xref: /linux/arch/x86/kvm/mtrr.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * vMTRR implementation
3  *
4  * Copyright (C) 2006 Qumranet, Inc.
5  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6  * Copyright(C) 2015 Intel Corporation.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Marcelo Tosatti <mtosatti@redhat.com>
12  *   Paolo Bonzini <pbonzini@redhat.com>
13  *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <asm/mtrr.h>
21 
22 #include "cpuid.h"
23 #include "mmu.h"
24 
25 #define IA32_MTRR_DEF_TYPE_E		(1ULL << 11)
26 #define IA32_MTRR_DEF_TYPE_FE		(1ULL << 10)
27 #define IA32_MTRR_DEF_TYPE_TYPE_MASK	(0xff)
28 
29 static bool msr_mtrr_valid(unsigned msr)
30 {
31 	switch (msr) {
32 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
33 	case MSR_MTRRfix64K_00000:
34 	case MSR_MTRRfix16K_80000:
35 	case MSR_MTRRfix16K_A0000:
36 	case MSR_MTRRfix4K_C0000:
37 	case MSR_MTRRfix4K_C8000:
38 	case MSR_MTRRfix4K_D0000:
39 	case MSR_MTRRfix4K_D8000:
40 	case MSR_MTRRfix4K_E0000:
41 	case MSR_MTRRfix4K_E8000:
42 	case MSR_MTRRfix4K_F0000:
43 	case MSR_MTRRfix4K_F8000:
44 	case MSR_MTRRdefType:
45 	case MSR_IA32_CR_PAT:
46 		return true;
47 	case 0x2f8:
48 		return true;
49 	}
50 	return false;
51 }
52 
53 static bool valid_pat_type(unsigned t)
54 {
55 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
56 }
57 
58 static bool valid_mtrr_type(unsigned t)
59 {
60 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
61 }
62 
63 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
64 {
65 	int i;
66 	u64 mask;
67 
68 	if (!msr_mtrr_valid(msr))
69 		return false;
70 
71 	if (msr == MSR_IA32_CR_PAT) {
72 		for (i = 0; i < 8; i++)
73 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
74 				return false;
75 		return true;
76 	} else if (msr == MSR_MTRRdefType) {
77 		if (data & ~0xcff)
78 			return false;
79 		return valid_mtrr_type(data & 0xff);
80 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
81 		for (i = 0; i < 8 ; i++)
82 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
83 				return false;
84 		return true;
85 	}
86 
87 	/* variable MTRRs */
88 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
89 
90 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
91 	if ((msr & 1) == 0) {
92 		/* MTRR base */
93 		if (!valid_mtrr_type(data & 0xff))
94 			return false;
95 		mask |= 0xf00;
96 	} else
97 		/* MTRR mask */
98 		mask |= 0x7ff;
99 	if (data & mask) {
100 		kvm_inject_gp(vcpu, 0);
101 		return false;
102 	}
103 
104 	return true;
105 }
106 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
107 
108 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
109 {
110 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
111 }
112 
113 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
114 {
115 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
116 }
117 
118 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
119 {
120 	return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
121 }
122 
123 /*
124 * Three terms are used in the following code:
125 * - segment, it indicates the address segments covered by fixed MTRRs.
126 * - unit, it corresponds to the MSR entry in the segment.
127 * - range, a range is covered in one memory cache type.
128 */
129 struct fixed_mtrr_segment {
130 	u64 start;
131 	u64 end;
132 
133 	int range_shift;
134 
135 	/* the start position in kvm_mtrr.fixed_ranges[]. */
136 	int range_start;
137 };
138 
139 static struct fixed_mtrr_segment fixed_seg_table[] = {
140 	/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
141 	{
142 		.start = 0x0,
143 		.end = 0x80000,
144 		.range_shift = 16, /* 64K */
145 		.range_start = 0,
146 	},
147 
148 	/*
149 	 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
150 	 * 16K fixed mtrr.
151 	 */
152 	{
153 		.start = 0x80000,
154 		.end = 0xc0000,
155 		.range_shift = 14, /* 16K */
156 		.range_start = 8,
157 	},
158 
159 	/*
160 	 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
161 	 * 4K fixed mtrr.
162 	 */
163 	{
164 		.start = 0xc0000,
165 		.end = 0x100000,
166 		.range_shift = 12, /* 12K */
167 		.range_start = 24,
168 	}
169 };
170 
171 /*
172  * The size of unit is covered in one MSR, one MSR entry contains
173  * 8 ranges so that unit size is always 8 * 2^range_shift.
