1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include "mmu.h" 5 #include "mmu_internal.h" 6 #include "mmutrace.h" 7 #include "tdp_iter.h" 8 #include "tdp_mmu.h" 9 #include "spte.h" 10 11 #include <asm/cmpxchg.h> 12 #include <trace/events/kvm.h> 13 14 /* Initializes the TDP MMU for the VM, if enabled. */ 15 void kvm_mmu_init_tdp_mmu(struct kvm *kvm) 16 { 17 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); 18 spin_lock_init(&kvm->arch.tdp_mmu_pages_lock); 19 } 20 21 /* Arbitrarily returns true so that this may be used in if statements. */ 22 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm, 23 bool shared) 24 { 25 if (shared) 26 lockdep_assert_held_read(&kvm->mmu_lock); 27 else 28 lockdep_assert_held_write(&kvm->mmu_lock); 29 30 return true; 31 } 32 33 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) 34 { 35 /* 36 * Invalidate all roots, which besides the obvious, schedules all roots 37 * for zapping and thus puts the TDP MMU's reference to each root, i.e. 38 * ultimately frees all roots. 39 */ 40 kvm_tdp_mmu_invalidate_all_roots(kvm); 41 kvm_tdp_mmu_zap_invalidated_roots(kvm); 42 43 WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages)); 44 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); 45 46 /* 47 * Ensure that all the outstanding RCU callbacks to free shadow pages 48 * can run before the VM is torn down. Putting the last reference to 49 * zapped roots will create new callbacks. 50 */ 51 rcu_barrier(); 52 } 53 54 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp) 55 { 56 free_page((unsigned long)sp->spt); 57 kmem_cache_free(mmu_page_header_cache, sp); 58 } 59 60 /* 61 * This is called through call_rcu in order to free TDP page table memory 62 * safely with respect to other kernel threads that may be operating on 63 * the memory. 64 * By only accessing TDP MMU page table memory in an RCU read critical 65 * section, and freeing it after a grace period, lockless access to that 66 * memory won't use it after it is freed. 67 */ 68 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head) 69 { 70 struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page, 71 rcu_head); 72 73 tdp_mmu_free_sp(sp); 74 } 75 76 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root) 77 { 78 if (!refcount_dec_and_test(&root->tdp_mmu_root_count)) 79 return; 80 81 /* 82 * The TDP MMU itself holds a reference to each root until the root is 83 * explicitly invalidated, i.e. the final reference should be never be 84 * put for a valid root. 85 */ 86 KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm); 87 88 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 89 list_del_rcu(&root->link); 90 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 91 call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback); 92 } 93 94 /* 95 * Returns the next root after @prev_root (or the first root if @prev_root is 96 * NULL). A reference to the returned root is acquired, and the reference to 97 * @prev_root is released (the caller obviously must hold a reference to 98 * @prev_root if it's non-NULL). 99 * 100 * If @only_valid is true, invalid roots are skipped. 101 * 102 * Returns NULL if the end of tdp_mmu_roots was reached. 103 */ 104 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, 105 struct kvm_mmu_page *prev_root, 106 bool only_valid) 107 { 108 struct kvm_mmu_page *next_root; 109 110 /* 111 * While the roots themselves are RCU-protected, fields such as 112 * role.invalid are protected by mmu_lock. 113 */ 114 lockdep_assert_held(&kvm->mmu_lock); 115 116 rcu_read_lock(); 117 118 if (prev_root) 119 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 120 &prev_root->link, 121 typeof(*prev_root), link); 122 else 123 next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots, 124 typeof(*next_root), link); 125 126 while (next_root) { 127 if ((!only_valid || !next_root->role.invalid) && 128 kvm_tdp_mmu_get_root(next_root)) 129 break; 130 131 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 132 &next_root->link, typeof(*next_root), link); 133 } 134 135 rcu_read_unlock(); 136 137 if (prev_root) 138 kvm_tdp_mmu_put_root(kvm, prev_root); 139 140 return next_root; 141 } 142 143 /* 144 * Note: this iterator gets and puts references to the roots it iterates over. 145 * This makes it safe to release the MMU lock and yield within the loop, but 146 * if exiting the loop early, the caller must drop the reference to the most 147 * recent root. (Unless keeping a live reference is desirable.) 148 * 149 * If shared is set, this function is operating under the MMU lock in read 150 * mode. 151 */ 152 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _only_valid) \ 153 for (_root = tdp_mmu_next_root(_kvm, NULL, _only_valid); \ 154 ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \ 155 _root = tdp_mmu_next_root(_kvm, _root, _only_valid)) \ 156 if (_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) { \ 157 } else 158 159 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id) \ 160 __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, true) 161 162 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root) \ 163 for (_root = tdp_mmu_next_root(_kvm, NULL, false); \ 164 ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \ 165 _root = tdp_mmu_next_root(_kvm, _root, false)) 166 167 /* 168 * Iterate over all TDP MMU roots. Requires that mmu_lock be held for write, 169 * the implication being that any flow that holds mmu_lock for read is 170 * inherently yield-friendly and should use the yield-safe variant above. 