xref: /linux/arch/x86/kvm/pmu.c (revision ba199dc909a20fe62270ae4e93f263987bb9d119)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25 
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28 
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31 
32 struct kvm_pmu_emulated_event_selectors __read_mostly kvm_pmu_eventsel;
33 EXPORT_SYMBOL_GPL(kvm_pmu_eventsel);
34 
35 /* Precise Distribution of Instructions Retired (PDIR) */
36 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
37 	X86_MATCH_VFM(INTEL_ICELAKE_D, NULL),
38 	X86_MATCH_VFM(INTEL_ICELAKE_X, NULL),
39 	/* Instruction-Accurate PDIR (PDIR++) */
40 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL),
41 	{}
42 };
43 
44 /* Precise Distribution (PDist) */
45 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
46 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL),
47 	{}
48 };
49 
50 /* NOTE:
51  * - Each perf counter is defined as "struct kvm_pmc";
52  * - There are two types of perf counters: general purpose (gp) and fixed.
53  *   gp counters are stored in gp_counters[] and fixed counters are stored
54  *   in fixed_counters[] respectively. Both of them are part of "struct
55  *   kvm_pmu";
56  * - pmu.c understands the difference between gp counters and fixed counters.
57  *   However AMD doesn't support fixed-counters;
58  * - There are three types of index to access perf counters (PMC):
59  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
60  *        has MSR_K7_PERFCTRn and, for families 15H and later,
61  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
62  *        aliased to MSR_K7_PERFCTRn.
63  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
64  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
65  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
66  *        that it also supports fixed counters. idx can be used to as index to
67  *        gp and fixed counters.
68  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
69  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
70  *        all perf counters (both gp and fixed). The mapping relationship
71  *        between pmc and perf counters is as the following:
72  *        * Intel: [0 .. KVM_MAX_NR_INTEL_GP_COUNTERS-1] <=> gp counters
73  *                 [KVM_FIXED_PMC_BASE_IDX .. KVM_FIXED_PMC_BASE_IDX + 2] <=> fixed
74  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
75  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
76  */
77 
78 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
79 
80 #define KVM_X86_PMU_OP(func)					     \
81 	DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,			     \
82 				*(((struct kvm_pmu_ops *)0)->func));
83 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
84 #include <asm/kvm-x86-pmu-ops.h>
85 
86 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
87 {
88 	memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
89 
90 #define __KVM_X86_PMU_OP(func) \
91 	static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
92 #define KVM_X86_PMU_OP(func) \
93 	WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
94 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
95 #include <asm/kvm-x86-pmu-ops.h>
96 #undef __KVM_X86_PMU_OP
97 }
98 
99 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
100 {
101 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
102 	bool skip_pmi = false;
103 
104 	if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
105 		if (!in_pmi) {
106 			/*
107 			 * TODO: KVM is currently _choosing_ to not generate records
108 			 * for emulated instructions, avoiding BUFFER_OVF PMI when
109 			 * there are no records. Strictly speaking, it should be done
110 			 * as well in the right context to improve sampling accuracy.
111 			 */
112 			skip_pmi = true;
113 		} else {
114 			/* Indicate PEBS overflow PMI to guest. */
115 			skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
116 						      (unsigned long *)&pmu->global_status);
117 		}
118 	} else {
119 		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
120 	}
121 
122 	if (pmc->intr && !skip_pmi)
123 		kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
124 }
125 
126 static void kvm_perf_overflow(struct perf_event *perf_event,
127 			      struct perf_sample_data *data,
128 			      struct pt_regs *regs)
129 {
130 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
131 
132 	/*
133 	 * Ignore asynchronous overflow events for counters that are scheduled
134 	 * to be reprogrammed, e.g. if a PMI for the previous event races with
135 	 * KVM's handling of a related guest WRMSR.
136 	 */
137 	if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
138 		return;
139 
140 	__kvm_perf_overflow(pmc, true);
141 
142 	kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
143 }
144 
145 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
146 {
147 	/*
148 	 * For some model specific pebs counters with special capabilities
149 	 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
150 	 * level to the maximum value (currently 3, backwards compatible)
151 	 * so that the perf subsystem would assign specific hardware counter
152 	 * with that capability for vPMC.
