1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support 4 * 5 * Copyright 2015 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 * Wei Huang <wei@redhat.com> 11 */ 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/types.h> 15 #include <linux/kvm_host.h> 16 #include <linux/perf_event.h> 17 #include <linux/bsearch.h> 18 #include <linux/sort.h> 19 #include <asm/perf_event.h> 20 #include <asm/cpu_device_id.h> 21 #include "x86.h" 22 #include "cpuid.h" 23 #include "lapic.h" 24 #include "pmu.h" 25 26 /* This is enough to filter the vast majority of currently defined events. */ 27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 28 29 struct x86_pmu_capability __read_mostly kvm_pmu_cap; 30 EXPORT_SYMBOL_GPL(kvm_pmu_cap); 31 32 struct kvm_pmu_emulated_event_selectors __read_mostly kvm_pmu_eventsel; 33 EXPORT_SYMBOL_GPL(kvm_pmu_eventsel); 34 35 /* Precise Distribution of Instructions Retired (PDIR) */ 36 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = { 37 X86_MATCH_VFM(INTEL_ICELAKE_D, NULL), 38 X86_MATCH_VFM(INTEL_ICELAKE_X, NULL), 39 /* Instruction-Accurate PDIR (PDIR++) */ 40 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL), 41 {} 42 }; 43 44 /* Precise Distribution (PDist) */ 45 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = { 46 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL), 47 {} 48 }; 49 50 /* NOTE: 51 * - Each perf counter is defined as "struct kvm_pmc"; 52 * - There are two types of perf counters: general purpose (gp) and fixed. 53 * gp counters are stored in gp_counters[] and fixed counters are stored 54 * in fixed_counters[] respectively. Both of them are part of "struct 55 * kvm_pmu"; 56 * - pmu.c understands the difference between gp counters and fixed counters. 57 * However AMD doesn't support fixed-counters; 58 * - There are three types of index to access perf counters (PMC): 59 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD 60 * has MSR_K7_PERFCTRn and, for families 15H and later, 61 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are 62 * aliased to MSR_K7_PERFCTRn. 63 * 2. MSR Index (named idx): This normally is used by RDPMC instruction. 64 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access 65 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except 66 * that it also supports fixed counters. idx can be used to as index to 67 * gp and fixed counters. 68 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU 69 * code. Each pmc, stored in kvm_pmc.idx field, is unique across 70 * all perf counters (both gp and fixed). The mapping relationship 71 * between pmc and perf counters is as the following: 72 * * Intel: [0 .. KVM_MAX_NR_INTEL_GP_COUNTERS-1] <=> gp counters 73 * [KVM_FIXED_PMC_BASE_IDX .. KVM_FIXED_PMC_BASE_IDX + 2] <=> fixed 74 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H 75 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters 76 */ 77 78 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly; 79 80 #define KVM_X86_PMU_OP(func) \ 81 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \ 82 *(((struct kvm_pmu_ops *)0)->func)); 83 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP 84 #include <asm/kvm-x86-pmu-ops.h> 85 86 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops) 87 { 88 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops)); 89 90 #define __KVM_X86_PMU_OP(func) \ 91 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func); 92 #define KVM_X86_PMU_OP(func) \ 93 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func) 94 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP 95 #include <asm/kvm-x86-pmu-ops.h> 96 #undef __KVM_X86_PMU_OP 97 } 98 99 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) 100 { 101 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 102 bool skip_pmi = false; 103 104 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) { 105 if (!in_pmi) { 106 /* 107 * TODO: KVM is currently _choosing_ to not generate records 108 * for emulated instructions, avoiding BUFFER_OVF PMI when 109 * there are no records. Strictly speaking, it should be done 110 * as well in the right context to improve sampling accuracy. 