xref: /linux/arch/x86/kvm/pmu.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <asm/perf_event.h>
17 #include "x86.h"
18 #include "cpuid.h"
19 #include "lapic.h"
20 #include "pmu.h"
21 
22 /* This keeps the total size of the filter under 4k. */
23 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 63
24 
25 /* NOTE:
26  * - Each perf counter is defined as "struct kvm_pmc";
27  * - There are two types of perf counters: general purpose (gp) and fixed.
28  *   gp counters are stored in gp_counters[] and fixed counters are stored
29  *   in fixed_counters[] respectively. Both of them are part of "struct
30  *   kvm_pmu";
31  * - pmu.c understands the difference between gp counters and fixed counters.
32  *   However AMD doesn't support fixed-counters;
33  * - There are three types of index to access perf counters (PMC):
34  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
35  *        has MSR_K7_PERFCTRn.
36  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
37  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
38  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
39  *        that it also supports fixed counters. idx can be used to as index to
40  *        gp and fixed counters.
41  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
42  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
43  *        all perf counters (both gp and fixed). The mapping relationship
44  *        between pmc and perf counters is as the following:
45  *        * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
46  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
47  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
48  */
49 
50 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
51 {
52 	struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
53 	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
54 
55 	kvm_pmu_deliver_pmi(vcpu);
56 }
57 
58 static void kvm_perf_overflow(struct perf_event *perf_event,
59 			      struct perf_sample_data *data,
60 			      struct pt_regs *regs)
61 {
62 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
63 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
64 
65 	if (!test_and_set_bit(pmc->idx,
66 			      (unsigned long *)&pmu->reprogram_pmi)) {
67 		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
68 		kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
69 	}
70 }
71 
72 static void kvm_perf_overflow_intr(struct perf_event *perf_event,
73 				   struct perf_sample_data *data,
74 				   struct pt_regs *regs)
75 {
76 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
77 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
78 
79 	if (!test_and_set_bit(pmc->idx,
80 			      (unsigned long *)&pmu->reprogram_pmi)) {
81 		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
82 		kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
83 
84 		/*
85 		 * Inject PMI. If vcpu was in a guest mode during NMI PMI
86 		 * can be ejected on a guest mode re-entry. Otherwise we can't
87 		 * be sure that vcpu wasn't executing hlt instruction at the
88 		 * time of vmexit and is not going to re-enter guest mode until
89 		 * woken up. So we should wake it, but this is impossible from
90 		 * NMI context. Do it from irq work instead.
91 		 */
92 		if (!kvm_is_in_guest())
93 			irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
94 		else
95 			kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
96 	}
97 }
98 
99 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
100 				  unsigned config, bool exclude_user,
101 				  bool exclude_kernel, bool intr,
102 				  bool in_tx, bool in_tx_cp)
103 {
104 	struct perf_event *event;
105 	struct perf_event_attr attr = {
106 		.type = type,
107 		.size = sizeof(attr),
108 		.pinned = true,
109 		.exclude_idle = true,
110 		.exclude_host = 1,
111 		.exclude_user = exclude_user,
112 		.exclude_kernel = exclude_kernel,
113 		.config = config,
114 	};
115 
116 	attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc);
117 
118 	if (in_tx)
119 		attr.config |= HSW_IN_TX;
120 	if (in_tx_cp) {
121 		/*
122 		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
123 		 * period. Just clear the sample period so at least
124 		 * allocating the counter doesn't fail.
