1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support 4 * 5 * Copyright 2015 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 * Wei Huang <wei@redhat.com> 11 */ 12 13 #include <linux/types.h> 14 #include <linux/kvm_host.h> 15 #include <linux/perf_event.h> 16 #include <linux/bsearch.h> 17 #include <linux/sort.h> 18 #include <asm/perf_event.h> 19 #include <asm/cpu_device_id.h> 20 #include "x86.h" 21 #include "cpuid.h" 22 #include "lapic.h" 23 #include "pmu.h" 24 25 /* This is enough to filter the vast majority of currently defined events. */ 26 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 27 28 struct x86_pmu_capability __read_mostly kvm_pmu_cap; 29 EXPORT_SYMBOL_GPL(kvm_pmu_cap); 30 31 static const struct x86_cpu_id vmx_icl_pebs_cpu[] = { 32 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL), 33 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL), 34 {} 35 }; 36 37 /* NOTE: 38 * - Each perf counter is defined as "struct kvm_pmc"; 39 * - There are two types of perf counters: general purpose (gp) and fixed. 40 * gp counters are stored in gp_counters[] and fixed counters are stored 41 * in fixed_counters[] respectively. Both of them are part of "struct 42 * kvm_pmu"; 43 * - pmu.c understands the difference between gp counters and fixed counters. 44 * However AMD doesn't support fixed-counters; 45 * - There are three types of index to access perf counters (PMC): 46 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD 47 * has MSR_K7_PERFCTRn and, for families 15H and later, 48 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are 49 * aliased to MSR_K7_PERFCTRn. 50 * 2. MSR Index (named idx): This normally is used by RDPMC instruction. 51 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access 52 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except 53 * that it also supports fixed counters. idx can be used to as index to 54 * gp and fixed counters. 55 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU 56 * code. Each pmc, stored in kvm_pmc.idx field, is unique across 57 * all perf counters (both gp and fixed). The mapping relationship 58 * between pmc and perf counters is as the following: 59 * * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters 60 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed 61 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H 62 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters 63 */ 64 65 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly; 66 67 #define KVM_X86_PMU_OP(func) \ 68 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \ 69 *(((struct kvm_pmu_ops *)0)->func)); 70 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP 71 #include <asm/kvm-x86-pmu-ops.h> 72 73 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops) 74 { 75 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops)); 76 77 #define __KVM_X86_PMU_OP(func) \ 78 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func); 79 #define KVM_X86_PMU_OP(func) \ 80 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func) 81 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP 82 #include <asm/kvm-x86-pmu-ops.h> 83 #undef __KVM_X86_PMU_OP 84 } 85 86 static inline bool pmc_is_enabled(struct kvm_pmc *pmc) 87 { 88 return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc); 89 } 90 91 static void kvm_pmi_trigger_fn(struct irq_work *irq_work) 92 { 93 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); 94 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); 95 96 kvm_pmu_deliver_pmi(vcpu); 97 } 98 99 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) 100 { 101 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 102 bool skip_pmi = false; 103 104 /* Ignore counters that have been reprogrammed already. */ 105 if (test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) 106 return; 107 108 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) { 109 /* Indicate PEBS overflow PMI to guest. */ 110 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, 111 (unsigned long *)&pmu->global_status); 112 } else { 113 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); 114 } 115 kvm_make_request(KVM_REQ_PMU, pmc->vcpu); 116 117 if (!pmc->intr || skip_pmi) 118 return; 119 120 /* 121 * Inject PMI. If vcpu was in a guest mode during NMI PMI 122 * can be ejected on a guest mode re-entry. Otherwise we can't 123 * be sure that vcpu wasn't executing hlt instruction at the 124 * time of vmexit and is not going to re-enter guest mode until 125 * woken up. So we should wake it, but this is impossible from 126 * NMI context. Do it from irq work instead. 