1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H 3 #define ARCH_X86_KVM_REVERSE_CPUID_H 4 5 #include <uapi/asm/kvm.h> 6 #include <asm/cpufeature.h> 7 #include <asm/cpufeatures.h> 8 9 /* 10 * Define a KVM-only feature flag. 11 * 12 * For features that are scattered by cpufeatures.h, __feature_translate() also 13 * needs to be updated to translate the kernel-defined feature into the 14 * KVM-defined feature. 15 * 16 * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h, 17 * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so 18 * that X86_FEATURE_* can be used in KVM. No __feature_translate() handling is 19 * needed in this case. 20 */ 21 #define KVM_X86_FEATURE(w, f) ((w)*32 + (f)) 22 23 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */ 24 #define KVM_X86_FEATURE_SGX1 KVM_X86_FEATURE(CPUID_12_EAX, 0) 25 #define KVM_X86_FEATURE_SGX2 KVM_X86_FEATURE(CPUID_12_EAX, 1) 26 #define KVM_X86_FEATURE_SGX_EDECCSSA KVM_X86_FEATURE(CPUID_12_EAX, 11) 27 28 /* Intel-defined sub-features, CPUID level 0x00000007:1 (ECX) */ 29 #define KVM_X86_FEATURE_MSR_IMM KVM_X86_FEATURE(CPUID_7_1_ECX, 5) 30 31 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */ 32 #define X86_FEATURE_AVX_VNNI_INT8 KVM_X86_FEATURE(CPUID_7_1_EDX, 4) 33 #define X86_FEATURE_AVX_NE_CONVERT KVM_X86_FEATURE(CPUID_7_1_EDX, 5) 34 #define X86_FEATURE_AMX_COMPLEX KVM_X86_FEATURE(CPUID_7_1_EDX, 8) 35 #define X86_FEATURE_AVX_VNNI_INT16 KVM_X86_FEATURE(CPUID_7_1_EDX, 10) 36 #define X86_FEATURE_PREFETCHITI KVM_X86_FEATURE(CPUID_7_1_EDX, 14) 37 #define X86_FEATURE_AVX10 KVM_X86_FEATURE(CPUID_7_1_EDX, 19) 38 39 /* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */ 40 #define X86_FEATURE_INTEL_PSFD KVM_X86_FEATURE(CPUID_7_2_EDX, 0) 41 #define X86_FEATURE_IPRED_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 1) 42 #define KVM_X86_FEATURE_RRSBA_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 2) 43 #define X86_FEATURE_DDPD_U KVM_X86_FEATURE(CPUID_7_2_EDX, 3) 44 #define KVM_X86_FEATURE_BHI_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 4) 45 #define X86_FEATURE_MCDT_NO KVM_X86_FEATURE(CPUID_7_2_EDX, 5) 46 47 /* Intel-defined sub-features, CPUID level 0x00000024:0 (EBX) */ 48 #define X86_FEATURE_AVX10_128 KVM_X86_FEATURE(CPUID_24_0_EBX, 16) 49 #define X86_FEATURE_AVX10_256 KVM_X86_FEATURE(CPUID_24_0_EBX, 17) 50 #define X86_FEATURE_AVX10_512 KVM_X86_FEATURE(CPUID_24_0_EBX, 18) 51 52 /* CPUID level 0x80000007 (EDX). */ 53 #define KVM_X86_FEATURE_CONSTANT_TSC KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8) 54 55 /* CPUID level 0x80000022 (EAX) */ 56 #define KVM_X86_FEATURE_PERFMON_V2 KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0) 57 58 /* CPUID level 0x80000021 (ECX) */ 59 #define KVM_X86_FEATURE_TSA_SQ_NO KVM_X86_FEATURE(CPUID_8000_0021_ECX, 1) 60 #define KVM_X86_FEATURE_TSA_L1_NO KVM_X86_FEATURE(CPUID_8000_0021_ECX, 2) 61 62 struct cpuid_reg { 63 u32 function; 64 u32 index; 65 int reg; 66 }; 67 68 static const struct cpuid_reg reverse_cpuid[] = { 69 [CPUID_1_EDX] = { 1, 0, CPUID_EDX}, 70 [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX}, 71 [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX}, 72 [CPUID_1_ECX] = { 1, 0, CPUID_ECX}, 73 [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX}, 74 [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX}, 75 [CPUID_7_0_EBX] = { 7, 0, CPUID_EBX}, 76 [CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX}, 77 [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX}, 78 [CPUID_6_EAX] = { 6, 0, CPUID_EAX}, 79 [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX}, 80 [CPUID_7_ECX] = { 7, 0, CPUID_ECX}, 81 [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX}, 82 [CPUID_7_EDX] = { 7, 0, CPUID_EDX}, 83 [CPUID_7_1_EAX] = { 7, 1, CPUID_EAX}, 84 [CPUID_12_EAX] = {0x00000012, 0, CPUID_EAX}, 85 [CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX}, 86 [CPUID_7_1_EDX] = { 7, 1, CPUID_EDX}, 87 [CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX}, 88 [CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX}, 89 [CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX}, 90 [CPUID_7_2_EDX] = { 7, 2, CPUID_EDX}, 91 [CPUID_24_0_EBX] = { 0x24, 0, CPUID_EBX}, 92 [CPUID_8000_0021_ECX] = {0x80000021, 0, CPUID_ECX}, 93 [CPUID_7_1_ECX] = { 7, 1, CPUID_ECX}, 94 }; 95 96 /* 97 * Reverse CPUID and its derivatives can only be used for hardware-defined 98 * feature words, i.e. words whose bits directly correspond to a CPUID leaf. 99 * Retrieving a feature bit or masking guest CPUID from a Linux-defined word 100 * is nonsensical as the bit number/mask is an arbitrary software-defined value 101 * and can't be used by KVM to query/control guest capabilities. And obviously 102 * the leaf being queried must have an entry in the lookup table. 