xref: /linux/arch/x86/kvm/pmu.c (revision 2d7f3d1a5866705be2393150e1ffdf67030ab88d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25 
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28 
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31 
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36 	/* Instruction-Accurate PDIR (PDIR++) */
37 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38 	{}
39 };
40 
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44 	{}
45 };
46 
47 /* NOTE:
48  * - Each perf counter is defined as "struct kvm_pmc";
49  * - There are two types of perf counters: general purpose (gp) and fixed.
50  *   gp counters are stored in gp_counters[] and fixed counters are stored
51  *   in fixed_counters[] respectively. Both of them are part of "struct
52  *   kvm_pmu";
53  * - pmu.c understands the difference between gp counters and fixed counters.
54  *   However AMD doesn't support fixed-counters;
55  * - There are three types of index to access perf counters (PMC):
56  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57  *        has MSR_K7_PERFCTRn and, for families 15H and later,
58  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59  *        aliased to MSR_K7_PERFCTRn.
60  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
61  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63  *        that it also supports fixed counters. idx can be used to as index to
64  *        gp and fixed counters.
65  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
66  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
67  *        all perf counters (both gp and fixed). The mapping relationship
68  *        between pmc and perf counters is as the following:
69  *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73  */
74 
75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76 
77 #define KVM_X86_PMU_OP(func)					     \
78 	DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,			     \
79 				*(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82 
83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85 	memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86 
87 #define __KVM_X86_PMU_OP(func) \
88 	static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90 	WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95 
96 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
97 {
98 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
99 	bool skip_pmi = false;
100 
101 	if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
102 		if (!in_pmi) {
103 			/*
104 			 * TODO: KVM is currently _choosing_ to not generate records
105 			 * for emulated instructions, avoiding BUFFER_OVF PMI when
106 			 * there are no records. Strictly speaking, it should be done
107 			 * as well in the right context to improve sampling accuracy.
108 			 */
109 			skip_pmi = true;
110 		} else {
111 			/* Indicate PEBS overflow PMI to guest. */
112 			skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
113 						      (unsigned long *)&pmu->global_status);
114 		}
115 	} else {
116 		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
117 	}
118 
119 	if (pmc->intr && !skip_pmi)
120 		kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
121 }
122 
123 static void kvm_perf_overflow(struct perf_event *perf_event,
124 			      struct perf_sample_data *data,
125 			      struct pt_regs *regs)
126 {
127 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
128 
129 	/*
130 	 * Ignore asynchronous overflow events for counters that are scheduled
131 	 * to be reprogrammed, e.g. if a PMI for the previous event races with
132 	 * KVM's handling of a related guest WRMSR.
133 	 */
134 	if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
135 		return;
136 
137 	__kvm_perf_overflow(pmc, true);
138 
139 	kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
140 }
141 
142 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
143 {
144 	/*
145 	 * For some model specific pebs counters with special capabilities
146 	 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
147 	 * level to the maximum value (currently 3, backwards compatible)
148 	 * so that the perf subsystem would assign specific hardware counter
149 	 * with that capability for vPMC.
150 	 */
151 	if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
152 	    (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
153 		return 3;
154 
155 	/*
156 	 * The non-zero precision level of guest event makes the ordinary
157 	 * guest event becomes a guest PEBS event and triggers the host
158 	 * PEBS PMI handler to determine whether the PEBS overflow PMI
159 	 * comes from the host counters or the guest.
160 	 */
161 	return 1;
162 }
163 
164 static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value)
165 {
166 	u64 sample_period = (-counter_value) & pmc_bitmask(pmc);
167 
168 	if (!sample_period)
169 		sample_period = pmc_bitmask(pmc) + 1;
170 	return sample_period;
171 }
172 
173 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
174 				 bool exclude_user, bool exclude_kernel,
175 				 bool intr)
176 {
177 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
178 	struct perf_event *event;
179 	struct perf_event_attr attr = {
180 		.type = type,
181 		.size = sizeof(attr),
182 		.pinned = true,
183 		.exclude_idle = true,
184 		.exclude_host = 1,
185 		.exclude_user = exclude_user,
186 		.exclude_kernel = exclude_kernel,
187 		.config = config,
188 	};
189 	bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
190 
191 	attr.sample_period = get_sample_period(pmc, pmc->counter);
192 
193 	if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
194 	    guest_cpuid_is_intel(pmc->vcpu)) {
195 		/*
196 		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
197 		 * period. Just clear the sample period so at least
198 		 * allocating the counter doesn't fail.