174  */
175 static u64 fixed_mtrr_seg_unit_size(int seg)
176 {
177 	return 8 << fixed_seg_table[seg].range_shift;
178 }
179 
180 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
181 {
182 	switch (msr) {
183 	case MSR_MTRRfix64K_00000:
184 		*seg = 0;
185 		*unit = 0;
186 		break;
187 	case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
188 		*seg = 1;
189 		*unit = msr - MSR_MTRRfix16K_80000;
190 		break;
191 	case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
192 		*seg = 2;
193 		*unit = msr - MSR_MTRRfix4K_C0000;
194 		break;
195 	default:
196 		return false;
197 	}
198 
199 	return true;
200 }
201 
202 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
203 {
204 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
205 	u64 unit_size = fixed_mtrr_seg_unit_size(seg);
206 
207 	*start = mtrr_seg->start + unit * unit_size;
208 	*end = *start + unit_size;
209 	WARN_ON(*end > mtrr_seg->end);
210 }
211 
212 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
213 {
214 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
215 
216 	WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
217 		> mtrr_seg->end);
218 
219 	/* each unit has 8 ranges. */
220 	return mtrr_seg->range_start + 8 * unit;
221 }
222 
223 static int fixed_mtrr_seg_end_range_index(int seg)
224 {
225 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
226 	int n;
227 
228 	n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
229 	return mtrr_seg->range_start + n - 1;
230 }
231 
232 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
233 {
234 	int seg, unit;
235 
236 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
237 		return false;
238 
239 	fixed_mtrr_seg_unit_range(seg, unit, start, end);
240 	return true;
241 }
242 
243 static int fixed_msr_to_range_index(u32 msr)
244 {
245 	int seg, unit;
246 
247 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
248 		return -1;
249 
250 	return fixed_mtrr_seg_unit_range_index(seg, unit);
251 }
252 
253 static int fixed_mtrr_addr_to_seg(u64 addr)
254 {
255 	struct fixed_mtrr_segment *mtrr_seg;
256 	int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
257 
258 	for (seg = 0; seg < seg_num; seg++) {
259 		mtrr_seg = &fixed_seg_table[seg];
260 		if (mtrr_seg->start >= addr && addr < mtrr_seg->end)
261 			return seg;
262 	}
263 
264 	return -1;
265 }
266 
267 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
268 {
269 	struct fixed_mtrr_segment *mtrr_seg;
270 	int index;
271 
272 	mtrr_seg = &fixed_seg_table[seg];
273 	index = mtrr_seg->range_start;
274 	index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
275 	return index;
276 }
277 
278 static u64 fixed_mtrr_range_end_addr(int seg, int index)
279 {
280 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
281 	int pos = index - mtrr_seg->range_start;
282 
283 	return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
284 }
285 
286 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
287 {
288 	u64 mask;
289 
290 	*start = range->base & PAGE_MASK;
291 
292 	mask = range->mask & PAGE_MASK;
293 	mask |= ~0ULL << boot_cpu_data.x86_phys_bits;
294 
295 	/* This cannot overflow because writing to the reserved bits of
296 	 * variable MTRRs causes a #GP.
297 	 */
298 	*end = (*start | ~mask) + 1;
299 }
300 
301 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
302 {
303 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
304 	gfn_t start, end;
305 	int index;
306 
307 	if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
308 	      !kvm_arch_has_noncoherent_dma(vcpu->kvm))
309 		return;
310 
311 	if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
312 		return;
313 
314 	/* fixed MTRRs. */
315 	if (fixed_msr_to_range(msr, &start, &end)) {
316 		if (!fixed_mtrr_is_enabled(mtrr_state))
317 			return;
318 	} else if (msr == MSR_MTRRdefType) {
319 		start = 0x0;
320 		end = ~0ULL;
321 	} else {
322 		/* variable range MTRRs. */
323 		index = (msr - 0x200) / 2;
324 		var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
325 	}
326 
327 	kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
