1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM support 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Yaniv Kamay <yaniv@qumranet.com> 12 * Avi Kivity <avi@qumranet.com> 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/kvm_types.h> 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 21 #include <asm/msr-index.h> 22 #include <asm/debugreg.h> 23 24 #include "kvm_emulate.h" 25 #include "trace.h" 26 #include "mmu.h" 27 #include "x86.h" 28 #include "smm.h" 29 #include "cpuid.h" 30 #include "lapic.h" 31 #include "svm.h" 32 #include "hyperv.h" 33 34 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK 35 36 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, 37 struct x86_exception *fault) 38 { 39 struct vcpu_svm *svm = to_svm(vcpu); 40 struct vmcb *vmcb = svm->vmcb; 41 42 if (vmcb->control.exit_code != SVM_EXIT_NPF) { 43 /* 44 * TODO: track the cause of the nested page fault, and 45 * correctly fill in the high bits of exit_info_1. 46 */ 47 vmcb->control.exit_code = SVM_EXIT_NPF; 48 vmcb->control.exit_code_hi = 0; 49 vmcb->control.exit_info_1 = (1ULL << 32); 50 vmcb->control.exit_info_2 = fault->address; 51 } 52 53 vmcb->control.exit_info_1 &= ~0xffffffffULL; 54 vmcb->control.exit_info_1 |= fault->error_code; 55 56 nested_svm_vmexit(svm); 57 } 58 59 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index) 60 { 61 struct vcpu_svm *svm = to_svm(vcpu); 62 u64 cr3 = svm->nested.ctl.nested_cr3; 63 u64 pdpte; 64 int ret; 65 66 /* 67 * Note, nCR3 is "assumed" to be 32-byte aligned, i.e. the CPU ignores 68 * nCR3[4:0] when loading PDPTEs from memory. 69 */ 70 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte, 71 (cr3 & GENMASK(11, 5)) + index * 8, 8); 72 if (ret) 73 return 0; 74 return pdpte; 75 } 76 77 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) 78 { 79 struct vcpu_svm *svm = to_svm(vcpu); 80 81 return svm->nested.ctl.nested_cr3; 82 } 83 84 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) 85 { 86 struct vcpu_svm *svm = to_svm(vcpu); 87 88 WARN_ON(mmu_is_nested(vcpu)); 89 90 vcpu->arch.mmu = &vcpu->arch.guest_mmu; 91 92 /* 93 * The NPT format depends on L1's CR4 and EFER, which is in vmcb01. Note, 94 * when called via KVM_SET_NESTED_STATE, that state may _not_ match current 95 * vCPU state. CR0.WP is explicitly ignored, while CR0.PG is required. 96 */ 97 kvm_init_shadow_npt_mmu(vcpu, X86_CR0_PG, svm->vmcb01.ptr->save.cr4, 98 svm->vmcb01.ptr->save.efer, 99 svm->nested.ctl.nested_cr3); 100 vcpu->arch.mmu->get_guest_pgd = nested_svm_get_tdp_cr3; 101 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr; 102 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit; 103 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; 104 } 105 106 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) 107 { 108 vcpu->arch.mmu = &vcpu->arch.root_mmu; 109 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 110 } 111 112 static bool nested_vmcb_needs_vls_intercept(struct vcpu_svm *svm) 113 { 114 if (!guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_V_VMSAVE_VMLOAD)) 115 return true; 116 117 if (!nested_npt_enabled(svm)) 118 return true; 119 120 if (!(svm->nested.ctl.virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK)) 121 return true; 122 123 return false; 124 } 125 126 void recalc_intercepts(struct vcpu_svm *svm) 127 { 128 struct vmcb_control_area *c, *h; 129 struct vmcb_ctrl_area_cached *g; 130 unsigned int i; 131 132 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 133 134 if (!is_guest_mode(&svm->vcpu)) 135 return; 136 137 c = &svm->vmcb->control; 138 h = &svm->vmcb01.ptr->control; 139 g = &svm->nested.ctl; 140 141 for (i = 0; i < MAX_INTERCEPT; i++) 142 c->intercepts[i] = h->intercepts[i]; 143 144 if (g->int_ctl & V_INTR_MASKING_MASK) { 145 /* 146 * If L2 is active and V_INTR_MASKING is enabled in vmcb12, 147 * disable intercept of CR8 writes as L2's CR8 does not affect 148 * any interrupt KVM may want to inject. 149 * 150 * Similarly, disable intercept of virtual interrupts (used to 151 * detect interrupt windows) if the saved RFLAGS.IF is '0', as 152 * the effective RFLAGS.IF for L1 interrupts will never be set 153 * while L2 is running (L2's RFLAGS.IF doesn't affect L1 IRQs). 154 */ 155 vmcb_clr_intercept(c, INTERCEPT_CR8_WRITE); 156 if (!(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)) 157 vmcb_clr_intercept(c, INTERCEPT_VINTR); 158 } 159 160 /* 161 * We want to see VMMCALLs from a nested guest only when Hyper-V L2 TLB 162 * flush feature is enabled. 163 */ 164 if (!nested_svm_l2_tlb_flush_enabled(&svm->vcpu)) 165 vmcb_clr_intercept(c, INTERCEPT_VMMCALL); 166 167 for (i = 0; i < MAX_INTERCEPT; i++) 168 c->intercepts[i] |= g->intercepts[i]; 169 170 /* If SMI is not intercepted, ignore guest SMI intercept as well */ 171 if (!intercept_smi) 172 vmcb_clr_intercept(c, INTERCEPT_SMI); 173 174 if (nested_vmcb_needs_vls_intercept(svm)) { 175 /* 176 * If the virtual VMLOAD/VMSAVE is not enabled for the L2, 177 * we must intercept these instructions to correctly 178 * emulate them in case L1 doesn't intercept them. 179 */ 180 vmcb_set_intercept(c, INTERCEPT_VMLOAD); 181 vmcb_set_intercept(c, INTERCEPT_VMSAVE); 182 } else { 183 WARN_ON(!(c->virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK)); 184 } 185 } 186 187 /* 188 * This array (and its actual size) holds the set of offsets (indexing by chunk 189 * size) to process when merging vmcb12's MSRPM with vmcb01's MSRPM. Note, the 190 * set of MSRs for which interception is disabled in vmcb01 is per-vCPU, e.g. 191 * based on CPUID features. This array only tracks MSRs that *might* be passed 192 * through to the guest. 193 * 194 * Hardcode the capacity of the array based on the maximum number of _offsets_. 195 * MSRs are batched together, so there are fewer offsets than MSRs. 196 */ 197 static int nested_svm_msrpm_merge_offsets[7] __ro_after_init; 198 static int nested_svm_nr_msrpm_merge_offsets __ro_after_init; 199 typedef unsigned long nsvm_msrpm_merge_t; 200 201 int __init nested_svm_init_msrpm_merge_offsets(void) 202 { 203 static const u32 merge_msrs[] __initconst = { 204 MSR_STAR, 205 MSR_IA32_SYSENTER_CS, 206 MSR_IA32_SYSENTER_EIP, 207 MSR_IA32_SYSENTER_ESP, 208 #ifdef CONFIG_X86_64 209 MSR_GS_BASE, 210 MSR_FS_BASE, 211 MSR_KERNEL_GS_BASE, 212 MSR_LSTAR, 213 MSR_CSTAR, 214 MSR_SYSCALL_MASK, 215 #endif 216 MSR_IA32_SPEC_CTRL, 217 MSR_IA32_PRED_CMD, 218 MSR_IA32_FLUSH_CMD, 219 MSR_IA32_APERF, 220 MSR_IA32_MPERF, 221 MSR_IA32_LASTBRANCHFROMIP, 222 MSR_IA32_LASTBRANCHTOIP, 223 MSR_IA32_LASTINTFROMIP, 224 MSR_IA32_LASTINTTOIP, 225 }; 226 int i, j; 227 228 for (i = 0; i < ARRAY_SIZE(merge_msrs); i++) { 229 int bit_nr = svm_msrpm_bit_nr(merge_msrs[i]); 230 u32 offset; 231 232 if (WARN_ON(bit_nr < 0)) 233 return -EIO; 234 235 /* 236 * Merging is done in chunks to reduce the number of accesses 237 * to L1's bitmap. 238 */ 239 offset = bit_nr / BITS_PER_BYTE / sizeof(nsvm_msrpm_merge_t); 240 241 for (j = 0; j < nested_svm_nr_msrpm_merge_offsets; j++) { 242 if (nested_svm_msrpm_merge_offsets[j] == offset) 243 break; 244 } 245 246 if (j < nested_svm_nr_msrpm_merge_offsets) 247 continue; 248 249 if (WARN_ON(j >= ARRAY_SIZE(nested_svm_msrpm_merge_offsets))) 250 return -EIO; 251 252 nested_svm_msrpm_merge_offsets[j] = offset; 253 nested_svm_nr_msrpm_merge_offsets++; 254 } 255 256 return 0; 257 } 258 259 /* 260 * Merge L0's (KVM) and L1's (Nested VMCB) MSR permission bitmaps. The function 261 * is optimized in that it only merges the parts where KVM MSR permission bitmap 262 * may contain zero bits. 263 */ 264 static bool nested_svm_merge_msrpm(struct kvm_vcpu *vcpu) 265 { 266 struct vcpu_svm *svm = to_svm(vcpu); 267 nsvm_msrpm_merge_t *msrpm02 = svm->nested.msrpm; 268 nsvm_msrpm_merge_t *msrpm01 = svm->msrpm; 269 int i; 270 271 /* 272 * MSR bitmap update can be skipped when: 273 * - MSR bitmap for L1 hasn't changed. 