199 		 */
200 		attr.sample_period = 0;
201 	}
202 	if (pebs) {
203 		/*
204 		 * For most PEBS hardware events, the difference in the software
205 		 * precision levels of guest and host PEBS events will not affect
206 		 * the accuracy of the PEBS profiling result, because the "event IP"
207 		 * in the PEBS record is calibrated on the guest side.
208 		 */
209 		attr.precise_ip = pmc_get_pebs_precise_level(pmc);
210 	}
211 
212 	event = perf_event_create_kernel_counter(&attr, -1, current,
213 						 kvm_perf_overflow, pmc);
214 	if (IS_ERR(event)) {
215 		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
216 			    PTR_ERR(event), pmc->idx);
217 		return PTR_ERR(event);
218 	}
219 
220 	pmc->perf_event = event;
221 	pmc_to_pmu(pmc)->event_count++;
222 	pmc->is_paused = false;
223 	pmc->intr = intr || pebs;
224 	return 0;
225 }
226 
227 static bool pmc_pause_counter(struct kvm_pmc *pmc)
228 {
229 	u64 counter = pmc->counter;
230 	u64 prev_counter;
231 
232 	/* update counter, reset event value to avoid redundant accumulation */
233 	if (pmc->perf_event && !pmc->is_paused)
234 		counter += perf_event_pause(pmc->perf_event, true);
235 
236 	/*
237 	 * Snapshot the previous counter *after* accumulating state from perf.
238 	 * If overflow already happened, hardware (via perf) is responsible for
239 	 * generating a PMI.  KVM just needs to detect overflow on emulated
240 	 * counter events that haven't yet been processed.
241 	 */
242 	prev_counter = counter & pmc_bitmask(pmc);
243 
244 	counter += pmc->emulated_counter;
245 	pmc->counter = counter & pmc_bitmask(pmc);
246 
247 	pmc->emulated_counter = 0;
248 	pmc->is_paused = true;
249 
250 	return pmc->counter < prev_counter;
251 }
252 
253 static bool pmc_resume_counter(struct kvm_pmc *pmc)
254 {
255 	if (!pmc->perf_event)
256 		return false;
257 
258 	/* recalibrate sample period and check if it's accepted by perf core */
259 	if (is_sampling_event(pmc->perf_event) &&
260 	    perf_event_period(pmc->perf_event,
261 			      get_sample_period(pmc, pmc->counter)))
262 		return false;
263 
264 	if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
265 	    (!!pmc->perf_event->attr.precise_ip))
266 		return false;
267 
268 	/* reuse perf_event to serve as pmc_reprogram_counter() does*/
269 	perf_event_enable(pmc->perf_event);
270 	pmc->is_paused = false;
271 
272 	return true;
273 }
274 
275 static void pmc_release_perf_event(struct kvm_pmc *pmc)
276 {
277 	if (pmc->perf_event) {
278 		perf_event_release_kernel(pmc->perf_event);
279 		pmc->perf_event = NULL;
280 		pmc->current_config = 0;
281 		pmc_to_pmu(pmc)->event_count--;
282 	}
283 }
284 
285 static void pmc_stop_counter(struct kvm_pmc *pmc)
286 {
287 	if (pmc->perf_event) {
288 		pmc->counter = pmc_read_counter(pmc);
289 		pmc_release_perf_event(pmc);
290 	}
291 }
292 
293 static void pmc_update_sample_period(struct kvm_pmc *pmc)
294 {
295 	if (!pmc->perf_event || pmc->is_paused ||
296 	    !is_sampling_event(pmc->perf_event))
297 		return;
298 
299 	perf_event_period(pmc->perf_event,
300 			  get_sample_period(pmc, pmc->counter));
301 }
302 
303 void pmc_write_counter(struct kvm_pmc *pmc, u64 val)
304 {
305 	/*
306 	 * Drop any unconsumed accumulated counts, the WRMSR is a write, not a
307 	 * read-modify-write.  Adjust the counter value so that its value is
308 	 * relative to the current count, as reading the current count from
309 	 * perf is faster than pausing and repgrogramming the event in order to
310 	 * reset it to '0'.  Note, this very sneakily offsets the accumulated
311 	 * emulated count too, by using pmc_read_counter()!
