xref: /linux/arch/x86/kvm/pmu.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
3  *
4  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
5  *
6  * Authors:
7  *   Avi Kivity   <avi@redhat.com>
8  *   Gleb Natapov <gleb@redhat.com>
9  *   Wei Huang    <wei@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2.  See
12  * the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include <linux/types.h>
17 #include <linux/kvm_host.h>
18 #include <linux/perf_event.h>
19 #include <asm/perf_event.h>
20 #include "x86.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "pmu.h"
24 
25 /* NOTE:
26  * - Each perf counter is defined as "struct kvm_pmc";
27  * - There are two types of perf counters: general purpose (gp) and fixed.
28  *   gp counters are stored in gp_counters[] and fixed counters are stored
29  *   in fixed_counters[] respectively. Both of them are part of "struct
30  *   kvm_pmu";
31  * - pmu.c understands the difference between gp counters and fixed counters.
32  *   However AMD doesn't support fixed-counters;
33  * - There are three types of index to access perf counters (PMC):
34  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
35  *        has MSR_K7_PERFCTRn.
36  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
37  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
38  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
39  *        that it also supports fixed counters. idx can be used to as index to
40  *        gp and fixed counters.
41  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
42  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
43  *        all perf counters (both gp and fixed). The mapping relationship
44  *        between pmc and perf counters is as the following:
45  *        * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
46  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
47  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
48  */
49 
50 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
51 {
52 	struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
53 	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
54 
55 	kvm_pmu_deliver_pmi(vcpu);
56 }
57 
58 static void kvm_perf_overflow(struct perf_event *perf_event,
59 			      struct perf_sample_data *data,
60 			      struct pt_regs *regs)
61 {
62 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
63 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
64 
65 	if (!test_and_set_bit(pmc->idx,
66 			      (unsigned long *)&pmu->reprogram_pmi)) {
67 		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
68 		kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
69 	}
70 }
71 
72 static void kvm_perf_overflow_intr(struct perf_event *perf_event,
73 				   struct perf_sample_data *data,
74 				   struct pt_regs *regs)
75 {
76 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
77 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
78 
79 	if (!test_and_set_bit(pmc->idx,
80 			      (unsigned long *)&pmu->reprogram_pmi)) {
81 		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
82 		kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
83 
84 		/*
85 		 * Inject PMI. If vcpu was in a guest mode during NMI PMI
86 		 * can be ejected on a guest mode re-entry. Otherwise we can't
87 		 * be sure that vcpu wasn't executing hlt instruction at the
88 		 * time of vmexit and is not going to re-enter guest mode until
89 		 * woken up. So we should wake it, but this is impossible from
90 		 * NMI context. Do it from irq work instead.
91 		 */
92 		if (!kvm_is_in_guest())
93 			irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
94 		else
95 			kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
96 	}
97 }
98 
99 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
100 				  unsigned config, bool exclude_user,
101 				  bool exclude_kernel, bool intr,
102 				  bool in_tx, bool in_tx_cp)
103 {
104 	struct perf_event *event;
105 	struct perf_event_attr attr = {
106 		.type = type,
107 		.size = sizeof(attr),
108 		.pinned = true,
109 		.exclude_idle = true,
110 		.exclude_host = 1,
111 		.exclude_user = exclude_user,
112 		.exclude_kernel = exclude_kernel,
113 		.config = config,
114 	};
115 
116 	if (in_tx)
117 		attr.config |= HSW_IN_TX;
118 	if (in_tx_cp)
119 		attr.config |= HSW_IN_TX_CHECKPOINTED;
120 
121 	attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc);
122 
123 	event = perf_event_create_kernel_counter(&attr, -1, current,
124 						 intr ? kvm_perf_overflow_intr :
125 						 kvm_perf_overflow, pmc);
126 	if (IS_ERR(event)) {
127 		printk_once("kvm_pmu: event creation failed %ld\n",
128 			    PTR_ERR(event));
129 		return;
130 	}
131 
132 	pmc->perf_event = event;
133 	clear_bit(pmc->idx, (unsigned long*)&pmc_to_pmu(pmc)->reprogram_pmi);
134 }
135 
136 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
137 {
138 	unsigned config, type = PERF_TYPE_RAW;
139 	u8 event_select, unit_mask;
140 