274 * - Nested hypervisor (L1) is attempting to launch the same L2 as 275 * before. 276 * - Nested hypervisor (L1) is using Hyper-V emulation interface and 277 * tells KVM (L0) there were no changes in MSR bitmap for L2. 278 */ 279 #ifdef CONFIG_KVM_HYPERV 280 if (!svm->nested.force_msr_bitmap_recalc) { 281 struct hv_vmcb_enlightenments *hve = &svm->nested.ctl.hv_enlightenments; 282 283 if (kvm_hv_hypercall_enabled(vcpu) && 284 hve->hv_enlightenments_control.msr_bitmap && 285 (svm->nested.ctl.clean & BIT(HV_VMCB_NESTED_ENLIGHTENMENTS))) 286 goto set_msrpm_base_pa; 287 } 288 #endif 289 290 if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))) 291 return true; 292 293 for (i = 0; i < nested_svm_nr_msrpm_merge_offsets; i++) { 294 const int p = nested_svm_msrpm_merge_offsets[i]; 295 nsvm_msrpm_merge_t l1_val; 296 gpa_t gpa; 297 298 gpa = svm->nested.ctl.msrpm_base_pa + (p * sizeof(l1_val)); 299 300 if (kvm_vcpu_read_guest(vcpu, gpa, &l1_val, sizeof(l1_val))) 301 return false; 302 303 msrpm02[p] = msrpm01[p] | l1_val; 304 } 305 306 svm->nested.force_msr_bitmap_recalc = false; 307 308 #ifdef CONFIG_KVM_HYPERV 309 set_msrpm_base_pa: 310 #endif 311 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm)); 312 313 return true; 314 } 315 316 /* 317 * Bits 11:0 of bitmap address are ignored by hardware 318 */ 319 static bool nested_svm_check_bitmap_pa(struct kvm_vcpu *vcpu, u64 pa, u32 size) 320 { 321 u64 addr = PAGE_ALIGN(pa); 322 323 return kvm_vcpu_is_legal_gpa(vcpu, addr) && 324 kvm_vcpu_is_legal_gpa(vcpu, addr + size - 1); 325 } 326 327 static bool __nested_vmcb_check_controls(struct kvm_vcpu *vcpu, 328 struct vmcb_ctrl_area_cached *control) 329 { 330 if (CC(!vmcb12_is_intercept(control, INTERCEPT_VMRUN))) 331 return false; 332 333 if (CC(control->asid == 0)) 334 return false; 335 336 if (CC((control->nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && !npt_enabled)) 337 return false; 338 339 if (CC(!nested_svm_check_bitmap_pa(vcpu, control->msrpm_base_pa, 340 MSRPM_SIZE))) 341 return false; 342 if (CC(!nested_svm_check_bitmap_pa(vcpu, control->iopm_base_pa, 343 IOPM_SIZE))) 344 return false; 345 346 if (CC((control->int_ctl & V_NMI_ENABLE_MASK) && 347 !vmcb12_is_intercept(control, INTERCEPT_NMI))) { 348 return false; 349 } 350 351 return true; 352 } 353 354 /* Common checks that apply to both L1 and L2 state. */ 355 static bool __nested_vmcb_check_save(struct kvm_vcpu *vcpu, 356 struct vmcb_save_area_cached *save) 357 { 358 if (CC(!(save->efer & EFER_SVME))) 359 return false; 360 361 if (CC((save->cr0 & X86_CR0_CD) == 0 && (save->cr0 & X86_CR0_NW)) || 362 CC(save->cr0 & ~0xffffffffULL)) 363 return false; 364 365 if (CC(!kvm_dr6_valid(save->dr6)) || CC(!kvm_dr7_valid(save->dr7))) 366 return false; 367 368 /* 369 * These checks are also performed by KVM_SET_SREGS, 370 * except that EFER.LMA is not checked by SVM against 371 * CR0.PG && EFER.LME. 372 */ 373 if ((save->efer & EFER_LME) && (save->cr0 & X86_CR0_PG)) { 374 if (CC(!(save->cr4 & X86_CR4_PAE)) || 375 CC(!(save->cr0 & X86_CR0_PE)) || 376 CC(!kvm_vcpu_is_legal_cr3(vcpu, save->cr3))) 377 return false; 378 } 379 380 /* Note, SVM doesn't have any additional restrictions on CR4. */ 381 if (CC(!__kvm_is_valid_cr4(vcpu, save->cr4))) 382 return false; 383 384 if (CC(!kvm_valid_efer(vcpu, save->efer))) 385 return false; 386 387 return true; 388 } 389 390 static bool nested_vmcb_check_save(struct kvm_vcpu *vcpu) 391 { 392 struct vcpu_svm *svm = to_svm(vcpu); 393 struct vmcb_save_area_cached *save = &svm->nested.save; 394 395 return __nested_vmcb_check_save(vcpu, save); 396 } 397 398 static bool nested_vmcb_check_controls(struct kvm_vcpu *vcpu) 399 { 400 struct vcpu_svm *svm = to_svm(vcpu); 401 struct vmcb_ctrl_area_cached *ctl = &svm->nested.ctl; 402 403 return __nested_vmcb_check_controls(vcpu, ctl); 404 } 405 406 static 407 void __nested_copy_vmcb_control_to_cache(struct kvm_vcpu *vcpu, 408 struct vmcb_ctrl_area_cached *to, 409 struct vmcb_control_area *from) 410 { 411 unsigned int i; 412 413 for (i = 0; i < MAX_INTERCEPT; i++) 414 to->intercepts[i] = from->intercepts[i]; 415 416 to->iopm_base_pa = from->iopm_base_pa; 417 to->msrpm_base_pa = from->msrpm_base_pa; 418 to->tsc_offset = from->tsc_offset; 419 to->tlb_ctl = from->tlb_ctl; 420 to->int_ctl = from->int_ctl; 421 to->int_vector = from->int_vector; 422 to->int_state = from->int_state; 423 to->exit_code = from->exit_code; 424 to->exit_code_hi = from->exit_code_hi; 425 to->exit_info_1 = from->exit_info_1; 426 to->exit_info_2 = from->exit_info_2; 427 to->exit_int_info = from->exit_int_info; 428 to->exit_int_info_err = from->exit_int_info_err; 429 to->nested_ctl = from->nested_ctl; 430 to->event_inj = from->event_inj; 431 to->event_inj_err = from->event_inj_err; 432 to->next_rip = from->next_rip; 433 to->nested_cr3 = from->nested_cr3; 434 to->virt_ext = from->virt_ext; 435 to->pause_filter_count = from->pause_filter_count; 436 to->pause_filter_thresh = from->pause_filter_thresh; 437 438 /* Copy asid here because nested_vmcb_check_controls will check it. */ 439 to->asid = from->asid; 440 to->msrpm_base_pa &= ~0x0fffULL; 441 to->iopm_base_pa &= ~0x0fffULL; 442 443 #ifdef CONFIG_KVM_HYPERV 444 /* Hyper-V extensions (Enlightened VMCB) */ 445 if (kvm_hv_hypercall_enabled(vcpu)) { 446 to->clean = from->clean; 447 memcpy(&to->hv_enlightenments, &from->hv_enlightenments, 448 sizeof(to->hv_enlightenments)); 449 } 450 #endif 451 } 452 453 void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm, 454 struct vmcb_control_area *control) 455 { 456 __nested_copy_vmcb_control_to_cache(&svm->vcpu, &svm->nested.ctl, control); 457 } 458 459 static void __nested_copy_vmcb_save_to_cache(struct vmcb_save_area_cached *to, 460 struct vmcb_save_area *from) 461 { 462 /* 463 * Copy only fields that are validated, as we need them 464 * to avoid TOC/TOU races. 465 */ 466 to->efer = from->efer; 467 to->cr0 = from->cr0; 468 to->cr3 = from->cr3; 469 to->cr4 = from->cr4; 470 471 to->dr6 = from->dr6; 472 to->dr7 = from->dr7; 473 } 474 475 void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm, 476 struct vmcb_save_area *save) 477 { 478 __nested_copy_vmcb_save_to_cache(&svm->nested.save, save); 479 } 480 481 /* 482 * Synchronize fields that are written by the processor, so that 483 * they can be copied back into the vmcb12. 484 */ 485 void nested_sync_control_from_vmcb02(struct vcpu_svm *svm) 486 { 487 u32 mask; 488 svm->nested.ctl.event_inj = svm->vmcb->control.event_inj; 489 svm->nested.ctl.event_inj_err = svm->vmcb->control.event_inj_err; 490 491 /* Only a few fields of int_ctl are written by the processor. */ 492 mask = V_IRQ_MASK | V_TPR_MASK; 493 /* 494 * Don't sync vmcb02 V_IRQ back to vmcb12 if KVM (L0) is intercepting 495 * virtual interrupts in order to request an interrupt window, as KVM 496 * has usurped vmcb02's int_ctl. If an interrupt window opens before 497 * the next VM-Exit, svm_clear_vintr() will restore vmcb12's int_ctl. 498 * If no window opens, V_IRQ will be correctly preserved in vmcb12's 499 * int_ctl (because it was never recognized while L2 was running). 