312 	 */
313 	pmc->emulated_counter = 0;
314 	pmc->counter += val - pmc_read_counter(pmc);
315 	pmc->counter &= pmc_bitmask(pmc);
316 	pmc_update_sample_period(pmc);
317 }
318 EXPORT_SYMBOL_GPL(pmc_write_counter);
319 
320 static int filter_cmp(const void *pa, const void *pb, u64 mask)
321 {
322 	u64 a = *(u64 *)pa & mask;
323 	u64 b = *(u64 *)pb & mask;
324 
325 	return (a > b) - (a < b);
326 }
327 
328 
329 static int filter_sort_cmp(const void *pa, const void *pb)
330 {
331 	return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
332 				   KVM_PMU_MASKED_ENTRY_EXCLUDE));
333 }
334 
335 /*
336  * For the event filter, searching is done on the 'includes' list and
337  * 'excludes' list separately rather than on the 'events' list (which
338  * has both).  As a result the exclude bit can be ignored.
339  */
340 static int filter_event_cmp(const void *pa, const void *pb)
341 {
342 	return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
343 }
344 
345 static int find_filter_index(u64 *events, u64 nevents, u64 key)
346 {
347 	u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
348 			  filter_event_cmp);
349 
350 	if (!fe)
351 		return -1;
352 
353 	return fe - events;
354 }
355 
356 static bool is_filter_entry_match(u64 filter_event, u64 umask)
357 {
358 	u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
359 	u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
360 
361 	BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
362 		     (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
363 		     ARCH_PERFMON_EVENTSEL_UMASK);
364 
365 	return (umask & mask) == match;
366 }
367 
368 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
369 {
370 	u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
371 	u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
372 	int i, index;
373 
374 	index = find_filter_index(events, nevents, event_select);
375 	if (index < 0)
376 		return false;
377 
378 	/*
379 	 * Entries are sorted by the event select.  Walk the list in both
380 	 * directions to process all entries with the targeted event select.
381 	 */
382 	for (i = index; i < nevents; i++) {
383 		if (filter_event_cmp(&events[i], &event_select))
384 			break;
385 
386 		if (is_filter_entry_match(events[i], umask))
387 			return true;
388 	}
389 
390 	for (i = index - 1; i >= 0; i--) {
391 		if (filter_event_cmp(&events[i], &event_select))
392 			break;
393 
394 		if (is_filter_entry_match(events[i], umask))
395 			return true;
396 	}
397 
398 	return false;
399 }
400 
401 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
402 				u64 eventsel)
403 {
404 	if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
405 	    !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
406 		return f->action == KVM_PMU_EVENT_ALLOW;
407 
408 	return f->action == KVM_PMU_EVENT_DENY;
409 }
410 
411 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
412 				   int idx)
413 {
414 	int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
415 
416 	if (filter->action == KVM_PMU_EVENT_DENY &&
417 	    test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
418 		return false;
419 	if (filter->action == KVM_PMU_EVENT_ALLOW &&
420 	    !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
421 		return false;
422 
423 	return true;
424 }
425 
426 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
427 {
428 	struct kvm_x86_pmu_event_filter *filter;
429 	struct kvm *kvm = pmc->vcpu->kvm;
430 
431 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
432 	if (!filter)
433 		return true;
434 
435 	if (pmc_is_gp(pmc))
436 		return is_gp_event_allowed(filter, pmc->eventsel);
437 
438 	return is_fixed_event_allowed(filter, pmc->idx);
439 }
440 
441 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
442 {
443 	return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
444 	       static_call(kvm_x86_pmu_hw_event_available)(pmc) &&
445 	       check_pmu_event_filter(pmc);
446 }
447 
448 static void reprogram_counter(struct kvm_pmc *pmc)
449 {
450 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
451 	u64 eventsel = pmc->eventsel;
452 	u64 new_config = eventsel;
453 	bool emulate_overflow;
454 	u8 fixed_ctr_ctrl;
455 
456 	emulate_overflow = pmc_pause_counter(pmc);
457 
458 	if (!pmc_event_is_allowed(pmc))
459 		goto reprogram_complete;
460 
461 	if (emulate_overflow)
462 		__kvm_perf_overflow(pmc, false);
463 
464 	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
465 		printk_once("kvm pmu: pin control bit is ignored\n");
466 
467 	if (pmc_is_fixed(pmc)) {
468 		fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
469 						  pmc->idx - INTEL_PMC_IDX_FIXED);
470 		if (fixed_ctr_ctrl & 0x1)
471 			eventsel |= ARCH_PERFMON_EVENTSEL_OS;
472 		if (fixed_ctr_ctrl & 0x2)
473 			eventsel |= ARCH_PERFMON_EVENTSEL_USR;
474 		if (fixed_ctr_ctrl & 0x8)
475 			eventsel |= ARCH_PERFMON_EVENTSEL_INT;
476 		new_config = (u64)fixed_ctr_ctrl;
477 	}
478 
479 	if (pmc->current_config == new_config && pmc_resume_counter(pmc))
480 		goto reprogram_complete;
481 
482 	pmc_release_perf_event(pmc);
483 
484 	pmc->current_config = new_config;
485 
486 	/*
487 	 * If reprogramming fails, e.g. due to contention, leave the counter's
488 	 * regprogram bit set, i.e. opportunistically try again on the next PMU
489 	 * refresh.  Don't make a new request as doing so can stall the guest
490 	 * if reprogramming repeatedly fails.