141 	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
142 		printk_once("kvm pmu: pin control bit is ignored\n");
143 
144 	pmc->eventsel = eventsel;
145 
146 	pmc_stop_counter(pmc);
147 
148 	if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
149 		return;
150 
151 	event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT;
152 	unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
153 
154 	if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
155 			  ARCH_PERFMON_EVENTSEL_INV |
156 			  ARCH_PERFMON_EVENTSEL_CMASK |
157 			  HSW_IN_TX |
158 			  HSW_IN_TX_CHECKPOINTED))) {
159 		config = kvm_x86_ops->pmu_ops->find_arch_event(pmc_to_pmu(pmc),
160 						      event_select,
161 						      unit_mask);
162 		if (config != PERF_COUNT_HW_MAX)
163 			type = PERF_TYPE_HARDWARE;
164 	}
165 
166 	if (type == PERF_TYPE_RAW)
167 		config = eventsel & X86_RAW_EVENT_MASK;
168 
169 	pmc_reprogram_counter(pmc, type, config,
170 			      !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
171 			      !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
172 			      eventsel & ARCH_PERFMON_EVENTSEL_INT,
173 			      (eventsel & HSW_IN_TX),
174 			      (eventsel & HSW_IN_TX_CHECKPOINTED));
175 }
176 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
177 
178 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
179 {
180 	unsigned en_field = ctrl & 0x3;
181 	bool pmi = ctrl & 0x8;
182 
183 	pmc_stop_counter(pmc);
184 
185 	if (!en_field || !pmc_is_enabled(pmc))
186 		return;
187 
188 	pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
189 			      kvm_x86_ops->pmu_ops->find_fixed_event(idx),
190 			      !(en_field & 0x2), /* exclude user */
191 			      !(en_field & 0x1), /* exclude kernel */
192 			      pmi, false, false);
193 }
194 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
195 
196 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
197 {
198 	struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
199 
200 	if (!pmc)
201 		return;
202 
203 	if (pmc_is_gp(pmc))
204 		reprogram_gp_counter(pmc, pmc->eventsel);
205 	else {
206 		int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
207 		u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
208 
209 		reprogram_fixed_counter(pmc, ctrl, idx);
210 	}
211 }
212 EXPORT_SYMBOL_GPL(reprogram_counter);
213 
214 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
215 {
216 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
217 	u64 bitmask;
218 	int bit;
219 
220 	bitmask = pmu->reprogram_pmi;
221 
222 	for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) {
223 		struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, bit);
224 
225 		if (unlikely(!pmc || !pmc->perf_event)) {
226 			clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi);
227 			continue;
228 		}
229 
230 		reprogram_counter(pmu, bit);
231 	}
232 }
233 
234 /* check if idx is a valid index to access PMU */
235 int kvm_pmu_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx)
236 {
237 	return kvm_x86_ops->pmu_ops->is_valid_msr_idx(vcpu, idx);
238 }
239 
240 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
241 {
242 	bool fast_mode = idx & (1u << 31);
243 	struct kvm_pmc *pmc;
244 	u64 ctr_val;
245 
246 	pmc = kvm_x86_ops->pmu_ops->msr_idx_to_pmc(vcpu, idx);
247 	if (!pmc)
248 		return 1;
249 
250 	ctr_val = pmc_read_counter(pmc);
251 	if (fast_mode)
252 		ctr_val = (u32)ctr_val;
253 
254 	*data = ctr_val;
255 	return 0;
256 }
257 
258 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
259 {
260 	if (lapic_in_kernel(vcpu))
261 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
262 }
263 
264 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
265 {
266 	return kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, msr);
267 }
268 
269 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
270 {
271 	return kvm_x86_ops->pmu_ops->get_msr(vcpu, msr, data);
272 }
273 
274 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
275 {
276 	return kvm_x86_ops->pmu_ops->set_msr(vcpu, msr_info);
277 }
278 
279 /* refresh PMU settings. This function generally is called when underlying
280  * settings are changed (such as changes of PMU CPUID by guest VMs), which
281  * should rarely happen.
282  */
283 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
284 {
285 	kvm_x86_ops->pmu_ops->refresh(vcpu);
286 }
287 
288 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
289 {
290 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
291 
292 	irq_work_sync(&pmu->irq_work);
293 	kvm_x86_ops->pmu_ops->reset(vcpu);
294 }
295 
296 void kvm_pmu_init(struct kvm_vcpu *vcpu)
297 {
298 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
299 
300 	memset(pmu, 0, sizeof(*pmu));
301 	kvm_x86_ops->pmu_ops->init(vcpu);
302 	init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
303 	kvm_pmu_refresh(vcpu);
304 }
305 
306 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
307 {
308 	kvm_pmu_reset(vcpu);
309 }
310