171 * Holding mmu_lock for write obviates the need for RCU protection as the list 172 * is guaranteed to be stable. 173 */ 174 #define __for_each_tdp_mmu_root(_kvm, _root, _as_id, _only_valid) \ 175 list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \ 176 if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \ 177 ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) || \ 178 ((_only_valid) && (_root)->role.invalid))) { \ 179 } else 180 181 #define for_each_tdp_mmu_root(_kvm, _root, _as_id) \ 182 __for_each_tdp_mmu_root(_kvm, _root, _as_id, false) 183 184 #define for_each_valid_tdp_mmu_root(_kvm, _root, _as_id) \ 185 __for_each_tdp_mmu_root(_kvm, _root, _as_id, true) 186 187 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu) 188 { 189 struct kvm_mmu_page *sp; 190 191 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 192 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 193 194 return sp; 195 } 196 197 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep, 198 gfn_t gfn, union kvm_mmu_page_role role) 199 { 200 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 201 202 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 203 204 sp->role = role; 205 sp->gfn = gfn; 206 sp->ptep = sptep; 207 sp->tdp_mmu_page = true; 208 209 trace_kvm_mmu_get_page(sp, true); 210 } 211 212 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp, 213 struct tdp_iter *iter) 214 { 215 struct kvm_mmu_page *parent_sp; 216 union kvm_mmu_page_role role; 217 218 parent_sp = sptep_to_sp(rcu_dereference(iter->sptep)); 219 220 role = parent_sp->role; 221 role.level--; 222 223 tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role); 224 } 225 226 int kvm_tdp_mmu_alloc_root(struct kvm_vcpu *vcpu) 227 { 228 struct kvm_mmu *mmu = vcpu->arch.mmu; 229 union kvm_mmu_page_role role = mmu->root_role; 230 int as_id = kvm_mmu_role_as_id(role); 231 struct kvm *kvm = vcpu->kvm; 232 struct kvm_mmu_page *root; 233 234 /* 235 * Check for an existing root before acquiring the pages lock to avoid 236 * unnecessary serialization if multiple vCPUs are loading a new root. 237 * E.g. when bringing up secondary vCPUs, KVM will already have created 238 * a valid root on behalf of the primary vCPU. 239 */ 240 read_lock(&kvm->mmu_lock); 241 242 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, as_id) { 243 if (root->role.word == role.word) 244 goto out_read_unlock; 245 } 246 247 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 248 249 /* 250 * Recheck for an existing root after acquiring the pages lock, another 251 * vCPU may have raced ahead and created a new usable root. Manually 252 * walk the list of roots as the standard macros assume that the pages 253 * lock is *not* held. WARN if grabbing a reference to a usable root 254 * fails, as the last reference to a root can only be put *after* the 255 * root has been invalidated, which requires holding mmu_lock for write. 256 */ 257 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { 258 if (root->role.word == role.word && 259 !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root))) 260 goto out_spin_unlock; 261 } 262 263 root = tdp_mmu_alloc_sp(vcpu); 264 tdp_mmu_init_sp(root, NULL, 0, role); 265 266 /* 267 * TDP MMU roots are kept until they are explicitly invalidated, either 268 * by a memslot update or by the destruction of the VM. Initialize the 269 * refcount to two; one reference for the vCPU, and one reference for 270 * the TDP MMU itself, which is held until the root is invalidated and 271 * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots(). 272 */ 273 refcount_set(&root->tdp_mmu_root_count, 2); 274 list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots); 275 276 out_spin_unlock: 277 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 278 out_read_unlock: 279 read_unlock(&kvm->mmu_lock); 280 /* 281 * Note, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS will prevent entering the guest 282 * and actually consuming the root if it's invalidated after dropping 283 * mmu_lock, and the root can't be freed as this vCPU holds a reference. 284 */ 285 mmu->root.hpa = __pa(root->spt); 286 mmu->root.pgd = 0; 287 return 0; 288 } 289 290 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 291 u64 old_spte, u64 new_spte, int level, 292 bool shared); 293 294 static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 295 { 296 kvm_account_pgtable_pages((void *)sp->spt, +1); 297 atomic64_inc(&kvm->arch.tdp_mmu_pages); 298 } 299 300 static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 301 { 302 kvm_account_pgtable_pages((void *)sp->spt, -1); 303 atomic64_dec(&kvm->arch.tdp_mmu_pages); 304 } 305 306 /** 307 * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages 308 * 309 * @kvm: kvm instance 310 * @sp: the page to be removed 311 */ 312 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 313 { 314 tdp_unaccount_mmu_page(kvm, sp); 315 316 if (!sp->nx_huge_page_disallowed) 317 return; 318 319 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 320 sp->nx_huge_page_disallowed = false; 321 untrack_possible_nx_huge_page(kvm, sp); 322 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 323 } 324 325 /** 326 * handle_removed_pt() - handle a page table removed from the TDP structure 327 * 328 * @kvm: kvm instance 329 * @pt: the page removed from the paging structure 330 * @shared: This operation may not be running under the exclusive use 331 * of the MMU lock and the operation must synchronize with other 332 * threads that might be modifying SPTEs. 