153 	 */
154 	if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
155 	    (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
156 		return 3;
157 
158 	/*
159 	 * The non-zero precision level of guest event makes the ordinary
160 	 * guest event becomes a guest PEBS event and triggers the host
161 	 * PEBS PMI handler to determine whether the PEBS overflow PMI
162 	 * comes from the host counters or the guest.
163 	 */
164 	return 1;
165 }
166 
167 static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value)
168 {
169 	u64 sample_period = (-counter_value) & pmc_bitmask(pmc);
170 
171 	if (!sample_period)
172 		sample_period = pmc_bitmask(pmc) + 1;
173 	return sample_period;
174 }
175 
176 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
177 				 bool exclude_user, bool exclude_kernel,
178 				 bool intr)
179 {
180 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
181 	struct perf_event *event;
182 	struct perf_event_attr attr = {
183 		.type = type,
184 		.size = sizeof(attr),
185 		.pinned = true,
186 		.exclude_idle = true,
187 		.exclude_host = 1,
188 		.exclude_user = exclude_user,
189 		.exclude_kernel = exclude_kernel,
190 		.config = config,
191 	};
192 	bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
193 
194 	attr.sample_period = get_sample_period(pmc, pmc->counter);
195 
196 	if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
197 	    (boot_cpu_has(X86_FEATURE_RTM) || boot_cpu_has(X86_FEATURE_HLE))) {
198 		/*
199 		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
200 		 * period. Just clear the sample period so at least
201 		 * allocating the counter doesn't fail.
202 		 */
203 		attr.sample_period = 0;
204 	}
205 	if (pebs) {
206 		/*
207 		 * For most PEBS hardware events, the difference in the software
208 		 * precision levels of guest and host PEBS events will not affect
209 		 * the accuracy of the PEBS profiling result, because the "event IP"
210 		 * in the PEBS record is calibrated on the guest side.
211 		 */
212 		attr.precise_ip = pmc_get_pebs_precise_level(pmc);
213 	}
214 
215 	event = perf_event_create_kernel_counter(&attr, -1, current,
216 						 kvm_perf_overflow, pmc);
217 	if (IS_ERR(event)) {
218 		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
219 			    PTR_ERR(event), pmc->idx);
220 		return PTR_ERR(event);
221 	}
222 
223 	pmc->perf_event = event;
224 	pmc_to_pmu(pmc)->event_count++;
225 	pmc->is_paused = false;
226 	pmc->intr = intr || pebs;
227 	return 0;
228 }
229 
230 static bool pmc_pause_counter(struct kvm_pmc *pmc)
231 {
232 	u64 counter = pmc->counter;
233 	u64 prev_counter;
234 
235 	/* update counter, reset event value to avoid redundant accumulation */
236 	if (pmc->perf_event && !pmc->is_paused)
237 		counter += perf_event_pause(pmc->perf_event, true);
238 
239 	/*
240 	 * Snapshot the previous counter *after* accumulating state from perf.
241 	 * If overflow already happened, hardware (via perf) is responsible for
242 	 * generating a PMI.  KVM just needs to detect overflow on emulated
243 	 * counter events that haven't yet been processed.