500 */ 501 if (svm_is_intercept(svm, INTERCEPT_VINTR) && 502 !test_bit(INTERCEPT_VINTR, (unsigned long *)svm->nested.ctl.intercepts)) 503 mask &= ~V_IRQ_MASK; 504 505 if (nested_vgif_enabled(svm)) 506 mask |= V_GIF_MASK; 507 508 if (nested_vnmi_enabled(svm)) 509 mask |= V_NMI_BLOCKING_MASK | V_NMI_PENDING_MASK; 510 511 svm->nested.ctl.int_ctl &= ~mask; 512 svm->nested.ctl.int_ctl |= svm->vmcb->control.int_ctl & mask; 513 } 514 515 /* 516 * Transfer any event that L0 or L1 wanted to inject into L2 to 517 * EXIT_INT_INFO. 518 */ 519 static void nested_save_pending_event_to_vmcb12(struct vcpu_svm *svm, 520 struct vmcb *vmcb12) 521 { 522 struct kvm_vcpu *vcpu = &svm->vcpu; 523 u32 exit_int_info = 0; 524 unsigned int nr; 525 526 if (vcpu->arch.exception.injected) { 527 nr = vcpu->arch.exception.vector; 528 exit_int_info = nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT; 529 530 if (vcpu->arch.exception.has_error_code) { 531 exit_int_info |= SVM_EVTINJ_VALID_ERR; 532 vmcb12->control.exit_int_info_err = 533 vcpu->arch.exception.error_code; 534 } 535 536 } else if (vcpu->arch.nmi_injected) { 537 exit_int_info = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 538 539 } else if (vcpu->arch.interrupt.injected) { 540 nr = vcpu->arch.interrupt.nr; 541 exit_int_info = nr | SVM_EVTINJ_VALID; 542 543 if (vcpu->arch.interrupt.soft) 544 exit_int_info |= SVM_EVTINJ_TYPE_SOFT; 545 else 546 exit_int_info |= SVM_EVTINJ_TYPE_INTR; 547 } 548 549 vmcb12->control.exit_int_info = exit_int_info; 550 } 551 552 static void nested_svm_transition_tlb_flush(struct kvm_vcpu *vcpu) 553 { 554 /* Handle pending Hyper-V TLB flush requests */ 555 kvm_hv_nested_transtion_tlb_flush(vcpu, npt_enabled); 556 557 /* 558 * TODO: optimize unconditional TLB flush/MMU sync. A partial list of 559 * things to fix before this can be conditional: 560 * 561 * - Flush TLBs for both L1 and L2 remote TLB flush 562 * - Honor L1's request to flush an ASID on nested VMRUN 563 * - Sync nested NPT MMU on VMRUN that flushes L2's ASID[*] 564 * - Don't crush a pending TLB flush in vmcb02 on nested VMRUN 565 * - Flush L1's ASID on KVM_REQ_TLB_FLUSH_GUEST 566 * 567 * [*] Unlike nested EPT, SVM's ASID management can invalidate nested 568 * NPT guest-physical mappings on VMRUN. 569 */ 570 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 571 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 572 } 573 574 /* 575 * Load guest's/host's cr3 on nested vmentry or vmexit. @nested_npt is true 576 * if we are emulating VM-Entry into a guest with NPT enabled. 577 */ 578 static int nested_svm_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, 579 bool nested_npt, bool reload_pdptrs) 580 { 581 if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) 582 return -EINVAL; 583 584 if (reload_pdptrs && !nested_npt && is_pae_paging(vcpu) && 585 CC(!load_pdptrs(vcpu, cr3))) 586 return -EINVAL; 587 588 vcpu->arch.cr3 = cr3; 589 590 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */ 591 kvm_init_mmu(vcpu); 592 593 if (!nested_npt) 594 kvm_mmu_new_pgd(vcpu, cr3); 595 596 return 0; 597 } 598 599 void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm) 600 { 601 if (!svm->nested.vmcb02.ptr) 602 return; 603 604 /* FIXME: merge g_pat from vmcb01 and vmcb12. */ 605 svm->nested.vmcb02.ptr->save.g_pat = svm->vmcb01.ptr->save.g_pat; 606 } 607 608 static void nested_vmcb02_prepare_save(struct vcpu_svm *svm, struct vmcb *vmcb12) 609 { 610 bool new_vmcb12 = false; 611 struct vmcb *vmcb01 = svm->vmcb01.ptr; 612 struct vmcb *vmcb02 = svm->nested.vmcb02.ptr; 613 struct kvm_vcpu *vcpu = &svm->vcpu; 614 615 nested_vmcb02_compute_g_pat(svm); 616 617 /* Load the nested guest state */ 618 if (svm->nested.vmcb12_gpa != svm->nested.last_vmcb12_gpa) { 619 new_vmcb12 = true; 620 svm->nested.last_vmcb12_gpa = svm->nested.vmcb12_gpa; 621 svm->nested.force_msr_bitmap_recalc = true; 622 } 623 624 if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_SEG))) { 625 vmcb02->save.es = vmcb12->save.es; 626 vmcb02->save.cs = vmcb12->save.cs; 627 vmcb02->save.ss = vmcb12->save.ss; 628 vmcb02->save.ds = vmcb12->save.ds; 629 vmcb02->save.cpl = vmcb12->save.cpl; 630 vmcb_mark_dirty(vmcb02, VMCB_SEG); 631 } 632 633 if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DT))) { 634 vmcb02->save.gdtr = vmcb12->save.gdtr; 635 vmcb02->save.idtr = vmcb12->save.idtr; 636 vmcb_mark_dirty(vmcb02, VMCB_DT); 637 } 638 639 kvm_set_rflags(vcpu, vmcb12->save.rflags | X86_EFLAGS_FIXED); 640 641 svm_set_efer(vcpu, svm->nested.save.efer); 642 643 svm_set_cr0(vcpu, svm->nested.save.cr0); 644 svm_set_cr4(vcpu, svm->nested.save.cr4); 645 646 svm->vcpu.arch.cr2 = vmcb12->save.cr2; 647 648 kvm_rax_write(vcpu, vmcb12->save.rax); 649 kvm_rsp_write(vcpu, vmcb12->save.rsp); 650 kvm_rip_write(vcpu, vmcb12->save.rip); 651 652 /* In case we don't even reach vcpu_run, the fields are not updated */ 653 vmcb02->save.rax = vmcb12->save.rax; 654 vmcb02->save.rsp = vmcb12->save.rsp; 655 vmcb02->save.rip = vmcb12->save.rip; 656 657 /* These bits will be set properly on the first execution when new_vmc12 is true */ 658 if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DR))) { 659 vmcb02->save.dr7 = svm->nested.save.dr7 | DR7_FIXED_1; 660 svm->vcpu.arch.dr6 = svm->nested.save.dr6 | DR6_ACTIVE_LOW; 661 vmcb_mark_dirty(vmcb02, VMCB_DR); 662 } 663 664 if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 665 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) { 666 /* 667 * Reserved bits of DEBUGCTL are ignored. Be consistent with 668 * svm_set_msr's definition of reserved bits. 669 */ 670 svm_copy_lbrs(vmcb02, vmcb12); 671 vmcb02->save.dbgctl &= ~DEBUGCTL_RESERVED_BITS; 672 svm_update_lbrv(&svm->vcpu); 673 674 } else if (unlikely(vmcb01->control.virt_ext & LBR_CTL_ENABLE_MASK)) { 675 svm_copy_lbrs(vmcb02, vmcb01); 676 } 677 } 678 679 static inline bool is_evtinj_soft(u32 evtinj) 680 { 681 u32 type = evtinj & SVM_EVTINJ_TYPE_MASK; 682 u8 vector = evtinj & SVM_EVTINJ_VEC_MASK; 683 684 if (!(evtinj & SVM_EVTINJ_VALID)) 685 return false; 686 687 if (type == SVM_EVTINJ_TYPE_SOFT) 688 return true; 689 690 return type == SVM_EVTINJ_TYPE_EXEPT && kvm_exception_is_soft(vector); 691 } 692 693 static bool is_evtinj_nmi(u32 evtinj) 694 { 695 u32 type = evtinj & SVM_EVTINJ_TYPE_MASK; 696 697 if (!(evtinj & SVM_EVTINJ_VALID)) 698 return false; 699 700 return type == SVM_EVTINJ_TYPE_NMI; 701 } 702 703 static void nested_vmcb02_prepare_control(struct vcpu_svm *svm, 704 unsigned long vmcb12_rip, 705 unsigned long vmcb12_csbase) 706 { 707 u32 int_ctl_vmcb01_bits = V_INTR_MASKING_MASK; 708 u32 int_ctl_vmcb12_bits = V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK; 709 710 struct kvm_vcpu *vcpu = &svm->vcpu; 711 struct vmcb *vmcb01 = svm->vmcb01.ptr; 712 struct vmcb *vmcb02 = svm->nested.vmcb02.ptr; 713 u32 pause_count12; 714 u32 pause_thresh12; 715 716 nested_svm_transition_tlb_flush(vcpu); 717 718 /* Enter Guest-Mode */ 719 enter_guest_mode(vcpu); 720 721 /* 722 * Filled at exit: exit_code, exit_code_hi, exit_info_1, exit_info_2, 723 * exit_int_info, exit_int_info_err, next_rip, insn_len, insn_bytes. 724 */ 725 726 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VGIF) && 727 (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK)) 728 int_ctl_vmcb12_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK); 729 else 730 int_ctl_vmcb01_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK); 731 732 if (vnmi) { 733 if (vmcb01->control.int_ctl & V_NMI_PENDING_MASK) { 734 svm->vcpu.arch.nmi_pending++; 735 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 736 } 737 if (nested_vnmi_enabled(svm)) 738 int_ctl_vmcb12_bits |= (V_NMI_PENDING_MASK | 739 V_NMI_ENABLE_MASK | 740 V_NMI_BLOCKING_MASK); 741 } 742 743 /* Copied from vmcb01. msrpm_base can be overwritten later. */ 744 vmcb02->control.nested_ctl = vmcb01->control.nested_ctl; 745 vmcb02->control.iopm_base_pa = vmcb01->control.iopm_base_pa; 746 vmcb02->control.msrpm_base_pa = vmcb01->control.msrpm_base_pa; 747 748 /* 749 * Stash vmcb02's counter if the guest hasn't moved past the guilty 750 * instruction; otherwise, reset the counter to '0'. 