 if (ret) 73 return 0; 74 return pdpte; 75 } 76 77 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) 78 { 79 struct vcpu_svm *svm = to_svm(vcpu); 80 81 return svm->nested.ctl.nested_cr3; 82 } 83 84 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) 85 { 86 struct vcpu_svm *svm = to_svm(vcpu); 87 88 WARN_ON(mmu_is_nested(vcpu)); 89 90 vcpu->arch.mmu = &vcpu->arch.guest_mmu; 91 92 /* 93 * The NPT format depends on L1's CR4 and EFER, which is in vmcb01. Note, 94 * when called via KVM_SET_NESTED_STATE, that state may _not_ match current 95 * vCPU state. CR0.WP is explicitly ignored, while CR0.PG is required. 96 */ 97 kvm_init_shadow_npt_mmu(vcpu, X86_CR0_PG, svm->vmcb01.ptr->save.cr4, 98 svm->vmcb01.ptr->save.efer, 99 svm->nested.ctl.nested_cr3); 100 vcpu->arch.mmu->get_guest_pgd = nested_svm_get_tdp_cr3; 101 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr; 102 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit; 103 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; 104 } 105 106 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) 107 { 108 vcpu->arch.mmu = &vcpu->arch.root_mmu; 109 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 110 } 111 112 static bool nested_vmcb_needs_vls_intercept(struct vcpu_svm *svm) 113 { 114 if (!guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_V_VMSAVE_VMLOAD)) 115 return true; 116 117 if (!nested_npt_enabled(svm)) 118 return true; 119 120 if (!(svm->nested.ctl.virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK)) 121 return true; 122 123 return false; 124 } 125 126 void recalc_intercepts(struct vcpu_svm *svm) 127 { 128 struct vmcb_control_area *c, *h; 129 struct vmcb_ctrl_area_cached *g; 130 unsigned int i; 131 132 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 133 134 if (!is_guest_mode(&svm->vcpu)) 135 return; 136 137 c = &svm->vmcb->control; 138 h = &svm->vmcb01.ptr->control; 139 g = &svm->nested.ctl; 140 141 for (i = 0; i < MAX_INTERCEPT; i++) 142 c->intercepts[i] = h->intercepts[i]; 143 144 if (g->int_ctl & V_INTR_MASKING_MASK) { 145 /* 146 * If L2 is active and V_INTR_MASKING is enabled in vmcb12, 147 * disable intercept of CR8 writes as L2's CR8 does not affect 148 * any interrupt KVM may want to inject. 149 * 150 * Similarly, disable intercept of virtual interrupts (used to 151 * detect interrupt windows) if the saved RFLAGS.IF is '0', as 152 * the effective RFLAGS.IF for L1 interrupts will never be set 153 * while L2 is running (L2's RFLAGS.IF doesn't affect L1 IRQs). 154 */ 155 vmcb_clr_intercept(c, INTERCEPT_CR8_WRITE); 156 if (!(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)) 157 vmcb_clr_intercept(c, INTERCEPT_VINTR); 158 } 159 160 /* 161 * We want to see VMMCALLs from a nested guest only when Hyper-V L2 TLB 162 * flush feature is enabled. 163 */ 164 if (!nested_svm_l2_tlb_flush_enabled(&svm->vcpu)) 165 vmcb_clr_intercept(c, INTERCEPT_VMMCALL); 166 167 for (i = 0; i < MAX_INTERCEPT; i++) 168 c->intercepts[i] |= g->intercepts[i]; 169 170 /* If SMI is not intercepted, ignore guest SMI intercept as well */ 171 if (!intercept_smi) 172 vmcb_clr_intercept(c, INTERCEPT_SMI); 173 174 if (nested_vmcb_needs_vls_intercept(svm)) { 175 /* 176 * If the virtual VMLOAD/VMSAVE is not enabled for the L2, 177 * we must intercept these instructions to correctly 178 * emulate them in case L1 doesn't intercept them. 179 */ 180 vmcb_set_intercept(c, INTERCEPT_VMLOAD); 181 vmcb_set_intercept(c, INTERCEPT_VMSAVE); 182 } else { 183 WARN_ON(!(c->virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK)); 184 } 185 } 186 187 /* 188 * This array (and its actual size) holds the set of offsets (indexing by chunk 189 * size) to process when merging vmcb12's MSRPM with vmcb01's MSRPM. Note, the 190 * set of MSRs for which interception is disabled in vmcb01 is per-vCPU, e.g. 191 * based on CPUID features. This array only tracks MSRs that *might* be passed 192 * through to the guest. 193 * 194 * Hardcode the capacity of the array based on the maximum number of _offsets_. 195 * MSRs are batched together, so there are fewer offsets than MSRs. 196 */ 197 static int nested_svm_msrpm_merge_offsets[7] __ro_after_init; 198 static int nested_svm_nr_msrpm_merge_offsets __ro_after_init; 199 typedef unsigned long nsvm_msrpm_merge_t; 200 201 int __init nested_svm_init_msrpm_merge_offsets(void) 202 { 203 static const u32 merge_msrs[] __initconst = { 204 MSR_STAR, 205 MSR_IA32_SYSENTER_CS, 206 MSR_IA32_SYSENTER_EIP, 207 MSR_IA32_SYSENTER_ESP, 208 #ifdef CONFIG_X86_64 209 MSR_GS_BASE, 210 MSR_FS_BASE, 211 MSR_KERNEL_GS_BASE, 212 MSR_LSTAR, 213 MSR_CSTAR, 214 MSR_SYSCALL_MASK, 215 #endif 216 MSR_IA32_SPEC_CTRL, 217 MSR_IA32_PRED_CMD, 218 MSR_IA32_FLUSH_CMD, 219 MSR_IA32_APERF, 220 MSR_IA32_MPERF, 221 MSR_IA32_LASTBRANCHFROMIP, 222 MSR_IA32_LASTBRANCHTOIP, 223 MSR_IA32_LASTINTFROMIP, 224 MSR_IA32_LASTINTTOIP, 225 }; 226 int i, j; 227 228 for (i = 0; i < ARRAY_SIZE(merge_msrs); i++) { 229 int bit_nr = svm_msrpm_bit_nr(merge_msrs[i]); 230 u32 offset; 231 232 if (WARN_ON(bit_nr < 0)) 233 return -EIO; 234 235 /* 236 * Merging is done in chunks to reduce the number of accesses 237 * to L1's bitmap. 238 */ 239 offset = bit_nr / BITS_PER_BYTE / sizeof(nsvm_msrpm_merge_t); 240 241 for (j = 0; j < nested_svm_nr_msrpm_merge_offsets; j++) { 242 if (nested_svm_msrpm_merge_offsets[j] == offset) 243 break; 244 } 245 246 if (j < nested_svm_nr_msrpm_merge_offsets) 247 continue; 248 249 if (WARN_ON(j >= ARRAY_SIZE(nested_svm_msrpm_merge_offsets))) 250 return -EIO; 251 252 nested_svm_msrpm_merge_offsets[j] = offset; 253 nested_svm_nr_msrpm_merge_offsets++; 254 } 255 256 return 0; 257 } 258 259 /* 260 * Merge L0's (KVM) and L1's (Nested VMCB) MSR permission bitmaps. The function 261 * is optimized in that it only merges the parts where KVM MSR permission bitmap 262 * may contain zero bits. 263 */ 264 static bool nested_svm_merge_msrpm(struct kvm_vcpu *vcpu) 265 { 266 struct vcpu_svm *svm = to_svm(vcpu); 267 nsvm_msrpm_merge_t *msrpm02 = svm->nested.msrpm; 268 nsvm_msrpm_merge_t *msrpm01 = svm->msrpm; 269 int i; 270 271 /* 272 * MSR bitmap update can be skipped when: 273 * - MSR bitmap for L1 hasn't changed. 274 * - Nested hypervisor (L1) is attempting to launch the same L2 as 275 * before. 276 * - Nested hypervisor (L1) is using Hyper-V emulation interface and 277 * tells KVM (L0) there were no changes in MSR bitmap for L2. 