125 		 */
126 		attr.sample_period = 0;
127 		attr.config |= HSW_IN_TX_CHECKPOINTED;
128 	}
129 
130 	event = perf_event_create_kernel_counter(&attr, -1, current,
131 						 intr ? kvm_perf_overflow_intr :
132 						 kvm_perf_overflow, pmc);
133 	if (IS_ERR(event)) {
134 		printk_once("kvm_pmu: event creation failed %ld\n",
135 			    PTR_ERR(event));
136 		return;
137 	}
138 
139 	pmc->perf_event = event;
140 	clear_bit(pmc->idx, (unsigned long*)&pmc_to_pmu(pmc)->reprogram_pmi);
141 }
142 
143 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
144 {
145 	unsigned config, type = PERF_TYPE_RAW;
146 	u8 event_select, unit_mask;
147 	struct kvm *kvm = pmc->vcpu->kvm;
148 	struct kvm_pmu_event_filter *filter;
149 	int i;
150 	bool allow_event = true;
151 
152 	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
153 		printk_once("kvm pmu: pin control bit is ignored\n");
154 
155 	pmc->eventsel = eventsel;
156 
157 	pmc_stop_counter(pmc);
158 
159 	if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
160 		return;
161 
162 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
163 	if (filter) {
164 		for (i = 0; i < filter->nevents; i++)
165 			if (filter->events[i] ==
166 			    (eventsel & AMD64_RAW_EVENT_MASK_NB))
167 				break;
168 		if (filter->action == KVM_PMU_EVENT_ALLOW &&
169 		    i == filter->nevents)
170 			allow_event = false;
171 		if (filter->action == KVM_PMU_EVENT_DENY &&
172 		    i < filter->nevents)
173 			allow_event = false;
174 	}
175 	if (!allow_event)
176 		return;
177 
178 	event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT;
179 	unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
180 
181 	if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
182 			  ARCH_PERFMON_EVENTSEL_INV |
183 			  ARCH_PERFMON_EVENTSEL_CMASK |
184 			  HSW_IN_TX |
185 			  HSW_IN_TX_CHECKPOINTED))) {
186 		config = kvm_x86_ops->pmu_ops->find_arch_event(pmc_to_pmu(pmc),
187 						      event_select,
188 						      unit_mask);
189 		if (config != PERF_COUNT_HW_MAX)
190 			type = PERF_TYPE_HARDWARE;
191 	}
192 
193 	if (type == PERF_TYPE_RAW)
194 		config = eventsel & X86_RAW_EVENT_MASK;
195 
196 	pmc_reprogram_counter(pmc, type, config,
197 			      !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
198 			      !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
199 			      eventsel & ARCH_PERFMON_EVENTSEL_INT,
200 			      (eventsel & HSW_IN_TX),
201 			      (eventsel & HSW_IN_TX_CHECKPOINTED));
202 }
203 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
204 
205 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
206 {
207 	unsigned en_field = ctrl & 0x3;
208 	bool pmi = ctrl & 0x8;
209 
210 	pmc_stop_counter(pmc);
211 
212 	if (!en_field || !pmc_is_enabled(pmc))
213 		return;
214 
215 	pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
216 			      kvm_x86_ops->pmu_ops->find_fixed_event(idx),
217 			      !(en_field & 0x2), /* exclude user */
218 			      !(en_field & 0x1), /* exclude kernel */
219 			      pmi, false, false);
220 }
221 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
222 
223 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
224 {
225 	struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
226 
227 	if (!pmc)
228 		return;
229 
230 	if (pmc_is_gp(pmc))
231 		reprogram_gp_counter(pmc, pmc->eventsel);
232 	else {
233 		int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
234 		u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
235 
236 		reprogram_fixed_counter(pmc, ctrl, idx);
237 	}
238 }
239 EXPORT_SYMBOL_GPL(reprogram_counter);
240 
241 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
242 {
243 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
244 	u64 bitmask;
245 	int bit;
246 
247 	bitmask = pmu->reprogram_pmi;
248 
249 	for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) {
250 		struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, bit);
251 
252 		if (unlikely(!pmc || !pmc->perf_event)) {
253 			clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi);
254 			continue;
255 		}
256 
257 		reprogram_counter(pmu, bit);
258 	}
259 }
260 
261 /* check if idx is a valid index to access PMU */