751 * 752 * In order to detect if L2 has made forward progress or not, track the 753 * RIP at which a bus lock has occurred on a per-vmcb12 basis. If RIP 754 * is changed, guest has clearly made forward progress, bus_lock_counter 755 * still remained '1', so reset bus_lock_counter to '0'. Eg. In the 756 * scenario, where a buslock happened in L1 before VMRUN, the bus lock 757 * firmly happened on an instruction in the past. Even if vmcb01's 758 * counter is still '1', (because the guilty instruction got patched), 759 * the vCPU has clearly made forward progress and so KVM should reset 760 * vmcb02's counter to '0'. 761 * 762 * If the RIP hasn't changed, stash the bus lock counter at nested VMRUN 763 * to prevent the same guilty instruction from triggering a VM-Exit. Eg. 764 * if userspace rate-limits the vCPU, then it's entirely possible that 765 * L1's tick interrupt is pending by the time userspace re-runs the 766 * vCPU. If KVM unconditionally clears the counter on VMRUN, then when 767 * L1 re-enters L2, the same instruction will trigger a VM-Exit and the 768 * entire cycle start over. 769 */ 770 if (vmcb02->save.rip && (svm->nested.ctl.bus_lock_rip == vmcb02->save.rip)) 771 vmcb02->control.bus_lock_counter = 1; 772 else 773 vmcb02->control.bus_lock_counter = 0; 774 775 /* Done at vmrun: asid. */ 776 777 /* Also overwritten later if necessary. */ 778 vmcb02->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 779 780 /* nested_cr3. */ 781 if (nested_npt_enabled(svm)) 782 nested_svm_init_mmu_context(vcpu); 783 784 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 785 vcpu->arch.l1_tsc_offset, 786 svm->nested.ctl.tsc_offset, 787 svm->tsc_ratio_msr); 788 789 vmcb02->control.tsc_offset = vcpu->arch.tsc_offset; 790 791 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) && 792 svm->tsc_ratio_msr != kvm_caps.default_tsc_scaling_ratio) 793 nested_svm_update_tsc_ratio_msr(vcpu); 794 795 vmcb02->control.int_ctl = 796 (svm->nested.ctl.int_ctl & int_ctl_vmcb12_bits) | 797 (vmcb01->control.int_ctl & int_ctl_vmcb01_bits); 798 799 vmcb02->control.int_vector = svm->nested.ctl.int_vector; 800 vmcb02->control.int_state = svm->nested.ctl.int_state; 801 vmcb02->control.event_inj = svm->nested.ctl.event_inj; 802 vmcb02->control.event_inj_err = svm->nested.ctl.event_inj_err; 803 804 /* 805 * next_rip is consumed on VMRUN as the return address pushed on the 806 * stack for injected soft exceptions/interrupts. If nrips is exposed 807 * to L1, take it verbatim from vmcb12. If nrips is supported in 808 * hardware but not exposed to L1, stuff the actual L2 RIP to emulate 809 * what a nrips=0 CPU would do (L1 is responsible for advancing RIP 810 * prior to injecting the event). 811 */ 812 if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS)) 813 vmcb02->control.next_rip = svm->nested.ctl.next_rip; 814 else if (boot_cpu_has(X86_FEATURE_NRIPS)) 815 vmcb02->control.next_rip = vmcb12_rip; 816 817 svm->nmi_l1_to_l2 = is_evtinj_nmi(vmcb02->control.event_inj); 818 if (is_evtinj_soft(vmcb02->control.event_inj)) { 819 svm->soft_int_injected = true; 820 svm->soft_int_csbase = vmcb12_csbase; 821 svm->soft_int_old_rip = vmcb12_rip; 822 if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS)) 823 svm->soft_int_next_rip = svm->nested.ctl.next_rip; 824 else 825 svm->soft_int_next_rip = vmcb12_rip; 826 } 827 828 vmcb02->control.virt_ext = vmcb01->control.virt_ext & 829 LBR_CTL_ENABLE_MASK; 830 if (guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV)) 831 vmcb02->control.virt_ext |= 832 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK); 833 834 if (!nested_vmcb_needs_vls_intercept(svm)) 835 vmcb02->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 836 837 if (guest_cpu_cap_has(vcpu, X86_FEATURE_PAUSEFILTER)) 838 pause_count12 = svm->nested.ctl.pause_filter_count; 839 else 840 pause_count12 = 0; 841 if (guest_cpu_cap_has(vcpu, X86_FEATURE_PFTHRESHOLD)) 842 pause_thresh12 = svm->nested.ctl.pause_filter_thresh; 843 else 844 pause_thresh12 = 0; 845 if (kvm_pause_in_guest(svm->vcpu.kvm)) { 846 /* use guest values since host doesn't intercept PAUSE */ 847 vmcb02->control.pause_filter_count = pause_count12; 848 vmcb02->control.pause_filter_thresh = pause_thresh12; 849 850 } else { 851 /* start from host values otherwise */ 852 vmcb02->control.pause_filter_count = vmcb01->control.pause_filter_count; 853 vmcb02->control.pause_filter_thresh = vmcb01->control.pause_filter_thresh; 854 855 /* ... but ensure filtering is disabled if so requested. */ 856 if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_PAUSE)) { 857 if (!pause_count12) 858 vmcb02->control.pause_filter_count = 0; 859 if (!pause_thresh12) 860 vmcb02->control.pause_filter_thresh = 0; 861 } 862 } 863 864 /* 865 * Merge guest and host intercepts - must be called with vcpu in 866 * guest-mode to take effect. 867 */ 868 recalc_intercepts(svm); 869 } 870 871 static void nested_svm_copy_common_state(struct vmcb *from_vmcb, struct vmcb *to_vmcb) 872 { 873 /* 874 * Some VMCB state is shared between L1 and L2 and thus has to be 875 * moved at the time of nested vmrun and vmexit. 876 * 877 * VMLOAD/VMSAVE state would also belong in this category, but KVM 878 * always performs VMLOAD and VMSAVE from the VMCB01. 879 */ 880 to_vmcb->save.spec_ctrl = from_vmcb->save.spec_ctrl; 881 } 882 883 int enter_svm_guest_mode(struct kvm_vcpu *vcpu, u64 vmcb12_gpa, 884 struct vmcb *vmcb12, bool from_vmrun) 885 { 886 struct vcpu_svm *svm = to_svm(vcpu); 887 int ret; 888 889 trace_kvm_nested_vmenter(svm->vmcb->save.rip, 890 vmcb12_gpa, 891 vmcb12->save.rip, 892 vmcb12->control.int_ctl, 893 vmcb12->control.event_inj, 894 vmcb12->control.nested_ctl, 895 vmcb12->control.nested_cr3, 896 vmcb12->save.cr3, 897 KVM_ISA_SVM); 898 899 trace_kvm_nested_intercepts(vmcb12->control.intercepts[INTERCEPT_CR] & 0xffff, 900 vmcb12->control.intercepts[INTERCEPT_CR] >> 16, 901 vmcb12->control.intercepts[INTERCEPT_EXCEPTION], 902 vmcb12->control.intercepts[INTERCEPT_WORD3], 903 vmcb12->control.intercepts[INTERCEPT_WORD4], 904 vmcb12->control.intercepts[INTERCEPT_WORD5]); 905 906 907 svm->nested.vmcb12_gpa = vmcb12_gpa; 908 909 WARN_ON(svm->vmcb == svm->nested.vmcb02.ptr); 910 911 nested_svm_copy_common_state(svm->vmcb01.ptr, svm->nested.vmcb02.ptr); 912 913 svm_switch_vmcb(svm, &svm->nested.vmcb02); 914 nested_vmcb02_prepare_control(svm, vmcb12->save.rip, vmcb12->save.cs.base); 915 nested_vmcb02_prepare_save(svm, vmcb12); 916 917 ret = nested_svm_load_cr3(&svm->vcpu, svm->nested.save.cr3, 918 nested_npt_enabled(svm), from_vmrun); 919 if (ret) 920 return ret; 921 922 if (!from_vmrun) 923 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 924 925 svm_set_gif(svm, true); 926 927 if (kvm_vcpu_apicv_active(vcpu)) 928 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 929 930 nested_svm_hv_update_vm_vp_ids(vcpu); 931 932 return 0; 933 } 934 935 int nested_svm_vmrun(struct kvm_vcpu *vcpu) 936 { 937 struct vcpu_svm *svm = to_svm(vcpu); 938 int ret; 939 struct vmcb *vmcb12; 940 struct kvm_host_map map; 941 u64 vmcb12_gpa; 942 struct vmcb *vmcb01 = svm->vmcb01.ptr; 943 944 if (!svm->nested.hsave_msr) { 945 kvm_inject_gp(vcpu, 0); 946 return 1; 947 } 948 949 if (is_smm(vcpu)) { 950 kvm_queue_exception(vcpu, UD_VECTOR); 951 return 1; 952 } 953 954 /* This fails when VP assist page is enabled but the supplied GPA is bogus */ 955 ret = kvm_hv_verify_vp_assist(vcpu); 956 if (ret) { 957 kvm_inject_gp(vcpu, 0); 958 return ret; 959 } 960 961 vmcb12_gpa = svm->vmcb->save.rax; 962 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map); 963 if (ret == -EINVAL) { 964 kvm_inject_gp(vcpu, 0); 965 return 1; 966 } else if (ret) { 967 return kvm_skip_emulated_instruction(vcpu); 968 } 969 970 ret = kvm_skip_emulated_instruction(vcpu); 971 972 vmcb12 = map.hva; 973 974 if (WARN_ON_ONCE(!svm->nested.initialized)) 975 return -EINVAL; 976 977 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 978 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 979 980 if (!nested_vmcb_check_save(vcpu) || 981 !nested_vmcb_check_controls(vcpu)) { 982 vmcb12->control.exit_code = SVM_EXIT_ERR; 983 vmcb12->control.exit_code_hi = 0; 984 vmcb12->control.exit_info_1 = 0; 985 vmcb12->control.exit_info_2 = 0; 986 goto out; 987 } 988 989 /* 990 * Since vmcb01 is not in use, we can use it to store some of the L1 991 * state. 