278 */ 279 #ifdef CONFIG_KVM_HYPERV 280 if (!svm->nested.force_msr_bitmap_recalc) { 281 struct hv_vmcb_enlightenments *hve = &svm->nested.ctl.hv_enlightenments; 282 283 if (kvm_hv_hypercall_enabled(vcpu) && 284 hve->hv_enlightenments_control.msr_bitmap && 285 (svm->nested.ctl.clean & BIT(HV_VMCB_NESTED_ENLIGHTENMENTS))) 286 goto set_msrpm_base_pa; 287 } 288 #endif 289 290 if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))) 291 return true; 292 293 for (i = 0; i < nested_svm_nr_msrpm_merge_offsets; i++) { 294 const int p = nested_svm_msrpm_merge_offsets[i]; 295 nsvm_msrpm_merge_t l1_val; 296 gpa_t gpa; 297 298 gpa = svm->nested.ctl.msrpm_base_pa + (p * sizeof(l1_val)); 299 300 if (kvm_vcpu_read_guest(vcpu, gpa, &l1_val, sizeof(l1_val))) 301 return false; 302 303 msrpm02[p] = msrpm01[p] | l1_val; 304 } 305 306 svm->nested.force_msr_bitmap_recalc = false; 307 308 #ifdef CONFIG_KVM_HYPERV 309 set_msrpm_base_pa: 310 #endif 311 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm)); 312 313 return true; 314 } 315 316 /* 317 * Bits 11:0 of bitmap address are ignored by hardware 318 */ 319 static bool nested_svm_check_bitmap_pa(struct kvm_vcpu *vcpu, u64 pa, u32 size) 320 { 321 u64 addr = PAGE_ALIGN(pa); 322 323 return kvm_vcpu_is_legal_gpa(vcpu, addr) && 324 kvm_vcpu_is_legal_gpa(vcpu, addr + size - 1); 325 } 326 327 static bool __nested_vmcb_check_controls(struct kvm_vcpu *vcpu, 328 struct vmcb_ctrl_area_cached *control) 329 { 330 if (CC(!vmcb12_is_intercept(control, INTERCEPT_VMRUN))) 331 return false; 332 333 if (CC(control->asid == 0)) 334 return false; 335 336 if (CC((control->nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && !npt_enabled)) 337 return false; 338 339 if (CC(!nested_svm_check_bitmap_pa(vcpu, control->msrpm_base_pa, 340 MSRPM_SIZE))) 341 return false; 342 if (CC(!nested_svm_check_bitmap_pa(vcpu, control->iopm_base_pa, 343 IOPM_SIZE))) 344 return false; 345 346 if (CC((control->int_ctl & V_NMI_ENABLE_MASK) && 347 !vmcb12_is_intercept(control, INTERCEPT_NMI))) { 348 return false; 349 } 350 351 return true; 352 } 353 354 /* Common checks that apply to both L1 and L2 state. */ 355 static bool __nested_vmcb_check_save(struct kvm_vcpu *vcpu, 356 struct vmcb_save_area_cached *save) 357 { 358 if (CC(!(save->efer & EFER_SVME))) 359 return false; 360 361 if (CC((save->cr0 & X86_CR0_CD) == 0 && (save->cr0 & X86_CR0_NW)) || 362 CC(save->cr0 & ~0xffffffffULL)) 363 return false; 364 365 if (CC(!kvm_dr6_valid(save->dr6)) || CC(!kvm_dr7_valid(save->dr7))) 366 return false; 367 368 /* 369 * These checks are also performed by KVM_SET_SREGS, 370 * except that EFER.LMA is not checked by SVM against 371 * CR0.PG && EFER.LME. 372 */ 373 if ((save->efer & EFER_LME) && (save->cr0 & X86_CR0_PG)) { 374 if (CC(!(save->cr4 & X86_CR4_PAE)) || 375 CC(!(save->cr0 & X86_CR0_PE)) || 376 CC(!kvm_vcpu_is_legal_cr3(vcpu, save->cr3))) 377 return false; 378 } 379 380 /* Note, SVM doesn't have any additional restrictions on CR4. */ 381 if (CC(!__kvm_is_valid_cr4(vcpu, save->cr4))) 382 return false; 383 384 if (CC(!kvm_valid_efer(vcpu, save->efer))) 385 return false; 386 387 return true; 388 } 389 390 static bool nested_vmcb_check_save(struct kvm_vcpu *vcpu) 391 { 392 struct vcpu_svm *svm = to_svm(vcpu); 393 struct vmcb_save_area_cached *save = &svm->nested.save; 394 395 return __nested_vmcb_check_save(vcpu, save); 396 } 397 398 static bool nested_vmcb_check_controls(struct kvm_vcpu *vcpu) 399 { 400 struct vcpu_svm *svm = to_svm(vcpu); 401 struct vmcb_ctrl_area_cached *ctl = &svm->nested.ctl; 402 403 return __nested_vmcb_check_controls(vcpu, ctl); 404 } 405 406 static 407 void __nested_copy_vmcb_control_to_cache(struct kvm_vcpu *vcpu, 408 struct vmcb_ctrl_area_cached *to, 409 struct vmcb_control_area *from) 410 { 411 unsigned int i; 412 413 for (i = 0; i < MAX_INTERCEPT; i++) 414 to->intercepts[i] = from->intercepts[i]; 415 416 to->iopm_base_pa = from->iopm_base_pa; 417 to->msrpm_base_pa = from->msrpm_base_pa; 418 to->tsc_offset = from->tsc_offset; 419 to->tlb_ctl = from->tlb_ctl; 420 to->int_ctl = from->int_ctl; 421 to->int_vector = from->int_vector; 422 to->int_state = from->int_state; 423 to->exit_code = from->exit_code; 424 to->exit_code_hi = from->exit_code_hi; 425 to->exit_info_1 = from->exit_info_1; 426 to->exit_info_2 = from->exit_info_2; 427 to->exit_int_info = from->exit_int_info; 428 to->exit_int_info_err = from->exit_int_info_err; 429 to->nested_ctl = from->nested_ctl; 430 to->event_inj = from->event_inj; 431 to->event_inj_err = from->event_inj_err; 432 to->next_rip = from->next_rip; 433 to->nested_cr3 = from->nested_cr3; 434 to->virt_ext = from->virt_ext; 435 to->pause_filter_count = from->pause_filter_count; 436 to->pause_filter_thresh = from->pause_filter_thresh; 437 438 /* Copy asid here because nested_vmcb_check_controls will check it. */ 439 to->asid = from->asid; 440 to->msrpm_base_pa &= ~0x0fffULL; 441 to->iopm_base_pa &= ~0x0fffULL; 442 443 #ifdef CONFIG_KVM_HYPERV 444 /* Hyper-V extensions (Enlightened VMCB) */ 445 if (kvm_hv_hypercall_enabled(vcpu)) { 446 to->clean = from->clean; 447 memcpy(&to->hv_enlightenments, &from->hv_enlightenments, 448 sizeof(to->hv_enlightenments)); 449 } 450 #endif 451 } 452 453 void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm, 454 struct vmcb_control_area *control) 455 { 456 __nested_copy_vmcb_control_to_cache(&svm->vcpu, &svm->nested.ctl, control); 457 } 458 459 static void __nested_copy_vmcb_save_to_cache(struct vmcb_save_area_cached *to, 460 struct vmcb_save_area *from) 461 { 462 /* 463 * Copy only fields that are validated, as we need them 464 * to avoid TOC/TOU races. 465 */ 466 to->efer = from->efer; 467 to->cr0 = from->cr0; 468 to->cr3 = from->cr3; 469 to->cr4 = from->cr4; 470 471 to->dr6 = from->dr6; 472 to->dr7 = from->dr7; 473 } 474 475 void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm, 476 struct vmcb_save_area *save) 477 { 478 __nested_copy_vmcb_save_to_cache(&svm->nested.save, save); 479 } 480 481 /* 482 * Synchronize fields that are written by the processor, so that 483 * they can be copied back into the vmcb12. 484 */ 485 void nested_sync_control_from_vmcb02(struct vcpu_svm *svm) 486 { 487 u32 mask; 488 svm->nested.ctl.event_inj = svm->vmcb->control.event_inj; 489 svm->nested.ctl.event_inj_err = svm->vmcb->control.event_inj_err; 490 491 /* Only a few fields of int_ctl are written by the processor. */ 492 mask = V_IRQ_MASK | V_TPR_MASK; 493 /* 494 * Don't sync vmcb02 V_IRQ back to vmcb12 if KVM (L0) is intercepting 495 * virtual interrupts in order to request an interrupt window, as KVM 496 * has usurped vmcb02's int_ctl. If an interrupt window opens before 497 * the next VM-Exit, svm_clear_vintr() will restore vmcb12's int_ctl. 498 * If no window opens, V_IRQ will be correctly preserved in vmcb12's 499 * int_ctl (because it was never recognized while L2 was running). 500 */ 501 if (svm_is_intercept(svm, INTERCEPT_VINTR) && 502 !test_bit(INTERCEPT_VINTR, (unsigned long *)svm->nested.ctl.intercepts)) 503 mask &= ~V_IRQ_MASK; 504 505 if (nested_vgif_enabled(svm)) 506 mask |= V_GIF_MASK; 507 508 if (nested_vnmi_enabled(svm)) 509 mask |= V_NMI_BLOCKING_MASK | V_NMI_PENDING_MASK; 510 511 svm->nested.ctl.int_ctl &= ~mask; 512 svm->nested.ctl.int_ctl |= svm->vmcb->control.int_ctl & mask; 513 } 514 515 /* 516 * Transfer any event that L0 or L1 wanted to inject into L2 to 517 * EXIT_INT_INFO. 518 */ 519 static void nested_save_pending_event_to_vmcb12(struct vcpu_svm *svm, 520 struct vmcb *vmcb12) 521 { 522 struct kvm_vcpu *vcpu = &svm->vcpu; 523 u32 exit_int_info = 0; 524 unsigned int nr; 525 526 if (vcpu->arch.exception.injected) { 527 nr = vcpu->arch.exception.vector; 528 exit_int_info = nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT; 529 530 if (vcpu->arch.exception.has_error_code) { 531 exit_int_info |= SVM_EVTINJ_VALID_ERR; 532 vmcb12->control.exit_int_info_err = 533 vcpu->arch.exception.error_code; 534 } 535 536 } else if (vcpu->arch.nmi_injected) { 537 exit_int_info = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 538 539 } else if (vcpu->arch.interrupt.injected) { 540 nr = vcpu->arch.interrupt.nr; 541 exit_int_info = nr | SVM_EVTINJ_VALID; 542 543 if (vcpu->arch.interrupt.soft) 544 exit_int_info |= SVM_EVTINJ_TYPE_SOFT; 545 else 546 exit_int_info |= SVM_EVTINJ_TYPE_INTR; 547 } 548 549 vmcb12->control.exit_int_info = exit_int_info; 550 } 551 552 static void nested_svm_transition_tlb_flush(struct kvm_vcpu *vcpu) 553 { 554 /* Handle pending Hyper-V TLB flush requests */ 555 kvm_hv_nested_transtion_tlb_flush(vcpu, npt_enabled); 556 557 /* 558 * TODO: optimize unconditional TLB flush/MMU sync. A partial list of 559 * things to fix before this can be conditional: 560 * 561 * - Flush TLBs for both L1 and L2 remote TLB flush 562 * - Honor L1's request to flush an ASID on nested VMRUN 563 * - Sync nested NPT MMU on VMRUN that flushes L2's ASID[*] 564 * - Don't crush a pending TLB flush in vmcb02 on nested VMRUN 565 * - Flush L1's ASID on KVM_REQ_TLB_FLUSH_GUEST 566 * 567 * [*] Unlike nested EPT, SVM's ASID management can invalidate nested 568 * NPT guest-physical mappings on VMRUN. 