103 */ 104 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf) 105 { 106 BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS); 107 BUILD_BUG_ON(x86_leaf == CPUID_LNX_1); 108 BUILD_BUG_ON(x86_leaf == CPUID_LNX_2); 109 BUILD_BUG_ON(x86_leaf == CPUID_LNX_3); 110 BUILD_BUG_ON(x86_leaf == CPUID_LNX_4); 111 BUILD_BUG_ON(x86_leaf == CPUID_LNX_5); 112 BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid)); 113 BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0); 114 } 115 116 /* 117 * Translate feature bits that are scattered in the kernel's cpufeatures word 118 * into KVM feature words that align with hardware's definitions. 119 */ 120 static __always_inline u32 __feature_translate(int x86_feature) 121 { 122 #define KVM_X86_TRANSLATE_FEATURE(f) \ 123 case X86_FEATURE_##f: return KVM_X86_FEATURE_##f 124 125 switch (x86_feature) { 126 KVM_X86_TRANSLATE_FEATURE(SGX1); 127 KVM_X86_TRANSLATE_FEATURE(SGX2); 128 KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA); 129 KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC); 130 KVM_X86_TRANSLATE_FEATURE(PERFMON_V2); 131 KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL); 132 KVM_X86_TRANSLATE_FEATURE(BHI_CTRL); 133 KVM_X86_TRANSLATE_FEATURE(TSA_SQ_NO); 134 KVM_X86_TRANSLATE_FEATURE(TSA_L1_NO); 135 KVM_X86_TRANSLATE_FEATURE(MSR_IMM); 136 default: 137 return x86_feature; 138 } 139 } 140 141 static __always_inline u32 __feature_leaf(int x86_feature) 142 { 143 u32 x86_leaf = __feature_translate(x86_feature) / 32; 144 145 reverse_cpuid_check(x86_leaf); 146 return x86_leaf; 147 } 148 149 /* 150 * Retrieve the bit mask from an X86_FEATURE_* definition. Features contain 151 * the hardware defined bit number (stored in bits 4:0) and a software defined 152 * "word" (stored in bits 31:5). The word is used to index into arrays of 153 * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has(). 154 */ 155 static __always_inline u32 __feature_bit(int x86_feature) 156 { 157 x86_feature = __feature_translate(x86_feature); 158 159 reverse_cpuid_check(x86_feature / 32); 160 return 1 << (x86_feature & 31); 161 } 162 163 #define feature_bit(name) __feature_bit(X86_FEATURE_##name) 164 165 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature) 166 { 167 unsigned int x86_leaf = __feature_leaf(x86_feature); 168 169 return reverse_cpuid[x86_leaf]; 170 } 171 172 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, 173 u32 reg) 174 { 175 switch (reg) { 176 case CPUID_EAX: 177 return &entry->eax; 178 case CPUID_EBX: 179 return &entry->ebx; 180 case CPUID_ECX: 181 return &entry->ecx; 182 case CPUID_EDX: 183 return &entry->edx; 184 default: 185 BUILD_BUG(); 186 return NULL; 187 } 188 } 189 190 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, 191 unsigned int x86_feature) 192 { 193 const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature); 194 195 return __cpuid_entry_get_reg(entry, cpuid.reg); 196 } 197 198 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry, 199 unsigned int x86_feature) 200 { 201 u32 *reg = cpuid_entry_get_reg(entry, x86_feature); 202 203 return *reg & __feature_bit(x86_feature); 204 } 205 206 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry, 207 unsigned int x86_feature) 208 { 209 return cpuid_entry_get(entry, x86_feature); 210 } 211 212 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry, 213 unsigned int x86_feature) 214 { 215 u32 *reg = cpuid_entry_get_reg(entry, x86_feature); 216 217 *reg &= ~__feature_bit(x86_feature); 218 } 219 220 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry, 221 unsigned int x86_feature) 222 { 223 u32 *reg = cpuid_entry_get_reg(entry, x86_feature); 224 225 *reg |= __feature_bit(x86_feature); 226 } 227 228 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry, 229 unsigned int x86_feature, 230 bool set) 231 { 232 u32 *reg = cpuid_entry_get_reg(entry, x86_feature); 233 234 /* 235 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the 236 * compiler into using CMOV instead of Jcc when possible. 237 */ 238 if (set) 239 *reg |= __feature_bit(x86_feature); 240 else 241 *reg &= ~__feature_bit(x86_feature); 242 } 243 244 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */ 245