992 */ 993 vmcb01->save.efer = vcpu->arch.efer; 994 vmcb01->save.cr0 = kvm_read_cr0(vcpu); 995 vmcb01->save.cr4 = vcpu->arch.cr4; 996 vmcb01->save.rflags = kvm_get_rflags(vcpu); 997 vmcb01->save.rip = kvm_rip_read(vcpu); 998 999 if (!npt_enabled) 1000 vmcb01->save.cr3 = kvm_read_cr3(vcpu); 1001 1002 svm->nested.nested_run_pending = 1; 1003 1004 if (enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, true)) 1005 goto out_exit_err; 1006 1007 if (nested_svm_merge_msrpm(vcpu)) 1008 goto out; 1009 1010 out_exit_err: 1011 svm->nested.nested_run_pending = 0; 1012 svm->nmi_l1_to_l2 = false; 1013 svm->soft_int_injected = false; 1014 1015 svm->vmcb->control.exit_code = SVM_EXIT_ERR; 1016 svm->vmcb->control.exit_code_hi = 0; 1017 svm->vmcb->control.exit_info_1 = 0; 1018 svm->vmcb->control.exit_info_2 = 0; 1019 1020 nested_svm_vmexit(svm); 1021 1022 out: 1023 kvm_vcpu_unmap(vcpu, &map); 1024 1025 return ret; 1026 } 1027 1028 /* Copy state save area fields which are handled by VMRUN */ 1029 void svm_copy_vmrun_state(struct vmcb_save_area *to_save, 1030 struct vmcb_save_area *from_save) 1031 { 1032 to_save->es = from_save->es; 1033 to_save->cs = from_save->cs; 1034 to_save->ss = from_save->ss; 1035 to_save->ds = from_save->ds; 1036 to_save->gdtr = from_save->gdtr; 1037 to_save->idtr = from_save->idtr; 1038 to_save->rflags = from_save->rflags | X86_EFLAGS_FIXED; 1039 to_save->efer = from_save->efer; 1040 to_save->cr0 = from_save->cr0; 1041 to_save->cr3 = from_save->cr3; 1042 to_save->cr4 = from_save->cr4; 1043 to_save->rax = from_save->rax; 1044 to_save->rsp = from_save->rsp; 1045 to_save->rip = from_save->rip; 1046 to_save->cpl = 0; 1047 } 1048 1049 void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 1050 { 1051 to_vmcb->save.fs = from_vmcb->save.fs; 1052 to_vmcb->save.gs = from_vmcb->save.gs; 1053 to_vmcb->save.tr = from_vmcb->save.tr; 1054 to_vmcb->save.ldtr = from_vmcb->save.ldtr; 1055 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; 1056 to_vmcb->save.star = from_vmcb->save.star; 1057 to_vmcb->save.lstar = from_vmcb->save.lstar; 1058 to_vmcb->save.cstar = from_vmcb->save.cstar; 1059 to_vmcb->save.sfmask = from_vmcb->save.sfmask; 1060 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; 1061 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; 1062 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; 1063 } 1064 1065 int nested_svm_vmexit(struct vcpu_svm *svm) 1066 { 1067 struct kvm_vcpu *vcpu = &svm->vcpu; 1068 struct vmcb *vmcb01 = svm->vmcb01.ptr; 1069 struct vmcb *vmcb02 = svm->nested.vmcb02.ptr; 1070 struct vmcb *vmcb12; 1071 struct kvm_host_map map; 1072 int rc; 1073 1074 rc = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.vmcb12_gpa), &map); 1075 if (rc) { 1076 if (rc == -EINVAL) 1077 kvm_inject_gp(vcpu, 0); 1078 return 1; 1079 } 1080 1081 vmcb12 = map.hva; 1082 1083 /* Exit Guest-Mode */ 1084 leave_guest_mode(vcpu); 1085 svm->nested.vmcb12_gpa = 0; 1086 WARN_ON_ONCE(svm->nested.nested_run_pending); 1087 1088 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 1089 1090 /* in case we halted in L2 */ 1091 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 1092 1093 /* Give the current vmcb to the guest */ 1094 1095 vmcb12->save.es = vmcb02->save.es; 1096 vmcb12->save.cs = vmcb02->save.cs; 1097 vmcb12->save.ss = vmcb02->save.ss; 1098 vmcb12->save.ds = vmcb02->save.ds; 1099 vmcb12->save.gdtr = vmcb02->save.gdtr; 1100 vmcb12->save.idtr = vmcb02->save.idtr; 1101 vmcb12->save.efer = svm->vcpu.arch.efer; 1102 vmcb12->save.cr0 = kvm_read_cr0(vcpu); 1103 vmcb12->save.cr3 = kvm_read_cr3(vcpu); 1104 vmcb12->save.cr2 = vmcb02->save.cr2; 1105 vmcb12->save.cr4 = svm->vcpu.arch.cr4; 1106 vmcb12->save.rflags = kvm_get_rflags(vcpu); 1107 vmcb12->save.rip = kvm_rip_read(vcpu); 1108 vmcb12->save.rsp = kvm_rsp_read(vcpu); 1109 vmcb12->save.rax = kvm_rax_read(vcpu); 1110 vmcb12->save.dr7 = vmcb02->save.dr7; 1111 vmcb12->save.dr6 = svm->vcpu.arch.dr6; 1112 vmcb12->save.cpl = vmcb02->save.cpl; 1113 1114 vmcb12->control.int_state = vmcb02->control.int_state; 1115 vmcb12->control.exit_code = vmcb02->control.exit_code; 1116 vmcb12->control.exit_code_hi = vmcb02->control.exit_code_hi; 1117 vmcb12->control.exit_info_1 = vmcb02->control.exit_info_1; 1118 vmcb12->control.exit_info_2 = vmcb02->control.exit_info_2; 1119 1120 if (vmcb12->control.exit_code != SVM_EXIT_ERR) 1121 nested_save_pending_event_to_vmcb12(svm, vmcb12); 1122 1123 if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS)) 1124 vmcb12->control.next_rip = vmcb02->control.next_rip; 1125 1126 vmcb12->control.int_ctl = svm->nested.ctl.int_ctl; 1127 vmcb12->control.event_inj = svm->nested.ctl.event_inj; 1128 vmcb12->control.event_inj_err = svm->nested.ctl.event_inj_err; 1129 1130 if (!kvm_pause_in_guest(vcpu->kvm)) { 1131 vmcb01->control.pause_filter_count = vmcb02->control.pause_filter_count; 1132 vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS); 1133 1134 } 1135 1136 /* 1137 * Invalidate bus_lock_rip unless KVM is still waiting for the guest 1138 * to make forward progress before re-enabling bus lock detection. 1139 */ 1140 if (!vmcb02->control.bus_lock_counter) 1141 svm->nested.ctl.bus_lock_rip = INVALID_GPA; 1142 1143 nested_svm_copy_common_state(svm->nested.vmcb02.ptr, svm->vmcb01.ptr); 1144 1145 kvm_nested_vmexit_handle_ibrs(vcpu); 1146 1147 svm_switch_vmcb(svm, &svm->vmcb01); 1148 1149 /* 1150 * Rules for synchronizing int_ctl bits from vmcb02 to vmcb01: 1151 * 1152 * V_IRQ, V_IRQ_VECTOR, V_INTR_PRIO_MASK, V_IGN_TPR: If L1 doesn't 1153 * intercept interrupts, then KVM will use vmcb02's V_IRQ (and related 1154 * flags) to detect interrupt windows for L1 IRQs (even if L1 uses 1155 * virtual interrupt masking). Raise KVM_REQ_EVENT to ensure that 1156 * KVM re-requests an interrupt window if necessary, which implicitly 1157 * copies this bits from vmcb02 to vmcb01. 1158 * 1159 * V_TPR: If L1 doesn't use virtual interrupt masking, then L1's vTPR 1160 * is stored in vmcb02, but its value doesn't need to be copied from/to 1161 * vmcb01 because it is copied from/to the virtual APIC's TPR register 1162 * on each VM entry/exit. 1163 * 1164 * V_GIF: If nested vGIF is not used, KVM uses vmcb02's V_GIF for L1's 1165 * V_GIF. However, GIF is architecturally clear on each VM exit, thus 1166 * there is no need to copy V_GIF from vmcb02 to vmcb01. 