569 */ 570 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 571 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 572 } 573 574 /* 575 * Load guest's/host's cr3 on nested vmentry or vmexit. @nested_npt is true 576 * if we are emulating VM-Entry into a guest with NPT enabled. 577 */ 578 static int nested_svm_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, 579 bool nested_npt, bool reload_pdptrs) 580 { 581 if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) 582 return -EINVAL; 583 584 if (reload_pdptrs && !nested_npt && is_pae_paging(vcpu) && 585 CC(!load_pdptrs(vcpu, cr3))) 586 return -EINVAL; 587 588 vcpu->arch.cr3 = cr3; 589 590 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */ 591 kvm_init_mmu(vcpu); 592 593 if (!nested_npt) 594 kvm_mmu_new_pgd(vcpu, cr3); 595 596 return 0; 597 } 598 599 void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm) 600 { 601 if (!svm->nested.vmcb02.ptr) 602 return; 603 604 /* FIXME: merge g_pat from vmcb01 and vmcb12. */ 605 svm->nested.vmcb02.ptr->save.g_pat = svm->vmcb01.ptr->save.g_pat; 606 } 607 608 static void nested_vmcb02_prepare_save(struct vcpu_svm *svm, struct vmcb *vmcb12) 609 { 610 bool new_vmcb12 = false; 611 struct vmcb *vmcb01 = svm->vmcb01.ptr; 612 struct vmcb *vmcb02 = svm->nested.vmcb02.ptr; 613 struct kvm_vcpu *vcpu = &svm->vcpu; 614 615 nested_vmcb02_compute_g_pat(svm); 616 vmcb_mark_dirty(vmcb02, VMCB_NPT); 617 618 /* Load the nested guest state */ 619 if (svm->nested.vmcb12_gpa != svm->nested.last_vmcb12_gpa) { 620 new_vmcb12 = true; 621 svm->nested.last_vmcb12_gpa = svm->nested.vmcb12_gpa; 622 svm->nested.force_msr_bitmap_recalc = true; 623 } 624 625 if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_SEG))) { 626 vmcb02->save.es = vmcb12->save.es; 627 vmcb02->save.cs = vmcb12->save.cs; 628 vmcb02->save.ss = vmcb12->save.ss; 629 vmcb02->save.ds = vmcb12->save.ds; 630 vmcb02->save.cpl = vmcb12->save.cpl; 631 vmcb_mark_dirty(vmcb02, VMCB_SEG); 632 } 633 634 if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DT))) { 635 vmcb02->save.gdtr = vmcb12->save.gdtr; 636 vmcb02->save.idtr = vmcb12->save.idtr; 637 vmcb_mark_dirty(vmcb02, VMCB_DT); 638 } 639 640 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) && 641 (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_CET)))) { 642 vmcb02->save.s_cet = vmcb12->save.s_cet; 643 vmcb02->save.isst_addr = vmcb12->save.isst_addr; 644 vmcb02->save.ssp = vmcb12->save.ssp; 645 vmcb_mark_dirty(vmcb02, VMCB_CET); 646 } 647 648 kvm_set_rflags(vcpu, vmcb12->save.rflags | X86_EFLAGS_FIXED); 649 650 svm_set_efer(vcpu, svm->nested.save.efer); 651 652 svm_set_cr0(vcpu, svm->nested.save.cr0); 653 svm_set_cr4(vcpu, svm->nested.save.cr4); 654 655 svm->vcpu.arch.cr2 = vmcb12->save.cr2; 656 657 kvm_rax_write(vcpu, vmcb12->save.rax); 658 kvm_rsp_write(vcpu, vmcb12->save.rsp); 659 kvm_rip_write(vcpu, vmcb12->save.rip); 660 661 /* In case we don't even reach vcpu_run, the fields are not updated */ 662 vmcb02->save.rax = vmcb12->save.rax; 663 vmcb02->save.rsp = vmcb12->save.rsp; 664 vmcb02->save.rip = vmcb12->save.rip; 665 666 /* These bits will be set properly on the first execution when new_vmc12 is true */ 667 if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DR))) { 668 vmcb02->save.dr7 = svm->nested.save.dr7 | DR7_FIXED_1; 669 svm->vcpu.arch.dr6 = svm->nested.save.dr6 | DR6_ACTIVE_LOW; 670 vmcb_mark_dirty(vmcb02, VMCB_DR); 671 } 672 673 if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 674 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) { 675 /* 676 * Reserved bits of DEBUGCTL are ignored. Be consistent with 677 * svm_set_msr's definition of reserved bits. 678 */ 679 svm_copy_lbrs(vmcb02, vmcb12); 680 vmcb02->save.dbgctl &= ~DEBUGCTL_RESERVED_BITS; 681 } else { 682 svm_copy_lbrs(vmcb02, vmcb01); 683 } 684 svm_update_lbrv(&svm->vcpu); 685 } 686 687 static inline bool is_evtinj_soft(u32 evtinj) 688 { 689 u32 type = evtinj & SVM_EVTINJ_TYPE_MASK; 690 u8 vector = evtinj & SVM_EVTINJ_VEC_MASK; 691 692 if (!(evtinj & SVM_EVTINJ_VALID)) 693 return false; 694 695 if (type == SVM_EVTINJ_TYPE_SOFT) 696 return true; 697 698 return type == SVM_EVTINJ_TYPE_EXEPT && kvm_exception_is_soft(vector); 699 } 700 701 static bool is_evtinj_nmi(u32 evtinj) 702 { 703 u32 type = evtinj & SVM_EVTINJ_TYPE_MASK; 704 705 if (!(evtinj & SVM_EVTINJ_VALID)) 706 return false; 707 708 return type == SVM_EVTINJ_TYPE_NMI; 709 } 710 711 static void nested_vmcb02_prepare_control(struct vcpu_svm *svm, 712 unsigned long vmcb12_rip, 713 unsigned long vmcb12_csbase) 714 { 715 u32 int_ctl_vmcb01_bits = V_INTR_MASKING_MASK; 716 u32 int_ctl_vmcb12_bits = V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK; 717 718 struct kvm_vcpu *vcpu = &svm->vcpu; 719 struct vmcb *vmcb01 = svm->vmcb01.ptr; 720 struct vmcb *vmcb02 = svm->nested.vmcb02.ptr; 721 u32 pause_count12; 722 u32 pause_thresh12; 723 724 nested_svm_transition_tlb_flush(vcpu); 725 726 /* Enter Guest-Mode */ 727 enter_guest_mode(vcpu); 728 729 /* 730 * Filled at exit: exit_code, exit_code_hi, exit_info_1, exit_info_2, 731 * exit_int_info, exit_int_info_err, next_rip, insn_len, insn_bytes. 732 */ 733 734 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VGIF) && 735 (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK)) 736 int_ctl_vmcb12_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK); 737 else 738 int_ctl_vmcb01_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK); 739 740 if (vnmi) { 741 if (vmcb01->control.int_ctl & V_NMI_PENDING_MASK) { 742 svm->vcpu.arch.nmi_pending++; 743 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 744 } 745 if (nested_vnmi_enabled(svm)) 746 int_ctl_vmcb12_bits |= (V_NMI_PENDING_MASK | 747 V_NMI_ENABLE_MASK | 748 V_NMI_BLOCKING_MASK); 749 } 750 751 /* Copied from vmcb01. msrpm_base can be overwritten later. */ 752 vmcb02->control.nested_ctl = vmcb01->control.nested_ctl; 753 vmcb02->control.iopm_base_pa = vmcb01->control.iopm_base_pa; 754 vmcb02->control.msrpm_base_pa = vmcb01->control.msrpm_base_pa; 755 vmcb_mark_dirty(vmcb02, VMCB_PERM_MAP); 756 757 /* 758 * Stash vmcb02's counter if the guest hasn't moved past the guilty 759 * instruction; otherwise, reset the counter to '0'. 760 * 761 * In order to detect if L2 has made forward progress or not, track the 762 * RIP at which a bus lock has occurred on a per-vmcb12 basis. If RIP 763 * is changed, guest has clearly made forward progress, bus_lock_counter 764 * still remained '1', so reset bus_lock_counter to '0'. Eg. In the 765 * scenario, where a buslock happened in L1 before VMRUN, the bus lock 766 * firmly happened on an instruction in the past. Even if vmcb01's 767 * counter is still '1', (because the guilty instruction got patched), 768 * the vCPU has clearly made forward progress and so KVM should reset 769 * vmcb02's counter to '0'. 