1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support 4 * 5 * Copyright 2015 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 * Wei Huang <wei@redhat.com> 11 */ 12 13 #include <linux/types.h> 14 #include <linux/kvm_host.h> 15 #include <linux/perf_event.h> 16 #include <linux/bsearch.h> 17 #include <linux/sort.h> 18 #include <asm/perf_event.h> 19 #include <asm/cpu_device_id.h> 20 #include "x86.h" 21 #include "cpuid.h" 22 #include "lapic.h" 23 #include "pmu.h" 24 25 /* This is enough to filter the vast majority of currently defined events. */ 26 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 27 28 struct x86_pmu_capability __read_mostly kvm_pmu_cap; 29 EXPORT_SYMBOL_GPL(kvm_pmu_cap); 30 31 static const struct x86_cpu_id vmx_icl_pebs_cpu[] = { 32 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL), 33 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL), 34 {} 35 }; 36 37 /* NOTE: 38 * - Each perf counter is defined as "struct kvm_pmc"; 39 * - There are two types of perf counters: general purpose (gp) and fixed. 40 * gp counters are stored in gp_counters[] and fixed counters are stored 41 * in fixed_counters[] respectively. Both of them are part of "struct 42 * kvm_pmu"; 43 * - pmu.c understands the difference between gp counters and fixed counters. 44 * However AMD doesn't support fixed-counters; 45 * - There are three types of index to access perf counters (PMC): 46 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD 47 * has MSR_K7_PERFCTRn and, for families 15H and later, 48 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are 49 * aliased to MSR_K7_PERFCTRn. 50 * 2. MSR Index (named idx): This normally is used by RDPMC instruction. 51 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access 52 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except 53 * that it also supports fixed counters. idx can be used to as index to 54 * gp and fixed counters. 55 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU 56 * code. Each pmc, stored in kvm_pmc.idx field, is unique across 57 * all perf counters (both gp and fixed). The mapping relationship 58 * between pmc and perf counters is as the following: 59 * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters 60 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed 61 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H 62 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters 63 */ 64 65 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly; 66 67 #define KVM_X86_PMU_OP(func) \ 68 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \ 69 *(((struct kvm_pmu_ops *)0)->func)); 70 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP 71 #include <asm/kvm-x86-pmu-ops.h> 72 73 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops) 74 { 75 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops)); 76 77 #define __KVM_X86_PMU_OP(func) \ 78 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func); 79 #define KVM_X86_PMU_OP(func) \ 80 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func) 81 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP 82 #include <asm/kvm-x86-pmu-ops.h> 83 #undef __KVM_X86_PMU_OP 84 } 85 86 static inline bool pmc_is_enabled(struct kvm_pmc *pmc) 87 { 88 return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc); 89 } 90 91 static void kvm_pmi_trigger_fn(struct irq_work *irq_work) 92 { 93 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); 94 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); 95 96 kvm_pmu_deliver_pmi(vcpu); 97 } 98 99 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) 100 { 101 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 102 bool skip_pmi = false; 103 104 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) { 105 if (!in_pmi) { 106 /* 107 * TODO: KVM is currently _choosing_ to not generate records 108 * for emulated instructions, avoiding BUFFER_OVF PMI when 109 * there are no records. Strictly speaking, it should be done 110 * as well in the right context to improve sampling accuracy. 