xref: /linux/arch/x86/kvm/mtrr.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * vMTRR implementation
3  *
4  * Copyright (C) 2006 Qumranet, Inc.
5  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6  * Copyright(C) 2015 Intel Corporation.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Marcelo Tosatti <mtosatti@redhat.com>
12  *   Paolo Bonzini <pbonzini@redhat.com>
13  *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <asm/mtrr.h>
21 
22 #include "cpuid.h"
23 #include "mmu.h"
24 
25 #define IA32_MTRR_DEF_TYPE_E		(1ULL << 11)
26 #define IA32_MTRR_DEF_TYPE_FE		(1ULL << 10)
27 #define IA32_MTRR_DEF_TYPE_TYPE_MASK	(0xff)
28 
29 static bool msr_mtrr_valid(unsigned msr)
30 {
31 	switch (msr) {
32 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
33 	case MSR_MTRRfix64K_00000:
34 	case MSR_MTRRfix16K_80000:
35 	case MSR_MTRRfix16K_A0000:
36 	case MSR_MTRRfix4K_C0000:
37 	case MSR_MTRRfix4K_C8000:
38 	case MSR_MTRRfix4K_D0000:
39 	case MSR_MTRRfix4K_D8000:
40 	case MSR_MTRRfix4K_E0000:
41 	case MSR_MTRRfix4K_E8000:
42 	case MSR_MTRRfix4K_F0000:
43 	case MSR_MTRRfix4K_F8000:
44 	case MSR_MTRRdefType:
45 	case MSR_IA32_CR_PAT:
46 		return true;
47 	case 0x2f8:
48 		return true;
49 	}
50 	return false;
51 }
52 
53 static bool valid_pat_type(unsigned t)
54 {
55 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
56 }
57 
58 static bool valid_mtrr_type(unsigned t)
59 {
60 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
61 }
62 
63 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
64 {
65 	int i;
66 	u64 mask;
67 
68 	if (!msr_mtrr_valid(msr))
69 		return false;
70 
71 	if (msr == MSR_IA32_CR_PAT) {
72 		for (i = 0; i < 8; i++)
73 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
74 				return false;
75 		return true;
76 	} else if (msr == MSR_MTRRdefType) {
77 		if (data & ~0xcff)
78 			return false;
79 		return valid_mtrr_type(data & 0xff);
80 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
81 		for (i = 0; i < 8 ; i++)
82 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
83 				return false;
84 		return true;
85 	}
86 
87 	/* variable MTRRs */
88 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
89 
90 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
91 	if ((msr & 1) == 0) {
92 		/* MTRR base */
93 		if (!valid_mtrr_type(data & 0xff))
94 			return false;
95 		mask |= 0xf00;
96 	} else
97 		/* MTRR mask */
98 		mask |= 0x7ff;
99 	if (data & mask) {
100 		kvm_inject_gp(vcpu, 0);
101 		return false;
102 	}
103 
104 	return true;
105 }
106 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
107 
108 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
109 {
110 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
111 }
112 
113 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
114 {
115 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
116 }
117 
118 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
119 {
120 	return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
121 }
122 
123 static u8 mtrr_disabled_type(void)
124 {
125 	/*
126 	 * Intel SDM 11.11.2.2: all MTRRs are disabled when
127 	 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
128 	 * memory type is applied to all of physical memory.
129 	 */
130 	return MTRR_TYPE_UNCACHABLE;
131 }
132 
133 /*
134 * Three terms are used in the following code:
135 * - segment, it indicates the address segments covered by fixed MTRRs.
136 * - unit, it corresponds to the MSR entry in the segment.
137 * - range, a range is covered in one memory cache type.
138 */
139 struct fixed_mtrr_segment {
140 	u64 start;
141 	u64 end;
142 
143 	int range_shift;
144 
145 	/* the start position in kvm_mtrr.fixed_ranges[]. */
146 	int range_start;
147 };
148 
149 static struct fixed_mtrr_segment fixed_seg_table[] = {
150 	/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
151 	{
152 		.start = 0x0,
153 		.end = 0x80000,
154 		.range_shift = 16, /* 64K */
155 		.range_start = 0,
156 	},
157 
158 	/*
159 	 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
160 	 * 16K fixed mtrr.
161 	 */
162 	{
163 		.start = 0x80000,
164 		.end = 0xc0000,
165 		.range_shift = 14, /* 16K */
166 		.range_start = 8,
167 	},
168 
169 	/*
170 	 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
171 	 * 4K fixed mtrr.
172 	 */
173 	{
174 		.start = 0xc0000,
175 		.end = 0x100000,
176 		.range_shift = 12, /* 12K */
177 		.range_start = 24,
178 	}
179 };
180 
181 /*
182  * The size of unit is covered in one MSR, one MSR entry contains
183  * 8 ranges so that unit size is always 8 * 2^range_shift.