770 * 771 * If the RIP hasn't changed, stash the bus lock counter at nested VMRUN 772 * to prevent the same guilty instruction from triggering a VM-Exit. Eg. 773 * if userspace rate-limits the vCPU, then it's entirely possible that 774 * L1's tick interrupt is pending by the time userspace re-runs the 775 * vCPU. If KVM unconditionally clears the counter on VMRUN, then when 776 * L1 re-enters L2, the same instruction will trigger a VM-Exit and the 777 * entire cycle start over. 778 */ 779 if (vmcb02->save.rip && (svm->nested.ctl.bus_lock_rip == vmcb02->save.rip)) 780 vmcb02->control.bus_lock_counter = 1; 781 else 782 vmcb02->control.bus_lock_counter = 0; 783 784 /* Done at vmrun: asid. */ 785 786 /* Also overwritten later if necessary. */ 787 vmcb02->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 788 789 /* nested_cr3. */ 790 if (nested_npt_enabled(svm)) 791 nested_svm_init_mmu_context(vcpu); 792 793 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 794 vcpu->arch.l1_tsc_offset, 795 svm->nested.ctl.tsc_offset, 796 svm->tsc_ratio_msr); 797 798 vmcb02->control.tsc_offset = vcpu->arch.tsc_offset; 799 800 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) && 801 svm->tsc_ratio_msr != kvm_caps.default_tsc_scaling_ratio) 802 nested_svm_update_tsc_ratio_msr(vcpu); 803 804 vmcb02->control.int_ctl = 805 (svm->nested.ctl.int_ctl & int_ctl_vmcb12_bits) | 806 (vmcb01->control.int_ctl & int_ctl_vmcb01_bits); 807 808 vmcb02->control.int_vector = svm->nested.ctl.int_vector; 809 vmcb02->control.int_state = svm->nested.ctl.int_state; 810 vmcb02->control.event_inj = svm->nested.ctl.event_inj; 811 vmcb02->control.event_inj_err = svm->nested.ctl.event_inj_err; 812 813 /* 814 * next_rip is consumed on VMRUN as the return address pushed on the 815 * stack for injected soft exceptions/interrupts. If nrips is exposed 816 * to L1, take it verbatim from vmcb12. If nrips is supported in 817 * hardware but not exposed to L1, stuff the actual L2 RIP to emulate 818 * what a nrips=0 CPU would do (L1 is responsible for advancing RIP 819 * prior to injecting the event). 820 */ 821 if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS)) 822 vmcb02->control.next_rip = svm->nested.ctl.next_rip; 823 else if (boot_cpu_has(X86_FEATURE_NRIPS)) 824 vmcb02->control.next_rip = vmcb12_rip; 825 826 svm->nmi_l1_to_l2 = is_evtinj_nmi(vmcb02->control.event_inj); 827 if (is_evtinj_soft(vmcb02->control.event_inj)) { 828 svm->soft_int_injected = true; 829 svm->soft_int_csbase = vmcb12_csbase; 830 svm->soft_int_old_rip = vmcb12_rip; 831 if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS)) 832 svm->soft_int_next_rip = svm->nested.ctl.next_rip; 833 else 834 svm->soft_int_next_rip = vmcb12_rip; 835 } 836 837 /* LBR_CTL_ENABLE_MASK is controlled by svm_update_lbrv() */ 838 839 if (!nested_vmcb_needs_vls_intercept(svm)) 840 vmcb02->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 841 842 if (guest_cpu_cap_has(vcpu, X86_FEATURE_PAUSEFILTER)) 843 pause_count12 = svm->nested.ctl.pause_filter_count; 844 else 845 pause_count12 = 0; 846 if (guest_cpu_cap_has(vcpu, X86_FEATURE_PFTHRESHOLD)) 847 pause_thresh12 = svm->nested.ctl.pause_filter_thresh; 848 else 849 pause_thresh12 = 0; 850 if (kvm_pause_in_guest(svm->vcpu.kvm)) { 851 /* use guest values since host doesn't intercept PAUSE */ 852 vmcb02->control.pause_filter_count = pause_count12; 853 vmcb02->control.pause_filter_thresh = pause_thresh12; 854 855 } else { 856 /* start from host values otherwise */ 857 vmcb02->control.pause_filter_count = vmcb01->control.pause_filter_count; 858 vmcb02->control.pause_filter_thresh = vmcb01->control.pause_filter_thresh; 859 860 /* ... but ensure filtering is disabled if so requested. */ 861 if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_PAUSE)) { 862 if (!pause_count12) 863 vmcb02->control.pause_filter_count = 0; 864 if (!pause_thresh12) 865 vmcb02->control.pause_filter_thresh = 0; 866 } 867 } 868 869 /* 870 * Merge guest and host intercepts - must be called with vcpu in 871 * guest-mode to take effect. 872 */ 873 recalc_intercepts(svm); 874 } 875 876 static void nested_svm_copy_common_state(struct vmcb *from_vmcb, struct vmcb *to_vmcb) 877 { 878 /* 879 * Some VMCB state is shared between L1 and L2 and thus has to be 880 * moved at the time of nested vmrun and vmexit. 881 * 882 * VMLOAD/VMSAVE state would also belong in this category, but KVM 883 * always performs VMLOAD and VMSAVE from the VMCB01. 884 */ 885 to_vmcb->save.spec_ctrl = from_vmcb->save.spec_ctrl; 886 } 887 888 int enter_svm_guest_mode(struct kvm_vcpu *vcpu, u64 vmcb12_gpa, 889 struct vmcb *vmcb12, bool from_vmrun) 890 { 891 struct vcpu_svm *svm = to_svm(vcpu); 892 int ret; 893 894 trace_kvm_nested_vmenter(svm->vmcb->save.rip, 895 vmcb12_gpa, 896 vmcb12->save.rip, 897 vmcb12->control.int_ctl, 898 vmcb12->control.event_inj, 899 vmcb12->control.nested_ctl, 900 vmcb12->control.nested_cr3, 901 vmcb12->save.cr3, 902 KVM_ISA_SVM); 903 904 trace_kvm_nested_intercepts(vmcb12->control.intercepts[INTERCEPT_CR] & 0xffff, 905 vmcb12->control.intercepts[INTERCEPT_CR] >> 16, 906 vmcb12->control.intercepts[INTERCEPT_EXCEPTION], 907 vmcb12->control.intercepts[INTERCEPT_WORD3], 908 vmcb12->control.intercepts[INTERCEPT_WORD4], 909 vmcb12->control.intercepts[INTERCEPT_WORD5]); 910 911 912 svm->nested.vmcb12_gpa = vmcb12_gpa; 913 914 WARN_ON(svm->vmcb == svm->nested.vmcb02.ptr); 915 916 nested_svm_copy_common_state(svm->vmcb01.ptr, svm->nested.vmcb02.ptr); 917 918 svm_switch_vmcb(svm, &svm->nested.vmcb02); 919 nested_vmcb02_prepare_control(svm, vmcb12->save.rip, vmcb12->save.cs.base); 920 nested_vmcb02_prepare_save(svm, vmcb12); 921 922 ret = nested_svm_load_cr3(&svm->vcpu, svm->nested.save.cr3, 923 nested_npt_enabled(svm), from_vmrun); 924 if (ret) 925 return ret; 926 927 if (!from_vmrun) 928 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 929 930 svm_set_gif(svm, true); 931 932 if (kvm_vcpu_apicv_active(vcpu)) 933 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 934 935 nested_svm_hv_update_vm_vp_ids(vcpu); 936 937 return 0; 938 } 939 940 int nested_svm_vmrun(struct kvm_vcpu *vcpu) 941 { 942 struct vcpu_svm *svm = to_svm(vcpu); 943 int ret; 944 struct vmcb *vmcb12; 945 struct kvm_host_map map; 946 u64 vmcb12_gpa; 947 struct vmcb *vmcb01 = svm->vmcb01.ptr; 948 949 if (!svm->nested.hsave_msr) { 950 kvm_inject_gp(vcpu, 0); 951 return 1; 952 } 953 954 if (is_smm(vcpu)) { 955 kvm_queue_exception(vcpu, UD_VECTOR); 956 return 1; 957 } 958 959 /* This fails when VP assist page is enabled but the supplied GPA is bogus */ 960 ret = kvm_hv_verify_vp_assist(vcpu); 961 if (ret) { 962 kvm_inject_gp(vcpu, 0); 963 return ret; 964 } 965 966 vmcb12_gpa = svm->vmcb->save.rax; 967 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map); 968 if (ret == -EINVAL) { 969 kvm_inject_gp(vcpu, 0); 970 return 1; 971 } else if (ret) { 972 return kvm_skip_emulated_instruction(vcpu); 973 } 974 975 ret = kvm_skip_emulated_instruction(vcpu); 976 977 vmcb12 = map.hva; 978 979 if (WARN_ON_ONCE(!svm->nested.initialized)) 980 return -EINVAL; 981 982 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 983 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 984 985 if (!nested_vmcb_check_save(vcpu) || 986 !nested_vmcb_check_controls(vcpu)) { 987 vmcb12->control.exit_code = SVM_EXIT_ERR; 988 vmcb12->control.exit_code_hi = 0; 989 vmcb12->control.exit_info_1 = 0; 990 vmcb12->control.exit_info_2 = 0; 991 goto out; 992 } 993 994 /* 995 * Since vmcb01 is not in use, we can use it to store some of the L1 996 * state. 