328 }
329 
330 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
331 {
332 	return (range->mask & (1 << 11)) != 0;
333 }
334 
335 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
336 {
337 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
338 	struct kvm_mtrr_range *tmp, *cur;
339 	int index, is_mtrr_mask;
340 
341 	index = (msr - 0x200) / 2;
342 	is_mtrr_mask = msr - 0x200 - 2 * index;
343 	cur = &mtrr_state->var_ranges[index];
344 
345 	/* remove the entry if it's in the list. */
346 	if (var_mtrr_range_is_valid(cur))
347 		list_del(&mtrr_state->var_ranges[index].node);
348 
349 	if (!is_mtrr_mask)
350 		cur->base = data;
351 	else
352 		cur->mask = data;
353 
354 	/* add it to the list if it's enabled. */
355 	if (var_mtrr_range_is_valid(cur)) {
356 		list_for_each_entry(tmp, &mtrr_state->head, node)
357 			if (cur->base >= tmp->base)
358 				break;
359 		list_add_tail(&cur->node, &tmp->node);
360 	}
361 }
362 
363 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
364 {
365 	int index;
366 
367 	if (!kvm_mtrr_valid(vcpu, msr, data))
368 		return 1;
369 
370 	index = fixed_msr_to_range_index(msr);
371 	if (index >= 0)
372 		*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
373 	else if (msr == MSR_MTRRdefType)
374 		vcpu->arch.mtrr_state.deftype = data;
375 	else if (msr == MSR_IA32_CR_PAT)
376 		vcpu->arch.pat = data;
377 	else
378 		set_var_mtrr_msr(vcpu, msr, data);
379 
380 	update_mtrr(vcpu, msr);
381 	return 0;
382 }
383 
384 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
385 {
386 	int index;
387 
388 	/* MSR_MTRRcap is a readonly MSR. */
389 	if (msr == MSR_MTRRcap) {
390 		/*
391 		 * SMRR = 0
392 		 * WC = 1
393 		 * FIX = 1
394 		 * VCNT = KVM_NR_VAR_MTRR
395 		 */
396 		*pdata = 0x500 | KVM_NR_VAR_MTRR;
397 		return 0;
398 	}
399 
400 	if (!msr_mtrr_valid(msr))
401 		return 1;
402 
403 	index = fixed_msr_to_range_index(msr);
404 	if (index >= 0)
405 		*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
406 	else if (msr == MSR_MTRRdefType)
407 		*pdata = vcpu->arch.mtrr_state.deftype;
408 	else if (msr == MSR_IA32_CR_PAT)
409 		*pdata = vcpu->arch.pat;
410 	else {	/* Variable MTRRs */
411 		int is_mtrr_mask;
412 
413 		index = (msr - 0x200) / 2;
414 		is_mtrr_mask = msr - 0x200 - 2 * index;
415 		if (!is_mtrr_mask)
416 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
417 		else
418 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
419 	}
420 
421 	return 0;
422 }
423 
424 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
425 {
426 	INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
427 }
428 
429 struct mtrr_iter {
430 	/* input fields. */
431 	struct kvm_mtrr *mtrr_state;
432 	u64 start;
433 	u64 end;
434 
435 	/* output fields. */
436 	int mem_type;
437 	/* [start, end) is not fully covered in MTRRs? */
438 	bool partial_map;
439 
440 	/* private fields. */
441 	union {
442 		/* used for fixed MTRRs. */
443 		struct {
444 			int index;
445 			int seg;
446 		};
447 
448 		/* used for var MTRRs. */
449 		struct {
450 			struct kvm_mtrr_range *range;
451 			/* max address has been covered in var MTRRs. */
452 			u64 start_max;
453 		};
454 	};
455 
456 	bool fixed;
457 };
458 
459 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
460 {
461 	int seg, index;
462 
463 	if (!fixed_mtrr_is_enabled(iter->mtrr_state))
464 		return false;
465 
466 	seg = fixed_mtrr_addr_to_seg(iter->start);
467 	if (seg < 0)
468 		return false;
469 
470 	iter->fixed = true;
471 	index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
472 	iter->index = index;
473 	iter->seg = seg;
474 	return true;
475 }
476 
477 static bool match_var_range(struct mtrr_iter *iter,
478 			    struct kvm_mtrr_range *range)
479 {
480 	u64 start, end;
481 
482 	var_mtrr_range(range, &start, &end);
483 	if (!(start >= iter->end || end <= iter->start)) {
484 		iter->range = range;
485 
486 		/*
487 		 * the function is called when we do kvm_mtrr.head walking.
488 		 * Range has the minimum base address which interleaves
489 		 * [looker->start_max, looker->end).