111 */ 112 skip_pmi = true; 113 } else { 114 /* Indicate PEBS overflow PMI to guest. */ 115 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, 116 (unsigned long *)&pmu->global_status); 117 } 118 } else { 119 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); 120 } 121 122 if (!pmc->intr || skip_pmi) 123 return; 124 125 /* 126 * Inject PMI. If vcpu was in a guest mode during NMI PMI 127 * can be ejected on a guest mode re-entry. Otherwise we can't 128 * be sure that vcpu wasn't executing hlt instruction at the 129 * time of vmexit and is not going to re-enter guest mode until 130 * woken up. So we should wake it, but this is impossible from 131 * NMI context. Do it from irq work instead. 132 */ 133 if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu)) 134 irq_work_queue(&pmc_to_pmu(pmc)->irq_work); 135 else 136 kvm_make_request(KVM_REQ_PMI, pmc->vcpu); 137 } 138 139 static void kvm_perf_overflow(struct perf_event *perf_event, 140 struct perf_sample_data *data, 141 struct pt_regs *regs) 142 { 143 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 144 145 /* 146 * Ignore overflow events for counters that are scheduled to be 147 * reprogrammed, e.g. if a PMI for the previous event races with KVM's 148 * handling of a related guest WRMSR. 149 */ 150 if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi)) 151 return; 152 153 __kvm_perf_overflow(pmc, true); 154 155 kvm_make_request(KVM_REQ_PMU, pmc->vcpu); 156 } 157 158 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config, 159 bool exclude_user, bool exclude_kernel, 160 bool intr) 161 { 162 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 163 struct perf_event *event; 164 struct perf_event_attr attr = { 165 .type = type, 166 .size = sizeof(attr), 167 .pinned = true, 168 .exclude_idle = true, 169 .exclude_host = 1, 170 .exclude_user = exclude_user, 171 .exclude_kernel = exclude_kernel, 172 .config = config, 173 }; 174 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable); 175 176 attr.sample_period = get_sample_period(pmc, pmc->counter); 177 178 if ((attr.config & HSW_IN_TX_CHECKPOINTED) && 179 guest_cpuid_is_intel(pmc->vcpu)) { 180 /* 181 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero 182 * period. Just clear the sample period so at least 183 * allocating the counter doesn't fail. 184 */ 185 attr.sample_period = 0; 186 } 187 if (pebs) { 188 /* 189 * The non-zero precision level of guest event makes the ordinary 190 * guest event becomes a guest PEBS event and triggers the host 191 * PEBS PMI handler to determine whether the PEBS overflow PMI 192 * comes from the host counters or the guest. 193 * 194 * For most PEBS hardware events, the difference in the software 195 * precision levels of guest and host PEBS events will not affect 196 * the accuracy of the PEBS profiling result, because the "event IP" 197 * in the PEBS record is calibrated on the guest side. 198 * 199 * On Icelake everything is fine. Other hardware (GLC+, TNT+) that 200 * could possibly care here is unsupported and needs changes. 201 */ 202 attr.precise_ip = 1; 203 if (x86_match_cpu(vmx_icl_pebs_cpu) && pmc->idx == 32) 204 attr.precise_ip = 3; 205 } 206 207 event = perf_event_create_kernel_counter(&attr, -1, current, 208 kvm_perf_overflow, pmc); 209 if (IS_ERR(event)) { 210 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", 211 PTR_ERR(event), pmc->idx); 212 return PTR_ERR(event); 213 } 214 215 pmc->perf_event = event; 216 pmc_to_pmu(pmc)->event_count++; 217 pmc->is_paused = false; 218 pmc->intr = intr || pebs; 219 return 0; 220 } 221 222 static void pmc_pause_counter(struct kvm_pmc *pmc) 223 { 224 u64 counter = pmc->counter; 225 226 if (!pmc->perf_event || pmc->is_paused) 227 return; 228 229 /* update counter, reset event value to avoid redundant accumulation */ 230 counter += perf_event_pause(pmc->perf_event, true); 231 pmc->counter = counter & pmc_bitmask(pmc); 232 pmc->is_paused = true; 233 } 234 235 static bool pmc_resume_counter(struct kvm_pmc *pmc) 236 { 237 if (!pmc->perf_event) 238 return false; 239 240 /* recalibrate sample period and check if it's accepted by perf core */ 241 if (is_sampling_event(pmc->perf_event) && 242 perf_event_period(pmc->perf_event, 243 get_sample_period(pmc, pmc->counter))) 244 return false; 245 246 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) != 247 (!!pmc->perf_event->attr.precise_ip)) 248 return false; 249 250 /* reuse perf_event to serve as pmc_reprogram_counter() does*/ 251 perf_event_enable(pmc->perf_event); 252 pmc->is_paused = false; 253 254 return true; 255 } 256 257 static int cmp_u64(const void *pa, const void *pb) 258 { 259 u64 a = *(u64 *)pa; 260 u64 b = *(u64 *)pb; 261 262 return (a > b) - (a < b); 263 } 264 265 static bool check_pmu_event_filter(struct kvm_pmc *pmc) 266 { 267 struct kvm_pmu_event_filter *filter; 268 struct kvm *kvm = pmc->vcpu->kvm; 269 bool allow_event = true; 270 __u64 key; 271 int idx; 272 273 if (!static_call(kvm_x86_pmu_hw_event_available)(pmc)) 274 return false; 275 276 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 277 if (!filter) 278 goto out; 279 280 if (pmc_is_gp(pmc)) { 281 key = pmc->eventsel & AMD64_RAW_EVENT_MASK_NB; 282 if (bsearch(&key, filter->events, filter->nevents, 283 sizeof(__u64), cmp_u64)) 284 allow_event = filter->action == KVM_PMU_EVENT_ALLOW; 285 else 286 allow_event = filter->action == KVM_PMU_EVENT_DENY; 287 } else { 288 idx = pmc->idx - INTEL_PMC_IDX_FIXED; 289 if (filter->action == KVM_PMU_EVENT_DENY && 290 test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 291 allow_event = false; 292 if (filter->action == KVM_PMU_EVENT_ALLOW && 293 !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 294 allow_event = false; 295 } 296 297 out: 298 return allow_event; 299 } 300 301 static void reprogram_counter(struct kvm_pmc *pmc) 302 { 303 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 304 u64 eventsel = pmc->eventsel; 305 u64 new_config = eventsel; 306 u8 fixed_ctr_ctrl; 307 308 pmc_pause_counter(pmc); 309 310 if (!pmc_speculative_in_use(pmc) || !pmc_is_enabled(pmc)) 311 goto reprogram_complete; 312 313 if (!check_pmu_event_filter(pmc)) 314 goto reprogram_complete; 315 316 if (pmc->counter < pmc->prev_counter) 317 __kvm_perf_overflow(pmc, false); 318 319 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) 320 printk_once("kvm pmu: pin control bit is ignored\n"); 321 322 if (pmc_is_fixed(pmc)) { 323 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, 324 pmc->idx - INTEL_PMC_IDX_FIXED); 325 if (fixed_ctr_ctrl & 0x1) 326 eventsel |= ARCH_PERFMON_EVENTSEL_OS; 327 if (fixed_ctr_ctrl & 0x2) 328 eventsel |= ARCH_PERFMON_EVENTSEL_USR; 329 if (fixed_ctr_ctrl & 0x8) 330 eventsel |= ARCH_PERFMON_EVENTSEL_INT; 331 new_config = (u64)fixed_ctr_ctrl; 332 } 333 334 if (pmc->current_config == new_config && pmc_resume_counter(pmc)) 335 goto reprogram_complete; 336 337 pmc_release_perf_event(pmc); 338 339 pmc->current_config = new_config; 340 341 /* 342 * If reprogramming fails, e.g. due to contention, leave the counter's 343 * regprogram bit set, i.e. opportunistically try again on the next PMU 344 * refresh. Don't make a new request as doing so can stall the guest 345 * if reprogramming repeatedly fails. 346 */ 347 if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW, 348 (eventsel & pmu->raw_event_mask), 349 !(eventsel & ARCH_PERFMON_EVENTSEL_USR), 350 !(eventsel & ARCH_PERFMON_EVENTSEL_OS), 351 eventsel & ARCH_PERFMON_EVENTSEL_INT)) 352 return; 353 354 reprogram_complete: 355 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi); 356 pmc->prev_counter = 0; 357 } 358 359 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) 360 { 361 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 362 int bit; 363 364 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) { 365 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit); 366 367 if (unlikely(!pmc)) { 368 clear_bit(bit, pmu->reprogram_pmi); 369 continue; 370 } 371 372 reprogram_counter(pmc); 373 } 374 375 /* 376 * Unused perf_events are only released if the corresponding MSRs 377 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in 378 * triggers KVM_REQ_PMU if cleanup is needed. 