333 * 334 * Given a page table that has been removed from the TDP paging structure, 335 * iterates through the page table to clear SPTEs and free child page tables. 336 * 337 * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU 338 * protection. Since this thread removed it from the paging structure, 339 * this thread will be responsible for ensuring the page is freed. Hence the 340 * early rcu_dereferences in the function. 341 */ 342 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) 343 { 344 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt)); 345 int level = sp->role.level; 346 gfn_t base_gfn = sp->gfn; 347 int i; 348 349 trace_kvm_mmu_prepare_zap_page(sp); 350 351 tdp_mmu_unlink_sp(kvm, sp); 352 353 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 354 tdp_ptep_t sptep = pt + i; 355 gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level); 356 u64 old_spte; 357 358 if (shared) { 359 /* 360 * Set the SPTE to a nonpresent value that other 361 * threads will not overwrite. If the SPTE was 362 * already marked as frozen then another thread 363 * handling a page fault could overwrite it, so 364 * set the SPTE until it is set from some other 365 * value to the frozen SPTE value. 366 */ 367 for (;;) { 368 old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, FROZEN_SPTE); 369 if (!is_frozen_spte(old_spte)) 370 break; 371 cpu_relax(); 372 } 373 } else { 374 /* 375 * If the SPTE is not MMU-present, there is no backing 376 * page associated with the SPTE and so no side effects 377 * that need to be recorded, and exclusive ownership of 378 * mmu_lock ensures the SPTE can't be made present. 379 * Note, zapping MMIO SPTEs is also unnecessary as they 380 * are guarded by the memslots generation, not by being 381 * unreachable. 382 */ 383 old_spte = kvm_tdp_mmu_read_spte(sptep); 384 if (!is_shadow_present_pte(old_spte)) 385 continue; 386 387 /* 388 * Use the common helper instead of a raw WRITE_ONCE as 389 * the SPTE needs to be updated atomically if it can be 390 * modified by a different vCPU outside of mmu_lock. 391 * Even though the parent SPTE is !PRESENT, the TLB 392 * hasn't yet been flushed, and both Intel and AMD 393 * document that A/D assists can use upper-level PxE 394 * entries that are cached in the TLB, i.e. the CPU can 395 * still access the page and mark it dirty. 396 * 397 * No retry is needed in the atomic update path as the 398 * sole concern is dropping a Dirty bit, i.e. no other 399 * task can zap/remove the SPTE as mmu_lock is held for 400 * write. Marking the SPTE as a frozen SPTE is not 401 * strictly necessary for the same reason, but using 402 * the frozen SPTE value keeps the shared/exclusive 403 * paths consistent and allows the handle_changed_spte() 404 * call below to hardcode the new value to FROZEN_SPTE. 405 * 406 * Note, even though dropping a Dirty bit is the only 407 * scenario where a non-atomic update could result in a 408 * functional bug, simply checking the Dirty bit isn't 409 * sufficient as a fast page fault could read the upper 410 * level SPTE before it is zapped, and then make this 411 * target SPTE writable, resume the guest, and set the 412 * Dirty bit between reading the SPTE above and writing 413 * it here. 414 */ 415 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, 416 FROZEN_SPTE, level); 417 } 418 handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn, 419 old_spte, FROZEN_SPTE, level, shared); 420 } 421 422 call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback); 423 } 424 425 /** 426 * handle_changed_spte - handle bookkeeping associated with an SPTE change 427 * @kvm: kvm instance 428 * @as_id: the address space of the paging structure the SPTE was a part of 429 * @gfn: the base GFN that was mapped by the SPTE 430 * @old_spte: The value of the SPTE before the change 431 * @new_spte: The value of the SPTE after the change 432 * @level: the level of the PT the SPTE is part of in the paging structure 433 * @shared: This operation may not be running under the exclusive use of 434 * the MMU lock and the operation must synchronize with other 435 * threads that might be modifying SPTEs. 436 * 437 * Handle bookkeeping that might result from the modification of a SPTE. Note, 438 * dirty logging updates are handled in common code, not here (see make_spte() 439 * and fast_pf_fix_direct_spte()). 