1167 */ 1168 if (!nested_exit_on_intr(svm)) 1169 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 1170 1171 if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 1172 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) { 1173 svm_copy_lbrs(vmcb12, vmcb02); 1174 svm_update_lbrv(vcpu); 1175 } else if (unlikely(vmcb01->control.virt_ext & LBR_CTL_ENABLE_MASK)) { 1176 svm_copy_lbrs(vmcb01, vmcb02); 1177 svm_update_lbrv(vcpu); 1178 } 1179 1180 if (vnmi) { 1181 if (vmcb02->control.int_ctl & V_NMI_BLOCKING_MASK) 1182 vmcb01->control.int_ctl |= V_NMI_BLOCKING_MASK; 1183 else 1184 vmcb01->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 1185 1186 if (vcpu->arch.nmi_pending) { 1187 vcpu->arch.nmi_pending--; 1188 vmcb01->control.int_ctl |= V_NMI_PENDING_MASK; 1189 } else { 1190 vmcb01->control.int_ctl &= ~V_NMI_PENDING_MASK; 1191 } 1192 } 1193 1194 /* 1195 * On vmexit the GIF is set to false and 1196 * no event can be injected in L1. 1197 */ 1198 svm_set_gif(svm, false); 1199 vmcb01->control.exit_int_info = 0; 1200 1201 svm->vcpu.arch.tsc_offset = svm->vcpu.arch.l1_tsc_offset; 1202 if (vmcb01->control.tsc_offset != svm->vcpu.arch.tsc_offset) { 1203 vmcb01->control.tsc_offset = svm->vcpu.arch.tsc_offset; 1204 vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS); 1205 } 1206 1207 if (kvm_caps.has_tsc_control && 1208 vcpu->arch.tsc_scaling_ratio != vcpu->arch.l1_tsc_scaling_ratio) { 1209 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio; 1210 svm_write_tsc_multiplier(vcpu); 1211 } 1212 1213 svm->nested.ctl.nested_cr3 = 0; 1214 1215 /* 1216 * Restore processor state that had been saved in vmcb01 1217 */ 1218 kvm_set_rflags(vcpu, vmcb01->save.rflags); 1219 svm_set_efer(vcpu, vmcb01->save.efer); 1220 svm_set_cr0(vcpu, vmcb01->save.cr0 | X86_CR0_PE); 1221 svm_set_cr4(vcpu, vmcb01->save.cr4); 1222 kvm_rax_write(vcpu, vmcb01->save.rax); 1223 kvm_rsp_write(vcpu, vmcb01->save.rsp); 1224 kvm_rip_write(vcpu, vmcb01->save.rip); 1225 1226 svm->vcpu.arch.dr7 = DR7_FIXED_1; 1227 kvm_update_dr7(&svm->vcpu); 1228 1229 trace_kvm_nested_vmexit_inject(vmcb12->control.exit_code, 1230 vmcb12->control.exit_info_1, 1231 vmcb12->control.exit_info_2, 1232 vmcb12->control.exit_int_info, 1233 vmcb12->control.exit_int_info_err, 1234 KVM_ISA_SVM); 1235 1236 kvm_vcpu_unmap(vcpu, &map); 1237 1238 nested_svm_transition_tlb_flush(vcpu); 1239 1240 nested_svm_uninit_mmu_context(vcpu); 1241 1242 rc = nested_svm_load_cr3(vcpu, vmcb01->save.cr3, false, true); 1243 if (rc) 1244 return 1; 1245 1246 /* 1247 * Drop what we picked up for L2 via svm_complete_interrupts() so it 1248 * doesn't end up in L1. 1249 */ 1250 svm->vcpu.arch.nmi_injected = false; 1251 kvm_clear_exception_queue(vcpu); 1252 kvm_clear_interrupt_queue(vcpu); 1253 1254 /* 1255 * If we are here following the completion of a VMRUN that 1256 * is being single-stepped, queue the pending #DB intercept 1257 * right now so that it an be accounted for before we execute 1258 * L1's next instruction. 1259 */ 1260 if (unlikely(vmcb01->save.rflags & X86_EFLAGS_TF)) 1261 kvm_queue_exception(&(svm->vcpu), DB_VECTOR); 1262 1263 /* 1264 * Un-inhibit the AVIC right away, so that other vCPUs can start 1265 * to benefit from it right away. 1266 */ 1267 if (kvm_apicv_activated(vcpu->kvm)) 1268 __kvm_vcpu_update_apicv(vcpu); 1269 1270 return 0; 1271 } 1272 1273 static void nested_svm_triple_fault(struct kvm_vcpu *vcpu) 1274 { 1275 struct vcpu_svm *svm = to_svm(vcpu); 1276 1277 if (!vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SHUTDOWN)) 1278 return; 1279 1280 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 1281 nested_svm_simple_vmexit(to_svm(vcpu), SVM_EXIT_SHUTDOWN); 1282 } 1283 1284 int svm_allocate_nested(struct vcpu_svm *svm) 1285 { 1286 struct page *vmcb02_page; 1287 1288 if (svm->nested.initialized) 1289 return 0; 1290 1291 vmcb02_page = snp_safe_alloc_page(); 1292 if (!vmcb02_page) 1293 return -ENOMEM; 1294 svm->nested.vmcb02.ptr = page_address(vmcb02_page); 1295 svm->nested.vmcb02.pa = __sme_set(page_to_pfn(vmcb02_page) << PAGE_SHIFT); 1296 1297 svm->nested.msrpm = svm_vcpu_alloc_msrpm(); 1298 if (!svm->nested.msrpm) 1299 goto err_free_vmcb02; 1300 1301 svm->nested.initialized = true; 1302 return 0; 1303 1304 err_free_vmcb02: 1305 __free_page(vmcb02_page); 1306 return -ENOMEM; 1307 } 1308 1309 void svm_free_nested(struct vcpu_svm *svm) 1310 { 1311 if (!svm->nested.initialized) 1312 return; 1313 1314 if (WARN_ON_ONCE(svm->vmcb != svm->vmcb01.ptr)) 1315 svm_switch_vmcb(svm, &svm->vmcb01); 1316 1317 svm_vcpu_free_msrpm(svm->nested.msrpm); 1318 svm->nested.msrpm = NULL; 1319 1320 __free_page(virt_to_page(svm->nested.vmcb02.ptr)); 1321 svm->nested.vmcb02.ptr = NULL; 1322 1323 /* 1324 * When last_vmcb12_gpa matches the current vmcb12 gpa, 1325 * some vmcb12 fields are not loaded if they are marked clean 1326 * in the vmcb12, since in this case they are up to date already. 1327 * 1328 * When the vmcb02 is freed, this optimization becomes invalid. 1329 */ 1330 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1331 1332 svm->nested.initialized = false; 1333 } 1334 1335 void svm_leave_nested(struct kvm_vcpu *vcpu) 1336 { 1337 struct vcpu_svm *svm = to_svm(vcpu); 1338 1339 if (is_guest_mode(vcpu)) { 1340 svm->nested.nested_run_pending = 0; 1341 svm->nested.vmcb12_gpa = INVALID_GPA; 1342 1343 leave_guest_mode(vcpu); 1344 1345 svm_switch_vmcb(svm, &svm->vmcb01); 1346 1347 nested_svm_uninit_mmu_context(vcpu); 1348 vmcb_mark_all_dirty(svm->vmcb); 1349 1350 if (kvm_apicv_activated(vcpu->kvm)) 1351 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 1352 } 1353 1354 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 1355 } 1356 1357 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) 1358 { 1359 gpa_t base = svm->nested.ctl.msrpm_base_pa; 1360 int write, bit_nr; 1361 u8 value, mask; 1362 u32 msr; 1363 1364 if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))) 1365 return NESTED_EXIT_HOST; 1366 1367 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 1368 bit_nr = svm_msrpm_bit_nr(msr); 1369 write = svm->vmcb->control.exit_info_1 & 1; 1370 1371 if (bit_nr < 0) 1372 return NESTED_EXIT_DONE; 1373 1374 if (kvm_vcpu_read_guest(&svm->vcpu, base + bit_nr / BITS_PER_BYTE, 1375 &value, sizeof(value))) 1376 return NESTED_EXIT_DONE; 1377 1378 mask = BIT(write) << (bit_nr & (BITS_PER_BYTE - 1)); 1379 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; 1380 } 1381 1382 static int nested_svm_intercept_ioio(struct vcpu_svm *svm) 1383 { 1384 unsigned port, size, iopm_len; 1385 u16 val, mask; 1386 u8 start_bit; 1387 u64 gpa; 1388 1389 if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_IOIO_PROT))) 1390 return NESTED_EXIT_HOST; 1391 1392 port = svm->vmcb->control.exit_info_1 >> 16; 1393 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >> 1394 SVM_IOIO_SIZE_SHIFT; 1395 gpa = svm->nested.ctl.iopm_base_pa + (port / 8); 1396 start_bit = port % 8; 1397 iopm_len = (start_bit + size > 8) ? 2 : 1; 1398 mask = (0xf >> (4 - size)) << start_bit; 1399 val = 0; 1400 1401 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len)) 1402 return NESTED_EXIT_DONE; 1403 1404 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; 1405 } 1406 1407 static int nested_svm_intercept(struct vcpu_svm *svm) 1408 { 1409 u32 exit_code = svm->vmcb->control.exit_code; 1410 int vmexit = NESTED_EXIT_HOST; 1411 1412 switch (exit_code) { 1413 case SVM_EXIT_MSR: 1414 vmexit = nested_svm_exit_handled_msr(svm); 1415 break; 1416 case SVM_EXIT_IOIO: 1417 vmexit = nested_svm_intercept_ioio(svm); 1418 break; 1419 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: { 1420 if (vmcb12_is_intercept(&svm->nested.ctl, exit_code)) 1421 vmexit = NESTED_EXIT_DONE; 1422 break; 1423 } 1424 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: { 1425 if (vmcb12_is_intercept(&svm->nested.ctl, exit_code)) 1426 vmexit = NESTED_EXIT_DONE; 1427 break; 1428 } 1429 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { 1430 /* 1431 * Host-intercepted exceptions have been checked already in 1432 * nested_svm_exit_special. There is nothing to do here, 1433 * the vmexit is injected by svm_check_nested_events. 