127 */ 128 if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu)) 129 irq_work_queue(&pmc_to_pmu(pmc)->irq_work); 130 else 131 kvm_make_request(KVM_REQ_PMI, pmc->vcpu); 132 } 133 134 static void kvm_perf_overflow(struct perf_event *perf_event, 135 struct perf_sample_data *data, 136 struct pt_regs *regs) 137 { 138 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 139 140 __kvm_perf_overflow(pmc, true); 141 } 142 143 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, 144 u64 config, bool exclude_user, 145 bool exclude_kernel, bool intr) 146 { 147 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 148 struct perf_event *event; 149 struct perf_event_attr attr = { 150 .type = type, 151 .size = sizeof(attr), 152 .pinned = true, 153 .exclude_idle = true, 154 .exclude_host = 1, 155 .exclude_user = exclude_user, 156 .exclude_kernel = exclude_kernel, 157 .config = config, 158 }; 159 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable); 160 161 attr.sample_period = get_sample_period(pmc, pmc->counter); 162 163 if ((attr.config & HSW_IN_TX_CHECKPOINTED) && 164 guest_cpuid_is_intel(pmc->vcpu)) { 165 /* 166 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero 167 * period. Just clear the sample period so at least 168 * allocating the counter doesn't fail. 169 */ 170 attr.sample_period = 0; 171 } 172 if (pebs) { 173 /* 174 * The non-zero precision level of guest event makes the ordinary 175 * guest event becomes a guest PEBS event and triggers the host 176 * PEBS PMI handler to determine whether the PEBS overflow PMI 177 * comes from the host counters or the guest. 178 * 179 * For most PEBS hardware events, the difference in the software 180 * precision levels of guest and host PEBS events will not affect 181 * the accuracy of the PEBS profiling result, because the "event IP" 182 * in the PEBS record is calibrated on the guest side. 183 * 184 * On Icelake everything is fine. Other hardware (GLC+, TNT+) that 185 * could possibly care here is unsupported and needs changes. 186 */ 187 attr.precise_ip = 1; 188 if (x86_match_cpu(vmx_icl_pebs_cpu) && pmc->idx == 32) 189 attr.precise_ip = 3; 190 } 191 192 event = perf_event_create_kernel_counter(&attr, -1, current, 193 kvm_perf_overflow, pmc); 194 if (IS_ERR(event)) { 195 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", 196 PTR_ERR(event), pmc->idx); 197 return; 198 } 199 200 pmc->perf_event = event; 201 pmc_to_pmu(pmc)->event_count++; 202 clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi); 203 pmc->is_paused = false; 204 pmc->intr = intr || pebs; 205 } 206 207 static void pmc_pause_counter(struct kvm_pmc *pmc) 208 { 209 u64 counter = pmc->counter; 210 211 if (!pmc->perf_event || pmc->is_paused) 212 return; 213 214 /* update counter, reset event value to avoid redundant accumulation */ 215 counter += perf_event_pause(pmc->perf_event, true); 216 pmc->counter = counter & pmc_bitmask(pmc); 217 pmc->is_paused = true; 218 } 219 220 static bool pmc_resume_counter(struct kvm_pmc *pmc) 221 { 222 if (!pmc->perf_event) 223 return false; 224 225 /* recalibrate sample period and check if it's accepted by perf core */ 226 if (perf_event_period(pmc->perf_event, 227 get_sample_period(pmc, pmc->counter))) 228 return false; 229 230 if (!test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) && 231 pmc->perf_event->attr.precise_ip) 232 return false; 233 234 /* reuse perf_event to serve as pmc_reprogram_counter() does*/ 235 perf_event_enable(pmc->perf_event); 236 pmc->is_paused = false; 237 238 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi); 239 return true; 240 } 241 242 static int cmp_u64(const void *pa, const void *pb) 243 { 244 u64 a = *(u64 *)pa; 245 u64 b = *(u64 *)pb; 246 247 return (a > b) - (a < b); 248 } 249 250 static bool check_pmu_event_filter(struct kvm_pmc *pmc) 251 { 252 struct kvm_pmu_event_filter *filter; 253 struct kvm *kvm = pmc->vcpu->kvm; 254 bool allow_event = true; 255 __u64 key; 256 int idx; 257 258 if (!static_call(kvm_x86_pmu_hw_event_available)(pmc)) 259 return false; 260 261 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 262 if (!filter) 263 goto out; 264 265 if (pmc_is_gp(pmc)) { 266 key = pmc->eventsel & AMD64_RAW_EVENT_MASK_NB; 267 if (bsearch(&key, filter->events, filter->nevents, 268 sizeof(__u64), cmp_u64)) 269 allow_event = filter->action == KVM_PMU_EVENT_ALLOW; 270 else 271 allow_event = filter->action == KVM_PMU_EVENT_DENY; 272 } else { 273 idx = pmc->idx - INTEL_PMC_IDX_FIXED; 274 if (filter->action == KVM_PMU_EVENT_DENY && 275 test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 276 allow_event = false; 277 if (filter->action == KVM_PMU_EVENT_ALLOW && 278 !