491 	 */
492 	if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
493 				  (eventsel & pmu->raw_event_mask),
494 				  !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
495 				  !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
496 				  eventsel & ARCH_PERFMON_EVENTSEL_INT))
497 		return;
498 
499 reprogram_complete:
500 	clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
501 }
502 
503 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
504 {
505 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
506 	int bit;
507 
508 	for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
509 		struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
510 
511 		if (unlikely(!pmc)) {
512 			clear_bit(bit, pmu->reprogram_pmi);
513 			continue;
514 		}
515 
516 		reprogram_counter(pmc);
517 	}
518 
519 	/*
520 	 * Unused perf_events are only released if the corresponding MSRs
521 	 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
522 	 * triggers KVM_REQ_PMU if cleanup is needed.
523 	 */
524 	if (unlikely(pmu->need_cleanup))
525 		kvm_pmu_cleanup(vcpu);
526 }
527 
528 /* check if idx is a valid index to access PMU */
529 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
530 {
531 	return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
532 }
533 
534 bool is_vmware_backdoor_pmc(u32 pmc_idx)
535 {
536 	switch (pmc_idx) {
537 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
538 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
539 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
540 		return true;
541 	}
542 	return false;
543 }
544 
545 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
546 {
547 	u64 ctr_val;
548 
549 	switch (idx) {
550 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
551 		ctr_val = rdtsc();
552 		break;
553 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
554 		ctr_val = ktime_get_boottime_ns();
555 		break;
556 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
557 		ctr_val = ktime_get_boottime_ns() +
558 			vcpu->kvm->arch.kvmclock_offset;
559 		break;
560 	default:
561 		return 1;
562 	}
563 
564 	*data = ctr_val;
565 	return 0;
566 }
567 
568 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
569 {
570 	bool fast_mode = idx & (1u << 31);
571 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
572 	struct kvm_pmc *pmc;
573 	u64 mask = fast_mode ? ~0u : ~0ull;
574 
575 	if (!pmu->version)
576 		return 1;
577 
578 	if (is_vmware_backdoor_pmc(idx))
579 		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
580 
581 	pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
582 	if (!pmc)
583 		return 1;
584 
585 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
586 	    (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
587 	    kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
588 		return 1;
589 
590 	*data = pmc_read_counter(pmc) & mask;
591 	return 0;
592 }
593 
594 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
595 {
596 	if (lapic_in_kernel(vcpu)) {
597 		static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
598 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
599 	}
600 }
601 
602 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
603 {
604 	switch (msr) {
605 	case MSR_CORE_PERF_GLOBAL_STATUS:
606 	case MSR_CORE_PERF_GLOBAL_CTRL:
607 	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
608 		return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
609 	default:
610 		break;
611 	}
612 	return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
613 		static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
614 }
615 
616 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
617 {
618 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
619 	struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
620 
621 	if (pmc)
622 		__set_bit(pmc->idx, pmu->pmc_in_use);
623 }
624 
625 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
626 {
627 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
628 	u32 msr = msr_info->index;
629 
630 	switch (msr) {
631 	case MSR_CORE_PERF_GLOBAL_STATUS:
632 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
633 		msr_info->data = pmu->global_status;
634 		break;
635 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
636 	case MSR_CORE_PERF_GLOBAL_CTRL:
637 		msr_info->data = pmu->global_ctrl;
638 		break;
639 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
640 	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
641 		msr_info->data = 0;
642 		break;
643 	default:
644 		return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
645 	}
646 
647 	return 0;
648 }
649 
650 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
651 {
652 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
653 	u32 msr = msr_info->index;
654 	u64 data = msr_info->data;
655 	u64 diff;
656 
657 	/*
658 	 * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
659 	 * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
660 	 */
661 	switch (msr) {
662 	case MSR_CORE_PERF_GLOBAL_STATUS:
663 		if (!msr_info->host_initiated)
664 			return 1; /* RO MSR */
665 		fallthrough;
666 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
667 		/* Per PPR, Read-only MSR. Writes are ignored. */
668 		if (!msr_info->host_initiated)
669 			break;
670 
671 		if (data & pmu->global_status_mask)
672 			return 1;
673 
674 		pmu->global_status = data;
675 		break;
676 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
677 		data &= ~pmu->global_ctrl_mask;
678 		fallthrough;
679 	case MSR_CORE_PERF_GLOBAL_CTRL:
680 		if (!kvm_valid_perf_global_ctrl(pmu, data))
681 			return 1;
682 
683 		if (pmu->global_ctrl != data) {
684 			diff = pmu->global_ctrl ^ data;
685 			pmu->global_ctrl = data;
686 			reprogram_counters(pmu, diff);
687 		}
688 		break;
689 	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
690 		/*
691 		 * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
692 		 * GLOBAL_STATUS, and so the set of reserved bits is the same.