111 */ 112 skip_pmi = true; 113 } else { 114 /* Indicate PEBS overflow PMI to guest. */ 115 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, 116 (unsigned long *)&pmu->global_status); 117 } 118 } else { 119 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); 120 } 121 122 if (pmc->intr && !skip_pmi) 123 kvm_make_request(KVM_REQ_PMI, pmc->vcpu); 124 } 125 126 static void kvm_perf_overflow(struct perf_event *perf_event, 127 struct perf_sample_data *data, 128 struct pt_regs *regs) 129 { 130 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 131 132 /* 133 * Ignore asynchronous overflow events for counters that are scheduled 134 * to be reprogrammed, e.g. if a PMI for the previous event races with 135 * KVM's handling of a related guest WRMSR. 136 */ 137 if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi)) 138 return; 139 140 __kvm_perf_overflow(pmc, true); 141 142 kvm_make_request(KVM_REQ_PMU, pmc->vcpu); 143 } 144 145 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc) 146 { 147 /* 148 * For some model specific pebs counters with special capabilities 149 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise 150 * level to the maximum value (currently 3, backwards compatible) 151 * so that the perf subsystem would assign specific hardware counter 152 * with that capability for vPMC. 153 */ 154 if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) || 155 (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu))) 156 return 3; 157 158 /* 159 * The non-zero precision level of guest event makes the ordinary 160 * guest event becomes a guest PEBS event and triggers the host 161 * PEBS PMI handler to determine whether the PEBS overflow PMI 162 * comes from the host counters or the guest. 163 */ 164 return 1; 165 } 166 167 static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value) 168 { 169 u64 sample_period = (-counter_value) & pmc_bitmask(pmc); 170 171 if (!sample_period) 172 sample_period = pmc_bitmask(pmc) + 1; 173 return sample_period; 174 } 175 176 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config, 177 bool exclude_user, bool exclude_kernel, 178 bool intr) 179 { 180 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 181 struct perf_event *event; 182 struct perf_event_attr attr = { 183 .type = type, 184 .size = sizeof(attr), 185 .pinned = true, 186 .exclude_idle = true, 187 .exclude_host = 1, 188 .exclude_user = exclude_user, 189 .exclude_kernel = exclude_kernel, 190 .config = config, 191 }; 192 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable); 193 194 attr.sample_period = get_sample_period(pmc, pmc->counter); 195 196 if ((attr.config & HSW_IN_TX_CHECKPOINTED) && 197 (boot_cpu_has(X86_FEATURE_RTM) || boot_cpu_has(X86_FEATURE_HLE))) { 198 /* 199 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero 200 * period. Just clear the sample period so at least 201 * allocating the counter doesn't fail. 202 */ 203 attr.sample_period = 0; 204 } 205 if (pebs) { 206 /* 207 * For most PEBS hardware events, the difference in the software 208 * precision levels of guest and host PEBS events will not affect 209 * the accuracy of the PEBS profiling result, because the "event IP" 210 * in the PEBS record is calibrated on the guest side. 211 */ 212 attr.precise_ip = pmc_get_pebs_precise_level(pmc); 213 } 214 215 event = perf_event_create_kernel_counter(&attr, -1, current, 216 kvm_perf_overflow, pmc); 217 if (IS_ERR(event)) { 218 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", 219 PTR_ERR(event), pmc->idx); 220 return PTR_ERR(event); 221 } 222 223 pmc->perf_event = event; 224 pmc_to_pmu(pmc)->event_count++; 225 pmc->is_paused = false; 226 pmc->intr = intr || pebs; 227 return 0; 228 } 229 230 static bool pmc_pause_counter(struct kvm_pmc *pmc) 231 { 232 u64 counter = pmc->counter; 233 u64 prev_counter; 234 235 /* update counter, reset event value to avoid redundant accumulation */ 236 if (pmc->perf_event && !pmc->is_paused) 237 counter += perf_event_pause(pmc->perf_event, true); 238 239 /* 240 * Snapshot the previous counter *after* accumulating state from perf. 241 * If overflow already happened, hardware (via perf) is responsible for 242 * generating a PMI. KVM just needs to detect overflow on emulated 243 * counter events that haven't yet been processed. 