xref: /linux/arch/x86/kvm/pmu.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <linux/bsearch.h>
17 #include <linux/sort.h>
18 #include <asm/perf_event.h>
19 #include "x86.h"
20 #include "cpuid.h"
21 #include "lapic.h"
22 #include "pmu.h"
23 
24 /* This is enough to filter the vast majority of currently defined events. */
25 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
26 
27 /* NOTE:
28  * - Each perf counter is defined as "struct kvm_pmc";
29  * - There are two types of perf counters: general purpose (gp) and fixed.
30  *   gp counters are stored in gp_counters[] and fixed counters are stored
31  *   in fixed_counters[] respectively. Both of them are part of "struct
32  *   kvm_pmu";
33  * - pmu.c understands the difference between gp counters and fixed counters.
34  *   However AMD doesn't support fixed-counters;
35  * - There are three types of index to access perf counters (PMC):
36  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
37  *        has MSR_K7_PERFCTRn.
38  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
39  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
40  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
41  *        that it also supports fixed counters. idx can be used to as index to
42  *        gp and fixed counters.
43  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
44  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
45  *        all perf counters (both gp and fixed). The mapping relationship
46  *        between pmc and perf counters is as the following:
47  *        * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
48  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
49  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
50  */
51 
52 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
53 {
54 	struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
55 	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
56 
57 	kvm_pmu_deliver_pmi(vcpu);
58 }
59 
60 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
61 {
62 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
63 
64 	/* Ignore counters that have been reprogrammed already. */
65 	if (test_and_set_bit(pmc->idx, pmu->reprogram_pmi))
66 		return;
67 
68 	__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
69 	kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
70 
71 	if (!pmc->intr)
72 		return;
73 
74 	/*
75 	 * Inject PMI. If vcpu was in a guest mode during NMI PMI
76 	 * can be ejected on a guest mode re-entry. Otherwise we can't
77 	 * be sure that vcpu wasn't executing hlt instruction at the
78 	 * time of vmexit and is not going to re-enter guest mode until
79 	 * woken up. So we should wake it, but this is impossible from
80 	 * NMI context. Do it from irq work instead.
81 	 */
82 	if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
83 		irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
84 	else
85 		kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
86 }
87 
88 static void kvm_perf_overflow(struct perf_event *perf_event,
89 			      struct perf_sample_data *data,
90 			      struct pt_regs *regs)
91 {
92 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
93 
94 	__kvm_perf_overflow(pmc, true);
95 }
96 
97 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
98 				  u64 config, bool exclude_user,
99 				  bool exclude_kernel, bool intr,
100 				  bool in_tx, bool in_tx_cp)
101 {
102 	struct perf_event *event;
103 	struct perf_event_attr attr = {
104 		.type = type,
105 		.size = sizeof(attr),
106 		.pinned = true,
107 		.exclude_idle = true,
108 		.exclude_host = 1,
109 		.exclude_user = exclude_user,
110 		.exclude_kernel = exclude_kernel,
111 		.config = config,
112 	};
113 
114 	if (type == PERF_TYPE_HARDWARE && config >= PERF_COUNT_HW_MAX)
115 		return;
116 
117 	attr.sample_period = get_sample_period(pmc, pmc->counter);
118 
119 	if (in_tx)
120 		attr.config |= HSW_IN_TX;
121 	if (in_tx_cp) {
122 		/*
123 		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
124 		 * period. Just clear the sample period so at least
125 		 * allocating the counter doesn't fail.