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 279 allow_event = false; 280 } 281 282 out: 283 return allow_event; 284 } 285 286 void reprogram_counter(struct kvm_pmc *pmc) 287 { 288 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 289 u64 eventsel = pmc->eventsel; 290 u64 new_config = eventsel; 291 u8 fixed_ctr_ctrl; 292 293 pmc_pause_counter(pmc); 294 295 if (!pmc_speculative_in_use(pmc) || !pmc_is_enabled(pmc)) 296 return; 297 298 if (!check_pmu_event_filter(pmc)) 299 return; 300 301 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) 302 printk_once("kvm pmu: pin control bit is ignored\n"); 303 304 if (pmc_is_fixed(pmc)) { 305 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, 306 pmc->idx - INTEL_PMC_IDX_FIXED); 307 if (fixed_ctr_ctrl & 0x1) 308 eventsel |= ARCH_PERFMON_EVENTSEL_OS; 309 if (fixed_ctr_ctrl & 0x2) 310 eventsel |= ARCH_PERFMON_EVENTSEL_USR; 311 if (fixed_ctr_ctrl & 0x8) 312 eventsel |= ARCH_PERFMON_EVENTSEL_INT; 313 new_config = (u64)fixed_ctr_ctrl; 314 } 315 316 if (pmc->current_config == new_config && pmc_resume_counter(pmc)) 317 return; 318 319 pmc_release_perf_event(pmc); 320 321 pmc->current_config = new_config; 322 pmc_reprogram_counter(pmc, PERF_TYPE_RAW, 323 (eventsel & pmu->raw_event_mask), 324 !(eventsel & ARCH_PERFMON_EVENTSEL_USR), 325 !(eventsel & ARCH_PERFMON_EVENTSEL_OS), 326 eventsel & ARCH_PERFMON_EVENTSEL_INT); 327 } 328 EXPORT_SYMBOL_GPL(reprogram_counter); 329 330 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) 331 { 332 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 333 int bit; 334 335 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) { 336 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit); 337 338 if (unlikely(!pmc || !pmc->perf_event)) { 339 clear_bit(bit, pmu->reprogram_pmi); 340 continue; 341 } 342 reprogram_counter(pmc); 343 } 344 345 /* 346 * Unused perf_events are only released if the corresponding MSRs 347 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in 348 * triggers KVM_REQ_PMU if cleanup is needed. 349 */ 350 if (unlikely(pmu->need_cleanup)) 351 kvm_pmu_cleanup(vcpu); 352 } 353 354 /* check if idx is a valid index to access PMU */ 355 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) 356 { 357 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx); 358 } 359 360 bool is_vmware_backdoor_pmc(u32 pmc_idx) 361 { 362 switch (pmc_idx) { 363 case VMWARE_BACKDOOR_PMC_HOST_TSC: 364 case VMWARE_BACKDOOR_PMC_REAL_TIME: 365 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 366 return true; 367 } 368 return false; 369 } 370 371 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 372 { 373 u64 ctr_val; 374 375 switch (idx) { 376 case VMWARE_BACKDOOR_PMC_HOST_TSC: 377 ctr_val = rdtsc(); 378 break; 379 case VMWARE_BACKDOOR_PMC_REAL_TIME: 380 ctr_val = ktime_get_boottime_ns(); 381 break; 382 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 383 ctr_val = ktime_get_boottime_ns() + 384 vcpu->kvm->arch.kvmclock_offset; 385 break; 386 default: 387 return 1; 388 } 389 390 *data = ctr_val; 391 return 0; 392 } 393 394 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 395 { 396 bool fast_mode = idx & (1u << 31); 397 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 398 struct kvm_pmc *pmc; 399 u64 mask = fast_mode ? ~0u : ~0ull; 400 401 if (!pmu->version) 402 return 1; 403 404 if (is_vmware_backdoor_pmc(idx)) 405 return kvm_pmu_rdpmc_vmware(vcpu, idx, data); 406 407 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask); 408 if (!pmc) 409 return 1; 410 411 if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) && 412 (static_call(kvm_x86_get_cpl)(vcpu) != 0) && 413 (kvm_read_cr0(vcpu) & X86_CR0_PE)) 414 return 1; 415 416 *data = pmc_read_counter(pmc) & mask; 417 return 0; 418 } 419 420 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 421 { 422 if (lapic_in_kernel(vcpu)) { 423 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu); 424 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); 425 } 426 } 427 428 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 429 { 430 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) || 431 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr); 432 } 433 434 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) 435 { 436 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 437 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr); 438 439 if (pmc) 440 __set_bit(pmc->idx, pmu->pmc_in_use); 441 } 442 443 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 444 { 445 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info); 446 } 447 448 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 449 { 450 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); 451 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info); 452 } 453 454 /* refresh PMU settings. This function generally is called when underlying 455 * settings are changed (such as changes of PMU CPUID by guest VMs), which 456 * should rarely happen. 