xref: /linux/arch/x86/kvm/reverse_cpuid.h (revision 0a670e151a71434765de69590944e18c08ee08cf)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
4 
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
8 
9 /*
10  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
11  * unknown to the kernel, but need to be directly used by KVM.  Note, these
12  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
13  */
14 enum kvm_only_cpuid_leafs {
15 	CPUID_12_EAX	 = NCAPINTS,
16 	CPUID_7_1_EDX,
17 	CPUID_8000_0007_EDX,
18 	CPUID_8000_0022_EAX,
19 	CPUID_7_2_EDX,
20 	CPUID_24_0_EBX,
21 	NR_KVM_CPU_CAPS,
22 
23 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
24 };
25 
26 /*
27  * Define a KVM-only feature flag.
28  *
29  * For features that are scattered by cpufeatures.h, __feature_translate() also
30  * needs to be updated to translate the kernel-defined feature into the
31  * KVM-defined feature.
32  *
33  * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
34  * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
35  * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
36  * needed in this case.
37  */
38 #define KVM_X86_FEATURE(w, f)		((w)*32 + (f))
39 
40 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
41 #define KVM_X86_FEATURE_SGX1		KVM_X86_FEATURE(CPUID_12_EAX, 0)
42 #define KVM_X86_FEATURE_SGX2		KVM_X86_FEATURE(CPUID_12_EAX, 1)
43 #define KVM_X86_FEATURE_SGX_EDECCSSA	KVM_X86_FEATURE(CPUID_12_EAX, 11)
44 
45 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
46 #define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
47 #define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
48 #define X86_FEATURE_AMX_COMPLEX         KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
49 #define X86_FEATURE_AVX_VNNI_INT16      KVM_X86_FEATURE(CPUID_7_1_EDX, 10)
50 #define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
51 #define X86_FEATURE_AVX10               KVM_X86_FEATURE(CPUID_7_1_EDX, 19)
52 
53 /* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */
54 #define X86_FEATURE_INTEL_PSFD		KVM_X86_FEATURE(CPUID_7_2_EDX, 0)
55 #define X86_FEATURE_IPRED_CTRL		KVM_X86_FEATURE(CPUID_7_2_EDX, 1)
56 #define KVM_X86_FEATURE_RRSBA_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 2)
57 #define X86_FEATURE_DDPD_U		KVM_X86_FEATURE(CPUID_7_2_EDX, 3)
58 #define KVM_X86_FEATURE_BHI_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 4)
59 #define X86_FEATURE_MCDT_NO		KVM_X86_FEATURE(CPUID_7_2_EDX, 5)
60 
61 /* Intel-defined sub-features, CPUID level 0x00000024:0 (EBX) */
62 #define X86_FEATURE_AVX10_128		KVM_X86_FEATURE(CPUID_24_0_EBX, 16)
63 #define X86_FEATURE_AVX10_256		KVM_X86_FEATURE(CPUID_24_0_EBX, 17)
64 #define X86_FEATURE_AVX10_512		KVM_X86_FEATURE(CPUID_24_0_EBX, 18)
65 
66 /* CPUID level 0x80000007 (EDX). */
67 #define KVM_X86_FEATURE_CONSTANT_TSC	KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
68 
69 /* CPUID level 0x80000022 (EAX) */
70 #define KVM_X86_FEATURE_PERFMON_V2	KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
71 
72 struct cpuid_reg {
73 	u32 function;
74 	u32 index;
75 	int reg;
76 };
77 
78 static const struct cpuid_reg reverse_cpuid[] = {
79 	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
80 	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
81 	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
82 	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
83 	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
84 	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
85 	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
86 	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
87 	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
88 	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
89 	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
90 	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
91 	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
92 	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
93 	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
94 	[CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
95 	[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
96 	[CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
97 	[CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
98 	[CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
99 	[CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
100 	[CPUID_7_2_EDX]       = {         7, 2, CPUID_EDX},
101 	[CPUID_24_0_EBX]      = {      0x24, 0, CPUID_EBX},
102 };
103 
104 /*
105  * Reverse CPUID and its derivatives can only be used for hardware-defined
106  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
107  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
108  * is nonsensical as the bit number/mask is an arbitrary software-defined value
109  * and can't be used by KVM to query/control guest capabilities.  And obviously
110  * the leaf being queried must have an entry in the lookup table.
