xref: /linux/arch/x86/kvm/reverse_cpuid.h (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
4 
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
8 
9 /*
10  * Define a KVM-only feature flag.
11  *
12  * For features that are scattered by cpufeatures.h, __feature_translate() also
13  * needs to be updated to translate the kernel-defined feature into the
14  * KVM-defined feature.
15  *
16  * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
17  * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
18  * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
19  * needed in this case.
20  */
21 #define KVM_X86_FEATURE(w, f)		((w)*32 + (f))
22 
23 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
24 #define KVM_X86_FEATURE_SGX1		KVM_X86_FEATURE(CPUID_12_EAX, 0)
25 #define KVM_X86_FEATURE_SGX2		KVM_X86_FEATURE(CPUID_12_EAX, 1)
26 #define KVM_X86_FEATURE_SGX_EDECCSSA	KVM_X86_FEATURE(CPUID_12_EAX, 11)
27 
28 /* Intel-defined sub-features, CPUID level 0x00000007:1 (ECX) */
29 #define KVM_X86_FEATURE_MSR_IMM		KVM_X86_FEATURE(CPUID_7_1_ECX, 5)
30 
31 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
32 #define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
33 #define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
34 #define X86_FEATURE_AMX_COMPLEX         KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
35 #define X86_FEATURE_AVX_VNNI_INT16      KVM_X86_FEATURE(CPUID_7_1_EDX, 10)
36 #define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
37 #define X86_FEATURE_AVX10               KVM_X86_FEATURE(CPUID_7_1_EDX, 19)
38 
39 /* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */
40 #define X86_FEATURE_INTEL_PSFD		KVM_X86_FEATURE(CPUID_7_2_EDX, 0)
41 #define X86_FEATURE_IPRED_CTRL		KVM_X86_FEATURE(CPUID_7_2_EDX, 1)
42 #define KVM_X86_FEATURE_RRSBA_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 2)
43 #define X86_FEATURE_DDPD_U		KVM_X86_FEATURE(CPUID_7_2_EDX, 3)
44 #define KVM_X86_FEATURE_BHI_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 4)
45 #define X86_FEATURE_MCDT_NO		KVM_X86_FEATURE(CPUID_7_2_EDX, 5)
46 
47 /* Intel-defined sub-features, CPUID level 0x00000024:0 (EBX) */
48 #define X86_FEATURE_AVX10_128		KVM_X86_FEATURE(CPUID_24_0_EBX, 16)
49 #define X86_FEATURE_AVX10_256		KVM_X86_FEATURE(CPUID_24_0_EBX, 17)
50 #define X86_FEATURE_AVX10_512		KVM_X86_FEATURE(CPUID_24_0_EBX, 18)
51 
52 /* CPUID level 0x80000007 (EDX). */
53 #define KVM_X86_FEATURE_CONSTANT_TSC	KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
54 
55 /* CPUID level 0x80000022 (EAX) */
56 #define KVM_X86_FEATURE_PERFMON_V2	KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
57 
58 /* CPUID level 0x80000021 (ECX) */
59 #define KVM_X86_FEATURE_TSA_SQ_NO	KVM_X86_FEATURE(CPUID_8000_0021_ECX, 1)
60 #define KVM_X86_FEATURE_TSA_L1_NO	KVM_X86_FEATURE(CPUID_8000_0021_ECX, 2)
61 
62 struct cpuid_reg {
63 	u32 function;
64 	u32 index;
65 	int reg;
66 };
67 
68 static const struct cpuid_reg reverse_cpuid[] = {
69 	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
70 	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
71 	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
72 	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
73 	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
74 	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
75 	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
76 	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
77 	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
78 	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
79 	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
80 	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
81 	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
82 	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
83 	[CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
84 	[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
85 	[CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
86 	[CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
87 	[CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
88 	[CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
89 	[CPUID_7_2_EDX]       = {         7, 2, CPUID_EDX},
90 	[CPUID_24_0_EBX]      = {      0x24, 0, CPUID_EBX},
91 	[CPUID_8000_0021_ECX] = {0x80000021, 0, CPUID_ECX},
92 	[CPUID_7_1_ECX]       = {         7, 1, CPUID_ECX},
93 };
94 
95 /*
96  * Reverse CPUID and its derivatives can only be used for hardware-defined
97  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
98  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
99  * is nonsensical as the bit number/mask is an arbitrary software-defined value
100  * and can't be used by KVM to query/control guest capabilities.  And obviously
101  * the leaf being queried must have an entry in the lookup table.
