xref: /linux/arch/x86/kvm/mtrr.c (revision 63307d015b91e626c97bb82e88054af3d0b74643)
1 /*
2  * vMTRR implementation
3  *
4  * Copyright (C) 2006 Qumranet, Inc.
5  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6  * Copyright(C) 2015 Intel Corporation.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Marcelo Tosatti <mtosatti@redhat.com>
12  *   Paolo Bonzini <pbonzini@redhat.com>
13  *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <asm/mtrr.h>
21 
22 #include "cpuid.h"
23 #include "mmu.h"
24 
25 #define IA32_MTRR_DEF_TYPE_E		(1ULL << 11)
26 #define IA32_MTRR_DEF_TYPE_FE		(1ULL << 10)
27 #define IA32_MTRR_DEF_TYPE_TYPE_MASK	(0xff)
28 
29 static bool msr_mtrr_valid(unsigned msr)
30 {
31 	switch (msr) {
32 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
33 	case MSR_MTRRfix64K_00000:
34 	case MSR_MTRRfix16K_80000:
35 	case MSR_MTRRfix16K_A0000:
36 	case MSR_MTRRfix4K_C0000:
37 	case MSR_MTRRfix4K_C8000:
38 	case MSR_MTRRfix4K_D0000:
39 	case MSR_MTRRfix4K_D8000:
40 	case MSR_MTRRfix4K_E0000:
41 	case MSR_MTRRfix4K_E8000:
42 	case MSR_MTRRfix4K_F0000:
43 	case MSR_MTRRfix4K_F8000:
44 	case MSR_MTRRdefType:
45 	case MSR_IA32_CR_PAT:
46 		return true;
47 	}
48 	return false;
49 }
50 
51 static bool valid_mtrr_type(unsigned t)
52 {
53 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
54 }
55 
56 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
57 {
58 	int i;
59 	u64 mask;
60 
61 	if (!msr_mtrr_valid(msr))
62 		return false;
63 
64 	if (msr == MSR_IA32_CR_PAT) {
65 		return kvm_pat_valid(data);
66 	} else if (msr == MSR_MTRRdefType) {
67 		if (data & ~0xcff)
68 			return false;
69 		return valid_mtrr_type(data & 0xff);
70 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
71 		for (i = 0; i < 8 ; i++)
72 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
73 				return false;
74 		return true;
75 	}
76 
77 	/* variable MTRRs */
78 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
79 
80 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
81 	if ((msr & 1) == 0) {
82 		/* MTRR base */
83 		if (!valid_mtrr_type(data & 0xff))
84 			return false;
85 		mask |= 0xf00;
86 	} else
87 		/* MTRR mask */
88 		mask |= 0x7ff;
89 	if (data & mask) {
90 		kvm_inject_gp(vcpu, 0);
91 		return false;
92 	}
93 
94 	return true;
95 }
96 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
97 
98 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
99 {
100 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
101 }
102 
103 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
104 {
105 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
106 }
107 
108 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
109 {
110 	return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
111 }
112 
113 static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
114 {
115 	/*
116 	 * Intel SDM 11.11.2.2: all MTRRs are disabled when
117 	 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
118 	 * memory type is applied to all of physical memory.
119 	 *
120 	 * However, virtual machines can be run with CPUID such that
121 	 * there are no MTRRs.  In that case, the firmware will never
122 	 * enable MTRRs and it is obviously undesirable to run the
123 	 * guest entirely with UC memory and we use WB.
124 	 */
125 	if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
126 		return MTRR_TYPE_UNCACHABLE;
127 	else
128 		return MTRR_TYPE_WRBACK;
129 }
130 
131 /*
132 * Three terms are used in the following code:
133 * - segment, it indicates the address segments covered by fixed MTRRs.
134 * - unit, it corresponds to the MSR entry in the segment.
135 * - range, a range is covered in one memory cache type.
136 */
137 struct fixed_mtrr_segment {
138 	u64 start;
139 	u64 end;
140 
141 	int range_shift;
142 
143 	/* the start position in kvm_mtrr.fixed_ranges[]. */
144 	int range_start;
145 };
146 
147 static struct fixed_mtrr_segment fixed_seg_table[] = {
148 	/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
149 	{
150 		.start = 0x0,
151 		.end = 0x80000,
152 		.range_shift = 16, /* 64K */
153 		.range_start = 0,
154 	},
155 
156 	/*
157 	 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
158 	 * 16K fixed mtrr.
159 	 */
160 	{
161 		.start = 0x80000,
162 		.end = 0xc0000,
163 		.range_shift = 14, /* 16K */
164 		.range_start = 8,
165 	},
166 
167 	/*
168 	 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
169 	 * 4K fixed mtrr.