997 */ 998 vmcb01->save.efer = vcpu->arch.efer; 999 vmcb01->save.cr0 = kvm_read_cr0(vcpu); 1000 vmcb01->save.cr4 = vcpu->arch.cr4; 1001 vmcb01->save.rflags = kvm_get_rflags(vcpu); 1002 vmcb01->save.rip = kvm_rip_read(vcpu); 1003 1004 if (!npt_enabled) 1005 vmcb01->save.cr3 = kvm_read_cr3(vcpu); 1006 1007 svm->nested.nested_run_pending = 1; 1008 1009 if (enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, true)) 1010 goto out_exit_err; 1011 1012 if (nested_svm_merge_msrpm(vcpu)) 1013 goto out; 1014 1015 out_exit_err: 1016 svm->nested.nested_run_pending = 0; 1017 svm->nmi_l1_to_l2 = false; 1018 svm->soft_int_injected = false; 1019 1020 svm->vmcb->control.exit_code = SVM_EXIT_ERR; 1021 svm->vmcb->control.exit_code_hi = 0; 1022 svm->vmcb->control.exit_info_1 = 0; 1023 svm->vmcb->control.exit_info_2 = 0; 1024 1025 nested_svm_vmexit(svm); 1026 1027 out: 1028 kvm_vcpu_unmap(vcpu, &map); 1029 1030 return ret; 1031 } 1032 1033 /* Copy state save area fields which are handled by VMRUN */ 1034 void svm_copy_vmrun_state(struct vmcb_save_area *to_save, 1035 struct vmcb_save_area *from_save) 1036 { 1037 to_save->es = from_save->es; 1038 to_save->cs = from_save->cs; 1039 to_save->ss = from_save->ss; 1040 to_save->ds = from_save->ds; 1041 to_save->gdtr = from_save->gdtr; 1042 to_save->idtr = from_save->idtr; 1043 to_save->rflags = from_save->rflags | X86_EFLAGS_FIXED; 1044 to_save->efer = from_save->efer; 1045 to_save->cr0 = from_save->cr0; 1046 to_save->cr3 = from_save->cr3; 1047 to_save->cr4 = from_save->cr4; 1048 to_save->rax = from_save->rax; 1049 to_save->rsp = from_save->rsp; 1050 to_save->rip = from_save->rip; 1051 to_save->cpl = 0; 1052 1053 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) { 1054 to_save->s_cet = from_save->s_cet; 1055 to_save->isst_addr = from_save->isst_addr; 1056 to_save->ssp = from_save->ssp; 1057 } 1058 } 1059 1060 void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 1061 { 1062 to_vmcb->save.fs = from_vmcb->save.fs; 1063 to_vmcb->save.gs = from_vmcb->save.gs; 1064 to_vmcb->save.tr = from_vmcb->save.tr; 1065 to_vmcb->save.ldtr = from_vmcb->save.ldtr; 1066 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; 1067 to_vmcb->save.star = from_vmcb->save.star; 1068 to_vmcb->save.lstar = from_vmcb->save.lstar; 1069 to_vmcb->save.cstar = from_vmcb->save.cstar; 1070 to_vmcb->save.sfmask = from_vmcb->save.sfmask; 1071 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; 1072 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; 1073 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; 1074 } 1075 1076 int nested_svm_vmexit(struct vcpu_svm *svm) 1077 { 1078 struct kvm_vcpu *vcpu = &svm->vcpu; 1079 struct vmcb *vmcb01 = svm->vmcb01.ptr; 1080 struct vmcb *vmcb02 = svm->nested.vmcb02.ptr; 1081 struct vmcb *vmcb12; 1082 struct kvm_host_map map; 1083 int rc; 1084 1085 rc = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.vmcb12_gpa), &map); 1086 if (rc) { 1087 if (rc == -EINVAL) 1088 kvm_inject_gp(vcpu, 0); 1089 return 1; 1090 } 1091 1092 vmcb12 = map.hva; 1093 1094 /* Exit Guest-Mode */ 1095 leave_guest_mode(vcpu); 1096 svm->nested.vmcb12_gpa = 0; 1097 WARN_ON_ONCE(svm->nested.nested_run_pending); 1098 1099 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 1100 1101 /* in case we halted in L2 */ 1102 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 1103 1104 /* Give the current vmcb to the guest */ 1105 1106 vmcb12->save.es = vmcb02->save.es; 1107 vmcb12->save.cs = vmcb02->save.cs; 1108 vmcb12->save.ss = vmcb02->save.ss; 1109 vmcb12->save.ds = vmcb02->save.ds; 1110 vmcb12->save.gdtr = vmcb02->save.gdtr; 1111 vmcb12->save.idtr = vmcb02->save.idtr; 1112 vmcb12->save.efer = svm->vcpu.arch.efer; 1113 vmcb12->save.cr0 = kvm_read_cr0(vcpu); 1114 vmcb12->save.cr3 = kvm_read_cr3(vcpu); 1115 vmcb12->save.cr2 = vmcb02->save.cr2; 1116 vmcb12->save.cr4 = svm->vcpu.arch.cr4; 1117 vmcb12->save.rflags = kvm_get_rflags(vcpu); 1118 vmcb12->save.rip = kvm_rip_read(vcpu); 1119 vmcb12->save.rsp = kvm_rsp_read(vcpu); 1120 vmcb12->save.rax = kvm_rax_read(vcpu); 1121 vmcb12->save.dr7 = vmcb02->save.dr7; 1122 vmcb12->save.dr6 = svm->vcpu.arch.dr6; 1123 vmcb12->save.cpl = vmcb02->save.cpl; 1124 1125 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) { 1126 vmcb12->save.s_cet = vmcb02->save.s_cet; 1127 vmcb12->save.isst_addr = vmcb02->save.isst_addr; 1128 vmcb12->save.ssp = vmcb02->save.ssp; 1129 } 1130 1131 vmcb12->control.int_state = vmcb02->control.int_state; 1132 vmcb12->control.exit_code = vmcb02->control.exit_code; 1133 vmcb12->control.exit_code_hi = vmcb02->control.exit_code_hi; 1134 vmcb12->control.exit_info_1 = vmcb02->control.exit_info_1; 1135 vmcb12->control.exit_info_2 = vmcb02->control.exit_info_2; 1136 1137 if (vmcb12->control.exit_code != SVM_EXIT_ERR) 1138 nested_save_pending_event_to_vmcb12(svm, vmcb12); 1139 1140 if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS)) 1141 vmcb12->control.next_rip = vmcb02->control.next_rip; 1142 1143 vmcb12->control.int_ctl = svm->nested.ctl.int_ctl; 1144 vmcb12->control.event_inj = svm->nested.ctl.event_inj; 1145 vmcb12->control.event_inj_err = svm->nested.ctl.event_inj_err; 1146 1147 if (!kvm_pause_in_guest(vcpu->kvm)) { 1148 vmcb01->control.pause_filter_count = vmcb02->control.pause_filter_count; 1149 vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS); 1150 1151 } 1152 1153 /* 1154 * Invalidate bus_lock_rip unless KVM is still waiting for the guest 1155 * to make forward progress before re-enabling bus lock detection. 1156 */ 1157 if (!vmcb02->control.bus_lock_counter) 1158 svm->nested.ctl.bus_lock_rip = INVALID_GPA; 1159 1160 nested_svm_copy_common_state(svm->nested.vmcb02.ptr, svm->vmcb01.ptr); 1161 1162 kvm_nested_vmexit_handle_ibrs(vcpu); 1163 1164 svm_switch_vmcb(svm, &svm->vmcb01); 1165 1166 /* 1167 * Rules for synchronizing int_ctl bits from vmcb02 to vmcb01: 1168 * 1169 * V_IRQ, V_IRQ_VECTOR, V_INTR_PRIO_MASK, V_IGN_TPR: If L1 doesn't 1170 * intercept interrupts, then KVM will use vmcb02's V_IRQ (and related 1171 * flags) to detect interrupt windows for L1 IRQs (even if L1 uses 1172 * virtual interrupt masking). Raise KVM_REQ_EVENT to ensure that 1173 * KVM re-requests an interrupt window if necessary, which implicitly 1174 * copies this bits from vmcb02 to vmcb01. 1175 * 1176 * V_TPR: If L1 doesn't use virtual interrupt masking, then L1's vTPR 1177 * is stored in vmcb02, but its value doesn't need to be copied from/to 1178 * vmcb01 because it is copied from/to the virtual APIC's TPR register 1179 * on each VM entry/exit. 1180 * 1181 * V_GIF: If nested vGIF is not used, KVM uses vmcb02's V_GIF for L1's 1182 * V_GIF. However, GIF is architecturally clear on each VM exit, thus 1183 * there is no need to copy V_GIF from vmcb02 to vmcb01. 