693 		 */
694 		if (data & pmu->global_status_mask)
695 			return 1;
696 		fallthrough;
697 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
698 		if (!msr_info->host_initiated)
699 			pmu->global_status &= ~data;
700 		break;
701 	default:
702 		kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
703 		return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
704 	}
705 
706 	return 0;
707 }
708 
709 static void kvm_pmu_reset(struct kvm_vcpu *vcpu)
710 {
711 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
712 	struct kvm_pmc *pmc;
713 	int i;
714 
715 	pmu->need_cleanup = false;
716 
717 	bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
718 
719 	for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
720 		pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
721 		if (!pmc)
722 			continue;
723 
724 		pmc_stop_counter(pmc);
725 		pmc->counter = 0;
726 		pmc->emulated_counter = 0;
727 
728 		if (pmc_is_gp(pmc))
729 			pmc->eventsel = 0;
730 	}
731 
732 	pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
733 
734 	static_call_cond(kvm_x86_pmu_reset)(vcpu);
735 }
736 
737 
738 /*
739  * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
740  * and/or PERF_CAPABILITIES.
741  */
742 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
743 {
744 	if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
745 		return;
746 
747 	/*
748 	 * Stop/release all existing counters/events before realizing the new
749 	 * vPMU model.
750 	 */
751 	kvm_pmu_reset(vcpu);
752 
753 	bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
754 	static_call(kvm_x86_pmu_refresh)(vcpu);
755 }
756 
757 void kvm_pmu_init(struct kvm_vcpu *vcpu)
758 {
759 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
760 
761 	memset(pmu, 0, sizeof(*pmu));
762 	static_call(kvm_x86_pmu_init)(vcpu);
763 	kvm_pmu_refresh(vcpu);
764 }
765 
766 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
767 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
768 {
769 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
770 	struct kvm_pmc *pmc = NULL;
771 	DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
772 	int i;
773 
774 	pmu->need_cleanup = false;
775 
776 	bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
777 		      pmu->pmc_in_use, X86_PMC_IDX_MAX);
778 
779 	for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
780 		pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
781 
782 		if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
783 			pmc_stop_counter(pmc);
784 	}
785 
786 	static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
787 
788 	bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
789 }
790 
791 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
792 {
793 	kvm_pmu_reset(vcpu);
794 }
795 
796 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
797 {
798 	pmc->emulated_counter++;
799 	kvm_pmu_request_counter_reprogram(pmc);
800 }
801 
802 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
803 	unsigned int perf_hw_id)
804 {
805 	return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
806 		AMD64_RAW_EVENT_MASK_NB);
807 }
808 
809 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
810 {
811 	bool select_os, select_user;
812 	u64 config;
813 
814 	if (pmc_is_gp(pmc)) {
815 		config = pmc->eventsel;
816 		select_os = config & ARCH_PERFMON_EVENTSEL_OS;
817 		select_user = config & ARCH_PERFMON_EVENTSEL_USR;
818 	} else {
819 		config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
820 					  pmc->idx - INTEL_PMC_IDX_FIXED);
821 		select_os = config & 0x1;
822 		select_user = config & 0x2;
823 	}
824 
825 	return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
826 }
827 
828 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
829 {
830 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
831 	struct kvm_pmc *pmc;
832 	int i;
833 
834 	for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
835 		pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
836 
837 		if (!pmc || !pmc_event_is_allowed(pmc))
838 			continue;
839 
840 		/* Ignore checks for edge detect, pin control, invert and CMASK bits */
841 		if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
842 			kvm_pmu_incr_counter(pmc);
843 	}
844 }
845 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
846 
847 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
848 {
849 	u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
850 		   KVM_PMU_MASKED_ENTRY_UMASK_MASK |