170 	 */
171 	{
172 		.start = 0xc0000,
173 		.end = 0x100000,
174 		.range_shift = 12, /* 12K */
175 		.range_start = 24,
176 	}
177 };
178 
179 /*
180  * The size of unit is covered in one MSR, one MSR entry contains
181  * 8 ranges so that unit size is always 8 * 2^range_shift.
182  */
183 static u64 fixed_mtrr_seg_unit_size(int seg)
184 {
185 	return 8 << fixed_seg_table[seg].range_shift;
186 }
187 
188 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
189 {
190 	switch (msr) {
191 	case MSR_MTRRfix64K_00000:
192 		*seg = 0;
193 		*unit = 0;
194 		break;
195 	case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
196 		*seg = 1;
197 		*unit = msr - MSR_MTRRfix16K_80000;
198 		break;
199 	case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
200 		*seg = 2;
201 		*unit = msr - MSR_MTRRfix4K_C0000;
202 		break;
203 	default:
204 		return false;
205 	}
206 
207 	return true;
208 }
209 
210 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
211 {
212 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
213 	u64 unit_size = fixed_mtrr_seg_unit_size(seg);
214 
215 	*start = mtrr_seg->start + unit * unit_size;
216 	*end = *start + unit_size;
217 	WARN_ON(*end > mtrr_seg->end);
218 }
219 
220 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
221 {
222 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
223 
224 	WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
225 		> mtrr_seg->end);
226 
227 	/* each unit has 8 ranges. */
228 	return mtrr_seg->range_start + 8 * unit;
229 }
230 
231 static int fixed_mtrr_seg_end_range_index(int seg)
232 {
233 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
234 	int n;
235 
236 	n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
237 	return mtrr_seg->range_start + n - 1;
238 }
239 
240 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
241 {
242 	int seg, unit;
243 
244 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
245 		return false;
246 
247 	fixed_mtrr_seg_unit_range(seg, unit, start, end);
248 	return true;
249 }
250 
251 static int fixed_msr_to_range_index(u32 msr)
252 {
253 	int seg, unit;
254 
255 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
256 		return -1;
257 
258 	return fixed_mtrr_seg_unit_range_index(seg, unit);
259 }
260 
261 static int fixed_mtrr_addr_to_seg(u64 addr)
262 {
263 	struct fixed_mtrr_segment *mtrr_seg;
264 	int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
265 
266 	for (seg = 0; seg < seg_num; seg++) {
267 		mtrr_seg = &fixed_seg_table[seg];
268 		if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
269 			return seg;
270 	}
271 
272 	return -1;
273 }
274 
275 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
276 {
277 	struct fixed_mtrr_segment *mtrr_seg;
278 	int index;
279 
280 	mtrr_seg = &fixed_seg_table[seg];
281 	index = mtrr_seg->range_start;
282 	index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
283 	return index;
284 }
285 
286 static u64 fixed_mtrr_range_end_addr(int seg, int index)
287 {
288 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
289 	int pos = index - mtrr_seg->range_start;
290 
291 	return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
292 }
293 
294 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
295 {
296 	u64 mask;
297 
298 	*start = range->base & PAGE_MASK;
299 
300 	mask = range->mask & PAGE_MASK;
301 
302 	/* This cannot overflow because writing to the reserved bits of
303 	 * variable MTRRs causes a #GP.
304 	 */
305 	*end = (*start | ~mask) + 1;
306 }
307 
308 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
309 {
310 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
311 	gfn_t start, end;
312 	int index;
313 
314 	if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
315 	      !kvm_arch_has_noncoherent_dma(vcpu->kvm))
316 		return;
317 
318 	if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
319 		return;
320 
321 	/* fixed MTRRs. */
322 	if (fixed_msr_to_range(msr, &start, &end)) {
323 		if (!fixed_mtrr_is_enabled(mtrr_state))
324 			return;
325 	} else if (msr == MSR_MTRRdefType) {
326 		start = 0x0;
327 		end = ~0ULL;
328 	} else {
329 		/* variable range MTRRs. */
330 		index = (msr - 0x200) / 2;
331 		var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
332 	}
333 
334 	kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
335 }
336 
337 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
338 {
339 	return (range->mask & (1 << 11)) != 0;
340 }
341 
342 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
343 {
344 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
345 	struct kvm_mtrr_range *tmp, *cur;
346 	int index, is_mtrr_mask;
347 
348 	index = (msr - 0x200) / 2;
349 	is_mtrr_mask = msr - 0x200 - 2 * index;
350 	cur = &mtrr_state->var_ranges[index];
351 
352 	/* remove the entry if it's in the list. */
353 	if (var_mtrr_range_is_valid(cur))
354 		list_del(&mtrr_state->var_ranges[index].node);
355 
356 	/* Extend the mask with all 1 bits to the left, since those
357 	 * bits must implicitly be 0.  The bits are then cleared
358 	 * when reading them.