262 int kvm_pmu_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx)
263 {
264 	return kvm_x86_ops->pmu_ops->is_valid_msr_idx(vcpu, idx);
265 }
266 
267 bool is_vmware_backdoor_pmc(u32 pmc_idx)
268 {
269 	switch (pmc_idx) {
270 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
271 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
272 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
273 		return true;
274 	}
275 	return false;
276 }
277 
278 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
279 {
280 	u64 ctr_val;
281 
282 	switch (idx) {
283 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
284 		ctr_val = rdtsc();
285 		break;
286 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
287 		ctr_val = ktime_get_boottime_ns();
288 		break;
289 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
290 		ctr_val = ktime_get_boottime_ns() +
291 			vcpu->kvm->arch.kvmclock_offset;
292 		break;
293 	default:
294 		return 1;
295 	}
296 
297 	*data = ctr_val;
298 	return 0;
299 }
300 
301 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
302 {
303 	bool fast_mode = idx & (1u << 31);
304 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
305 	struct kvm_pmc *pmc;
306 	u64 mask = fast_mode ? ~0u : ~0ull;
307 
308 	if (!pmu->version)
309 		return 1;
310 
311 	if (is_vmware_backdoor_pmc(idx))
312 		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
313 
314 	pmc = kvm_x86_ops->pmu_ops->msr_idx_to_pmc(vcpu, idx, &mask);
315 	if (!pmc)
316 		return 1;
317 
318 	*data = pmc_read_counter(pmc) & mask;
319 	return 0;
320 }
321 
322 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
323 {
324 	if (lapic_in_kernel(vcpu))
325 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
326 }
327 
328 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
329 {
330 	return kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, msr);
331 }
332 
333 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
334 {
335 	return kvm_x86_ops->pmu_ops->get_msr(vcpu, msr, data);
336 }
337 
338 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
339 {
340 	return kvm_x86_ops->pmu_ops->set_msr(vcpu, msr_info);
341 }
342 
343 /* refresh PMU settings. This function generally is called when underlying
344  * settings are changed (such as changes of PMU CPUID by guest VMs), which
345  * should rarely happen.
346  */
347 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
348 {
349 	kvm_x86_ops->pmu_ops->refresh(vcpu);
350 }
351 
352 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
353 {
354 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
355 
356 	irq_work_sync(&pmu->irq_work);
357 	kvm_x86_ops->pmu_ops->reset(vcpu);
358 }
359 
360 void kvm_pmu_init(struct kvm_vcpu *vcpu)
361 {
362 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
363 
364 	memset(pmu, 0, sizeof(*pmu));
365 	kvm_x86_ops->pmu_ops->init(vcpu);
366 	init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
367 	kvm_pmu_refresh(vcpu);
368 }
369 
370 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
371 {
372 	kvm_pmu_reset(vcpu);
373 }
374 
375 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
376 {
377 	struct kvm_pmu_event_filter tmp, *filter;
378 	size_t size;
379 	int r;
380 
381 	if (copy_from_user(&tmp, argp, sizeof(tmp)))
382 		return -EFAULT;
383 
384 	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
385 	    tmp.action != KVM_PMU_EVENT_DENY)
386 		return -EINVAL;
387 
388 	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
389 		return -E2BIG;
390 
391 	size = struct_size(filter, events, tmp.nevents);
392 	filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
393 	if (!filter)
394 		return -ENOMEM;
395 
396 	r = -EFAULT;
397 	if (copy_from_user(filter, argp, size))
398 		goto cleanup;
399 
400 	/* Ensure nevents can't be changed between the user copies. */
401 	*filter = tmp;
402 
403 	mutex_lock(&kvm->lock);
404 	rcu_swap_protected(kvm->arch.pmu_event_filter, filter,
405 			   mutex_is_locked(&kvm->lock));
406 	mutex_unlock(&kvm->lock);
407 
408 	synchronize_srcu_expedited(&kvm->srcu);
409  	r = 0;
410 cleanup:
411 	kfree(filter);
412  	return r;
413 }
414