1434 */ 1435 vmexit = NESTED_EXIT_DONE; 1436 break; 1437 } 1438 case SVM_EXIT_ERR: { 1439 vmexit = NESTED_EXIT_DONE; 1440 break; 1441 } 1442 default: { 1443 if (vmcb12_is_intercept(&svm->nested.ctl, exit_code)) 1444 vmexit = NESTED_EXIT_DONE; 1445 } 1446 } 1447 1448 return vmexit; 1449 } 1450 1451 int nested_svm_exit_handled(struct vcpu_svm *svm) 1452 { 1453 int vmexit; 1454 1455 vmexit = nested_svm_intercept(svm); 1456 1457 if (vmexit == NESTED_EXIT_DONE) 1458 nested_svm_vmexit(svm); 1459 1460 return vmexit; 1461 } 1462 1463 int nested_svm_check_permissions(struct kvm_vcpu *vcpu) 1464 { 1465 if (!(vcpu->arch.efer & EFER_SVME) || !is_paging(vcpu)) { 1466 kvm_queue_exception(vcpu, UD_VECTOR); 1467 return 1; 1468 } 1469 1470 if (to_svm(vcpu)->vmcb->save.cpl) { 1471 kvm_inject_gp(vcpu, 0); 1472 return 1; 1473 } 1474 1475 return 0; 1476 } 1477 1478 static bool nested_svm_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector, 1479 u32 error_code) 1480 { 1481 struct vcpu_svm *svm = to_svm(vcpu); 1482 1483 return (svm->nested.ctl.intercepts[INTERCEPT_EXCEPTION] & BIT(vector)); 1484 } 1485 1486 static void nested_svm_inject_exception_vmexit(struct kvm_vcpu *vcpu) 1487 { 1488 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 1489 struct vcpu_svm *svm = to_svm(vcpu); 1490 struct vmcb *vmcb = svm->vmcb; 1491 1492 vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + ex->vector; 1493 vmcb->control.exit_code_hi = 0; 1494 1495 if (ex->has_error_code) 1496 vmcb->control.exit_info_1 = ex->error_code; 1497 1498 /* 1499 * EXITINFO2 is undefined for all exception intercepts other 1500 * than #PF. 1501 */ 1502 if (ex->vector == PF_VECTOR) { 1503 if (ex->has_payload) 1504 vmcb->control.exit_info_2 = ex->payload; 1505 else 1506 vmcb->control.exit_info_2 = vcpu->arch.cr2; 1507 } else if (ex->vector == DB_VECTOR) { 1508 /* See kvm_check_and_inject_events(). */ 1509 kvm_deliver_exception_payload(vcpu, ex); 1510 1511 if (vcpu->arch.dr7 & DR7_GD) { 1512 vcpu->arch.dr7 &= ~DR7_GD; 1513 kvm_update_dr7(vcpu); 1514 } 1515 } else { 1516 WARN_ON(ex->has_payload); 1517 } 1518 1519 nested_svm_vmexit(svm); 1520 } 1521 1522 static inline bool nested_exit_on_init(struct vcpu_svm *svm) 1523 { 1524 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INIT); 1525 } 1526 1527 static int svm_check_nested_events(struct kvm_vcpu *vcpu) 1528 { 1529 struct kvm_lapic *apic = vcpu->arch.apic; 1530 struct vcpu_svm *svm = to_svm(vcpu); 1531 /* 1532 * Only a pending nested run blocks a pending exception. If there is a 1533 * previously injected event, the pending exception occurred while said 1534 * event was being delivered and thus needs to be handled. 1535 */ 1536 bool block_nested_exceptions = svm->nested.nested_run_pending; 1537 /* 1538 * New events (not exceptions) are only recognized at instruction 1539 * boundaries. If an event needs reinjection, then KVM is handling a 1540 * VM-Exit that occurred _during_ instruction execution; new events are 1541 * blocked until the instruction completes. 1542 */ 1543 bool block_nested_events = block_nested_exceptions || 1544 kvm_event_needs_reinjection(vcpu); 1545 1546 if (lapic_in_kernel(vcpu) && 1547 test_bit(KVM_APIC_INIT, &apic->pending_events)) { 1548 if (block_nested_events) 1549 return -EBUSY; 1550 if (!nested_exit_on_init(svm)) 1551 return 0; 1552 nested_svm_simple_vmexit(svm, SVM_EXIT_INIT); 1553 return 0; 1554 } 1555 1556 if (vcpu->arch.exception_vmexit.pending) { 1557 if (block_nested_exceptions) 1558 return -EBUSY; 1559 nested_svm_inject_exception_vmexit(vcpu); 1560 return 0; 1561 } 1562 1563 if (vcpu->arch.exception.pending) { 1564 if (block_nested_exceptions) 1565 return -EBUSY; 1566 return 0; 1567 } 1568 1569 #ifdef CONFIG_KVM_SMM 1570 if (vcpu->arch.smi_pending && !svm_smi_blocked(vcpu)) { 1571 if (block_nested_events) 1572 return -EBUSY; 1573 if (!nested_exit_on_smi(svm)) 1574 return 0; 1575 nested_svm_simple_vmexit(svm, SVM_EXIT_SMI); 1576 return 0; 1577 } 1578 #endif 1579 1580 if (vcpu->arch.nmi_pending && !svm_nmi_blocked(vcpu)) { 1581 if (block_nested_events) 1582 return -EBUSY; 1583 if (!nested_exit_on_nmi(svm)) 1584 return 0; 1585 nested_svm_simple_vmexit(svm, SVM_EXIT_NMI); 1586 return 0; 1587 } 1588 1589 if (kvm_cpu_has_interrupt(vcpu) && !svm_interrupt_blocked(vcpu)) { 1590 if (block_nested_events) 1591 return -EBUSY; 1592 if (!nested_exit_on_intr(svm)) 1593 return 0; 1594 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); 1595 nested_svm_simple_vmexit(svm, SVM_EXIT_INTR); 1596 return 0; 1597 } 1598 1599 return 0; 1600 } 1601 1602 int nested_svm_exit_special(struct vcpu_svm *svm) 1603 { 1604 u32 exit_code = svm->vmcb->control.exit_code; 1605 struct kvm_vcpu *vcpu = &svm->vcpu; 1606 1607 switch (exit_code) { 1608 case SVM_EXIT_INTR: 1609 case SVM_EXIT_NMI: 1610 case SVM_EXIT_NPF: 1611 return NESTED_EXIT_HOST; 1612 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { 1613 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); 1614 1615 if (svm->vmcb01.ptr->control.intercepts[INTERCEPT_EXCEPTION] & 1616 excp_bits) 1617 return NESTED_EXIT_HOST; 1618 else if (exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR && 1619 svm->vcpu.arch.apf.host_apf_flags) 1620 /* Trap async PF even if not shadowing */ 1621 return NESTED_EXIT_HOST; 1622 break; 1623 } 1624 case SVM_EXIT_VMMCALL: 1625 /* Hyper-V L2 TLB flush hypercall is handled by L0 */ 1626 if (guest_hv_cpuid_has_l2_tlb_flush(vcpu) && 1627 nested_svm_l2_tlb_flush_enabled(vcpu) && 1628 kvm_hv_is_tlb_flush_hcall(vcpu)) 1629 return NESTED_EXIT_HOST; 1630 break; 1631 default: 1632 break; 1633 } 1634 1635 return NESTED_EXIT_CONTINUE; 1636 } 1637 1638 void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu) 1639 { 1640 struct vcpu_svm *svm = to_svm(vcpu); 1641 1642 vcpu->arch.tsc_scaling_ratio = 1643 kvm_calc_nested_tsc_multiplier(vcpu->arch.l1_tsc_scaling_ratio, 1644 svm->tsc_ratio_msr); 1645 svm_write_tsc_multiplier(vcpu); 1646 } 1647 1648 /* Inverse operation of nested_copy_vmcb_control_to_cache(). asid is copied too. */ 1649 static void nested_copy_vmcb_cache_to_control(struct vmcb_control_area *dst, 1650 struct vmcb_ctrl_area_cached *from) 1651 { 1652 unsigned int i; 1653 1654 memset(dst, 0, sizeof(struct vmcb_control_area)); 1655 1656 for (i = 0; i < MAX_INTERCEPT; i++) 1657 dst->intercepts[i] = from->intercepts[i]; 1658 1659 dst->iopm_base_pa = from->iopm_base_pa; 1660 dst->msrpm_base_pa = from->msrpm_base_pa; 1661 dst->tsc_offset = from->tsc_offset; 1662 dst->asid = from->asid; 1663 dst->tlb_ctl = from->tlb_ctl; 1664 dst->int_ctl = from->int_ctl; 1665 dst->int_vector = from->int_vector; 1666 dst->int_state = from->int_state; 1667 dst->exit_code = from->exit_code; 1668 dst->exit_code_hi = from->exit_code_hi; 1669 dst->exit_info_1 = from->exit_info_1; 1670 dst->exit_info_2 = from->exit_info_2; 1671 dst->exit_int_info = from->exit_int_info; 1672 dst->exit_int_info_err = from->exit_int_info_err; 1673 dst->nested_ctl = from->nested_ctl; 1674 dst->event_inj = from->event_inj; 1675 dst->event_inj_err = from->event_inj_err; 1676 dst->next_rip = from->next_rip; 1677 dst->nested_cr3 = from->nested_cr3; 1678 dst->virt_ext = from->virt_ext; 1679 dst->pause_filter_count = from->pause_filter_count; 1680 dst->pause_filter_thresh = from->pause_filter_thresh; 1681 /* 'clean' and 'hv_enlightenments' are not changed by KVM */ 1682 } 1683 1684 static int svm_get_nested_state(struct kvm_vcpu *vcpu, 1685 struct kvm_nested_state __user *user_kvm_nested_state, 1686 u32 user_data_size) 1687 { 1688 struct vcpu_svm *svm; 1689 struct vmcb_control_area *ctl; 1690 unsigned long r; 1691 struct kvm_nested_state kvm_state = { 1692 .flags = 0, 1693 .format = KVM_STATE_NESTED_FORMAT_SVM, 1694 .size = sizeof(kvm_state), 1695 }; 1696 struct vmcb __user *user_vmcb = (struct vmcb __user *) 1697 &user_kvm_nested_state->data.svm[0]; 1698 1699 if (!vcpu) 1700 return kvm_state.size + KVM_STATE_NESTED_SVM_VMCB_SIZE; 1701 1702 svm = to_svm(vcpu); 1703 1704 if (user_data_size < kvm_state.size) 1705 goto out; 1706 1707 /* First fill in the header and copy it out. */ 1708 if (is_guest_mode(vcpu)) { 1709 kvm_state.hdr.svm.vmcb_pa = svm->nested.vmcb12_gpa; 1710 kvm_state.size += KVM_STATE_NESTED_SVM_VMCB_SIZE; 1711 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; 1712 1713 if (svm->nested.nested_run_pending) 1714 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; 1715 } 1716 1717 if (gif_set(svm)) 1718 kvm_state.flags |= KVM_STATE_NESTED_GIF_SET; 1719 1720 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) 1721 return -EFAULT; 1722 1723 if (!is_guest_mode(vcpu)) 1724 goto out; 1725 1726 /* 1727 * Copy over the full size of the VMCB rather than just the size 1728 * of the structs. 1729 */ 1730 if (clear_user(user_vmcb, KVM_STATE_NESTED_SVM_VMCB_SIZE)) 1731 return -EFAULT; 1732 1733 ctl = kzalloc(sizeof(*ctl), GFP_KERNEL); 1734 if (!ctl) 1735 return -ENOMEM; 1736 1737 nested_copy_vmcb_cache_to_control(ctl, &svm->nested.ctl); 1738 r = copy_to_user(&user_vmcb->control, ctl, 1739 sizeof(user_vmcb->control)); 1740 kfree(ctl); 1741 if (r) 1742 return -EFAULT; 1743 1744 if (copy_to_user(&user_vmcb->save, &svm->vmcb01.ptr->save, 1745 sizeof(user_vmcb->save))) 1746 return -EFAULT; 1747 out: 1748 return kvm_state.size; 1749 } 1750 1751 static int svm_set_nested_state(struct kvm_vcpu *vcpu, 1752 struct kvm_nested_state __user *user_kvm_nested_state, 1753 struct kvm_nested_state *kvm_state) 1754 { 1755 struct vcpu_svm *svm = to_svm(vcpu); 1756 struct vmcb __user *user_vmcb = (struct vmcb __user *) 1757 &user_kvm_nested_state->data.svm[0]; 1758 struct vmcb_control_area *ctl; 1759 struct vmcb_save_area *save; 1760 struct vmcb_save_area_cached save_cached; 1761 struct vmcb_ctrl_area_cached ctl_cached; 1762 unsigned long cr0; 1763 int ret; 1764 1765 BUILD_BUG_ON(sizeof(struct vmcb_control_area) + sizeof(struct vmcb_save_area) > 1766 KVM_STATE_NESTED_SVM_VMCB_SIZE); 1767 1768 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_SVM) 1769 return -EINVAL; 1770 1771 if (kvm_state->flags & ~(KVM_STATE_NESTED_GUEST_MODE | 1772 KVM_STATE_NESTED_RUN_PENDING | 1773 KVM_STATE_NESTED_GIF_SET)) 1774 return -EINVAL; 1775 1776 /* 1777 * If in guest mode, vcpu->arch.efer actually refers to the L2 guest's 1778 * EFER.SVME, but EFER.SVME still has to be 1 for VMRUN to succeed. 1779 */ 1780 if (!(vcpu->arch.efer & EFER_SVME)) { 1781 /* GIF=1 and no guest mode are required if SVME=0. */ 1782 if (kvm_state->flags != KVM_STATE_NESTED_GIF_SET) 1783 return -EINVAL; 1784 } 1785 1786 /* SMM temporarily disables SVM, so we cannot be in guest mode. */ 1787 if (is_smm(vcpu) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) 1788 return -EINVAL; 1789 1790 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) { 1791 svm_leave_nested(vcpu); 1792 svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET)); 1793 return 0; 1794 } 1795 1796 if (!page_address_valid(vcpu, kvm_state->hdr.svm.vmcb_pa)) 1797 return -EINVAL; 1798 if (kvm_state->size < sizeof(*kvm_state) + KVM_STATE_NESTED_SVM_VMCB_SIZE) 1799 return -EINVAL; 1800 1801 ret = -ENOMEM; 1802 ctl = kzalloc(sizeof(*ctl), GFP_KERNEL); 1803 save = kzalloc(sizeof(*save), GFP_KERNEL); 1804 if (!ctl || !save) 1805 goto out_free; 1806 1807 ret = -EFAULT; 1808 if (copy_from_user(ctl, &user_vmcb->control, sizeof(*ctl))) 1809 goto out_free; 1810 if (copy_from_user(save, &user_vmcb->save, sizeof(*save))) 1811 goto out_free; 1812 1813 ret = -EINVAL; 1814 __nested_copy_vmcb_control_to_cache(vcpu, &ctl_cached, ctl); 1815 if (!__nested_vmcb_check_controls(vcpu, &ctl_cached)) 1816 goto out_free; 1817 1818 /* 1819 * Processor state contains L2 state. Check that it is 1820 * valid for guest mode (see nested_vmcb_check_save). 1821 */ 1822 cr0 = kvm_read_cr0(vcpu); 1823 if (((cr0 & X86_CR0_CD) == 0) && (cr0 & X86_CR0_NW)) 1824 goto out_free; 1825 1826 /* 1827 * Validate host state saved from before VMRUN (see 1828 * nested_svm_check_permissions). 1829 */ 1830 __nested_copy_vmcb_save_to_cache(&save_cached, save); 1831 if (!(save->cr0 & X86_CR0_PG) || 1832 !(save->cr0 & X86_CR0_PE) || 1833 (save->rflags & X86_EFLAGS_VM) || 1834 !__nested_vmcb_check_save(vcpu, &save_cached)) 1835 goto out_free; 1836 1837 1838 /* 1839 * All checks done, we can enter guest mode. Userspace provides 1840 * vmcb12.control, which will be combined with L1 and stored into 1841 * vmcb02, and the L1 save state which we store in vmcb01. 1842 * L2 registers if needed are moved from the current VMCB to VMCB02. 1843 */ 1844 1845 if (is_guest_mode(vcpu)) 1846 svm_leave_nested(vcpu); 1847 else 1848 svm->nested.vmcb02.ptr->save = svm->vmcb01.ptr->save; 1849 1850 svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET)); 1851 1852 svm->nested.nested_run_pending = 1853 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); 1854 1855 svm->nested.vmcb12_gpa = kvm_state->hdr.svm.vmcb_pa; 1856 1857 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, save); 1858 nested_copy_vmcb_control_to_cache(svm, ctl); 1859 1860 svm_switch_vmcb(svm, &svm->nested.vmcb02); 1861 nested_vmcb02_prepare_control(svm, svm->vmcb->save.rip, svm->vmcb->save.cs.base); 1862 1863 /* 1864 * While the nested guest CR3 is already checked and set by 1865 * KVM_SET_SREGS, it was set when nested state was yet loaded, 1866 * thus MMU might not be initialized correctly. 1867 * Set it again to fix this. 1868 */ 1869 1870 ret = nested_svm_load_cr3(&svm->vcpu, vcpu->arch.cr3, 1871 nested_npt_enabled(svm), false); 1872 if (WARN_ON_ONCE(ret)) 1873 goto out_free; 1874 1875 svm->nested.force_msr_bitmap_recalc = true; 1876 1877 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 1878 ret = 0; 1879 out_free: 1880 kfree(save); 1881 kfree(ctl); 1882 1883 return ret; 1884 } 1885 1886 static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu) 1887 { 1888 if (WARN_ON(!is_guest_mode(vcpu))) 1889 return true; 1890 1891 if (!vcpu->arch.pdptrs_from_userspace && 1892 !nested_npt_enabled(to_svm(vcpu)) && is_pae_paging(vcpu)) 1893 /* 1894 * Reload the guest's PDPTRs since after a migration 1895 * the guest CR3 might be restored prior to setting the nested 1896 * state which can lead to a load of wrong PDPTRs. 1897 */ 1898 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3))) 1899 return false; 1900 1901 if (!nested_svm_merge_msrpm(vcpu)) { 1902 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1903 vcpu->run->internal.suberror = 1904 KVM_INTERNAL_ERROR_EMULATION; 1905 vcpu->run->internal.ndata = 0; 1906 return false; 1907 } 1908 1909 if (kvm_hv_verify_vp_assist(vcpu)) 1910 return false; 1911 1912 return true; 1913 } 1914 1915 struct kvm_x86_nested_ops svm_nested_ops = { 1916 .leave_nested = svm_leave_nested, 1917 .is_exception_vmexit = nested_svm_is_exception_vmexit, 1918 .check_events = svm_check_nested_events, 1919 .triple_fault = nested_svm_triple_fault, 1920 .get_nested_state_pages = svm_get_nested_state_pages, 1921 .get_state = svm_get_nested_state, 1922 .set_state = svm_set_nested_state, 1923 .hv_inject_synthetic_vmexit_post_tlb_flush = svm_hv_inject_synthetic_vmexit_post_tlb_flush, 1924 }; 1925