440 */ 441 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 442 u64 old_spte, u64 new_spte, int level, 443 bool shared) 444 { 445 bool was_present = is_shadow_present_pte(old_spte); 446 bool is_present = is_shadow_present_pte(new_spte); 447 bool was_leaf = was_present && is_last_spte(old_spte, level); 448 bool is_leaf = is_present && is_last_spte(new_spte, level); 449 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); 450 451 WARN_ON_ONCE(level > PT64_ROOT_MAX_LEVEL); 452 WARN_ON_ONCE(level < PG_LEVEL_4K); 453 WARN_ON_ONCE(gfn & (KVM_PAGES_PER_HPAGE(level) - 1)); 454 455 /* 456 * If this warning were to trigger it would indicate that there was a 457 * missing MMU notifier or a race with some notifier handler. 458 * A present, leaf SPTE should never be directly replaced with another 459 * present leaf SPTE pointing to a different PFN. A notifier handler 460 * should be zapping the SPTE before the main MM's page table is 461 * changed, or the SPTE should be zeroed, and the TLBs flushed by the 462 * thread before replacement. 463 */ 464 if (was_leaf && is_leaf && pfn_changed) { 465 pr_err("Invalid SPTE change: cannot replace a present leaf\n" 466 "SPTE with another present leaf SPTE mapping a\n" 467 "different PFN!\n" 468 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 469 as_id, gfn, old_spte, new_spte, level); 470 471 /* 472 * Crash the host to prevent error propagation and guest data 473 * corruption. 474 */ 475 BUG(); 476 } 477 478 if (old_spte == new_spte) 479 return; 480 481 trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte); 482 483 if (is_leaf) 484 check_spte_writable_invariants(new_spte); 485 486 /* 487 * The only times a SPTE should be changed from a non-present to 488 * non-present state is when an MMIO entry is installed/modified/ 489 * removed. In that case, there is nothing to do here. 490 */ 491 if (!was_present && !is_present) { 492 /* 493 * If this change does not involve a MMIO SPTE or frozen SPTE, 494 * it is unexpected. Log the change, though it should not 495 * impact the guest since both the former and current SPTEs 496 * are nonpresent. 497 */ 498 if (WARN_ON_ONCE(!is_mmio_spte(kvm, old_spte) && 499 !is_mmio_spte(kvm, new_spte) && 500 !is_frozen_spte(new_spte))) 501 pr_err("Unexpected SPTE change! Nonpresent SPTEs\n" 502 "should not be replaced with another,\n" 503 "different nonpresent SPTE, unless one or both\n" 504 "are MMIO SPTEs, or the new SPTE is\n" 505 "a temporary frozen SPTE.\n" 506 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 507 as_id, gfn, old_spte, new_spte, level); 508 return; 509 } 510 511 if (is_leaf != was_leaf) 512 kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1); 513 514 if (was_leaf && is_dirty_spte(old_spte) && 515 (!is_present || !is_dirty_spte(new_spte) || pfn_changed)) 516 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 517 518 /* 519 * Recursively handle child PTs if the change removed a subtree from 520 * the paging structure. Note the WARN on the PFN changing without the 521 * SPTE being converted to a hugepage (leaf) or being zapped. Shadow 522 * pages are kernel allocations and should never be migrated. 523 */ 524 if (was_present && !was_leaf && 525 (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed))) 526 handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared); 527 528 if (was_leaf && is_accessed_spte(old_spte) && 529 (!is_present || !is_accessed_spte(new_spte) || pfn_changed)) 530 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 531 } 532 533 static inline int __must_check __tdp_mmu_set_spte_atomic(struct tdp_iter *iter, 534 u64 new_spte) 535 { 536 u64 *sptep = rcu_dereference(iter->sptep); 537 538 /* 539 * The caller is responsible for ensuring the old SPTE is not a FROZEN 540 * SPTE. KVM should never attempt to zap or manipulate a FROZEN SPTE, 541 * and pre-checking before inserting a new SPTE is advantageous as it 542 * avoids unnecessary work. 543 */ 544 WARN_ON_ONCE(iter->yielded || is_frozen_spte(iter->old_spte)); 545 546 /* 547 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and 548 * does not hold the mmu_lock. On failure, i.e. if a different logical 549 * CPU modified the SPTE, try_cmpxchg64() updates iter->old_spte with 550 * the current value, so the caller operates on fresh data, e.g. if it 551 * retries tdp_mmu_set_spte_atomic() 552 */ 553 if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte)) 554 return -EBUSY; 555 556 return 0; 557 } 558 559 /* 560 * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically 561 * and handle the associated bookkeeping. Do not mark the page dirty 562 * in KVM's dirty bitmaps. 563 * 564 * If setting the SPTE fails because it has changed, iter->old_spte will be 565 * refreshed to the current value of the spte. 566 * 567 * @kvm: kvm instance 568 * @iter: a tdp_iter instance currently on the SPTE that should be set 569 * @new_spte: The value the SPTE should be set to 570 * Return: 571 * * 0 - If the SPTE was set. 572 * * -EBUSY - If the SPTE cannot be set. In this case this function will have 573 * no side-effects other than setting iter->old_spte to the last 574 * known value of the spte. 575 */ 576 static inline int __must_check tdp_mmu_set_spte_atomic(struct kvm *kvm, 577 struct tdp_iter *iter, 578 u64 new_spte) 579 { 580 int ret; 581 582 lockdep_assert_held_read(&kvm->mmu_lock); 583 584 ret = __tdp_mmu_set_spte_atomic(iter, new_spte); 585 if (ret) 586 return ret; 587 588 handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, 589 new_spte, iter->level, true); 590 591 return 0; 592 } 593 594 static inline int __must_check tdp_mmu_zap_spte_atomic(struct kvm *kvm, 595 struct tdp_iter *iter) 596 { 597 int ret; 598 599 lockdep_assert_held_read(&kvm->mmu_lock); 600 601 /* 602 * Freeze the SPTE by setting it to a special, non-present value. This 603 * will stop other threads from immediately installing a present entry 604 * in its place before the TLBs are flushed. 