244 */ 245 prev_counter = counter & pmc_bitmask(pmc); 246 247 counter += pmc->emulated_counter; 248 pmc->counter = counter & pmc_bitmask(pmc); 249 250 pmc->emulated_counter = 0; 251 pmc->is_paused = true; 252 253 return pmc->counter < prev_counter; 254 } 255 256 static bool pmc_resume_counter(struct kvm_pmc *pmc) 257 { 258 if (!pmc->perf_event) 259 return false; 260 261 /* recalibrate sample period and check if it's accepted by perf core */ 262 if (is_sampling_event(pmc->perf_event) && 263 perf_event_period(pmc->perf_event, 264 get_sample_period(pmc, pmc->counter))) 265 return false; 266 267 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) != 268 (!!pmc->perf_event->attr.precise_ip)) 269 return false; 270 271 /* reuse perf_event to serve as pmc_reprogram_counter() does*/ 272 perf_event_enable(pmc->perf_event); 273 pmc->is_paused = false; 274 275 return true; 276 } 277 278 static void pmc_release_perf_event(struct kvm_pmc *pmc) 279 { 280 if (pmc->perf_event) { 281 perf_event_release_kernel(pmc->perf_event); 282 pmc->perf_event = NULL; 283 pmc->current_config = 0; 284 pmc_to_pmu(pmc)->event_count--; 285 } 286 } 287 288 static void pmc_stop_counter(struct kvm_pmc *pmc) 289 { 290 if (pmc->perf_event) { 291 pmc->counter = pmc_read_counter(pmc); 292 pmc_release_perf_event(pmc); 293 } 294 } 295 296 static void pmc_update_sample_period(struct kvm_pmc *pmc) 297 { 298 if (!pmc->perf_event || pmc->is_paused || 299 !is_sampling_event(pmc->perf_event)) 300 return; 301 302 perf_event_period(pmc->perf_event, 303 get_sample_period(pmc, pmc->counter)); 304 } 305 306 void pmc_write_counter(struct kvm_pmc *pmc, u64 val) 307 { 308 /* 309 * Drop any unconsumed accumulated counts, the WRMSR is a write, not a 310 * read-modify-write. Adjust the counter value so that its value is 311 * relative to the current count, as reading the current count from 312 * perf is faster than pausing and repgrogramming the event in order to 313 * reset it to '0'. Note, this very sneakily offsets the accumulated 314 * emulated count too, by using pmc_read_counter()! 315 */ 316 pmc->emulated_counter = 0; 317 pmc->counter += val - pmc_read_counter(pmc); 318 pmc->counter &= pmc_bitmask(pmc); 319 pmc_update_sample_period(pmc); 320 } 321 EXPORT_SYMBOL_GPL(pmc_write_counter); 322 323 static int filter_cmp(const void *pa, const void *pb, u64 mask) 324 { 325 u64 a = *(u64 *)pa & mask; 326 u64 b = *(u64 *)pb & mask; 327 328 return (a > b) - (a < b); 329 } 330 331 332 static int filter_sort_cmp(const void *pa, const void *pb) 333 { 334 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT | 335 KVM_PMU_MASKED_ENTRY_EXCLUDE)); 336 } 337 338 /* 339 * For the event filter, searching is done on the 'includes' list and 340 * 'excludes' list separately rather than on the 'events' list (which 341 * has both). As a result the exclude bit can be ignored. 342 */ 343 static int filter_event_cmp(const void *pa, const void *pb) 344 { 345 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT)); 346 } 347 348 static int find_filter_index(u64 *events, u64 nevents, u64 key) 349 { 350 u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]), 351 filter_event_cmp); 352 353 if (!fe) 354 return -1; 355 356 return fe - events; 357 } 358 359 static bool is_filter_entry_match(u64 filter_event, u64 umask) 360 { 361 u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8); 362 u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH; 363 364 BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >> 365 (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) != 366 ARCH_PERFMON_EVENTSEL_UMASK); 367 368 return (umask & mask) == match; 369 } 370 371 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel) 372 { 373 u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT; 374 u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK; 375 int i, index; 376 377 index = find_filter_index(events, nevents, event_select); 378 if (index < 0) 379 return false; 380 381 /* 382 * Entries are sorted by the event select. Walk the list in both 383 * directions to process all entries with the targeted event select. 