102  */
103 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
104 {
105 	BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS);
106 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
107 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
108 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
109 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
110 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_5);
111 	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
112 	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
113 }
114 
115 /*
116  * Translate feature bits that are scattered in the kernel's cpufeatures word
117  * into KVM feature words that align with hardware's definitions.
118  */
119 static __always_inline u32 __feature_translate(int x86_feature)
120 {
121 #define KVM_X86_TRANSLATE_FEATURE(f)	\
122 	case X86_FEATURE_##f: return KVM_X86_FEATURE_##f
123 
124 	switch (x86_feature) {
125 	KVM_X86_TRANSLATE_FEATURE(SGX1);
126 	KVM_X86_TRANSLATE_FEATURE(SGX2);
127 	KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA);
128 	KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC);
129 	KVM_X86_TRANSLATE_FEATURE(PERFMON_V2);
130 	KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL);
131 	KVM_X86_TRANSLATE_FEATURE(BHI_CTRL);
132 	KVM_X86_TRANSLATE_FEATURE(TSA_SQ_NO);
133 	KVM_X86_TRANSLATE_FEATURE(TSA_L1_NO);
134 	KVM_X86_TRANSLATE_FEATURE(MSR_IMM);
135 	default:
136 		return x86_feature;
137 	}
138 }
139 
140 static __always_inline u32 __feature_leaf(int x86_feature)
141 {
142 	u32 x86_leaf = __feature_translate(x86_feature) / 32;
143 
144 	reverse_cpuid_check(x86_leaf);
145 	return x86_leaf;
146 }
147 
148 /*
149  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
150  * the hardware defined bit number (stored in bits 4:0) and a software defined
151  * "word" (stored in bits 31:5).  The word is used to index into arrays of
152  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
153  */
154 static __always_inline u32 __feature_bit(int x86_feature)
155 {
156 	x86_feature = __feature_translate(x86_feature);
157 
158 	reverse_cpuid_check(x86_feature / 32);
159 	return 1 << (x86_feature & 31);
160 }
161 
162 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
163 
164 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
165 {
166 	unsigned int x86_leaf = __feature_leaf(x86_feature);
167 
168 	return reverse_cpuid[x86_leaf];
169 }
170 
171 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
172 						  u32 reg)
173 {
174 	switch (reg) {
175 	case CPUID_EAX:
176 		return &entry->eax;
177 	case CPUID_EBX:
178 		return &entry->ebx;
179 	case CPUID_ECX:
180 		return &entry->ecx;
181 	case CPUID_EDX:
182 		return &entry->edx;
183 	default:
184 		BUILD_BUG();
185 		return NULL;
186 	}
187 }
188 
189 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
190 						unsigned int x86_feature)
191 {
192 	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
193 
194 	return __cpuid_entry_get_reg(entry, cpuid.reg);
195 }
196 
197 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
198 					   unsigned int x86_feature)
199 {
200 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
201 
202 	return *reg & __feature_bit(x86_feature);
203 }
204 
205 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
206 					    unsigned int x86_feature)
207 {
208 	return cpuid_entry_get(entry, x86_feature);
209 }
210 
211 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
212 					      unsigned int x86_feature)
213 {
214 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
215 
216 	*reg &= ~__feature_bit(x86_feature);
217 }
218 
219 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
220 					    unsigned int x86_feature)
221 {
222 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
223 
224 	*reg |= __feature_bit(x86_feature);
225 }
226 
227 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
228 					       unsigned int x86_feature,
229 					       bool set)
230 {
231 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
232 
233 	/*
234 	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
235 	 * compiler into using CMOV instead of Jcc when possible.
236 	 */
237 	if (set)
238 		*reg |= __feature_bit(x86_feature);
239 	else
240 		*reg &= ~__feature_bit(x86_feature);
241 }
242 
243 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
244