605 * 606 * Delay processing of the zapped SPTE until after TLBs are flushed and 607 * the FROZEN_SPTE is replaced (see below). 608 */ 609 ret = __tdp_mmu_set_spte_atomic(iter, FROZEN_SPTE); 610 if (ret) 611 return ret; 612 613 kvm_flush_remote_tlbs_gfn(kvm, iter->gfn, iter->level); 614 615 /* 616 * No other thread can overwrite the frozen SPTE as they must either 617 * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not 618 * overwrite the special frozen SPTE value. Use the raw write helper to 619 * avoid an unnecessary check on volatile bits. 620 */ 621 __kvm_tdp_mmu_write_spte(iter->sptep, SHADOW_NONPRESENT_VALUE); 622 623 /* 624 * Process the zapped SPTE after flushing TLBs, and after replacing 625 * FROZEN_SPTE with 0. This minimizes the amount of time vCPUs are 626 * blocked by the FROZEN_SPTE and reduces contention on the child 627 * SPTEs. 628 */ 629 handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, 630 SHADOW_NONPRESENT_VALUE, iter->level, true); 631 632 return 0; 633 } 634 635 636 /* 637 * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping 638 * @kvm: KVM instance 639 * @as_id: Address space ID, i.e. regular vs. SMM 640 * @sptep: Pointer to the SPTE 641 * @old_spte: The current value of the SPTE 642 * @new_spte: The new value that will be set for the SPTE 643 * @gfn: The base GFN that was (or will be) mapped by the SPTE 644 * @level: The level _containing_ the SPTE (its parent PT's level) 645 * 646 * Returns the old SPTE value, which _may_ be different than @old_spte if the 647 * SPTE had voldatile bits. 648 */ 649 static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep, 650 u64 old_spte, u64 new_spte, gfn_t gfn, int level) 651 { 652 lockdep_assert_held_write(&kvm->mmu_lock); 653 654 /* 655 * No thread should be using this function to set SPTEs to or from the 656 * temporary frozen SPTE value. 657 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic 658 * should be used. If operating under the MMU lock in write mode, the 659 * use of the frozen SPTE should not be necessary. 660 */ 661 WARN_ON_ONCE(is_frozen_spte(old_spte) || is_frozen_spte(new_spte)); 662 663 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level); 664 665 handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false); 666 return old_spte; 667 } 668 669 static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter, 670 u64 new_spte) 671 { 672 WARN_ON_ONCE(iter->yielded); 673 iter->old_spte = tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, 674 iter->old_spte, new_spte, 675 iter->gfn, iter->level); 676 } 677 678 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \ 679 for_each_tdp_pte(_iter, _root, _start, _end) 680 681 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \ 682 tdp_root_for_each_pte(_iter, _root, _start, _end) \ 683 if (!is_shadow_present_pte(_iter.old_spte) || \ 684 !is_last_spte(_iter.old_spte, _iter.level)) \ 685 continue; \ 686 else 687 688 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \ 689 for_each_tdp_pte(_iter, root_to_sp(_mmu->root.hpa), _start, _end) 690 691 /* 692 * Yield if the MMU lock is contended or this thread needs to return control 693 * to the scheduler. 694 * 695 * If this function should yield and flush is set, it will perform a remote 696 * TLB flush before yielding. 697 * 698 * If this function yields, iter->yielded is set and the caller must skip to 699 * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk 700 * over the paging structures to allow the iterator to continue its traversal 701 * from the paging structure root. 702 * 703 * Returns true if this function yielded. 704 */ 705 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm, 706 struct tdp_iter *iter, 707 bool flush, bool shared) 708 { 709 WARN_ON_ONCE(iter->yielded); 710 711 /* Ensure forward progress has been made before yielding. */ 712 if (iter->next_last_level_gfn == iter->yielded_gfn) 713 return false; 714 715 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 716 if (flush) 717 kvm_flush_remote_tlbs(kvm); 718 719 rcu_read_unlock(); 720 721 if (shared) 722 cond_resched_rwlock_read(&kvm->mmu_lock); 723 else 724 cond_resched_rwlock_write(&kvm->mmu_lock); 725 726 rcu_read_lock(); 727 728 WARN_ON_ONCE(iter->gfn > iter->next_last_level_gfn); 729 730 iter->yielded = true; 731 } 732 733 return iter->yielded; 734 } 735 736 static inline gfn_t tdp_mmu_max_gfn_exclusive(void) 737 { 738 /* 739 * Bound TDP MMU walks at host.MAXPHYADDR. KVM disallows memslots with 740 * a gpa range that would exceed the max gfn, and KVM does not create 741 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down 742 * the slow emulation path every time. 