244 	 */
245 	prev_counter = counter & pmc_bitmask(pmc);
246 
247 	counter += pmc->emulated_counter;
248 	pmc->counter = counter & pmc_bitmask(pmc);
249 
250 	pmc->emulated_counter = 0;
251 	pmc->is_paused = true;
252 
253 	return pmc->counter < prev_counter;
254 }
255 
256 static bool pmc_resume_counter(struct kvm_pmc *pmc)
257 {
258 	if (!pmc->perf_event)
259 		return false;
260 
261 	/* recalibrate sample period and check if it's accepted by perf core */
262 	if (is_sampling_event(pmc->perf_event) &&
263 	    perf_event_period(pmc->perf_event,
264 			      get_sample_period(pmc, pmc->counter)))
265 		return false;
266 
267 	if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
268 	    (!!pmc->perf_event->attr.precise_ip))
269 		return false;
270 
271 	/* reuse perf_event to serve as pmc_reprogram_counter() does*/
272 	perf_event_enable(pmc->perf_event);
273 	pmc->is_paused = false;
274 
275 	return true;
276 }
277 
278 static void pmc_release_perf_event(struct kvm_pmc *pmc)
279 {
280 	if (pmc->perf_event) {
281 		perf_event_release_kernel(pmc->perf_event);
282 		pmc->perf_event = NULL;
283 		pmc->current_config = 0;
284 		pmc_to_pmu(pmc)->event_count--;
285 	}
286 }
287 
288 static void pmc_stop_counter(struct kvm_pmc *pmc)
289 {
290 	if (pmc->perf_event) {
291 		pmc->counter = pmc_read_counter(pmc);
292 		pmc_release_perf_event(pmc);
293 	}
294 }
295 
296 static void pmc_update_sample_period(struct kvm_pmc *pmc)
297 {
298 	if (!pmc->perf_event || pmc->is_paused ||
299 	    !is_sampling_event(pmc->perf_event))
300 		return;
301 
302 	perf_event_period(pmc->perf_event,
303 			  get_sample_period(pmc, pmc->counter));
304 }
305 
306 void pmc_write_counter(struct kvm_pmc *pmc, u64 val)
307 {
308 	/*
309 	 * Drop any unconsumed accumulated counts, the WRMSR is a write, not a
310 	 * read-modify-write.  Adjust the counter value so that its value is
311 	 * relative to the current count, as reading the current count from
312 	 * perf is faster than pausing and repgrogramming the event in order to
313 	 * reset it to '0'.  Note, this very sneakily offsets the accumulated
314 	 * emulated count too, by using pmc_read_counter()!
315 	 */
316 	pmc->emulated_counter = 0;
317 	pmc->counter += val - pmc_read_counter(pmc);
318 	pmc->counter &= pmc_bitmask(pmc);
319 	pmc_update_sample_period(pmc);
320 }
321 EXPORT_SYMBOL_GPL(pmc_write_counter);
322 
323 static int filter_cmp(const void *pa, const void *pb, u64 mask)
324 {
325 	u64 a = *(u64 *)pa & mask;
326 	u64 b = *(u64 *)pb & mask;
327 
328 	return (a > b) - (a < b);
329 }
330 
331 
332 static int filter_sort_cmp(const void *pa, const void *pb)
333 {
334 	return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
335 				   KVM_PMU_MASKED_ENTRY_EXCLUDE));
336 }
337 
338 /*
339  * For the event filter, searching is done on the 'includes' list and
340  * 'excludes' list separately rather than on the 'events' list (which
341  * has both).  As a result the exclude bit can be ignored.
342  */
343 static int filter_event_cmp(const void *pa, const void *pb)
344 {
345 	return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
346 }
347 
348 static int find_filter_index(u64 *events, u64 nevents, u64 key)
349 {
350 	u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
351 			  filter_event_cmp);
352 
353 	if (!fe)
354 		return -1;
355 
356 	return fe - events;
357 }
358 
359 static bool is_filter_entry_match(u64 filter_event, u64 umask)
360 {
361 	u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
362 	u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
363 
364 	BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
365 		     (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
366 		     ARCH_PERFMON_EVENTSEL_UMASK);
367 
368 	return (umask & mask) == match;
369 }
370 
371 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
372 {
373 	u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
374 	u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
375 	int i, index;
376 
377 	index = find_filter_index(events, nevents, event_select);
378 	if (index < 0)
379 		return false;
380 
381 	/*
382 	 * Entries are sorted by the event select.  Walk the list in both
383 	 * directions to process all entries with the targeted event select.