379 */ 380 if (unlikely(pmu->need_cleanup)) 381 kvm_pmu_cleanup(vcpu); 382 } 383 384 /* check if idx is a valid index to access PMU */ 385 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) 386 { 387 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx); 388 } 389 390 bool is_vmware_backdoor_pmc(u32 pmc_idx) 391 { 392 switch (pmc_idx) { 393 case VMWARE_BACKDOOR_PMC_HOST_TSC: 394 case VMWARE_BACKDOOR_PMC_REAL_TIME: 395 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 396 return true; 397 } 398 return false; 399 } 400 401 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 402 { 403 u64 ctr_val; 404 405 switch (idx) { 406 case VMWARE_BACKDOOR_PMC_HOST_TSC: 407 ctr_val = rdtsc(); 408 break; 409 case VMWARE_BACKDOOR_PMC_REAL_TIME: 410 ctr_val = ktime_get_boottime_ns(); 411 break; 412 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 413 ctr_val = ktime_get_boottime_ns() + 414 vcpu->kvm->arch.kvmclock_offset; 415 break; 416 default: 417 return 1; 418 } 419 420 *data = ctr_val; 421 return 0; 422 } 423 424 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 425 { 426 bool fast_mode = idx & (1u << 31); 427 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 428 struct kvm_pmc *pmc; 429 u64 mask = fast_mode ? ~0u : ~0ull; 430 431 if (!pmu->version) 432 return 1; 433 434 if (is_vmware_backdoor_pmc(idx)) 435 return kvm_pmu_rdpmc_vmware(vcpu, idx, data); 436 437 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask); 438 if (!pmc) 439 return 1; 440 441 if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) && 442 (static_call(kvm_x86_get_cpl)(vcpu) != 0) && 443 (kvm_read_cr0(vcpu) & X86_CR0_PE)) 444 return 1; 445 446 *data = pmc_read_counter(pmc) & mask; 447 return 0; 448 } 449 450 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 451 { 452 if (lapic_in_kernel(vcpu)) { 453 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu); 454 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); 455 } 456 } 457 458 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 459 { 460 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) || 461 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr); 462 } 463 464 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) 465 { 466 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 467 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr); 468 469 if (pmc) 470 __set_bit(pmc->idx, pmu->pmc_in_use); 471 } 472 473 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 474 { 475 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info); 476 } 477 478 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 479 { 480 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); 481 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info); 482 } 483 484 /* refresh PMU settings. This function generally is called when underlying 485 * settings are changed (such as changes of PMU CPUID by guest VMs), which 486 * should rarely happen. 487 */ 488 void kvm_pmu_refresh(struct kvm_vcpu *vcpu) 489 { 490 static_call(kvm_x86_pmu_refresh)(vcpu); 491 } 492 493 void kvm_pmu_reset(struct kvm_vcpu *vcpu) 494 { 495 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 496 497 irq_work_sync(&pmu->irq_work); 498 static_call(kvm_x86_pmu_reset)(vcpu); 499 } 500 501 void kvm_pmu_init(struct kvm_vcpu *vcpu) 502 { 503 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 504 505 memset(pmu, 0, sizeof(*pmu)); 506 static_call(kvm_x86_pmu_init)(vcpu); 507 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); 508 pmu->event_count = 0; 509 pmu->need_cleanup = false; 510 kvm_pmu_refresh(vcpu); 511 } 512 513 /* Release