1184 */ 1185 if (!nested_exit_on_intr(svm)) 1186 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 1187 1188 if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 1189 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) 1190 svm_copy_lbrs(vmcb12, vmcb02); 1191 else 1192 svm_copy_lbrs(vmcb01, vmcb02); 1193 1194 svm_update_lbrv(vcpu); 1195 1196 if (vnmi) { 1197 if (vmcb02->control.int_ctl & V_NMI_BLOCKING_MASK) 1198 vmcb01->control.int_ctl |= V_NMI_BLOCKING_MASK; 1199 else 1200 vmcb01->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 1201 1202 if (vcpu->arch.nmi_pending) { 1203 vcpu->arch.nmi_pending--; 1204 vmcb01->control.int_ctl |= V_NMI_PENDING_MASK; 1205 } else { 1206 vmcb01->control.int_ctl &= ~V_NMI_PENDING_MASK; 1207 } 1208 } 1209 1210 /* 1211 * On vmexit the GIF is set to false and 1212 * no event can be injected in L1. 1213 */ 1214 svm_set_gif(svm, false); 1215 vmcb01->control.exit_int_info = 0; 1216 1217 svm->vcpu.arch.tsc_offset = svm->vcpu.arch.l1_tsc_offset; 1218 if (vmcb01->control.tsc_offset != svm->vcpu.arch.tsc_offset) { 1219 vmcb01->control.tsc_offset = svm->vcpu.arch.tsc_offset; 1220 vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS); 1221 } 1222 1223 if (kvm_caps.has_tsc_control && 1224 vcpu->arch.tsc_scaling_ratio != vcpu->arch.l1_tsc_scaling_ratio) { 1225 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio; 1226 svm_write_tsc_multiplier(vcpu); 1227 } 1228 1229 svm->nested.ctl.nested_cr3 = 0; 1230 1231 /* 1232 * Restore processor state that had been saved in vmcb01 1233 */ 1234 kvm_set_rflags(vcpu, vmcb01->save.rflags); 1235 svm_set_efer(vcpu, vmcb01->save.efer); 1236 svm_set_cr0(vcpu, vmcb01->save.cr0 | X86_CR0_PE); 1237 svm_set_cr4(vcpu, vmcb01->save.cr4); 1238 kvm_rax_write(vcpu, vmcb01->save.rax); 1239 kvm_rsp_write(vcpu, vmcb01->save.rsp); 1240 kvm_rip_write(vcpu, vmcb01->save.rip); 1241 1242 svm->vcpu.arch.dr7 = DR7_FIXED_1; 1243 kvm_update_dr7(&svm->vcpu); 1244 1245 trace_kvm_nested_vmexit_inject(vmcb12->control.exit_code, 1246 vmcb12->control.exit_info_1, 1247 vmcb12->control.exit_info_2, 1248 vmcb12->control.exit_int_info, 1249 vmcb12->control.exit_int_info_err, 1250 KVM_ISA_SVM); 1251 1252 kvm_vcpu_unmap(vcpu, &map); 1253 1254 nested_svm_transition_tlb_flush(vcpu); 1255 1256 nested_svm_uninit_mmu_context(vcpu); 1257 1258 rc = nested_svm_load_cr3(vcpu, vmcb01->save.cr3, false, true); 1259 if (rc) 1260 return 1; 1261 1262 /* 1263 * Drop what we picked up for L2 via svm_complete_interrupts() so it 1264 * doesn't end up in L1. 1265 */ 1266 svm->vcpu.arch.nmi_injected = false; 1267 kvm_clear_exception_queue(vcpu); 1268 kvm_clear_interrupt_queue(vcpu); 1269 1270 /* 1271 * If we are here following the completion of a VMRUN that 1272 * is being single-stepped, queue the pending #DB intercept 1273 * right now so that it an be accounted for before we execute 1274 * L1's next instruction. 1275 */ 1276 if (unlikely(vmcb01->save.rflags & X86_EFLAGS_TF)) 1277 kvm_queue_exception(&(svm->vcpu), DB_VECTOR); 1278 1279 /* 1280 * Un-inhibit the AVIC right away, so that other vCPUs can start 1281 * to benefit from it right away. 1282 */ 1283 if (kvm_apicv_activated(vcpu->kvm)) 1284 __kvm_vcpu_update_apicv(vcpu); 1285 1286 return 0; 1287 } 1288 1289 static void nested_svm_triple_fault(struct kvm_vcpu *vcpu) 1290 { 1291 struct vcpu_svm *svm = to_svm(vcpu); 1292 1293 if (!vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SHUTDOWN)) 1294 return; 1295 1296 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 1297 nested_svm_simple_vmexit(to_svm(vcpu), SVM_EXIT_SHUTDOWN); 1298 } 1299 1300 int svm_allocate_nested(struct vcpu_svm *svm) 1301 { 1302 struct page *vmcb02_page; 1303 1304 if (svm->nested.initialized) 1305 return 0; 1306 1307 vmcb02_page = snp_safe_alloc_page(); 1308 if (!vmcb02_page) 1309 return -ENOMEM; 1310 svm->nested.vmcb02.ptr = page_address(vmcb02_page); 1311 svm->nested.vmcb02.pa = __sme_set(page_to_pfn(vmcb02_page) << PAGE_SHIFT); 1312 1313 svm->nested.msrpm = svm_vcpu_alloc_msrpm(); 1314 if (!svm->nested.msrpm) 1315 goto err_free_vmcb02; 1316 1317 svm->nested.initialized = true; 1318 return 0; 1319 1320 err_free_vmcb02: 1321 __free_page(vmcb02_page); 1322 return -ENOMEM; 1323 } 1324 1325 void svm_free_nested(struct vcpu_svm *svm) 1326 { 1327 if (!svm->nested.initialized) 1328 return; 1329 1330 if (WARN_ON_ONCE(svm->vmcb != svm->vmcb01.ptr)) 1331 svm_switch_vmcb(svm, &svm->vmcb01); 1332 1333 svm_vcpu_free_msrpm(svm->nested.msrpm); 1334 svm->nested.msrpm = NULL; 1335 1336 __free_page(virt_to_page(svm->nested.vmcb02.ptr)); 1337 svm->nested.vmcb02.ptr = NULL; 1338 1339 /* 1340 * When last_vmcb12_gpa matches the current vmcb12 gpa, 1341 * some vmcb12 fields are not loaded if they are marked clean 1342 * in the vmcb12, since in this case they are up to date already. 1343 * 1344 * When the vmcb02 is freed, this optimization becomes invalid. 1345 */ 1346 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1347 1348 svm->nested.initialized = false; 1349 } 1350 1351 void svm_leave_nested(struct kvm_vcpu *vcpu) 1352 { 1353 struct vcpu_svm *svm = to_svm(vcpu); 1354 1355 if (is_guest_mode(vcpu)) { 1356 svm->nested.nested_run_pending = 0; 1357 svm->nested.vmcb12_gpa = INVALID_GPA; 1358 1359 leave_guest_mode(vcpu); 1360 1361 svm_switch_vmcb(svm, &svm->vmcb01); 1362 1363 nested_svm_uninit_mmu_context(vcpu); 1364 vmcb_mark_all_dirty(svm->vmcb); 1365 1366 if (kvm_apicv_activated(vcpu->kvm)) 1367 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 1368 } 1369 1370 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 1371 } 1372 1373 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) 1374 { 1375 gpa_t base = svm->nested.ctl.msrpm_base_pa; 1376 int write, bit_nr; 1377 u8 value, mask; 1378 u32 msr; 1379 1380 if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))) 1381 return NESTED_EXIT_HOST; 1382 1383 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 1384 bit_nr = svm_msrpm_bit_nr(msr); 1385 write = svm->vmcb->control.exit_info_1 & 1; 1386 1387 if (bit_nr < 0) 1388 return NESTED_EXIT_DONE; 1389 1390 if (kvm_vcpu_read_guest(&svm->vcpu, base + bit_nr / BITS_PER_BYTE, 1391 &value, sizeof(value))) 1392 return NESTED_EXIT_DONE; 1393 1394 mask = BIT(write) << (bit_nr & (BITS_PER_BYTE - 1)); 1395 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; 1396 } 1397 1398 static int nested_svm_intercept_ioio(struct vcpu_svm *svm) 1399 { 1400 unsigned port, size, iopm_len; 1401 u16 val, mask; 1402 u8 start_bit; 1403 u64 gpa; 1404 1405 if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_IOIO_PROT))) 1406 return NESTED_EXIT_HOST; 1407 1408 port = svm->vmcb->control.exit_info_1 >> 16; 1409 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >> 1410 SVM_IOIO_SIZE_SHIFT; 1411 gpa = svm->nested.ctl.iopm_base_pa + (port / 8); 1412 start_bit = port % 8; 1413 iopm_len = (start_bit + size > 8) ? 2 : 1; 1414 mask = (0xf >> (4 - size)) << start_bit; 1415 val = 0; 1416 1417 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len)) 1418 return NESTED_EXIT_DONE; 1419 1420 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; 1421 } 1422 1423 static int nested_svm_intercept(struct vcpu_svm *svm) 1424 { 1425 u32 exit_code = svm->vmcb->control.exit_code; 1426 int vmexit = NESTED_EXIT_HOST; 1427 1428 switch (exit_code) { 1429 case SVM_EXIT_MSR: 1430 vmexit = nested_svm_exit_handled_msr(svm); 1431 break; 1432 case SVM_EXIT_IOIO: 1433 vmexit = nested_svm_intercept_ioio(svm); 1434 break; 1435 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { 1436 /* 1437 * Host-intercepted exceptions have been checked already in 1438 * nested_svm_exit_special. There is nothing to do here, 1439 * the vmexit is injected by svm_check_nested_events. 