384 	 */
385 	for (i = index; i < nevents; i++) {
386 		if (filter_event_cmp(&events[i], &event_select))
387 			break;
388 
389 		if (is_filter_entry_match(events[i], umask))
390 			return true;
391 	}
392 
393 	for (i = index - 1; i >= 0; i--) {
394 		if (filter_event_cmp(&events[i], &event_select))
395 			break;
396 
397 		if (is_filter_entry_match(events[i], umask))
398 			return true;
399 	}
400 
401 	return false;
402 }
403 
404 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
405 				u64 eventsel)
406 {
407 	if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
408 	    !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
409 		return f->action == KVM_PMU_EVENT_ALLOW;
410 
411 	return f->action == KVM_PMU_EVENT_DENY;
412 }
413 
414 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
415 				   int idx)
416 {
417 	int fixed_idx = idx - KVM_FIXED_PMC_BASE_IDX;
418 
419 	if (filter->action == KVM_PMU_EVENT_DENY &&
420 	    test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
421 		return false;
422 	if (filter->action == KVM_PMU_EVENT_ALLOW &&
423 	    !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
424 		return false;
425 
426 	return true;
427 }
428 
429 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
430 {
431 	struct kvm_x86_pmu_event_filter *filter;
432 	struct kvm *kvm = pmc->vcpu->kvm;
433 
434 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
435 	if (!filter)
436 		return true;
437 
438 	if (pmc_is_gp(pmc))
439 		return is_gp_event_allowed(filter, pmc->eventsel);
440 
441 	return is_fixed_event_allowed(filter, pmc->idx);
442 }
443 
444 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
445 {
446 	return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
447 	       check_pmu_event_filter(pmc);
448 }
449 
450 static int reprogram_counter(struct kvm_pmc *pmc)
451 {
452 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
453 	u64 eventsel = pmc->eventsel;
454 	u64 new_config = eventsel;
455 	bool emulate_overflow;
456 	u8 fixed_ctr_ctrl;
457 
458 	emulate_overflow = pmc_pause_counter(pmc);
459 
460 	if (!pmc_event_is_allowed(pmc))
461 		return 0;
462 
463 	if (emulate_overflow)
464 		__kvm_perf_overflow(pmc, false);
465 
466 	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
467 		printk_once("kvm pmu: pin control bit is ignored\n");
468 
469 	if (pmc_is_fixed(pmc)) {
470 		fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
471 						  pmc->idx - KVM_FIXED_PMC_BASE_IDX);
472 		if (fixed_ctr_ctrl & INTEL_FIXED_0_KERNEL)
473 			eventsel |= ARCH_PERFMON_EVENTSEL_OS;
474 		if (fixed_ctr_ctrl & INTEL_FIXED_0_USER)
475 			eventsel |= ARCH_PERFMON_EVENTSEL_USR;
476 		if (fixed_ctr_ctrl & INTEL_FIXED_0_ENABLE_PMI)
477 			eventsel |= ARCH_PERFMON_EVENTSEL_INT;
478 		new_config = (u64)fixed_ctr_ctrl;
479 	}
480 
481 	if (pmc->current_config == new_config && pmc_resume_counter(pmc))
482 		return 0;
483 
484 	pmc_release_perf_event(pmc);
485 
486 	pmc->current_config = new_config;
487 
488 	return pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
489 				     (eventsel & pmu->raw_event_mask),
490 				     !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
491 				     !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
492 				     eventsel & ARCH_PERFMON_EVENTSEL_INT);
493 }
494 
495 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
496 {
497 	DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX);
498 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
499 	struct kvm_pmc *pmc;
500 	int bit;
501 
502 	bitmap_copy(bitmap, pmu->reprogram_pmi, X86_PMC_IDX_MAX);
503 
504 	/*
505 	 * The reprogramming bitmap can be written asynchronously by something
506 	 * other than the task that holds vcpu->mutex, take care to clear only
507 	 * the bits that will actually processed.
508 	 */
509 	BUILD_BUG_ON(sizeof(bitmap) != sizeof(atomic64_t));
510 	atomic64_andnot(*(s64 *)bitmap, &pmu->__reprogram_pmi);
511 
512 	kvm_for_each_pmc(pmu, pmc, bit, bitmap) {
513 		/*
514 		 * If reprogramming fails, e.g. due to contention, re-set the
515 		 * regprogram bit set, i.e. opportunistically try again on the
516 		 * next PMU refresh.  Don't make a new request as doing so can
517 		 * stall the guest if reprogramming repeatedly fails.
518 		 */
519 		if (reprogram_counter(pmc))
520 			set_bit(pmc->idx, pmu->reprogram_pmi);
521 	}
522 
523 	/*
524 	 * Release unused perf_events if the corresponding guest MSRs weren't
525 	 * accessed during the last vCPU time slice (need_cleanup is set when
526 	 * the vCPU is scheduled back in).