perf_events for vPMCs that have been unused for a full time slice. */ 514 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) 515 { 516 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 517 struct kvm_pmc *pmc = NULL; 518 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); 519 int i; 520 521 pmu->need_cleanup = false; 522 523 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, 524 pmu->pmc_in_use, X86_PMC_IDX_MAX); 525 526 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) { 527 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 528 529 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc)) 530 pmc_stop_counter(pmc); 531 } 532 533 static_call_cond(kvm_x86_pmu_cleanup)(vcpu); 534 535 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); 536 } 537 538 void kvm_pmu_destroy(struct kvm_vcpu *vcpu) 539 { 540 kvm_pmu_reset(vcpu); 541 } 542 543 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) 544 { 545 pmc->prev_counter = pmc->counter; 546 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc); 547 kvm_pmu_request_counter_reprogam(pmc); 548 } 549 550 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc, 551 unsigned int perf_hw_id) 552 { 553 return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) & 554 AMD64_RAW_EVENT_MASK_NB); 555 } 556 557 static inline bool cpl_is_matched(struct kvm_pmc *pmc) 558 { 559 bool select_os, select_user; 560 u64 config; 561 562 if (pmc_is_gp(pmc)) { 563 config = pmc->eventsel; 564 select_os = config & ARCH_PERFMON_EVENTSEL_OS; 565 select_user = config & ARCH_PERFMON_EVENTSEL_USR; 566 } else { 567 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl, 568 pmc->idx - INTEL_PMC_IDX_FIXED); 569 select_os = config & 0x1; 570 select_user = config & 0x2; 571 } 572 573 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user; 574 } 575 576 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id) 577 { 578 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 579 struct kvm_pmc *pmc; 580 int i; 581 582 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) { 583 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 584 585 if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc)) 586 continue; 587 588 /* Ignore checks for edge detect, pin control, invert and CMASK bits */ 589 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc)) 590 kvm_pmu_incr_counter(pmc); 591 } 592 } 593 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event); 594 595 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) 596 { 597 struct kvm_pmu_event_filter tmp, *filter; 598 struct kvm_vcpu *vcpu; 599 unsigned long i; 600 size_t size; 601 int r; 602 603 if (copy_from_user(&tmp, argp, sizeof(tmp))) 604 return -EFAULT; 605 606 if (tmp.action != KVM_PMU_EVENT_ALLOW && 607 tmp.action != KVM_PMU_EVENT_DENY) 608 return -EINVAL; 609 610 if (tmp.flags != 0) 611 return -EINVAL; 612 613 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) 614 return -E2BIG; 615 616 size = struct_size(filter, events, tmp.nevents); 617 filter = kmalloc(size, GFP_KERNEL_ACCOUNT); 618 if (!filter) 619 return -ENOMEM; 620 621 r = -EFAULT; 622 if (copy_from_user(filter, argp, size)) 623 goto cleanup; 624 625 /* Ensure nevents can't be changed between the user copies. */ 626 *filter = tmp; 627 628 /* 629 * Sort the in-kernel list so that we can search it with bsearch. 630 */ 631 sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL); 632 633 mutex_lock(&kvm->lock); 634 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, 635 mutex_is_locked(&kvm->lock)); 636 synchronize_srcu_expedited(&kvm->srcu); 637 638 BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) > 639 sizeof(((struct kvm_pmu *)0)->__reprogram_pmi)); 640 641 kvm_for_each_vcpu(i, vcpu, kvm) 642 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull); 643 644 kvm_make_all_cpus_request(kvm, KVM_REQ_PMU); 645 646 mutex_unlock(&kvm->lock); 647 648 r = 0; 649 cleanup: 650 kfree(filter); 651 return r; 652 } 653