457 */ 458 void kvm_pmu_refresh(struct kvm_vcpu *vcpu) 459 { 460 static_call(kvm_x86_pmu_refresh)(vcpu); 461 } 462 463 void kvm_pmu_reset(struct kvm_vcpu *vcpu) 464 { 465 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 466 467 irq_work_sync(&pmu->irq_work); 468 static_call(kvm_x86_pmu_reset)(vcpu); 469 } 470 471 void kvm_pmu_init(struct kvm_vcpu *vcpu) 472 { 473 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 474 475 memset(pmu, 0, sizeof(*pmu)); 476 static_call(kvm_x86_pmu_init)(vcpu); 477 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); 478 pmu->event_count = 0; 479 pmu->need_cleanup = false; 480 kvm_pmu_refresh(vcpu); 481 } 482 483 /* Release perf_events for vPMCs that have been unused for a full time slice. */ 484 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) 485 { 486 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 487 struct kvm_pmc *pmc = NULL; 488 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); 489 int i; 490 491 pmu->need_cleanup = false; 492 493 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, 494 pmu->pmc_in_use, X86_PMC_IDX_MAX); 495 496 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) { 497 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 498 499 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc)) 500 pmc_stop_counter(pmc); 501 } 502 503 static_call_cond(kvm_x86_pmu_cleanup)(vcpu); 504 505 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); 506 } 507 508 void kvm_pmu_destroy(struct kvm_vcpu *vcpu) 509 { 510 kvm_pmu_reset(vcpu); 511 } 512 513 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) 514 { 515 u64 prev_count; 516 517 prev_count = pmc->counter; 518 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc); 519 520 reprogram_counter(pmc); 521 if (pmc->counter < prev_count) 522 __kvm_perf_overflow(pmc, false); 523 } 524 525 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc, 526 unsigned int perf_hw_id) 527 { 528 return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) & 529 AMD64_RAW_EVENT_MASK_NB); 530 } 531 532 static inline bool cpl_is_matched(struct kvm_pmc *pmc) 533 { 534 bool select_os, select_user; 535 u64 config = pmc->current_config; 536 537 if (pmc_is_gp(pmc)) { 538 select_os = config & ARCH_PERFMON_EVENTSEL_OS; 539 select_user = config & ARCH_PERFMON_EVENTSEL_USR; 540 } else { 541 select_os = config & 0x1; 542 select_user = config & 0x2; 543 } 544 545 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user; 546 } 547 548 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id) 549 { 550 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 551 struct kvm_pmc *pmc; 552 int i; 553 554 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) { 555 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 556 557 if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc)) 558 continue; 559 560 /* Ignore checks for edge detect, pin control, invert and CMASK bits */ 561 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc)) 562 kvm_pmu_incr_counter(pmc); 563 } 564 } 565 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event); 566 567 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) 568 { 569 struct kvm_pmu_event_filter tmp, *filter; 570 size_t size; 571 int r; 572 573 if (copy_from_user(&tmp, argp, sizeof(tmp))) 574 return -EFAULT; 575 576 if (tmp.action != KVM_PMU_EVENT_ALLOW && 577 tmp.action != KVM_PMU_EVENT_DENY) 578 return -EINVAL; 579 580 if (tmp.flags != 0) 581 return -EINVAL; 582 583 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) 584 return -E2BIG; 585 586 size = struct_size(filter, events, tmp.nevents); 587 filter = kmalloc(size, GFP_KERNEL_ACCOUNT); 588 if (!filter) 589 return -ENOMEM; 590 591 r = -EFAULT; 592 if (copy_from_user(filter, argp, size)) 593 goto cleanup; 594 595 /* Ensure nevents can't be changed between the user copies. */ 596 *filter = tmp; 597 598 /* 599 * Sort the in-kernel list so that we can search it with bsearch. 600 */ 601 sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL); 602 603 mutex_lock(&kvm->lock); 604 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, 605 mutex_is_locked(&kvm->lock)); 606 mutex_unlock(&kvm->lock); 607 608 synchronize_srcu_expedited(&kvm->srcu); 609 r = 0; 610 cleanup: 611 kfree(filter); 612 return r; 613 } 614