527 	 */
528 	if (unlikely(pmu->need_cleanup))
529 		kvm_pmu_cleanup(vcpu);
530 }
531 
532 int kvm_pmu_check_rdpmc_early(struct kvm_vcpu *vcpu, unsigned int idx)
533 {
534 	/*
535 	 * On Intel, VMX interception has priority over RDPMC exceptions that
536 	 * aren't already handled by the emulator, i.e. there are no additional
537 	 * check needed for Intel PMUs.
538 	 *
539 	 * On AMD, _all_ exceptions on RDPMC have priority over SVM intercepts,
540 	 * i.e. an invalid PMC results in a #GP, not #VMEXIT.
541 	 */
542 	if (!kvm_pmu_ops.check_rdpmc_early)
543 		return 0;
544 
545 	return kvm_pmu_call(check_rdpmc_early)(vcpu, idx);
546 }
547 
548 bool is_vmware_backdoor_pmc(u32 pmc_idx)
549 {
550 	switch (pmc_idx) {
551 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
552 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
553 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
554 		return true;
555 	}
556 	return false;
557 }
558 
559 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
560 {
561 	u64 ctr_val;
562 
563 	switch (idx) {
564 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
565 		ctr_val = rdtsc();
566 		break;
567 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
568 		ctr_val = ktime_get_boottime_ns();
569 		break;
570 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
571 		ctr_val = ktime_get_boottime_ns() +
572 			vcpu->kvm->arch.kvmclock_offset;
573 		break;
574 	default:
575 		return 1;
576 	}
577 
578 	*data = ctr_val;
579 	return 0;
580 }
581 
582 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
583 {
584 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
585 	struct kvm_pmc *pmc;
586 	u64 mask = ~0ull;
587 
588 	if (!pmu->version)
589 		return 1;
590 
591 	if (is_vmware_backdoor_pmc(idx))
592 		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
593 
594 	pmc = kvm_pmu_call(rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
595 	if (!pmc)
596 		return 1;
597 
598 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
599 	    (kvm_x86_call(get_cpl)(vcpu) != 0) &&
600 	    kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
601 		return 1;
602 
603 	*data = pmc_read_counter(pmc) & mask;
604 	return 0;
605 }
606 
607 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
608 {
609 	if (lapic_in_kernel(vcpu)) {
610 		kvm_pmu_call(deliver_pmi)(vcpu);
611 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
612 	}
613 }
614 
615 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
616 {
617 	switch (msr) {
618 	case MSR_CORE_PERF_GLOBAL_STATUS:
619 	case MSR_CORE_PERF_GLOBAL_CTRL:
620 	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
621 		return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
622 	default:
623 		break;
624 	}
625 	return kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr) ||
626 	       kvm_pmu_call(is_valid_msr)(vcpu, msr);
627 }
628 
629 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
630 {
631 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
632 	struct kvm_pmc *pmc = kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr);
633 
634 	if (pmc)
635 		__set_bit(pmc->idx, pmu->pmc_in_use);
636 }
637 
638 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
639 {
640 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
641 	u32 msr = msr_info->index;
642 
643 	switch (msr) {
644 	case MSR_CORE_PERF_GLOBAL_STATUS:
645 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
646 		msr_info->data = pmu->global_status;
647 		break;
648 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
649 	case MSR_CORE_PERF_GLOBAL_CTRL:
650 		msr_info->data = pmu->global_ctrl;
651 		break;
652 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
653 	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
654 		msr_info->data = 0;
655 		break;
656 	default:
657 		return kvm_pmu_call(get_msr)(vcpu, msr_info);
658 	}
659 
660 	return 0;
661 }
662 
663 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
664 {
665 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
666 	u32 msr = msr_info->index;
667 	u64 data = msr_info->data;
668 	u64 diff;
669 
670 	/*
671 	 * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
672 	 * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
673 	 */
674 	switch (msr) {
675 	case MSR_CORE_PERF_GLOBAL_STATUS:
676 		if (!msr_info->host_initiated)
677 			return 1; /* RO MSR */
678 		fallthrough;
679 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
680 		/* Per PPR, Read-only MSR. Writes are ignored. */
681 		if (!msr_info->host_initiated)
682 			break;
683 
684 		if (data & pmu->global_status_rsvd)
685 			return 1;
686 
687 		pmu->global_status = data;
688 		break;
689 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
690 		data &= ~pmu->global_ctrl_rsvd;
691 		fallthrough;
692 	case MSR_CORE_PERF_GLOBAL_CTRL:
693 		if (!kvm_valid_perf_global_ctrl(pmu, data))
694 			return 1;
695 
696 		if (pmu->global_ctrl != data) {
697 			diff = pmu->global_ctrl ^ data;
698 			pmu->global_ctrl = data;
699 			reprogram_counters(pmu, diff);
700 		}
701 		break;
702 	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
703 		/*
704 		 * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
705 		 * GLOBAL_STATUS, and so the set of reserved bits is the same.