743 */ 744 return kvm_mmu_max_gfn() + 1; 745 } 746 747 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 748 bool shared, int zap_level) 749 { 750 struct tdp_iter iter; 751 752 gfn_t end = tdp_mmu_max_gfn_exclusive(); 753 gfn_t start = 0; 754 755 for_each_tdp_pte_min_level(iter, root, zap_level, start, end) { 756 retry: 757 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 758 continue; 759 760 if (!is_shadow_present_pte(iter.old_spte)) 761 continue; 762 763 if (iter.level > zap_level) 764 continue; 765 766 if (!shared) 767 tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE); 768 else if (tdp_mmu_set_spte_atomic(kvm, &iter, SHADOW_NONPRESENT_VALUE)) 769 goto retry; 770 } 771 } 772 773 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 774 bool shared) 775 { 776 777 /* 778 * The root must have an elevated refcount so that it's reachable via 779 * mmu_notifier callbacks, which allows this path to yield and drop 780 * mmu_lock. When handling an unmap/release mmu_notifier command, KVM 781 * must drop all references to relevant pages prior to completing the 782 * callback. Dropping mmu_lock with an unreachable root would result 783 * in zapping SPTEs after a relevant mmu_notifier callback completes 784 * and lead to use-after-free as zapping a SPTE triggers "writeback" of 785 * dirty accessed bits to the SPTE's associated struct page. 786 */ 787 WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count)); 788 789 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 790 791 rcu_read_lock(); 792 793 /* 794 * Zap roots in multiple passes of decreasing granularity, i.e. zap at 795 * 4KiB=>2MiB=>1GiB=>root, in order to better honor need_resched() (all 796 * preempt models) or mmu_lock contention (full or real-time models). 797 * Zapping at finer granularity marginally increases the total time of 798 * the zap, but in most cases the zap itself isn't latency sensitive. 799 * 800 * If KVM is configured to prove the MMU, skip the 4KiB and 2MiB zaps 801 * in order to mimic the page fault path, which can replace a 1GiB page 802 * table with an equivalent 1GiB hugepage, i.e. can get saddled with 803 * zapping a 1GiB region that's fully populated with 4KiB SPTEs. This 804 * allows verifying that KVM can safely zap 1GiB regions, e.g. without 805 * inducing RCU stalls, without relying on a relatively rare event 806 * (zapping roots is orders of magnitude more common). Note, because 807 * zapping a SP recurses on its children, stepping down to PG_LEVEL_4K 808 * in the iterator itself is unnecessary. 809 */ 810 if (!IS_ENABLED(CONFIG_KVM_PROVE_MMU)) { 811 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_4K); 812 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_2M); 813 } 814 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G); 815 __tdp_mmu_zap_root(kvm, root, shared, root->role.level); 816 817 rcu_read_unlock(); 818 } 819 820 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 821 { 822 u64 old_spte; 823 824 /* 825 * This helper intentionally doesn't allow zapping a root shadow page, 826 * which doesn't have a parent page table and thus no associated entry. 827 */ 828 if (WARN_ON_ONCE(!sp->ptep)) 829 return false; 830 831 old_spte = kvm_tdp_mmu_read_spte(sp->ptep); 832 if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte))) 833 return false; 834 835 tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 836 SHADOW_NONPRESENT_VALUE, sp->gfn, sp->role.level + 1); 837 838 return true; 839 } 840 841 /* 842 * If can_yield is true, will release the MMU lock and reschedule if the 843 * scheduler needs the CPU or there is contention on the MMU lock. If this 844 * function cannot yield, it will not release the MMU lock or reschedule and 845 * the caller must ensure it does not supply too large a GFN range, or the 846 * operation can cause a soft lockup. 847 */ 848 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root, 849 gfn_t start, gfn_t end, bool can_yield, bool flush) 850 { 851 struct tdp_iter iter; 852 853 end = min(end, tdp_mmu_max_gfn_exclusive()); 854 855 lockdep_assert_held_write(&kvm->mmu_lock); 856 857 rcu_read_lock(); 858 859 for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) { 860 if (can_yield && 861 tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) { 862 flush = false; 863 continue; 864 } 865 866 if (!is_shadow_present_pte(iter.old_spte) || 867 !is_last_spte(iter.old_spte, iter.level)) 868 continue; 869 870 tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE); 871 872 /* 873 * Zappings SPTEs in invalid roots doesn't require a TLB flush, 874 * see kvm_tdp_mmu_zap_invalidated_roots() for details. 875 */ 876 if (!root->role.invalid) 877 flush = true; 878 } 879 880 rcu_read_unlock(); 881 882 /* 883 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need 884 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed. 885 */ 886 return flush; 887 } 888 889 /* 890 * Zap leaf SPTEs for the range of gfns, [start, end), for all *VALID** roots. 891 * Returns true if a TLB flush is needed before releasing the MMU lock, i.e. if 892 * one or more SPTEs were zapped since the MMU lock was last acquired. 