851 		   KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
852 		   KVM_PMU_MASKED_ENTRY_EXCLUDE;
853 	int i;
854 
855 	for (i = 0; i < filter->nevents; i++) {
856 		if (filter->events[i] & ~mask)
857 			return false;
858 	}
859 
860 	return true;
861 }
862 
863 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
864 {
865 	int i, j;
866 
867 	for (i = 0, j = 0; i < filter->nevents; i++) {
868 		/*
869 		 * Skip events that are impossible to match against a guest
870 		 * event.  When filtering, only the event select + unit mask
871 		 * of the guest event is used.  To maintain backwards
872 		 * compatibility, impossible filters can't be rejected :-(
873 		 */
874 		if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
875 					  ARCH_PERFMON_EVENTSEL_UMASK))
876 			continue;
877 		/*
878 		 * Convert userspace events to a common in-kernel event so
879 		 * only one code path is needed to support both events.  For
880 		 * the in-kernel events use masked events because they are
881 		 * flexible enough to handle both cases.  To convert to masked
882 		 * events all that's needed is to add an "all ones" umask_mask,
883 		 * (unmasked filter events don't support EXCLUDE).
884 		 */
885 		filter->events[j++] = filter->events[i] |
886 				      (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
887 	}
888 
889 	filter->nevents = j;
890 }
891 
892 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
893 {
894 	int i;
895 
896 	if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
897 		convert_to_masked_filter(filter);
898 	else if (!is_masked_filter_valid(filter))
899 		return -EINVAL;
900 
901 	/*
902 	 * Sort entries by event select and includes vs. excludes so that all
903 	 * entries for a given event select can be processed efficiently during
904 	 * filtering.  The EXCLUDE flag uses a more significant bit than the
905 	 * event select, and so the sorted list is also effectively split into
906 	 * includes and excludes sub-lists.
907 	 */
908 	sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
909 	     filter_sort_cmp, NULL);
910 
911 	i = filter->nevents;
912 	/* Find the first EXCLUDE event (only supported for masked events). */
913 	if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
914 		for (i = 0; i < filter->nevents; i++) {
915 			if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
916 				break;
917 		}
918 	}
919 
920 	filter->nr_includes = i;
921 	filter->nr_excludes = filter->nevents - filter->nr_includes;
922 	filter->includes = filter->events;
923 	filter->excludes = filter->events + filter->nr_includes;
924 
925 	return 0;
926 }
927 
928 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
929 {
930 	struct kvm_pmu_event_filter __user *user_filter = argp;
931 	struct kvm_x86_pmu_event_filter *filter;
932 	struct kvm_pmu_event_filter tmp;
933 	struct kvm_vcpu *vcpu;
934 	unsigned long i;
935 	size_t size;
936 	int r;
937 
938 	if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
939 		return -EFAULT;
940 
941 	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
942 	    tmp.action != KVM_PMU_EVENT_DENY)
943 		return -EINVAL;
944 
945 	if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
946 		return -EINVAL;
947 
948 	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
949 		return -E2BIG;
950 
951 	size = struct_size(filter, events, tmp.nevents);
952 	filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
953 	if (!filter)
954 		return -ENOMEM;
955 
956 	filter->action = tmp.action;
957 	filter->nevents = tmp.nevents;
958 	filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
959 	filter->flags = tmp.flags;
960 
961 	r = -EFAULT;
962 	if (copy_from_user(filter->events, user_filter->events,
963 			   sizeof(filter->events[0]) * filter->nevents))
964 		goto cleanup;
965 
966 	r = prepare_filter_lists(filter);
967 	if (r)
968 		goto cleanup;
969 
970 	mutex_lock(&kvm->lock);
971 	filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
972 				     mutex_is_locked(&kvm->lock));
973 	mutex_unlock(&kvm->lock);
974 	synchronize_srcu_expedited(&kvm->srcu);
975 
976 	BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
977 		     sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
978 
979 	kvm_for_each_vcpu(i, vcpu, kvm)
980 		atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
981 
982 	kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
983 
984 	r = 0;
985 cleanup:
986 	kfree(filter);
987 	return r;
988 }
989