706 		 */
707 		if (data & pmu->global_status_rsvd)
708 			return 1;
709 		fallthrough;
710 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
711 		if (!msr_info->host_initiated)
712 			pmu->global_status &= ~data;
713 		break;
714 	default:
715 		kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
716 		return kvm_pmu_call(set_msr)(vcpu, msr_info);
717 	}
718 
719 	return 0;
720 }
721 
722 static void kvm_pmu_reset(struct kvm_vcpu *vcpu)
723 {
724 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
725 	struct kvm_pmc *pmc;
726 	int i;
727 
728 	pmu->need_cleanup = false;
729 
730 	bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
731 
732 	kvm_for_each_pmc(pmu, pmc, i, pmu->all_valid_pmc_idx) {
733 		pmc_stop_counter(pmc);
734 		pmc->counter = 0;
735 		pmc->emulated_counter = 0;
736 
737 		if (pmc_is_gp(pmc))
738 			pmc->eventsel = 0;
739 	}
740 
741 	pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
742 
743 	kvm_pmu_call(reset)(vcpu);
744 }
745 
746 
747 /*
748  * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
749  * and/or PERF_CAPABILITIES.
750  */
751 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
752 {
753 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
754 
755 	if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
756 		return;
757 
758 	/*
759 	 * Stop/release all existing counters/events before realizing the new
760 	 * vPMU model.
761 	 */
762 	kvm_pmu_reset(vcpu);
763 
764 	pmu->version = 0;
765 	pmu->nr_arch_gp_counters = 0;
766 	pmu->nr_arch_fixed_counters = 0;
767 	pmu->counter_bitmask[KVM_PMC_GP] = 0;
768 	pmu->counter_bitmask[KVM_PMC_FIXED] = 0;
769 	pmu->reserved_bits = 0xffffffff00200000ull;
770 	pmu->raw_event_mask = X86_RAW_EVENT_MASK;
771 	pmu->global_ctrl_rsvd = ~0ull;
772 	pmu->global_status_rsvd = ~0ull;
773 	pmu->fixed_ctr_ctrl_rsvd = ~0ull;
774 	pmu->pebs_enable_rsvd = ~0ull;
775 	pmu->pebs_data_cfg_rsvd = ~0ull;
776 	bitmap_zero(pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX);
777 
778 	if (!vcpu->kvm->arch.enable_pmu)
779 		return;
780 
781 	kvm_pmu_call(refresh)(vcpu);
782 
783 	/*
784 	 * At RESET, both Intel and AMD CPUs set all enable bits for general
785 	 * purpose counters in IA32_PERF_GLOBAL_CTRL (so that software that
786 	 * was written for v1 PMUs don't unknowingly leave GP counters disabled
787 	 * in the global controls).  Emulate that behavior when refreshing the
788 	 * PMU so that userspace doesn't need to manually set PERF_GLOBAL_CTRL.