1440 */ 1441 vmexit = NESTED_EXIT_DONE; 1442 break; 1443 } 1444 case SVM_EXIT_ERR: { 1445 vmexit = NESTED_EXIT_DONE; 1446 break; 1447 } 1448 default: { 1449 if (vmcb12_is_intercept(&svm->nested.ctl, exit_code)) 1450 vmexit = NESTED_EXIT_DONE; 1451 } 1452 } 1453 1454 return vmexit; 1455 } 1456 1457 int nested_svm_exit_handled(struct vcpu_svm *svm) 1458 { 1459 int vmexit; 1460 1461 vmexit = nested_svm_intercept(svm); 1462 1463 if (vmexit == NESTED_EXIT_DONE) 1464 nested_svm_vmexit(svm); 1465 1466 return vmexit; 1467 } 1468 1469 int nested_svm_check_permissions(struct kvm_vcpu *vcpu) 1470 { 1471 if (!(vcpu->arch.efer & EFER_SVME) || !is_paging(vcpu)) { 1472 kvm_queue_exception(vcpu, UD_VECTOR); 1473 return 1; 1474 } 1475 1476 if (to_svm(vcpu)->vmcb->save.cpl) { 1477 kvm_inject_gp(vcpu, 0); 1478 return 1; 1479 } 1480 1481 return 0; 1482 } 1483 1484 static bool nested_svm_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector, 1485 u32 error_code) 1486 { 1487 struct vcpu_svm *svm = to_svm(vcpu); 1488 1489 return (svm->nested.ctl.intercepts[INTERCEPT_EXCEPTION] & BIT(vector)); 1490 } 1491 1492 static void nested_svm_inject_exception_vmexit(struct kvm_vcpu *vcpu) 1493 { 1494 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 1495 struct vcpu_svm *svm = to_svm(vcpu); 1496 struct vmcb *vmcb = svm->vmcb; 1497 1498 vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + ex->vector; 1499 vmcb->control.exit_code_hi = 0; 1500 1501 if (ex->has_error_code) 1502 vmcb->control.exit_info_1 = ex->error_code; 1503 1504 /* 1505 * EXITINFO2 is undefined for all exception intercepts other 1506 * than #PF. 1507 */ 1508 if (ex->vector == PF_VECTOR) { 1509 if (ex->has_payload) 1510 vmcb->control.exit_info_2 = ex->payload; 1511 else 1512 vmcb->control.exit_info_2 = vcpu->arch.cr2; 1513 } else if (ex->vector == DB_VECTOR) { 1514 /* See kvm_check_and_inject_events(). */ 1515 kvm_deliver_exception_payload(vcpu, ex); 1516 1517 if (vcpu->arch.dr7 & DR7_GD) { 1518 vcpu->arch.dr7 &= ~DR7_GD; 1519 kvm_update_dr7(vcpu); 1520 } 1521 } else { 1522 WARN_ON(ex->has_payload); 1523 } 1524 1525 nested_svm_vmexit(svm); 1526 } 1527 1528 static inline bool nested_exit_on_init(struct vcpu_svm *svm) 1529 { 1530 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INIT); 1531 } 1532 1533 static int svm_check_nested_events(struct kvm_vcpu *vcpu) 1534 { 1535 struct kvm_lapic *apic = vcpu->arch.apic; 1536 struct vcpu_svm *svm = to_svm(vcpu); 1537 /* 1538 * Only a pending nested run blocks a pending exception. If there is a 1539 * previously injected event, the pending exception occurred while said 1540 * event was being delivered and thus needs to be handled. 1541 */ 1542 bool block_nested_exceptions = svm->nested.nested_run_pending; 1543 /* 1544 * New events (not exceptions) are only recognized at instruction 1545 * boundaries. If an event needs reinjection, then KVM is handling a 1546 * VM-Exit that occurred _during_ instruction execution; new events are 1547 * blocked until the instruction completes. 1548 */ 1549 bool block_nested_events = block_nested_exceptions || 1550 kvm_event_needs_reinjection(vcpu); 1551 1552 if (lapic_in_kernel(vcpu) && 1553 test_bit(KVM_APIC_INIT, &apic->pending_events)) { 1554 if (block_nested_events) 1555 return -EBUSY; 1556 if (!nested_exit_on_init(svm)) 1557 return 0; 1558 nested_svm_simple_vmexit(svm, SVM_EXIT_INIT); 1559 return 0; 1560 } 1561 1562 if (vcpu->arch.exception_vmexit.pending) { 1563 if (block_nested_exceptions) 1564 return -EBUSY; 1565 nested_svm_inject_exception_vmexit(vcpu); 1566 return 0; 1567 } 1568 1569 if (vcpu->arch.exception.pending) { 1570 if (block_nested_exceptions) 1571 return -EBUSY; 1572 return 0; 1573 } 1574 1575 #ifdef CONFIG_KVM_SMM 1576 if (vcpu->arch.smi_pending && !svm_smi_blocked(vcpu)) { 1577 if (block_nested_events) 1578 return -EBUSY; 1579 if (!nested_exit_on_smi(svm)) 1580 return 0; 1581 nested_svm_simple_vmexit(svm, SVM_EXIT_SMI); 1582 return 0; 1583 } 1584 #endif 1585 1586 if (vcpu->arch.nmi_pending && !svm_nmi_blocked(vcpu)) { 1587 if (block_nested_events) 1588 return -EBUSY; 1589 if (!nested_exit_on_nmi(svm)) 1590 return 0; 1591 nested_svm_simple_vmexit(svm, SVM_EXIT_NMI); 1592 return 0; 1593 } 1594 1595 if (kvm_cpu_has_interrupt(vcpu) && !svm_interrupt_blocked(vcpu)) { 1596 if (block_nested_events) 1597 return -EBUSY; 1598 if (!nested_exit_on_intr(svm)) 1599 return 0; 1600 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); 1601 nested_svm_simple_vmexit(svm, SVM_EXIT_INTR); 1602 return 0; 1603 } 1604 1605 return 0; 1606 } 1607 1608 int nested_svm_exit_special(struct vcpu_svm *svm) 1609 { 1610 u32 exit_code = svm->vmcb->control.exit_code; 1611 struct kvm_vcpu *vcpu = &svm->vcpu; 1612 1613 switch (exit_code) { 1614 case SVM_EXIT_INTR: 1615 case SVM_EXIT_NMI: 1616 case SVM_EXIT_NPF: 1617 return NESTED_EXIT_HOST; 1618 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { 1619 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); 1620 1621 if (svm->vmcb01.ptr->control.intercepts[INTERCEPT_EXCEPTION] & 1622 excp_bits) 1623 return NESTED_EXIT_HOST; 1624 else if (exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR && 1625 svm->vcpu.arch.apf.host_apf_flags) 1626 /* Trap async PF even if not shadowing */ 1627 return NESTED_EXIT_HOST; 1628 break; 1629 } 1630 case SVM_EXIT_VMMCALL: 1631 /* Hyper-V L2 TLB flush hypercall is handled by L0 */ 1632 if (guest_hv_cpuid_has_l2_tlb_flush(vcpu) && 1633 nested_svm_l2_tlb_flush_enabled(vcpu) && 1634 kvm_hv_is_tlb_flush_hcall(vcpu)) 1635 return NESTED_EXIT_HOST; 1636 break; 1637 default: 1638 break; 1639 } 1640 1641 return NESTED_EXIT_CONTINUE; 1642 } 1643 1644 void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu) 1645 { 1646 struct vcpu_svm *svm = to_svm(vcpu); 1647 1648 vcpu->arch.tsc_scaling_ratio = 1649 kvm_calc_nested_tsc_multiplier(vcpu->arch.l1_tsc_scaling_ratio, 1650 svm->tsc_ratio_msr); 1651 svm_write_tsc_multiplier(vcpu); 1652 } 1653 1654 /* Inverse operation of nested_copy_vmcb_control_to_cache(). asid is copied too. */ 1655 static void nested_copy_vmcb_cache_to_control(struct vmcb_control_area *dst, 1656 struct vmcb_ctrl_area_cached *from) 1657 { 1658 unsigned int i; 1659 1660 memset(dst, 0, sizeof(struct vmcb_control_area)); 1661 1662 for (i = 0; i < MAX_INTERCEPT; i++) 1663 dst->intercepts[i] = from->intercepts[i]; 1664 1665 dst->iopm_base_pa = from->iopm_base_pa; 1666 dst->msrpm_base_pa = from->msrpm_base_pa; 1667 dst->tsc_offset = from->tsc_offset; 1668 dst->asid = from->asid; 1669 dst->tlb_ctl = from->tlb_ctl; 1670 dst->int_ctl = from->int_ctl; 1671 dst->int_vector = from->int_vector; 1672 dst->int_state = from->int_state; 1673 dst->exit_code = from->exit_code; 1674 dst->exit_code_hi = from->exit_code_hi; 1675 dst->exit_info_1 = from->exit_info_1; 1676 dst->exit_info_2 = from->exit_info_2; 1677 dst->exit_int_info = from->exit_int_info; 1678 dst->exit_int_info_err = from->exit_int_info_err; 1679 dst->nested_ctl = from->nested_ctl; 1680 dst->event_inj = from->event_inj; 1681 dst->event_inj_err = from->event_inj_err; 1682 dst->next_rip = from->next_rip; 1683 dst->nested_cr3 = from->nested_cr3; 1684 dst->virt_ext = from->virt_ext; 1685 dst->pause_filter_count = from->pause_filter_count; 1686 dst->pause_filter_thresh = from->pause_filter_thresh; 1687 /* 'clean' and 'hv_enlightenments' are not changed by KVM */ 1688 } 1689 1690 static int svm_get_nested_state(struct kvm_vcpu *vcpu, 1691 struct kvm_nested_state __user *user_kvm_nested_state, 1692 u32 user_data_size) 1693 { 1694 struct vcpu_svm *svm; 1695 struct