111  */
112 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
113 {
114 	BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS);
115 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
116 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
117 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
118 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
119 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_5);
120 	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
121 	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
122 }
123 
124 /*
125  * Translate feature bits that are scattered in the kernel's cpufeatures word
126  * into KVM feature words that align with hardware's definitions.
127  */
128 static __always_inline u32 __feature_translate(int x86_feature)
129 {
130 #define KVM_X86_TRANSLATE_FEATURE(f)	\
131 	case X86_FEATURE_##f: return KVM_X86_FEATURE_##f
132 
133 	switch (x86_feature) {
134 	KVM_X86_TRANSLATE_FEATURE(SGX1);
135 	KVM_X86_TRANSLATE_FEATURE(SGX2);
136 	KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA);
137 	KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC);
138 	KVM_X86_TRANSLATE_FEATURE(PERFMON_V2);
139 	KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL);
140 	KVM_X86_TRANSLATE_FEATURE(BHI_CTRL);
141 	default:
142 		return x86_feature;
143 	}
144 }
145 
146 static __always_inline u32 __feature_leaf(int x86_feature)
147 {
148 	return __feature_translate(x86_feature) / 32;
149 }
150 
151 /*
152  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
153  * the hardware defined bit number (stored in bits 4:0) and a software defined
154  * "word" (stored in bits 31:5).  The word is used to index into arrays of
155  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
156  */
157 static __always_inline u32 __feature_bit(int x86_feature)
158 {
159 	x86_feature = __feature_translate(x86_feature);
160 
161 	reverse_cpuid_check(x86_feature / 32);
162 	return 1 << (x86_feature & 31);
163 }
164 
165 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
166 
167 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
168 {
169 	unsigned int x86_leaf = __feature_leaf(x86_feature);
170 
171 	reverse_cpuid_check(x86_leaf);
172 	return reverse_cpuid[x86_leaf];
173 }
174 
175 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
176 						  u32 reg)
177 {
178 	switch (reg) {
179 	case CPUID_EAX:
180 		return &entry->eax;
181 	case CPUID_EBX:
182 		return &entry->ebx;
183 	case CPUID_ECX:
184 		return &entry->ecx;
185 	case CPUID_EDX:
186 		return &entry->edx;
187 	default:
188 		BUILD_BUG();
189 		return NULL;
190 	}
191 }
192 
193 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
194 						unsigned int x86_feature)
195 {
196 	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
197 
198 	return __cpuid_entry_get_reg(entry, cpuid.reg);
199 }
200 
201 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
202 					   unsigned int x86_feature)
203 {
204 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
205 
206 	return *reg & __feature_bit(x86_feature);
207 }
208 
209 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
210 					    unsigned int x86_feature)
211 {
212 	return cpuid_entry_get(entry, x86_feature);
213 }
214 
215 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
216 					      unsigned int x86_feature)
217 {
218 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
219 
220 	*reg &= ~__feature_bit(x86_feature);
221 }
222 
223 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
224 					    unsigned int x86_feature)
225 {
226 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
227 
228 	*reg |= __feature_bit(x86_feature);
229 }
230 
231 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
232 					       unsigned int x86_feature,
233 					       bool set)
234 {
235 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
236 
237 	/*
238 	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
239 	 * compiler into using CMOV instead of Jcc when possible.
240 	 */
241 	if (set)
242 		*reg |= __feature_bit(x86_feature);
243 	else
244 		*reg &= ~__feature_bit(x86_feature);
245 }
246 
247 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
248