789 	 */
790 	if (kvm_pmu_has_perf_global_ctrl(pmu) && pmu->nr_arch_gp_counters)
791 		pmu->global_ctrl = GENMASK_ULL(pmu->nr_arch_gp_counters - 1, 0);
792 }
793 
794 void kvm_pmu_init(struct kvm_vcpu *vcpu)
795 {
796 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
797 
798 	memset(pmu, 0, sizeof(*pmu));
799 	kvm_pmu_call(init)(vcpu);
800 	kvm_pmu_refresh(vcpu);
801 }
802 
803 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
804 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
805 {
806 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
807 	struct kvm_pmc *pmc = NULL;
808 	DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
809 	int i;
810 
811 	pmu->need_cleanup = false;
812 
813 	bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
814 		      pmu->pmc_in_use, X86_PMC_IDX_MAX);
815 
816 	kvm_for_each_pmc(pmu, pmc, i, bitmask) {
817 		if (pmc->perf_event && !pmc_speculative_in_use(pmc))
818 			pmc_stop_counter(pmc);
819 	}
820 
821 	kvm_pmu_call(cleanup)(vcpu);
822 
823 	bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
824 }
825 
826 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
827 {
828 	kvm_pmu_reset(vcpu);
829 }
830 
831 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
832 {
833 	pmc->emulated_counter++;
834 	kvm_pmu_request_counter_reprogram(pmc);
835 }
836 
837 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
838 {
839 	bool select_os, select_user;
840 	u64 config;
841 
842 	if (pmc_is_gp(pmc)) {
843 		config = pmc->eventsel;
844 		select_os = config & ARCH_PERFMON_EVENTSEL_OS;
845 		select_user = config & ARCH_PERFMON_EVENTSEL_USR;
846 	} else {
847 		config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
848 					  pmc->idx - KVM_FIXED_PMC_BASE_IDX);
849 		select_os = config & INTEL_FIXED_0_KERNEL;
850 		select_user = config & INTEL_FIXED_0_USER;
851 	}
852 
853 	/*
854 	 * Skip the CPL lookup, which isn't free on Intel, if the result will
855 	 * be the same regardless of the CPL.
856 	 */
857 	if (select_os == select_user)
858 		return select_os;
859 
860 	return (kvm_x86_call(get_cpl)(pmc->vcpu) == 0) ? select_os :
861 							 select_user;
862 }
863 
864 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 eventsel)
865 {
866 	DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX);
867 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
868 	struct kvm_pmc *pmc;
869 	int i;
870 
871 	BUILD_BUG_ON(sizeof(pmu->global_ctrl) * BITS_PER_BYTE != X86_PMC_IDX_MAX);
872 
873 	if (!kvm_pmu_has_perf_global_ctrl(pmu))
874 		bitmap_copy(bitmap, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX);
875 	else if (!bitmap_and(bitmap, pmu->all_valid_pmc_idx,
876 			     (unsigned long *)&pmu->global_ctrl, X86_PMC_IDX_MAX))
877 		return;
878 
879 	kvm_for_each_pmc(pmu, pmc, i, bitmap) {
880 		/*
881 		 * Ignore checks for edge detect (all events currently emulated
882 		 * but KVM are always rising edges), pin control (unsupported
883 		 * by modern CPUs), and counter mask and its invert flag (KVM
884 		 * doesn't emulate multiple events in a single clock cycle).
885 		 *
886 		 * Note, the uppermost nibble of AMD's mask overlaps Intel's
887 		 * IN_TX (bit 32) and IN_TXCP (bit 33), as well as two reserved
888 		 * bits (bits 35:34).  Checking the "in HLE/RTM transaction"
889 		 * flags is correct as the vCPU can't be in a transaction if
890 		 * KVM is emulating an instruction.  Checking the reserved bits
891 		 * might be wrong if they are defined in the future, but so
892 		 * could ignoring them, so do the simple thing for now.