359 	 */
360 	if (!is_mtrr_mask)
361 		cur->base = data;
362 	else
363 		cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
364 
365 	/* add it to the list if it's enabled. */
366 	if (var_mtrr_range_is_valid(cur)) {
367 		list_for_each_entry(tmp, &mtrr_state->head, node)
368 			if (cur->base >= tmp->base)
369 				break;
370 		list_add_tail(&cur->node, &tmp->node);
371 	}
372 }
373 
374 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
375 {
376 	int index;
377 
378 	if (!kvm_mtrr_valid(vcpu, msr, data))
379 		return 1;
380 
381 	index = fixed_msr_to_range_index(msr);
382 	if (index >= 0)
383 		*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
384 	else if (msr == MSR_MTRRdefType)
385 		vcpu->arch.mtrr_state.deftype = data;
386 	else if (msr == MSR_IA32_CR_PAT)
387 		vcpu->arch.pat = data;
388 	else
389 		set_var_mtrr_msr(vcpu, msr, data);
390 
391 	update_mtrr(vcpu, msr);
392 	return 0;
393 }
394 
395 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
396 {
397 	int index;
398 
399 	/* MSR_MTRRcap is a readonly MSR. */
400 	if (msr == MSR_MTRRcap) {
401 		/*
402 		 * SMRR = 0
403 		 * WC = 1
404 		 * FIX = 1
405 		 * VCNT = KVM_NR_VAR_MTRR
406 		 */
407 		*pdata = 0x500 | KVM_NR_VAR_MTRR;
408 		return 0;
409 	}
410 
411 	if (!msr_mtrr_valid(msr))
412 		return 1;
413 
414 	index = fixed_msr_to_range_index(msr);
415 	if (index >= 0)
416 		*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
417 	else if (msr == MSR_MTRRdefType)
418 		*pdata = vcpu->arch.mtrr_state.deftype;
419 	else if (msr == MSR_IA32_CR_PAT)
420 		*pdata = vcpu->arch.pat;
421 	else {	/* Variable MTRRs */
422 		int is_mtrr_mask;
423 
424 		index = (msr - 0x200) / 2;
425 		is_mtrr_mask = msr - 0x200 - 2 * index;
426 		if (!is_mtrr_mask)
427 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
428 		else
429 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
430 
431 		*pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
432 	}
433 
434 	return 0;
435 }
436 
437 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
438 {
439 	INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
440 }
441 
442 struct mtrr_iter {
443 	/* input fields. */
444 	struct kvm_mtrr *mtrr_state;
445 	u64 start;
446 	u64 end;
447 
448 	/* output fields. */
449 	int mem_type;
450 	/* mtrr is completely disabled? */
451 	bool mtrr_disabled;
452 	/* [start, end) is not fully covered in MTRRs? */
453 	bool partial_map;
454 
455 	/* private fields. */
456 	union {
457 		/* used for fixed MTRRs. */
458 		struct {
459 			int index;
460 			int seg;
461 		};
462 
463 		/* used for var MTRRs. */
464 		struct {
465 			struct kvm_mtrr_range *range;
466 			/* max address has been covered in var MTRRs. */
467 			u64 start_max;
468 		};
469 	};
470 
471 	bool fixed;
472 };
473 
474 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
475 {
476 	int seg, index;
477 
478 	if (!fixed_mtrr_is_enabled(iter->mtrr_state))
479 		return false;
480 
481 	seg = fixed_mtrr_addr_to_seg(iter->start);
482 	if (seg < 0)
483 		return false;
484 
485 	iter->fixed = true;
486 	index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
487 	iter->index = index;
488 	iter->seg = seg;
489 	return true;
490 }
491 
492 static bool match_var_range(struct mtrr_iter *iter,
493 			    struct kvm_mtrr_range *range)
494 {
495 	u64 start, end;
496 
497 	var_mtrr_range(range, &start, &end);
498 	if (!(start >= iter->end || end <= iter->start)) {
499 		iter->range = range;
500 
501 		/*
502 		 * the function is called when we do kvm_mtrr.head walking.
503 		 * Range has the minimum base address which interleaves
504 		 * [looker->start_max, looker->end).