490 		 */
491 		iter->partial_map |= iter->start_max < start;
492 
493 		/* update the max address has been covered. */
494 		iter->start_max = max(iter->start_max, end);
495 		return true;
496 	}
497 
498 	return false;
499 }
500 
501 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
502 {
503 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
504 
505 	list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
506 		if (match_var_range(iter, iter->range))
507 			return;
508 
509 	iter->range = NULL;
510 	iter->partial_map |= iter->start_max < iter->end;
511 }
512 
513 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
514 {
515 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
516 
517 	iter->fixed = false;
518 	iter->start_max = iter->start;
519 	iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
520 
521 	__mtrr_lookup_var_next(iter);
522 }
523 
524 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
525 {
526 	/* terminate the lookup. */
527 	if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
528 		iter->fixed = false;
529 		iter->range = NULL;
530 		return;
531 	}
532 
533 	iter->index++;
534 
535 	/* have looked up for all fixed MTRRs. */
536 	if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
537 		return mtrr_lookup_var_start(iter);
538 
539 	/* switch to next segment. */
540 	if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
541 		iter->seg++;
542 }
543 
544 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
545 {
546 	__mtrr_lookup_var_next(iter);
547 }
548 
549 static void mtrr_lookup_start(struct mtrr_iter *iter)
550 {
551 	if (!mtrr_is_enabled(iter->mtrr_state)) {
552 		iter->partial_map = true;
553 		return;
554 	}
555 
556 	if (!mtrr_lookup_fixed_start(iter))
557 		mtrr_lookup_var_start(iter);
558 }
559 
560 static void mtrr_lookup_init(struct mtrr_iter *iter,
561 			     struct kvm_mtrr *mtrr_state, u64 start, u64 end)
562 {
563 	iter->mtrr_state = mtrr_state;
564 	iter->start = start;
565 	iter->end = end;
566 	iter->partial_map = false;
567 	iter->fixed = false;
568 	iter->range = NULL;
569 
570 	mtrr_lookup_start(iter);
571 }
572 
573 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
574 {
575 	if (iter->fixed) {
576 		iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
577 		return true;
578 	}
579 
580 	if (iter->range) {
581 		iter->mem_type = iter->range->base & 0xff;
582 		return true;
583 	}
584 
585 	return false;
586 }
587 
588 static void mtrr_lookup_next(struct mtrr_iter *iter)
589 {
590 	if (iter->fixed)
591 		mtrr_lookup_fixed_next(iter);
592 	else
593 		mtrr_lookup_var_next(iter);
594 }
595 
596 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
597 	for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
598 	     mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
599 
600 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
601 {
602 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
603 	struct mtrr_iter iter;
604 	u64 start, end;
605 	int type = -1;
606 	const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
607 			       | (1 << MTRR_TYPE_WRTHROUGH);
608 
609 	start = gfn_to_gpa(gfn);
610 	end = start + PAGE_SIZE;
611 
612 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
613 		int curr_type = iter.mem_type;
614 
615 		/*
616 		 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
617 		 * Precedences.
618 		 */
619 
620 		if (type == -1) {
621 			type = curr_type;
622 			continue;
623 		}
624 
625 		/*
626 		 * If two or more variable memory ranges match and the
627 		 * memory types are identical, then that memory type is
628 		 * used.
629 		 */
630 		if (type == curr_type)
631 			continue;
632 
633 		/*
634 		 * If two or more variable memory ranges match and one of
635 		 * the memory types is UC, the UC memory type used.
636 		 */
637 		if (curr_type == MTRR_TYPE_UNCACHABLE)
638 			return MTRR_TYPE_UNCACHABLE;
639 
640 		/*
641 		 * If two or more variable memory ranges match and the
642 		 * memory types are WT and WB, the WT memory type is used.
643 		 */
644 		if (((1 << type) & wt_wb_mask) &&
645 		      ((1 << curr_type) & wt_wb_mask)) {
646 			type = MTRR_TYPE_WRTHROUGH;
647 			continue;
648 		}
649 
650 		/*
651 		 * For overlaps not defined by the above rules, processor
652 		 * behavior is undefined.
653 		 */
654 
655 		/* We use WB for this undefined behavior. :( */
656 		return MTRR_TYPE_WRBACK;
657 	}
658 
659 	/* It is not covered by MTRRs. */
660 	if (iter.partial_map) {
661 		/*
662 		 * We just check one page, partially covered by MTRRs is
663 		 * impossible.
664 		 */
665 		WARN_ON(type != -1);
666 		type = mtrr_default_type(mtrr_state);
667 	}
668 	return type;
669 }
670 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
671 
672 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
673 					  int page_num)
674 {
675 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
676 	struct mtrr_iter iter;
677 	u64 start, end;
678 	int type = -1;
679 
680 	start = gfn_to_gpa(gfn);
681 	end = gfn_to_gpa(gfn + page_num);
682 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
683 		if (type == -1) {
684 			type = iter.mem_type;
685 			continue;
686 		}
687 
688 		if (type != iter.mem_type)
689 			return false;
690 	}
691 
692 	if (!iter.partial_map)
693 		return true;
694 
695 	if (type == -1)
696 		return true;
697 
698 	return type == mtrr_default_type(mtrr_state);
699 }
700