893 		 */
894 		if (((pmc->eventsel ^ eventsel) & AMD64_RAW_EVENT_MASK_NB) ||
895 		    !pmc_event_is_allowed(pmc) || !cpl_is_matched(pmc))
896 			continue;
897 
898 		kvm_pmu_incr_counter(pmc);
899 	}
900 }
901 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
902 
903 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
904 {
905 	u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
906 		   KVM_PMU_MASKED_ENTRY_UMASK_MASK |
907 		   KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
908 		   KVM_PMU_MASKED_ENTRY_EXCLUDE;
909 	int i;
910 
911 	for (i = 0; i < filter->nevents; i++) {
912 		if (filter->events[i] & ~mask)
913 			return false;
914 	}
915 
916 	return true;
917 }
918 
919 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
920 {
921 	int i, j;
922 
923 	for (i = 0, j = 0; i < filter->nevents; i++) {
924 		/*
925 		 * Skip events that are impossible to match against a guest
926 		 * event.  When filtering, only the event select + unit mask
927 		 * of the guest event is used.  To maintain backwards
928 		 * compatibility, impossible filters can't be rejected :-(
929 		 */
930 		if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
931 					  ARCH_PERFMON_EVENTSEL_UMASK))
932 			continue;
933 		/*
934 		 * Convert userspace events to a common in-kernel event so
935 		 * only one code path is needed to support both events.  For
936 		 * the in-kernel events use masked events because they are
937 		 * flexible enough to handle both cases.  To convert to masked
938 		 * events all that's needed is to add an "all ones" umask_mask,
939 		 * (unmasked filter events don't support EXCLUDE).
940 		 */
941 		filter->events[j++] = filter->events[i] |
942 				      (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
943 	}
944 
945 	filter->nevents = j;
946 }
947 
948 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
949 {
950 	int i;
951 
952 	if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
953 		convert_to_masked_filter(filter);
954 	else if (!is_masked_filter_valid(filter))
955 		return -EINVAL;
956 
957 	/*
958 	 * Sort entries by event select and includes vs. excludes so that all
959 	 * entries for a given event select can be processed efficiently during
960 	 * filtering.  The EXCLUDE flag uses a more significant bit than the
961 	 * event select, and so the sorted list is also effectively split into
962 	 * includes and excludes sub-lists.
963 	 */
964 	sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
965 	     filter_sort_cmp, NULL);
966 
967 	i = filter->nevents;
968 	/* Find the first EXCLUDE event (only supported for masked events). */
969 	if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
970 		for (i = 0; i < filter->nevents; i++) {
971 			if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
972 				break;
973 		}
974 	}
975 
976 	filter->nr_includes = i;
977 	filter->nr_excludes = filter->nevents - filter->nr_includes;
978 	filter->includes = filter->events;
979 	filter->excludes = filter->events + filter->nr_includes;
980 
981 	return 0;
982 }
983 
984 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
985 {
986 	struct kvm_pmu_event_filter __user *user_filter = argp;
987 	struct kvm_x86_pmu_event_filter *filter;
988 	struct kvm_pmu_event_filter tmp;
989 	struct kvm_vcpu *vcpu;
990 	unsigned long i;
991 	size_t size;
992 	int r;
993 
994 	if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
995 		return -EFAULT;
996 
997 	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
998 	    tmp.action != KVM_PMU_EVENT_DENY)
999 		return -EINVAL;
1000 
1001 	if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
1002 		return -EINVAL;
1003 
1004 	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
1005 		return -E2BIG;
1006 
1007 	size = struct_size(filter, events, tmp.nevents);
1008 	filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
1009 	if (!filter)
1010 		return -ENOMEM;
1011 
1012 	filter->action = tmp.action;
1013 	filter->nevents = tmp.nevents;
1014 	filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
1015 	filter->flags = tmp.flags;
1016 
1017 	r = -EFAULT;
1018 	if (copy_from_user(filter->events, user_filter->events,
1019 			   sizeof(filter->events[0]) * filter->nevents))
1020 		goto cleanup;
1021 
1022 	r = prepare_filter_lists(filter);
1023 	if (r)
1024 		goto cleanup;
1025 
1026 	mutex_lock(&kvm->lock);
1027 	filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
1028 				     mutex_is_locked(&kvm->lock));
1029 	mutex_unlock(&kvm->lock);
1030 	synchronize_srcu_expedited(&kvm->srcu);
1031 
1032 	BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
1033 		     sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
1034 
1035 	kvm_for_each_vcpu(i, vcpu, kvm)
1036 		atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
1037 
1038 	kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
1039 
1040 	r = 0;
1041 cleanup:
1042 	kfree(filter);
1043 	return r;
1044 }
1045