vmcb_control_area *ctl; 1696 unsigned long r; 1697 struct kvm_nested_state kvm_state = { 1698 .flags = 0, 1699 .format = KVM_STATE_NESTED_FORMAT_SVM, 1700 .size = sizeof(kvm_state), 1701 }; 1702 struct vmcb __user *user_vmcb = (struct vmcb __user *) 1703 &user_kvm_nested_state->data.svm[0]; 1704 1705 if (!vcpu) 1706 return kvm_state.size + KVM_STATE_NESTED_SVM_VMCB_SIZE; 1707 1708 svm = to_svm(vcpu); 1709 1710 if (user_data_size < kvm_state.size) 1711 goto out; 1712 1713 /* First fill in the header and copy it out. */ 1714 if (is_guest_mode(vcpu)) { 1715 kvm_state.hdr.svm.vmcb_pa = svm->nested.vmcb12_gpa; 1716 kvm_state.size += KVM_STATE_NESTED_SVM_VMCB_SIZE; 1717 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; 1718 1719 if (svm->nested.nested_run_pending) 1720 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; 1721 } 1722 1723 if (gif_set(svm)) 1724 kvm_state.flags |= KVM_STATE_NESTED_GIF_SET; 1725 1726 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) 1727 return -EFAULT; 1728 1729 if (!is_guest_mode(vcpu)) 1730 goto out; 1731 1732 /* 1733 * Copy over the full size of the VMCB rather than just the size 1734 * of the structs. 1735 */ 1736 if (clear_user(user_vmcb, KVM_STATE_NESTED_SVM_VMCB_SIZE)) 1737 return -EFAULT; 1738 1739 ctl = kzalloc(sizeof(*ctl), GFP_KERNEL); 1740 if (!ctl) 1741 return -ENOMEM; 1742 1743 nested_copy_vmcb_cache_to_control(ctl, &svm->nested.ctl); 1744 r = copy_to_user(&user_vmcb->control, ctl, 1745 sizeof(user_vmcb->control)); 1746 kfree(ctl); 1747 if (r) 1748 return -EFAULT; 1749 1750 if (copy_to_user(&user_vmcb->save, &svm->vmcb01.ptr->save, 1751 sizeof(user_vmcb->save))) 1752 return -EFAULT; 1753 out: 1754 return kvm_state.size; 1755 } 1756 1757 static int svm_set_nested_state(struct kvm_vcpu *vcpu, 1758 struct kvm_nested_state __user *user_kvm_nested_state, 1759 struct kvm_nested_state *kvm_state) 1760 { 1761 struct vcpu_svm *svm = to_svm(vcpu); 1762 struct vmcb __user *user_vmcb = (struct vmcb __user *) 1763 &user_kvm_nested_state->data.svm[0]; 1764 struct vmcb_control_area *ctl; 1765 struct vmcb_save_area *save; 1766 struct vmcb_save_area_cached save_cached; 1767 struct vmcb_ctrl_area_cached ctl_cached; 1768 unsigned long cr0; 1769 int ret; 1770 1771 BUILD_BUG_ON(sizeof(struct vmcb_control_area) + sizeof(struct vmcb_save_area) > 1772 KVM_STATE_NESTED_SVM_VMCB_SIZE); 1773 1774 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_SVM) 1775 return -EINVAL; 1776 1777 if (kvm_state->flags & ~(KVM_STATE_NESTED_GUEST_MODE | 1778 KVM_STATE_NESTED_RUN_PENDING | 1779 KVM_STATE_NESTED_GIF_SET)) 1780 return -EINVAL; 1781 1782 /* 1783 * If in guest mode, vcpu->arch.efer actually refers to the L2 guest's 1784 * EFER.SVME, but EFER.SVME still has to be 1 for VMRUN to succeed. 1785 */ 1786 if (!(vcpu->arch.efer & EFER_SVME)) { 1787 /* GIF=1 and no guest mode are required if SVME=0. */ 1788 if (kvm_state->flags != KVM_STATE_NESTED_GIF_SET) 1789 return -EINVAL; 1790 } 1791 1792 /* SMM temporarily disables SVM, so we cannot be in guest mode. */ 1793 if (is_smm(vcpu) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) 1794 return -EINVAL; 1795 1796 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) { 1797 svm_leave_nested(vcpu); 1798 svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET)); 1799 return 0; 1800 } 1801 1802 if (!page_address_valid(vcpu, kvm_state->hdr.svm.vmcb_pa)) 1803 return -EINVAL; 1804 if (kvm_state->size < sizeof(*kvm_state) + KVM_STATE_NESTED_SVM_VMCB_SIZE) 1805 return -EINVAL; 1806 1807 ctl = memdup_user(&user_vmcb->control, sizeof(*ctl)); 1808 if (IS_ERR(ctl)) 1809 return PTR_ERR(ctl); 1810 1811 save = memdup_user(&user_vmcb->save, sizeof(*save)); 1812 if (IS_ERR(save)) { 1813 kfree(ctl); 1814 return PTR_ERR(save); 1815 } 1816 1817 ret = -EINVAL; 1818 __nested_copy_vmcb_control_to_cache(vcpu, &ctl_cached, ctl); 1819 if (!__nested_vmcb_check_controls(vcpu, &ctl_cached)) 1820 goto out_free; 1821 1822 /* 1823 * Processor state contains L2 state. Check that it is 1824 * valid for guest mode (see nested_vmcb_check_save). 1825 */ 1826 cr0 = kvm_read_cr0(vcpu); 1827 if (((cr0 & X86_CR0_CD) == 0) && (cr0 & X86_CR0_NW)) 1828 goto out_free; 1829 1830 /* 1831 * Validate host state saved from before VMRUN (see 1832 * nested_svm_check_permissions). 1833 */ 1834 __nested_copy_vmcb_save_to_cache(&save_cached, save); 1835 if (!(save->cr0 & X86_CR0_PG) || 1836 !(save->cr0 & X86_CR0_PE) || 1837 (save->rflags & X86_EFLAGS_VM) || 1838 !__nested_vmcb_check_save(vcpu, &save_cached)) 1839 goto out_free; 1840 1841 1842 /* 1843 * All checks done, we can enter guest mode. Userspace provides 1844 * vmcb12.control, which will be combined with L1 and stored into 1845 * vmcb02, and the L1 save state which we store in vmcb01. 1846 * L2 registers if needed are moved from the current VMCB to VMCB02. 1847 */ 1848 1849 if (is_guest_mode(vcpu)) 1850 svm_leave_nested(vcpu); 1851 else 1852 svm->nested.vmcb02.ptr->save = svm->vmcb01.ptr->save; 1853 1854 svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET)); 1855 1856 svm->nested.nested_run_pending = 1857 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); 1858 1859 svm->nested.vmcb12_gpa = kvm_state->hdr.svm.vmcb_pa; 1860 1861 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, save); 1862 nested_copy_vmcb_control_to_cache(svm, ctl); 1863 1864 svm_switch_vmcb(svm, &svm->nested.vmcb02); 1865 nested_vmcb02_prepare_control(svm, svm->vmcb->save.rip, svm->vmcb->save.cs.base); 1866 1867 /* 1868 * While the nested guest CR3 is already checked and set by 1869 * KVM_SET_SREGS, it was set when nested state was yet loaded, 1870 * thus MMU might not be initialized correctly. 1871 * Set it again to fix this. 1872 */ 1873 1874 ret = nested_svm_load_cr3(&svm->vcpu, vcpu->arch.cr3, 1875 nested_npt_enabled(svm), false); 1876 if (WARN_ON_ONCE(ret)) 1877 goto out_free; 1878 1879 svm->nested.force_msr_bitmap_recalc = true; 1880 1881 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 1882 ret = 0; 1883 out_free: 1884 kfree(save); 1885 kfree(ctl); 1886 1887 return ret; 1888 } 1889 1890 static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu) 1891 { 1892 if (WARN_ON(!is_guest_mode(vcpu))) 1893 return true; 1894 1895 if (!vcpu->arch.pdptrs_from_userspace && 1896 !nested_npt_enabled(to_svm(vcpu)) && is_pae_paging(vcpu)) 1897 /* 1898 * Reload the guest's PDPTRs since after a migration 1899 * the guest CR3 might be restored prior to setting the nested 1900 * state which can lead to a load of wrong PDPTRs. 1901 */ 1902 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3))) 1903 return false; 1904 1905 if (!nested_svm_merge_msrpm(vcpu)) { 1906 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1907 vcpu->run->internal.suberror = 1908 KVM_INTERNAL_ERROR_EMULATION; 1909 vcpu->run->internal.ndata = 0; 1910 return false; 1911 } 1912 1913 if (kvm_hv_verify_vp_assist(vcpu)) 1914 return false; 1915 1916 return true; 1917 } 1918 1919 struct kvm_x86_nested_ops svm_nested_ops = { 1920 .leave_nested = svm_leave_nested, 1921 .is_exception_vmexit = nested_svm_is_exception_vmexit, 1922 .check_events = svm_check_nested_events, 1923 .triple_fault = nested_svm_triple_fault, 1924 .get_nested_state_pages = svm_get_nested_state_pages, 1925 .get_state = svm_get_nested_state, 1926 .set_state = svm_set_nested_state, 1927 .hv_inject_synthetic_vmexit_post_tlb_flush = svm_hv_inject_synthetic_vmexit_post_tlb_flush, 1928 }; 1929