xref: /linux/arch/x86/kvm/reverse_cpuid.h (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
4 
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
8 
9 /*
10  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
11  * unknown to the kernel, but need to be directly used by KVM.  Note, these
12  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
13  */
14 enum kvm_only_cpuid_leafs {
15 	CPUID_12_EAX	 = NCAPINTS,
16 	CPUID_7_1_EDX,
17 	CPUID_8000_0007_EDX,
18 	CPUID_8000_0022_EAX,
19 	CPUID_7_2_EDX,
20 	NR_KVM_CPU_CAPS,
21 
22 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
23 };
24 
25 /*
26  * Define a KVM-only feature flag.
27  *
28  * For features that are scattered by cpufeatures.h, __feature_translate() also
29  * needs to be updated to translate the kernel-defined feature into the
30  * KVM-defined feature.
31  *
32  * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
33  * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
34  * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
35  * needed in this case.
36  */
37 #define KVM_X86_FEATURE(w, f)		((w)*32 + (f))
38 
39 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
40 #define KVM_X86_FEATURE_SGX1		KVM_X86_FEATURE(CPUID_12_EAX, 0)
41 #define KVM_X86_FEATURE_SGX2		KVM_X86_FEATURE(CPUID_12_EAX, 1)
42 #define KVM_X86_FEATURE_SGX_EDECCSSA	KVM_X86_FEATURE(CPUID_12_EAX, 11)
43 
44 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
45 #define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
46 #define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
47 #define X86_FEATURE_AMX_COMPLEX         KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
48 #define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
49 
50 /* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */
51 #define X86_FEATURE_INTEL_PSFD		KVM_X86_FEATURE(CPUID_7_2_EDX, 0)
52 #define X86_FEATURE_IPRED_CTRL		KVM_X86_FEATURE(CPUID_7_2_EDX, 1)
53 #define KVM_X86_FEATURE_RRSBA_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 2)
54 #define X86_FEATURE_DDPD_U		KVM_X86_FEATURE(CPUID_7_2_EDX, 3)
55 #define KVM_X86_FEATURE_BHI_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 4)
56 #define X86_FEATURE_MCDT_NO		KVM_X86_FEATURE(CPUID_7_2_EDX, 5)
57 
58 /* CPUID level 0x80000007 (EDX). */
59 #define KVM_X86_FEATURE_CONSTANT_TSC	KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
60 
61 /* CPUID level 0x80000022 (EAX) */
62 #define KVM_X86_FEATURE_PERFMON_V2	KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
63 
64 struct cpuid_reg {
65 	u32 function;
66 	u32 index;
67 	int reg;
68 };
69 
70 static const struct cpuid_reg reverse_cpuid[] = {
71 	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
72 	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
73 	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
74 	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
75 	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
76 	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
77 	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
78 	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
79 	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
80 	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
81 	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
82 	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
83 	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
84 	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
85 	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
86 	[CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
87 	[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
88 	[CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
89 	[CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
90 	[CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
91 	[CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
92 	[CPUID_7_2_EDX]       = {         7, 2, CPUID_EDX},
93 };
94 
95 /*
96  * Reverse CPUID and its derivatives can only be used for hardware-defined
97  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
98  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
99  * is nonsensical as the bit number/mask is an arbitrary software-defined value
100  * and can't be used by KVM to query/control guest capabilities.  And obviously
101  * the leaf being queried must have an entry in the lookup table.
102  */
103 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
104 {
105 	BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS);
106 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
107 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
108 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
109 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
110 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_5);
111 	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
112 	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
113 }
114 
115 /*
116  * Translate feature bits that are scattered in the kernel's cpufeatures word
117  * into KVM feature words that align with hardware's definitions.
118  */
119 static __always_inline u32 __feature_translate(int x86_feature)
120 {
121 #define KVM_X86_TRANSLATE_FEATURE(f)	\
122 	case X86_FEATURE_##f: return KVM_X86_FEATURE_##f
123 
124 	switch (x86_feature) {
125 	KVM_X86_TRANSLATE_FEATURE(SGX1);
126 	KVM_X86_TRANSLATE_FEATURE(SGX2);
127 	KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA);
128 	KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC);
129 	KVM_X86_TRANSLATE_FEATURE(PERFMON_V2);
130 	KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL);
131 	KVM_X86_TRANSLATE_FEATURE(BHI_CTRL);
132 	default:
133 		return x86_feature;
134 	}
135 }
136 
137 static __always_inline u32 __feature_leaf(int x86_feature)
138 {
139 	return __feature_translate(x86_feature) / 32;
140 }
141 
142 /*
143  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
144  * the hardware defined bit number (stored in bits 4:0) and a software defined
145  * "word" (stored in bits 31:5).  The word is used to index into arrays of
146  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
147  */
148 static __always_inline u32 __feature_bit(int x86_feature)
149 {
150 	x86_feature = __feature_translate(x86_feature);
151 
152 	reverse_cpuid_check(x86_feature / 32);
153 	return 1 << (x86_feature & 31);
154 }
155 
156 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
157 
158 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
159 {
160 	unsigned int x86_leaf = __feature_leaf(x86_feature);
161 
162 	reverse_cpuid_check(x86_leaf);
163 	return reverse_cpuid[x86_leaf];
164 }
165 
166 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
167 						  u32 reg)
168 {
169 	switch (reg) {
170 	case CPUID_EAX:
171 		return &entry->eax;
172 	case CPUID_EBX:
173 		return &entry->ebx;
174 	case CPUID_ECX:
175 		return &entry->ecx;
176 	case CPUID_EDX:
177 		return &entry->edx;
178 	default:
179 		BUILD_BUG();
180 		return NULL;
181 	}
182 }
183 
184 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
185 						unsigned int x86_feature)
186 {
187 	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
188 
189 	return __cpuid_entry_get_reg(entry, cpuid.reg);
190 }
191 
192 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
193 					   unsigned int x86_feature)
194 {
195 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
196 
197 	return *reg & __feature_bit(x86_feature);
198 }
199 
200 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
201 					    unsigned int x86_feature)
202 {
203 	return cpuid_entry_get(entry, x86_feature);
204 }
205 
206 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
207 					      unsigned int x86_feature)
208 {
209 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
210 
211 	*reg &= ~__feature_bit(x86_feature);
212 }
213 
214 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
215 					    unsigned int x86_feature)
216 {
217 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
218 
219 	*reg |= __feature_bit(x86_feature);
220 }
221 
222 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
223 					       unsigned int x86_feature,
224 					       bool set)
225 {
226 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
227 
228 	/*
229 	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
230 	 * compiler into using CMOV instead of Jcc when possible.
231 	 */
232 	if (set)
233 		*reg |= __feature_bit(x86_feature);
234 	else
235 		*reg &= ~__feature_bit(x86_feature);
236 }
237 
238 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
239