126 		 */
127 		attr.sample_period = 0;
128 		attr.config |= HSW_IN_TX_CHECKPOINTED;
129 	}
130 
131 	event = perf_event_create_kernel_counter(&attr, -1, current,
132 						 kvm_perf_overflow, pmc);
133 	if (IS_ERR(event)) {
134 		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
135 			    PTR_ERR(event), pmc->idx);
136 		return;
137 	}
138 
139 	pmc->perf_event = event;
140 	pmc_to_pmu(pmc)->event_count++;
141 	clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi);
142 	pmc->is_paused = false;
143 	pmc->intr = intr;
144 }
145 
146 static void pmc_pause_counter(struct kvm_pmc *pmc)
147 {
148 	u64 counter = pmc->counter;
149 
150 	if (!pmc->perf_event || pmc->is_paused)
151 		return;
152 
153 	/* update counter, reset event value to avoid redundant accumulation */
154 	counter += perf_event_pause(pmc->perf_event, true);
155 	pmc->counter = counter & pmc_bitmask(pmc);
156 	pmc->is_paused = true;
157 }
158 
159 static bool pmc_resume_counter(struct kvm_pmc *pmc)
160 {
161 	if (!pmc->perf_event)
162 		return false;
163 
164 	/* recalibrate sample period and check if it's accepted by perf core */
165 	if (perf_event_period(pmc->perf_event,
166 			      get_sample_period(pmc, pmc->counter)))
167 		return false;
168 
169 	/* reuse perf_event to serve as pmc_reprogram_counter() does*/
170 	perf_event_enable(pmc->perf_event);
171 	pmc->is_paused = false;
172 
173 	clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
174 	return true;
175 }
176 
177 static int cmp_u64(const void *a, const void *b)
178 {
179 	return *(__u64 *)a - *(__u64 *)b;
180 }
181 
182 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
183 {
184 	u64 config;
185 	u32 type = PERF_TYPE_RAW;
186 	struct kvm *kvm = pmc->vcpu->kvm;
187 	struct kvm_pmu_event_filter *filter;
188 	bool allow_event = true;
189 
190 	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
191 		printk_once("kvm pmu: pin control bit is ignored\n");
192 
193 	pmc->eventsel = eventsel;
194 
195 	pmc_pause_counter(pmc);
196 
197 	if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
198 		return;
199 
200 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
201 	if (filter) {
202 		__u64 key = eventsel & AMD64_RAW_EVENT_MASK_NB;
203 
204 		if (bsearch(&key, filter->events, filter->nevents,
205 			    sizeof(__u64), cmp_u64))
206 			allow_event = filter->action == KVM_PMU_EVENT_ALLOW;
207 		else
208 			allow_event = filter->action == KVM_PMU_EVENT_DENY;
209 	}
210 	if (!allow_event)
211 		return;
212 
213 	if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
214 			  ARCH_PERFMON_EVENTSEL_INV |
215 			  ARCH_PERFMON_EVENTSEL_CMASK |
216 			  HSW_IN_TX |
217 			  HSW_IN_TX_CHECKPOINTED))) {
218 		config = kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc);
219 		if (config != PERF_COUNT_HW_MAX)
220 			type = PERF_TYPE_HARDWARE;
221 	}
222 
223 	if (type == PERF_TYPE_RAW)
224 		config = eventsel & AMD64_RAW_EVENT_MASK;
225 
226 	if (pmc->current_config == eventsel && pmc_resume_counter(pmc))
227 		return;
228 
229 	pmc_release_perf_event(pmc);
230 
231 	pmc->current_config = eventsel;
232 	pmc_reprogram_counter(pmc, type, config,
233 			      !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
234 			      !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
235 			      eventsel & ARCH_PERFMON_EVENTSEL_INT,
236 			      (eventsel & HSW_IN_TX),
237 			      (eventsel & HSW_IN_TX_CHECKPOINTED));
238 }
239 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
240 
241 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
242 {
243 	unsigned en_field = ctrl & 0x3;
244 	bool pmi = ctrl & 0x8;
245 	struct kvm_pmu_event_filter *filter;
246 	struct kvm *kvm = pmc->vcpu->kvm;
247 
248 	pmc_pause_counter(pmc);
249 
250 	if (!en_field || !pmc_is_enabled(pmc))
251 		return;
252 
253 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
254 	if (filter) {
255 		if (filter->action == KVM_PMU_EVENT_DENY &&
256 		    test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
257 			return;
258 		if (filter->action == KVM_PMU_EVENT_ALLOW &&
259 		    !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
260 			return;
261 	}
262 
263 	if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc))
264 		return;
265 
266 	pmc_release_perf_event(pmc);
267 
268 	pmc->current_config = (u64)ctrl;
269 	pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
270 			      kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc),
271 			      !(en_field & 0x2), /* exclude user */
272 			      !(en_field & 0x1), /* exclude kernel */
273 			      pmi, false, false);
274 }
275 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
276 
277 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
278 {
279 	struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
280 
281 	if (!pmc)
282 		return;
283 
284 	if (pmc_is_gp(pmc))
285 		reprogram_gp_counter(pmc, pmc->eventsel);
286 	else {
287 		int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
288 		u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
289 
290 		reprogram_fixed_counter(pmc, ctrl, idx);
291 	}
292 }
293 EXPORT_SYMBOL_GPL(reprogram_counter);
294 
295 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
296 {
297 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
298 	int bit;
299 
300 	for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
301 		struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, bit);
302 
303 		if (unlikely(!pmc || !pmc->perf_event)) {
304 			clear_bit(bit, pmu->reprogram_pmi);
305 			continue;
306 		}
307 
308 		reprogram_counter(pmu, bit);
309 	}
310 
311 	/*
312 	 * Unused perf_events are only released if the corresponding MSRs
313 	 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
314 	 * triggers KVM_REQ_PMU if cleanup is needed.