184  */
185 static u64 fixed_mtrr_seg_unit_size(int seg)
186 {
187 	return 8 << fixed_seg_table[seg].range_shift;
188 }
189 
190 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
191 {
192 	switch (msr) {
193 	case MSR_MTRRfix64K_00000:
194 		*seg = 0;
195 		*unit = 0;
196 		break;
197 	case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
198 		*seg = 1;
199 		*unit = msr - MSR_MTRRfix16K_80000;
200 		break;
201 	case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
202 		*seg = 2;
203 		*unit = msr - MSR_MTRRfix4K_C0000;
204 		break;
205 	default:
206 		return false;
207 	}
208 
209 	return true;
210 }
211 
212 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
213 {
214 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
215 	u64 unit_size = fixed_mtrr_seg_unit_size(seg);
216 
217 	*start = mtrr_seg->start + unit * unit_size;
218 	*end = *start + unit_size;
219 	WARN_ON(*end > mtrr_seg->end);
220 }
221 
222 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
223 {
224 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
225 
226 	WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
227 		> mtrr_seg->end);
228 
229 	/* each unit has 8 ranges. */
230 	return mtrr_seg->range_start + 8 * unit;
231 }
232 
233 static int fixed_mtrr_seg_end_range_index(int seg)
234 {
235 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
236 	int n;
237 
238 	n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
239 	return mtrr_seg->range_start + n - 1;
240 }
241 
242 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
243 {
244 	int seg, unit;
245 
246 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
247 		return false;
248 
249 	fixed_mtrr_seg_unit_range(seg, unit, start, end);
250 	return true;
251 }
252 
253 static int fixed_msr_to_range_index(u32 msr)
254 {
255 	int seg, unit;
256 
257 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
258 		return -1;
259 
260 	return fixed_mtrr_seg_unit_range_index(seg, unit);
261 }
262 
263 static int fixed_mtrr_addr_to_seg(u64 addr)
264 {
265 	struct fixed_mtrr_segment *mtrr_seg;
266 	int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
267 
268 	for (seg = 0; seg < seg_num; seg++) {
269 		mtrr_seg = &fixed_seg_table[seg];
270 		if (mtrr_seg->start >= addr && addr < mtrr_seg->end)
271 			return seg;
272 	}
273 
274 	return -1;
275 }
276 
277 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
278 {
279 	struct fixed_mtrr_segment *mtrr_seg;
280 	int index;
281 
282 	mtrr_seg = &fixed_seg_table[seg];
283 	index = mtrr_seg->range_start;
284 	index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
285 	return index;
286 }
287 
288 static u64 fixed_mtrr_range_end_addr(int seg, int index)
289 {
290 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
291 	int pos = index - mtrr_seg->range_start;
292 
293 	return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
294 }
295 
296 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
297 {
298 	u64 mask;
299 
300 	*start = range->base & PAGE_MASK;
301 
302 	mask = range->mask & PAGE_MASK;
303 	mask |= ~0ULL << boot_cpu_data.x86_phys_bits;
304 
305 	/* This cannot overflow because writing to the reserved bits of
306 	 * variable MTRRs causes a #GP.
307 	 */
308 	*end = (*start | ~mask) + 1;
309 }
310 
311 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
312 {
313 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
314 	gfn_t start, end;
315 	int index;
316 
317 	if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
318 	      !kvm_arch_has_noncoherent_dma(vcpu->kvm))
319 		return;
320 
321 	if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
322 		return;
323 
324 	/* fixed MTRRs. */
325 	if (fixed_msr_to_range(msr, &start, &end)) {
326 		if (!fixed_mtrr_is_enabled(mtrr_state))
327 			return;
328 	} else if (msr == MSR_MTRRdefType) {
329 		start = 0x0;
330 		end = ~0ULL;
331 	} else {
332 		/* variable range MTRRs. */
333 		index = (msr - 0x200) / 2;
334 		var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
335 	}
336 
337 	kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
338 }
339 