384 */ 385 for (i = index; i < nevents; i++) { 386 if (filter_event_cmp(&events[i], &event_select)) 387 break; 388 389 if (is_filter_entry_match(events[i], umask)) 390 return true; 391 } 392 393 for (i = index - 1; i >= 0; i--) { 394 if (filter_event_cmp(&events[i], &event_select)) 395 break; 396 397 if (is_filter_entry_match(events[i], umask)) 398 return true; 399 } 400 401 return false; 402 } 403 404 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f, 405 u64 eventsel) 406 { 407 if (filter_contains_match(f->includes, f->nr_includes, eventsel) && 408 !filter_contains_match(f->excludes, f->nr_excludes, eventsel)) 409 return f->action == KVM_PMU_EVENT_ALLOW; 410 411 return f->action == KVM_PMU_EVENT_DENY; 412 } 413 414 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter, 415 int idx) 416 { 417 int fixed_idx = idx - KVM_FIXED_PMC_BASE_IDX; 418 419 if (filter->action == KVM_PMU_EVENT_DENY && 420 test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) 421 return false; 422 if (filter->action == KVM_PMU_EVENT_ALLOW && 423 !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) 424 return false; 425 426 return true; 427 } 428 429 static bool check_pmu_event_filter(struct kvm_pmc *pmc) 430 { 431 struct kvm_x86_pmu_event_filter *filter; 432 struct kvm *kvm = pmc->vcpu->kvm; 433 434 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 435 if (!filter) 436 return true; 437 438 if (pmc_is_gp(pmc)) 439 return is_gp_event_allowed(filter, pmc->eventsel); 440 441 return is_fixed_event_allowed(filter, pmc->idx); 442 } 443 444 static bool pmc_event_is_allowed(struct kvm_pmc *pmc) 445 { 446 return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) && 447 check_pmu_event_filter(pmc); 448 } 449 450 static int reprogram_counter(struct kvm_pmc *pmc) 451 { 452 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 453 u64 eventsel = pmc->eventsel; 454 u64 new_config = eventsel; 455 bool emulate_overflow; 456 u8 fixed_ctr_ctrl; 457 458 emulate_overflow = pmc_pause_counter(pmc); 459 460 if (!pmc_event_is_allowed(pmc)) 461 return 0; 462 463 if (emulate_overflow) 464 __kvm_perf_overflow(pmc, false); 465 466 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) 467 printk_once("kvm pmu: pin control bit is ignored\n"); 468 469 if (pmc_is_fixed(pmc)) { 470 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, 471 pmc->idx - KVM_FIXED_PMC_BASE_IDX); 472 if (fixed_ctr_ctrl & INTEL_FIXED_0_KERNEL) 473 eventsel |= ARCH_PERFMON_EVENTSEL_OS; 474 if (fixed_ctr_ctrl & INTEL_FIXED_0_USER) 475 eventsel |= ARCH_PERFMON_EVENTSEL_USR; 476 if (fixed_ctr_ctrl & INTEL_FIXED_0_ENABLE_PMI) 477 eventsel |= ARCH_PERFMON_EVENTSEL_INT; 478 new_config = (u64)fixed_ctr_ctrl; 479 } 480 481 if (pmc->current_config == new_config && pmc_resume_counter(pmc)) 482 return 0; 483 484 pmc_release_perf_event(pmc); 485 486 pmc->current_config = new_config; 487 488 return pmc_reprogram_counter(pmc, PERF_TYPE_RAW, 489 (eventsel & pmu->raw_event_mask), 490 !(eventsel & ARCH_PERFMON_EVENTSEL_USR), 491 !(eventsel & ARCH_PERFMON_EVENTSEL_OS), 492 eventsel & ARCH_PERFMON_EVENTSEL_INT); 493 } 494 495 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) 496 { 497 DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX); 498 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 499 struct kvm_pmc *pmc; 500 int bit; 501 502 bitmap_copy(bitmap, pmu->reprogram_pmi, X86_PMC_IDX_MAX); 503 504 /* 505 * The reprogramming bitmap can be written asynchronously by something 506 * other than the task that holds vcpu->mutex, take care to clear only 507 * the bits that will actually processed. 