315 	 */
316 	if (unlikely(pmu->need_cleanup))
317 		kvm_pmu_cleanup(vcpu);
318 }
319 
320 /* check if idx is a valid index to access PMU */
321 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
322 {
323 	return kvm_x86_ops.pmu_ops->is_valid_rdpmc_ecx(vcpu, idx);
324 }
325 
326 bool is_vmware_backdoor_pmc(u32 pmc_idx)
327 {
328 	switch (pmc_idx) {
329 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
330 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
331 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
332 		return true;
333 	}
334 	return false;
335 }
336 
337 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
338 {
339 	u64 ctr_val;
340 
341 	switch (idx) {
342 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
343 		ctr_val = rdtsc();
344 		break;
345 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
346 		ctr_val = ktime_get_boottime_ns();
347 		break;
348 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
349 		ctr_val = ktime_get_boottime_ns() +
350 			vcpu->kvm->arch.kvmclock_offset;
351 		break;
352 	default:
353 		return 1;
354 	}
355 
356 	*data = ctr_val;
357 	return 0;
358 }
359 
360 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
361 {
362 	bool fast_mode = idx & (1u << 31);
363 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
364 	struct kvm_pmc *pmc;
365 	u64 mask = fast_mode ? ~0u : ~0ull;
366 
367 	if (!pmu->version)
368 		return 1;
369 
370 	if (is_vmware_backdoor_pmc(idx))
371 		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
372 
373 	pmc = kvm_x86_ops.pmu_ops->rdpmc_ecx_to_pmc(vcpu, idx, &mask);
374 	if (!pmc)
375 		return 1;
376 
377 	if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
378 	    (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
379 	    (kvm_read_cr0(vcpu) & X86_CR0_PE))
380 		return 1;
381 
382 	*data = pmc_read_counter(pmc) & mask;
383 	return 0;
384 }
385 
386 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
387 {
388 	if (lapic_in_kernel(vcpu)) {
389 		if (kvm_x86_ops.pmu_ops->deliver_pmi)
390 			kvm_x86_ops.pmu_ops->deliver_pmi(vcpu);
391 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
392 	}
393 }
394 
395 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
396 {
397 	return kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr) ||
398 		kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, msr);
399 }
400 
401 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
402 {
403 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
404 	struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr);
405 
406 	if (pmc)
407 		__set_bit(pmc->idx, pmu->pmc_in_use);
408 }
409 
410 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
411 {
412 	return kvm_x86_ops.pmu_ops->get_msr(vcpu, msr_info);
413 }
414 
415 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
416 {
417 	kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
418 	return kvm_x86_ops.pmu_ops->set_msr(vcpu, msr_info);
419 }
420 
421 /* refresh PMU settings. This function generally is called when underlying
422  * settings are changed (such as changes of PMU CPUID by guest VMs), which
423  * should rarely happen.