893 */ 894 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush) 895 { 896 struct kvm_mmu_page *root; 897 898 lockdep_assert_held_write(&kvm->mmu_lock); 899 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, -1) 900 flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush); 901 902 return flush; 903 } 904 905 void kvm_tdp_mmu_zap_all(struct kvm *kvm) 906 { 907 struct kvm_mmu_page *root; 908 909 /* 910 * Zap all roots, including invalid roots, as all SPTEs must be dropped 911 * before returning to the caller. Zap directly even if the root is 912 * also being zapped by a worker. Walking zapped top-level SPTEs isn't 913 * all that expensive and mmu_lock is already held, which means the 914 * worker has yielded, i.e. flushing the work instead of zapping here 915 * isn't guaranteed to be any faster. 916 * 917 * A TLB flush is unnecessary, KVM zaps everything if and only the VM 918 * is being destroyed or the userspace VMM has exited. In both cases, 919 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request. 920 */ 921 lockdep_assert_held_write(&kvm->mmu_lock); 922 for_each_tdp_mmu_root_yield_safe(kvm, root) 923 tdp_mmu_zap_root(kvm, root, false); 924 } 925 926 /* 927 * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast 928 * zap" completes. 929 */ 930 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm) 931 { 932 struct kvm_mmu_page *root; 933 934 read_lock(&kvm->mmu_lock); 935 936 for_each_tdp_mmu_root_yield_safe(kvm, root) { 937 if (!root->tdp_mmu_scheduled_root_to_zap) 938 continue; 939 940 root->tdp_mmu_scheduled_root_to_zap = false; 941 KVM_BUG_ON(!root->role.invalid, kvm); 942 943 /* 944 * A TLB flush is not necessary as KVM performs a local TLB 945 * flush when allocating a new root (see kvm_mmu_load()), and 946 * when migrating a vCPU to a different pCPU. Note, the local 947 * TLB flush on reuse also invalidates paging-structure-cache 948 * entries, i.e. TLB entries for intermediate paging structures, 949 * that may be zapped, as such entries are associated with the 950 * ASID on both VMX and SVM. 951 */ 952 tdp_mmu_zap_root(kvm, root, true); 953 954 /* 955 * The referenced needs to be put *after* zapping the root, as 956 * the root must be reachable by mmu_notifiers while it's being 957 * zapped 958 */ 959 kvm_tdp_mmu_put_root(kvm, root); 960 } 961 962 read_unlock(&kvm->mmu_lock); 963 } 964 965 /* 966 * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that 967 * is about to be zapped, e.g. in response to a memslots update. The actual 968 * zapping is done separately so that it happens with mmu_lock with read, 969 * whereas invalidating roots must be done with mmu_lock held for write (unless 970 * the VM is being destroyed). 971 * 972 * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference. 973 * See kvm_tdp_mmu_alloc_root(). 974 */ 975 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm) 976 { 977 struct kvm_mmu_page *root; 978 979 /* 980 * mmu_lock must be held for write to ensure that a root doesn't become 981 * invalid while there are active readers (invalidating a root while 982 * there are active readers may or may not be problematic in practice, 983 * but it's uncharted territory and not supported). 984 * 985 * Waive the assertion if there are no users of @kvm, i.e. the VM is 986 * being destroyed after all references have been put, or if no vCPUs 987 * have been created (which means there are no roots), i.e. the VM is 988 * being destroyed in an error path of KVM_CREATE_VM. 989 */ 990 if (IS_ENABLED(CONFIG_PROVE_LOCKING) && 991 refcount_read(&kvm->users_count) && kvm->created_vcpus) 992 lockdep_assert_held_write(&kvm->mmu_lock); 993 994 /* 995 * As above, mmu_lock isn't held when destroying the VM! There can't 996 * be other references to @kvm, i.e. nothing else can invalidate roots 997 * or get/put references to roots. 998 */ 999 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { 1000 /* 1001 * Note, invalid roots can outlive a memslot update! Invalid 1002 * roots must be *zapped* before the memslot update completes, 1003 * but a different task can acquire a reference and keep the 1004 * root alive after its been zapped. 1005 */ 1006 if (!root->role.invalid) { 1007 root->tdp_mmu_scheduled_root_to_zap = true; 1008 root->role.invalid = true; 1009 } 1010 } 1011 } 1012 1013 /* 1014 * Installs a last-level SPTE to handle a TDP page fault. 1015 * (NPT/EPT violation/misconfiguration) 1016 */ 1017 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, 1018 struct kvm_page_fault *fault, 1019 struct tdp_iter *iter) 1020 { 1021 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep)); 1022 u64 new_spte; 1023 int ret = RET_PF_FIXED; 1024 bool wrprot = false; 1025 1026 if (WARN_ON_ONCE(sp->role.level != fault->goal_level)) 1027 return RET_PF_RETRY; 1028 1029 if (unlikely(!fault->slot)) 1030 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); 1031 else 1032 wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn, 1033 fault->pfn, iter->old_spte, fault->prefetch, true, 1034 fault->map_writable, &new_spte); 1035 1036 if (new_spte == iter->old_spte) 1037 ret = RET_PF_SPURIOUS; 1038 else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte)) 1039 return RET_PF_RETRY; 1040 else if (is_shadow_present_pte(iter->old_spte) && 1041 !is_last_spte(iter->old_spte, iter->level)) 1042 kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level); 1043 1044 /* 1045 * If the page fault was caused by a write but the page is write 1046 * protected, emulation is needed. If the emulation was skipped, 1047 * the vCPU would have the same fault again. 