340 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
341 {
342 	return (range->mask & (1 << 11)) != 0;
343 }
344 
345 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
346 {
347 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
348 	struct kvm_mtrr_range *tmp, *cur;
349 	int index, is_mtrr_mask;
350 
351 	index = (msr - 0x200) / 2;
352 	is_mtrr_mask = msr - 0x200 - 2 * index;
353 	cur = &mtrr_state->var_ranges[index];
354 
355 	/* remove the entry if it's in the list. */
356 	if (var_mtrr_range_is_valid(cur))
357 		list_del(&mtrr_state->var_ranges[index].node);
358 
359 	if (!is_mtrr_mask)
360 		cur->base = data;
361 	else
362 		cur->mask = data;
363 
364 	/* add it to the list if it's enabled. */
365 	if (var_mtrr_range_is_valid(cur)) {
366 		list_for_each_entry(tmp, &mtrr_state->head, node)
367 			if (cur->base >= tmp->base)
368 				break;
369 		list_add_tail(&cur->node, &tmp->node);
370 	}
371 }
372 
373 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
374 {
375 	int index;
376 
377 	if (!kvm_mtrr_valid(vcpu, msr, data))
378 		return 1;
379 
380 	index = fixed_msr_to_range_index(msr);
381 	if (index >= 0)
382 		*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
383 	else if (msr == MSR_MTRRdefType)
384 		vcpu->arch.mtrr_state.deftype = data;
385 	else if (msr == MSR_IA32_CR_PAT)
386 		vcpu->arch.pat = data;
387 	else
388 		set_var_mtrr_msr(vcpu, msr, data);
389 
390 	update_mtrr(vcpu, msr);
391 	return 0;
392 }
393 
394 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
395 {
396 	int index;
397 
398 	/* MSR_MTRRcap is a readonly MSR. */
399 	if (msr == MSR_MTRRcap) {
400 		/*
401 		 * SMRR = 0
402 		 * WC = 1
403 		 * FIX = 1
404 		 * VCNT = KVM_NR_VAR_MTRR
405 		 */
406 		*pdata = 0x500 | KVM_NR_VAR_MTRR;
407 		return 0;
408 	}
409 
410 	if (!msr_mtrr_valid(msr))
411 		return 1;
412 
413 	index = fixed_msr_to_range_index(msr);
414 	if (index >= 0)
415 		*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
416 	else if (msr == MSR_MTRRdefType)
417 		*pdata = vcpu->arch.mtrr_state.deftype;
418 	else if (msr == MSR_IA32_CR_PAT)
419 		*pdata = vcpu->arch.pat;
420 	else {	/* Variable MTRRs */
421 		int is_mtrr_mask;
422 
423 		index = (msr - 0x200) / 2;
424 		is_mtrr_mask = msr - 0x200 - 2 * index;
425 		if (!is_mtrr_mask)
426 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
427 		else
428 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
429 	}
430 
431 	return 0;
432 }
433 
434 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
435 {
436 	INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
437 }
438 
439 struct mtrr_iter {
440 	/* input fields. */
441 	struct kvm_mtrr *mtrr_state;
442 	u64 start;
443 	u64 end;
444 
445 	/* output fields. */
446 	int mem_type;
447 	/* mtrr is completely disabled? */
448 	bool mtrr_disabled;
449 	/* [start, end) is not fully covered in MTRRs? */
450 	bool partial_map;
451 
452 	/* private fields. */
453 	union {
454 		/* used for fixed MTRRs. */
455 		struct {
456 			int index;
457 			int seg;
458 		};
459 
460 		/* used for var MTRRs. */
461 		struct {
462 			struct kvm_mtrr_range *range;
463 			/* max address has been covered in var MTRRs. */
464 			u64 start_max;
465 		};
466 	};
467 
468 	bool fixed;
469 };
470 
471 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
472 {
473 	int seg, index;
474 
475 	if (!fixed_mtrr_is_enabled(iter->mtrr_state))
476 		return false;
477 
478 	seg = fixed_mtrr_addr_to_seg(iter->start);
479 	if (seg < 0)
480 		return false;
481 
482 	iter->fixed = true;
483 	index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
484 	iter->index = index;
485 	iter->seg = seg;
486 	return true;
487 }
488 
489 static bool match_var_range(struct mtrr_iter *iter,
490 			    struct kvm_mtrr_range *range)
491 {
492 	u64 start, end;
493 
494 	var_mtrr_range(range, &start, &end);
495 	if (!(start >= iter->end || end <= iter->start)) {
496 		iter->range = range;
497 
498 		/*
499 		 * the function is called when we do kvm_mtrr.head walking.
500 		 * Range has the minimum base address which interleaves
501 		 * [looker->start_max, looker->end).