424  */
425 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
426 {
427 	kvm_x86_ops.pmu_ops->refresh(vcpu);
428 }
429 
430 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
431 {
432 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
433 
434 	irq_work_sync(&pmu->irq_work);
435 	kvm_x86_ops.pmu_ops->reset(vcpu);
436 }
437 
438 void kvm_pmu_init(struct kvm_vcpu *vcpu)
439 {
440 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
441 
442 	memset(pmu, 0, sizeof(*pmu));
443 	kvm_x86_ops.pmu_ops->init(vcpu);
444 	init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
445 	pmu->event_count = 0;
446 	pmu->need_cleanup = false;
447 	kvm_pmu_refresh(vcpu);
448 }
449 
450 static inline bool pmc_speculative_in_use(struct kvm_pmc *pmc)
451 {
452 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
453 
454 	if (pmc_is_fixed(pmc))
455 		return fixed_ctrl_field(pmu->fixed_ctr_ctrl,
456 			pmc->idx - INTEL_PMC_IDX_FIXED) & 0x3;
457 
458 	return pmc->eventsel & ARCH_PERFMON_EVENTSEL_ENABLE;
459 }
460 
461 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
462 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
463 {
464 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
465 	struct kvm_pmc *pmc = NULL;
466 	DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
467 	int i;
468 
469 	pmu->need_cleanup = false;
470 
471 	bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
472 		      pmu->pmc_in_use, X86_PMC_IDX_MAX);
473 
474 	for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
475 		pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
476 
477 		if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
478 			pmc_stop_counter(pmc);
479 	}
480 
481 	if (kvm_x86_ops.pmu_ops->cleanup)
482 		kvm_x86_ops.pmu_ops->cleanup(vcpu);
483 
484 	bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
485 }
486 
487 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
488 {
489 	kvm_pmu_reset(vcpu);
490 }
491 
492 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
493 {
494 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
495 	u64 prev_count;
496 
497 	prev_count = pmc->counter;
498 	pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
499 
500 	reprogram_counter(pmu, pmc->idx);
501 	if (pmc->counter < prev_count)
502 		__kvm_perf_overflow(pmc, false);
503 }
504 
505 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
506 	unsigned int perf_hw_id)
507 {
508 	u64 old_eventsel = pmc->eventsel;
509 	unsigned int config;
510 
511 	pmc->eventsel &= (ARCH_PERFMON_EVENTSEL_EVENT | ARCH_PERFMON_EVENTSEL_UMASK);
512 	config = kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc);
513 	pmc->eventsel = old_eventsel;
514 	return config == perf_hw_id;
515 }
516 
517 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
518 {
519 	bool select_os, select_user;
520 	u64 config = pmc->current_config;
521 
522 	if (pmc_is_gp(pmc)) {
523 		select_os = config & ARCH_PERFMON_EVENTSEL_OS;
524 		select_user = config & ARCH_PERFMON_EVENTSEL_USR;
525 	} else {
526 		select_os = config & 0x1;
527 		select_user = config & 0x2;
528 	}
529 
530 	return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
531 }
532 
533 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
534 {
535 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
536 	struct kvm_pmc *pmc;
537 	int i;
538 
539 	for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
540 		pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
541 
542 		if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc))
543 			continue;
544 
545 		/* Ignore checks for edge detect, pin control, invert and CMASK bits */
546 		if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
547 			kvm_pmu_incr_counter(pmc);
548 	}
549 }
550 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
551 
552 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
553 {
554 	struct kvm_pmu_event_filter tmp, *filter;
555 	size_t size;
556 	int r;
557 
558 	if (copy_from_user(&tmp, argp, sizeof(tmp)))
559 		return -EFAULT;
560 
561 	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
562 	    tmp.action != KVM_PMU_EVENT_DENY)
563 		return -EINVAL;
564 
565 	if (tmp.flags != 0)
566 		return -EINVAL;
567 
568 	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
569 		return -E2BIG;
570 
571 	size = struct_size(filter, events, tmp.nevents);
572 	filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
573 	if (!filter)
574 		return -ENOMEM;
575 
576 	r = -EFAULT;
577 	if (copy_from_user(filter, argp, size))
578 		goto cleanup;
579 
580 	/* Ensure nevents can't be changed between the user copies. */
581 	*filter = tmp;
582 
583 	/*
584 	 * Sort the in-kernel list so that we can search it with bsearch.
585 	 */
586 	sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL);
587 
588 	mutex_lock(&kvm->lock);
589 	filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
590 				     mutex_is_locked(&kvm->lock));
591 	mutex_unlock(&kvm->lock);
592 
593 	synchronize_srcu_expedited(&kvm->srcu);
594 	r = 0;
595 cleanup:
596 	kfree(filter);
597 	return r;
598 }
599