508 */ 509 BUILD_BUG_ON(sizeof(bitmap) != sizeof(atomic64_t)); 510 atomic64_andnot(*(s64 *)bitmap, &pmu->__reprogram_pmi); 511 512 kvm_for_each_pmc(pmu, pmc, bit, bitmap) { 513 /* 514 * If reprogramming fails, e.g. due to contention, re-set the 515 * regprogram bit set, i.e. opportunistically try again on the 516 * next PMU refresh. Don't make a new request as doing so can 517 * stall the guest if reprogramming repeatedly fails. 518 */ 519 if (reprogram_counter(pmc)) 520 set_bit(pmc->idx, pmu->reprogram_pmi); 521 } 522 523 /* 524 * Release unused perf_events if the corresponding guest MSRs weren't 525 * accessed during the last vCPU time slice (need_cleanup is set when 526 * the vCPU is scheduled back in). 527 */ 528 if (unlikely(pmu->need_cleanup)) 529 kvm_pmu_cleanup(vcpu); 530 } 531 532 int kvm_pmu_check_rdpmc_early(struct kvm_vcpu *vcpu, unsigned int idx) 533 { 534 /* 535 * On Intel, VMX interception has priority over RDPMC exceptions that 536 * aren't already handled by the emulator, i.e. there are no additional 537 * check needed for Intel PMUs. 538 * 539 * On AMD, _all_ exceptions on RDPMC have priority over SVM intercepts, 540 * i.e. an invalid PMC results in a #GP, not #VMEXIT. 541 */ 542 if (!kvm_pmu_ops.check_rdpmc_early) 543 return 0; 544 545 return kvm_pmu_call(check_rdpmc_early)(vcpu, idx); 546 } 547 548 bool is_vmware_backdoor_pmc(u32 pmc_idx) 549 { 550 switch (pmc_idx) { 551 case VMWARE_BACKDOOR_PMC_HOST_TSC: 552 case VMWARE_BACKDOOR_PMC_REAL_TIME: 553 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 554 return true; 555 } 556 return false; 557 } 558 559 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 560 { 561 u64 ctr_val; 562 563 switch (idx) { 564 case VMWARE_BACKDOOR_PMC_HOST_TSC: 565 ctr_val = rdtsc(); 566 break; 567 case VMWARE_BACKDOOR_PMC_REAL_TIME: 568 ctr_val = ktime_get_boottime_ns(); 569 break; 570 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 571 ctr_val = ktime_get_boottime_ns() + 572 vcpu->kvm->arch.kvmclock_offset; 573 break; 574 default: 575 return 1; 576 } 577 578 *data = ctr_val; 579 return 0; 580 } 581 582 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 583 { 584 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 585 struct kvm_pmc *pmc; 586 u64 mask = ~0ull; 587 588 if (!pmu->version) 589 return 1; 590 591 if (is_vmware_backdoor_pmc(idx)) 592 return kvm_pmu_rdpmc_vmware(vcpu, idx, data); 593 594 pmc = kvm_pmu_call(rdpmc_ecx_to_pmc)(vcpu, idx, &mask); 595 if (!pmc) 596 return 1; 597 598 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) && 599 (kvm_x86_call(get_cpl)(vcpu) != 0) && 600 kvm_is_cr0_bit_set(vcpu, X86_CR0_PE)) 601 return 1; 602 603 *data = pmc_read_counter(pmc) & mask; 604 return 0; 605 } 606 607 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 608 { 609 if (lapic_in_kernel(vcpu)) { 610 kvm_pmu_call(deliver_pmi)(vcpu); 611 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); 612 } 613 } 614 615 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 616 { 617 switch (msr) { 618 case MSR_CORE_PERF_GLOBAL_STATUS: 619 case MSR_CORE_PERF_GLOBAL_CTRL: 620 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 621 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)); 622 default: 623 break; 624 } 625 return kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr) || 626 kvm_pmu_call(is_valid_msr)(vcpu, msr); 627 } 628 629 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) 630 { 631 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 632 struct kvm_pmc *pmc = kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr); 633 634 if (pmc) 635 __set_bit(pmc->idx, pmu->pmc_in_use); 636 } 637 638 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 639 { 640 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 641 u32 msr = msr_info->index; 642 643 switch (msr) { 644 case MSR_CORE_PERF_GLOBAL_STATUS: 645 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 646 msr_info->data = pmu->global_status; 647 break; 648 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 649 case