502 		 */
503 		iter->partial_map |= iter->start_max < start;
504 
505 		/* update the max address has been covered. */
506 		iter->start_max = max(iter->start_max, end);
507 		return true;
508 	}
509 
510 	return false;
511 }
512 
513 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
514 {
515 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
516 
517 	list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
518 		if (match_var_range(iter, iter->range))
519 			return;
520 
521 	iter->range = NULL;
522 	iter->partial_map |= iter->start_max < iter->end;
523 }
524 
525 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
526 {
527 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
528 
529 	iter->fixed = false;
530 	iter->start_max = iter->start;
531 	iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
532 
533 	__mtrr_lookup_var_next(iter);
534 }
535 
536 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
537 {
538 	/* terminate the lookup. */
539 	if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
540 		iter->fixed = false;
541 		iter->range = NULL;
542 		return;
543 	}
544 
545 	iter->index++;
546 
547 	/* have looked up for all fixed MTRRs. */
548 	if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
549 		return mtrr_lookup_var_start(iter);
550 
551 	/* switch to next segment. */
552 	if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
553 		iter->seg++;
554 }
555 
556 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
557 {
558 	__mtrr_lookup_var_next(iter);
559 }
560 
561 static void mtrr_lookup_start(struct mtrr_iter *iter)
562 {
563 	if (!mtrr_is_enabled(iter->mtrr_state)) {
564 		iter->mtrr_disabled = true;
565 		return;
566 	}
567 
568 	if (!mtrr_lookup_fixed_start(iter))
569 		mtrr_lookup_var_start(iter);
570 }
571 
572 static void mtrr_lookup_init(struct mtrr_iter *iter,
573 			     struct kvm_mtrr *mtrr_state, u64 start, u64 end)
574 {
575 	iter->mtrr_state = mtrr_state;
576 	iter->start = start;
577 	iter->end = end;
578 	iter->mtrr_disabled = false;
579 	iter->partial_map = false;
580 	iter->fixed = false;
581 	iter->range = NULL;
582 
583 	mtrr_lookup_start(iter);
584 }
585 
586 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
587 {
588 	if (iter->fixed) {
589 		iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
590 		return true;
591 	}
592 
593 	if (iter->range) {
594 		iter->mem_type = iter->range->base & 0xff;
595 		return true;
596 	}
597 
598 	return false;
599 }
600 
601 static void mtrr_lookup_next(struct mtrr_iter *iter)
602 {
603 	if (iter->fixed)
604 		mtrr_lookup_fixed_next(iter);
605 	else
606 		mtrr_lookup_var_next(iter);
607 }
608 
609 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
610 	for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
611 	     mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
612 
613 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
614 {
615 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
616 	struct mtrr_iter iter;
617 	u64 start, end;
618 	int type = -1;
619 	const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
620 			       | (1 << MTRR_TYPE_WRTHROUGH);
621 
622 	start = gfn_to_gpa(gfn);
623 	end = start + PAGE_SIZE;
624 
625 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
626 		int curr_type = iter.mem_type;
627 
628 		/*
629 		 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
630 		 * Precedences.
631 		 */
632 
633 		if (type == -1) {
634 			type = curr_type;
635 			continue;
636 		}
637 
638 		/*
639 		 * If two or more variable memory ranges match and the
640 		 * memory types are identical, then that memory type is
641 		 * used.
642 		 */
643 		if (type == curr_type)
644 			continue;
645 
646 		/*
647 		 * If two or more variable memory ranges match and one of
648 		 * the memory types is UC, the UC memory type used.
649 		 */
650 		if (curr_type == MTRR_TYPE_UNCACHABLE)
651 			return MTRR_TYPE_UNCACHABLE;
652 
653 		/*
654 		 * If two or more variable memory ranges match and the
655 		 * memory types are WT and WB, the WT memory type is used.
656 		 */
657 		if (((1 << type) & wt_wb_mask) &&
658 		      ((1 << curr_type) & wt_wb_mask)) {
659 			type = MTRR_TYPE_WRTHROUGH;
660 			continue;
661 		}
662 
663 		/*
664 		 * For overlaps not defined by the above rules, processor
665 		 * behavior is undefined.
666 		 */
667 
668 		/* We use WB for this undefined behavior. :( */
669 		return MTRR_TYPE_WRBACK;
670 	}
671 
672 	if (iter.mtrr_disabled)
673 		return mtrr_disabled_type();
674 
675 	/* not contained in any MTRRs. */
676 	if (type == -1)
677 		return mtrr_default_type(mtrr_state);
678 
679 	/*
680 	 * We just check one page, partially covered by MTRRs is
681 	 * impossible.
682 	 */
683 	WARN_ON(iter.partial_map);
684 
685 	return type;
686 }
687 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
688 
689 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
690 					  int page_num)
691 {
692 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
693 	struct mtrr_iter iter;
694 	u64 start, end;
695 	int type = -1;
696 
697 	start = gfn_to_gpa(gfn);
698 	end = gfn_to_gpa(gfn + page_num);
699 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
700 		if (type == -1) {
701 			type = iter.mem_type;
702 			continue;
703 		}
704 
705 		if (type != iter.mem_type)
706 			return false;
707 	}
708 
709 	if (iter.mtrr_disabled)
710 		return true;
711 
712 	if (!iter.partial_map)
713 		return true;
714 
715 	if (type == -1)
716 		return true;
717 
718 	return type == mtrr_default_type(mtrr_state);
719 }
720