505 		 */
506 		iter->partial_map |= iter->start_max < start;
507 
508 		/* update the max address has been covered. */
509 		iter->start_max = max(iter->start_max, end);
510 		return true;
511 	}
512 
513 	return false;
514 }
515 
516 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
517 {
518 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
519 
520 	list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
521 		if (match_var_range(iter, iter->range))
522 			return;
523 
524 	iter->range = NULL;
525 	iter->partial_map |= iter->start_max < iter->end;
526 }
527 
528 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
529 {
530 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
531 
532 	iter->fixed = false;
533 	iter->start_max = iter->start;
534 	iter->range = NULL;
535 	iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
536 
537 	__mtrr_lookup_var_next(iter);
538 }
539 
540 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
541 {
542 	/* terminate the lookup. */
543 	if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
544 		iter->fixed = false;
545 		iter->range = NULL;
546 		return;
547 	}
548 
549 	iter->index++;
550 
551 	/* have looked up for all fixed MTRRs. */
552 	if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
553 		return mtrr_lookup_var_start(iter);
554 
555 	/* switch to next segment. */
556 	if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
557 		iter->seg++;
558 }
559 
560 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
561 {
562 	__mtrr_lookup_var_next(iter);
563 }
564 
565 static void mtrr_lookup_start(struct mtrr_iter *iter)
566 {
567 	if (!mtrr_is_enabled(iter->mtrr_state)) {
568 		iter->mtrr_disabled = true;
569 		return;
570 	}
571 
572 	if (!mtrr_lookup_fixed_start(iter))
573 		mtrr_lookup_var_start(iter);
574 }
575 
576 static void mtrr_lookup_init(struct mtrr_iter *iter,
577 			     struct kvm_mtrr *mtrr_state, u64 start, u64 end)
578 {
579 	iter->mtrr_state = mtrr_state;
580 	iter->start = start;
581 	iter->end = end;
582 	iter->mtrr_disabled = false;
583 	iter->partial_map = false;
584 	iter->fixed = false;
585 	iter->range = NULL;
586 
587 	mtrr_lookup_start(iter);
588 }
589 
590 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
591 {
592 	if (iter->fixed) {
593 		iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
594 		return true;
595 	}
596 
597 	if (iter->range) {
598 		iter->mem_type = iter->range->base & 0xff;
599 		return true;
600 	}
601 
602 	return false;
603 }
604 
605 static void mtrr_lookup_next(struct mtrr_iter *iter)
606 {
607 	if (iter->fixed)
608 		mtrr_lookup_fixed_next(iter);
609 	else
610 		mtrr_lookup_var_next(iter);
611 }
612 
613 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
614 	for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
615 	     mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
616 
617 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
618 {
619 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
620 	struct mtrr_iter iter;
621 	u64 start, end;
622 	int type = -1;
623 	const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
624 			       | (1 << MTRR_TYPE_WRTHROUGH);
625 
626 	start = gfn_to_gpa(gfn);
627 	end = start + PAGE_SIZE;
628 
629 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
630 		int curr_type = iter.mem_type;
631 
632 		/*
633 		 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
634 		 * Precedences.
635 		 */
636 
637 		if (type == -1) {
638 			type = curr_type;
639 			continue;
640 		}
641 
642 		/*
643 		 * If two or more variable memory ranges match and the
644 		 * memory types are identical, then that memory type is
645 		 * used.
646 		 */
647 		if (type == curr_type)
648 			continue;
649 
650 		/*
651 		 * If two or more variable memory ranges match and one of
652 		 * the memory types is UC, the UC memory type used.
653 		 */
654 		if (curr_type == MTRR_TYPE_UNCACHABLE)
655 			return MTRR_TYPE_UNCACHABLE;
656 
657 		/*
658 		 * If two or more variable memory ranges match and the
659 		 * memory types are WT and WB, the WT memory type is used.
660 		 */
661 		if (((1 << type) & wt_wb_mask) &&
662 		      ((1 << curr_type) & wt_wb_mask)) {
663 			type = MTRR_TYPE_WRTHROUGH;
664 			continue;
665 		}
666 
667 		/*
668 		 * For overlaps not defined by the above rules, processor
669 		 * behavior is undefined.
670 		 */
671 
672 		/* We use WB for this undefined behavior. :( */
673 		return MTRR_TYPE_WRBACK;
674 	}
675 
676 	if (iter.mtrr_disabled)
677 		return mtrr_disabled_type(vcpu);
678 
679 	/* not contained in any MTRRs. */
680 	if (type == -1)
681 		return mtrr_default_type(mtrr_state);
682 
683 	/*
684 	 * We just check one page, partially covered by MTRRs is
685 	 * impossible.
686 	 */
687 	WARN_ON(iter.partial_map);
688 
689 	return type;
690 }
691 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
692 
693 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
694 					  int page_num)
695 {
696 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
697 	struct mtrr_iter iter;
698 	u64 start, end;
699 	int type = -1;
700 
701 	start = gfn_to_gpa(gfn);
702 	end = gfn_to_gpa(gfn + page_num);
703 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
704 		if (type == -1) {
705 			type = iter.mem_type;
706 			continue;
707 		}
708 
709 		if (type != iter.mem_type)
710 			return false;
711 	}
712 
713 	if (iter.mtrr_disabled)
714 		return true;
715 
716 	if (!iter.partial_map)
717 		return true;
718 
719 	if (type == -1)
720 		return true;
721 
722 	return type == mtrr_default_type(mtrr_state);
723 }
724