MSR_CORE_PERF_GLOBAL_CTRL: 650 msr_info->data = pmu->global_ctrl; 651 break; 652 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 653 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 654 msr_info->data = 0; 655 break; 656 default: 657 return kvm_pmu_call(get_msr)(vcpu, msr_info); 658 } 659 660 return 0; 661 } 662 663 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 664 { 665 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 666 u32 msr = msr_info->index; 667 u64 data = msr_info->data; 668 u64 diff; 669 670 /* 671 * Note, AMD ignores writes to reserved bits and read-only PMU MSRs, 672 * whereas Intel generates #GP on attempts to write reserved/RO MSRs. 673 */ 674 switch (msr) { 675 case MSR_CORE_PERF_GLOBAL_STATUS: 676 if (!msr_info->host_initiated) 677 return 1; /* RO MSR */ 678 fallthrough; 679 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 680 /* Per PPR, Read-only MSR. Writes are ignored. */ 681 if (!msr_info->host_initiated) 682 break; 683 684 if (data & pmu->global_status_rsvd) 685 return 1; 686 687 pmu->global_status = data; 688 break; 689 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 690 data &= ~pmu->global_ctrl_rsvd; 691 fallthrough; 692 case MSR_CORE_PERF_GLOBAL_CTRL: 693 if (!kvm_valid_perf_global_ctrl(pmu, data)) 694 return 1; 695 696 if (pmu->global_ctrl != data) { 697 diff = pmu->global_ctrl ^ data; 698 pmu->global_ctrl = data; 699 reprogram_counters(pmu, diff); 700 } 701 break; 702 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 703 /* 704 * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in 705 * GLOBAL_STATUS, and so the set of reserved bits is the same. 706 */ 707 if (data & pmu->global_status_rsvd) 708 return 1; 709 fallthrough; 710 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 711 if (!msr_info->host_initiated) 712 pmu->global_status &= ~data; 713 break; 714 default: 715 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); 716 return kvm_pmu_call(set_msr)(vcpu, msr_info); 717 } 718 719 return 0; 720 } 721 722 static void kvm_pmu_reset(struct kvm_vcpu *vcpu) 723 { 724 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 725 struct kvm_pmc *pmc; 726 int i; 727 728 pmu->need_cleanup = false; 729 730 bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX); 731 732 kvm_for_each_pmc(pmu, pmc, i, pmu->all_valid_pmc_idx) { 733 pmc_stop_counter(pmc); 734 pmc->counter = 0; 735 pmc->emulated_counter = 0; 736 737 if (pmc_is_gp(pmc)) 738 pmc->eventsel = 0; 739 } 740 741 pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0; 742 743 kvm_pmu_call(reset)(vcpu); 744 } 745 746 747 /* 748 * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID 749 * and/or PERF_CAPABILITIES. 750 */ 751 void kvm_pmu_refresh(struct kvm_vcpu *vcpu) 752 { 753 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 754 755 if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm)) 756 return; 757 758 /* 759 * Stop/release all existing counters/events before realizing the new 760 * vPMU model. 761 */ 762 kvm_pmu_reset(vcpu); 763 764 pmu->version = 0; 765 pmu->nr_arch_gp_counters = 0; 766 pmu->nr_arch_fixed_counters = 0; 767 pmu->counter_bitmask[KVM_PMC_GP] = 0; 768 pmu->counter_bitmask[KVM_PMC_FIXED] = 0; 769 pmu->reserved_bits = 0xffffffff00200000ull; 770 pmu->raw_event_mask = X86_RAW_EVENT_MASK; 771 pmu->global_ctrl_rsvd = ~0ull; 772 pmu->global_status_rsvd = ~0ull; 773 pmu->fixed_ctr_ctrl_rsvd = ~0ull; 774 pmu->pebs_enable_rsvd = ~0ull; 775 pmu->pebs_data_cfg_rsvd = ~0ull; 776 bitmap_zero(pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX); 777 778 if (!vcpu->kvm->arch.enable_pmu) 779 return; 780 781 kvm_pmu_call(refresh)(vcpu); 782 783 /* 784 * At RESET, both Intel and AMD CPUs set all enable bits for general 785 * purpose counters in IA32_PERF_GLOBAL_CTRL (so that software that 786 * was written for v1 PMUs don't unknowingly leave GP counters disabled 787 * in the global controls). Emulate that behavior when refreshing the 788 * PMU so that userspace doesn't need to manually set PERF_GLOBAL_CTRL. 789 */ 790 if (kvm_pmu_has_perf_global_ctrl(pmu) && pmu->nr_arch_gp_counters) 791 pmu->global_ctrl = GENMASK_ULL(pmu->nr_arch_gp_counters - 1, 0); 792 } 793 794 void kvm_pmu_init(struct kvm_vcpu *vcpu) 795 { 796 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 797 798 memset(pmu, 0, sizeof(*pmu)); 799 kvm_pmu_call(init)(vcpu); 800 kvm_pmu_refresh(vcpu); 801 } 802 803 /* Release perf_events for vPMCs that have been unused for a full time slice. */ 804 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) 805 { 806 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 807 struct kvm_pmc *pmc = NULL; 808 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); 809 int i; 810 811 pmu->need_cleanup = false; 812 813 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, 814 pmu->pmc_in_use, X86_PMC_IDX_MAX); 815 816 kvm_for_each_pmc(pmu, pmc, i, bitmask) { 817 if (pmc->perf_event && !pmc_speculative_in_use(pmc)) 818 pmc_stop_counter(pmc); 819 } 820 821 kvm_pmu_call(cleanup)(vcpu); 822 823 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); 824 } 825 826 void kvm_pmu_destroy(struct kvm_vcpu *vcpu) 827 { 828 kvm_pmu_reset(vcpu); 829 } 830 831 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) 832 { 833 pmc->emulated_counter++; 834 kvm_pmu_request_counter_reprogram(pmc); 835 } 836 837 static inline bool cpl_is_matched(struct kvm_pmc *pmc) 838 { 839 bool select_os, select_user; 840 u64 config; 841 842 if (pmc_is_gp(pmc)) { 843 config = pmc->eventsel; 844 select_os = config & ARCH_PERFMON_EVENTSEL_OS; 845 select_user = config & ARCH_PERFMON_EVENTSEL_USR; 846 } else { 847 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl, 848 pmc->idx - KVM_FIXED_PMC_BASE_IDX); 849 select_os = config & INTEL_FIXED_0_KERNEL; 850 select_user = config & INTEL_FIXED_0_USER; 851 } 852 853 /* 854 * Skip the CPL lookup, which isn't free on Intel, if the result will 855 * be the same regardless of the CPL. 856 */ 857 if (select_os == select_user) 858 return select_os; 859 860 return (kvm_x86_call(get_cpl)(pmc->vcpu) == 0) ? select_os : 861 select_user; 862 } 863 864 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 eventsel) 865 { 866 DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX); 867 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 868 struct kvm_pmc *pmc; 869 int i; 870 871 BUILD_BUG_ON(sizeof(pmu->global_ctrl) * BITS_PER_BYTE != X86_PMC_IDX_MAX); 872 873 if (!kvm_pmu_has_perf_global_ctrl(pmu)) 874 bitmap_copy(bitmap, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX); 875 else if (!bitmap_and(bitmap, pmu->all_valid_pmc_idx, 876 (unsigned long *)&pmu->global_ctrl, X86_PMC_IDX_MAX)) 877 return; 878 879 kvm_for_each_pmc(pmu, pmc, i, bitmap) { 880 /* 881 * Ignore checks for edge detect (all events currently emulated 882 * but KVM are always rising edges), pin control (unsupported 883 * by modern CPUs), and counter mask and its invert flag (KVM 884 * doesn't emulate multiple events in a single clock cycle). 885 * 886 * Note, the uppermost nibble of AMD's mask overlaps Intel's 887 * IN_TX (bit 32) and IN_TXCP (bit 33), as well as two reserved 888 * bits (bits 35:34). Checking the "in HLE/RTM transaction" 889 * flags is correct as the vCPU can't be in a transaction if 890 * KVM is emulating an instruction. Checking the reserved bits 891 * might be wrong if they are defined in the future, but so 892 * could ignoring them, so do the simple thing for now. 893 */ 894 if (((pmc->eventsel ^ eventsel) & AMD64_RAW_EVENT_MASK_NB) || 895 !pmc_event_is_allowed(pmc) || !cpl_is_matched(pmc)) 896 continue; 897 898 kvm_pmu_incr_counter(pmc); 899 } 900 } 901 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event); 902 903 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter) 904 { 905 u64 mask = kvm_pmu_ops.EVENTSEL_EVENT | 906 KVM_PMU_MASKED_ENTRY_UMASK_MASK | 907 KVM_PMU_MASKED_ENTRY_UMASK_MATCH | 908 KVM_PMU_MASKED_ENTRY_EXCLUDE; 909 int i; 910 911 for (i = 0; i < filter->nevents; i++) { 912 if (filter->events[i] & ~mask) 913 return false; 914 } 915 916 return true; 917 } 918 919 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter) 920 { 921 int i, j; 922 923 for (i = 0, j = 0; i < filter->nevents; i++) { 924 /* 925 * Skip events that are impossible to match against a guest 926 * event. When filtering, only the event select + unit mask 927 * of the guest event is used. To maintain backwards 928 * compatibility, impossible filters can't be rejected :-( 929 */ 930 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT | 931 ARCH_PERFMON_EVENTSEL_UMASK)) 932 continue; 933 /* 934 * Convert userspace events to a common in-kernel event so 935 * only one code path is needed to support both events. For 936 * the in-kernel events use masked events because they are 937 * flexible enough to handle both cases. To convert to masked 938 * events all that's needed is to add an "all ones" umask_mask, 939 * (unmasked filter events don't support EXCLUDE). 940 */ 941 filter->events[j++] = filter->events[i] | 942 (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT); 943 } 944 945 filter->nevents = j; 946 } 947 948 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter) 949 { 950 int i; 951 952 if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS)) 953 convert_to_masked_filter(filter); 954 else if (!is_masked_filter_valid(filter)) 955 return -EINVAL; 956 957 /* 958 * Sort entries by event select and includes vs. excludes so that all 959 * entries for a given event select can be processed efficiently during 960 * filtering. The EXCLUDE flag uses a more significant bit than the 961 * event select, and so the sorted list is also effectively split into 962 * includes and excludes sub-lists. 963 */ 964 sort(&filter->events, filter->nevents, sizeof(filter->events[0]), 965 filter_sort_cmp, NULL); 966 967 i = filter->nevents; 968 /* Find the first EXCLUDE event (only supported for masked events). */ 969 if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) { 970 for (i = 0; i < filter->nevents; i++) { 971 if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE) 972 break; 973 } 974 } 975 976 filter->nr_includes = i; 977 filter->nr_excludes = filter->nevents - filter->nr_includes; 978 filter->includes = filter->events; 979 filter->excludes = filter->events + filter->nr_includes; 980 981 return 0; 982 } 983 984 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) 985 { 986 struct kvm_pmu_event_filter __user *user_filter = argp; 987 struct kvm_x86_pmu_event_filter *filter; 988 struct kvm_pmu_event_filter tmp; 989 struct kvm_vcpu *vcpu; 990 unsigned long i; 991 size_t size; 992 int r; 993 994 if (copy_from_user(&tmp, user_filter, sizeof(tmp))) 995 return -EFAULT; 996 997 if (tmp.action != KVM_PMU_EVENT_ALLOW && 998 tmp.action != KVM_PMU_EVENT_DENY) 999 return -EINVAL; 1000 1001 if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK) 1002 return -EINVAL; 1003 1004 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) 1005 return -E2BIG; 1006 1007 size = struct_size(filter, events, tmp.nevents); 1008 filter = kzalloc(size, GFP_KERNEL_ACCOUNT); 1009 if (!filter) 1010 return -ENOMEM; 1011 1012 filter->action = tmp.action; 1013 filter->nevents = tmp.nevents; 1014 filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap; 1015 filter->flags = tmp.flags; 1016 1017 r = -EFAULT; 1018 if (copy_from_user(filter->events, user_filter->events, 1019 sizeof(filter->events[0]) * filter->nevents)) 1020 goto cleanup; 1021 1022 r = prepare_filter_lists(filter); 1023 if (r) 1024 goto cleanup; 1025 1026 mutex_lock(&kvm->lock); 1027 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, 1028 mutex_is_locked(&kvm->lock)); 1029 mutex_unlock(&kvm->lock); 1030 synchronize_srcu_expedited(&kvm->srcu); 1031 1032 BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) > 1033 sizeof(((struct kvm_pmu *)0)->__reprogram_pmi)); 1034 1035 kvm_for_each_vcpu(i, vcpu, kvm) 1036 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull); 1037 1038 kvm_make_all_cpus_request(kvm, KVM_REQ_PMU); 1039 1040 r = 0; 1041 cleanup: 1042 kfree(filter); 1043 return r; 1044 } 1045