1048 */ 1049 if (wrprot) { 1050 if (fault->write) 1051 ret = RET_PF_EMULATE; 1052 } 1053 1054 /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ 1055 if (unlikely(is_mmio_spte(vcpu->kvm, new_spte))) { 1056 vcpu->stat.pf_mmio_spte_created++; 1057 trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn, 1058 new_spte); 1059 ret = RET_PF_EMULATE; 1060 } else { 1061 trace_kvm_mmu_set_spte(iter->level, iter->gfn, 1062 rcu_dereference(iter->sptep)); 1063 } 1064 1065 return ret; 1066 } 1067 1068 /* 1069 * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the 1070 * provided page table. 1071 * 1072 * @kvm: kvm instance 1073 * @iter: a tdp_iter instance currently on the SPTE that should be set 1074 * @sp: The new TDP page table to install. 1075 * @shared: This operation is running under the MMU lock in read mode. 1076 * 1077 * Returns: 0 if the new page table was installed. Non-0 if the page table 1078 * could not be installed (e.g. the atomic compare-exchange failed). 1079 */ 1080 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter, 1081 struct kvm_mmu_page *sp, bool shared) 1082 { 1083 u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled()); 1084 int ret = 0; 1085 1086 if (shared) { 1087 ret = tdp_mmu_set_spte_atomic(kvm, iter, spte); 1088 if (ret) 1089 return ret; 1090 } else { 1091 tdp_mmu_iter_set_spte(kvm, iter, spte); 1092 } 1093 1094 tdp_account_mmu_page(kvm, sp); 1095 1096 return 0; 1097 } 1098 1099 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, 1100 struct kvm_mmu_page *sp, bool shared); 1101 1102 /* 1103 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing 1104 * page tables and SPTEs to translate the faulting guest physical address. 1105 */ 1106 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 1107 { 1108 struct kvm_mmu *mmu = vcpu->arch.mmu; 1109 struct kvm *kvm = vcpu->kvm; 1110 struct tdp_iter iter; 1111 struct kvm_mmu_page *sp; 1112 int ret = RET_PF_RETRY; 1113 1114 kvm_mmu_hugepage_adjust(vcpu, fault); 1115 1116 trace_kvm_mmu_spte_requested(fault); 1117 1118 rcu_read_lock(); 1119 1120 tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) { 1121 int r; 1122 1123 if (fault->nx_huge_page_workaround_enabled) 1124 disallowed_hugepage_adjust(fault, iter.old_spte, iter.level); 1125 1126 /* 1127 * If SPTE has been frozen by another thread, just give up and 1128 * retry, avoiding unnecessary page table allocation and free. 1129 */ 1130 if (is_frozen_spte(iter.old_spte)) 1131 goto retry; 1132 1133 if (iter.level == fault->goal_level) 1134 goto map_target_level; 1135 1136 /* Step down into the lower level page table if it exists. */ 1137 if (is_shadow_present_pte(iter.old_spte) && 1138 !is_large_pte(iter.old_spte)) 1139 continue; 1140 1141 /* 1142 * The SPTE is either non-present or points to a huge page that 1143 * needs to be split. 1144 */ 1145 sp = tdp_mmu_alloc_sp(vcpu); 1146 tdp_mmu_init_child_sp(sp, &iter); 1147 1148 sp->nx_huge_page_disallowed = fault->huge_page_disallowed; 1149 1150 if (is_shadow_present_pte(iter.old_spte)) 1151 r = tdp_mmu_split_huge_page(kvm, &iter, sp, true); 1152 else 1153 r = tdp_mmu_link_sp(kvm, &iter, sp, true); 1154 1155 /* 1156 * Force the guest to retry if installing an upper level SPTE 1157 * failed, e.g. because a different task modified the SPTE. 1158 */ 1159 if (r) { 1160 tdp_mmu_free_sp(sp); 1161 goto retry; 1162 } 1163 1164 if (fault->huge_page_disallowed && 1165 fault->req_level >= iter.level) { 1166 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 1167 if (sp->nx_huge_page_disallowed) 1168 track_possible_nx_huge_page(kvm, sp); 1169 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 1170 } 1171 } 1172 1173 /* 1174 * The walk aborted before reaching the target level, e.g. because the 1175 * iterator detected an upper level SPTE was frozen during traversal. 1176 */ 1177 WARN_ON_ONCE(iter.level == fault->goal_level); 1178 goto retry; 1179 1180 map_target_level: 1181 ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter); 1182 1183 retry: 1184 rcu_read_unlock(); 1185 return ret; 1186 } 1187 1188 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, 1189 bool flush) 1190 { 1191 struct kvm_mmu_page *root; 1192 1193 __for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, false) 1194 flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end, 1195 range->may_block, flush); 1196 1197 return flush; 1198 } 1199 1200 typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter, 1201 struct kvm_gfn_range *range); 1202 1203 static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm, 1204 struct kvm_gfn_range *range, 1205 tdp_handler_t handler) 1206 { 1207 struct kvm_mmu_page *root; 1208 struct tdp_iter iter; 1209 bool ret = false; 1210 1211 /* 1212 * Don't support rescheduling, none of the MMU notifiers that funnel 1213 * into this helper allow blocking; it'd be dead, wasteful code. 1214 */ 1215 for_each_tdp_mmu_root(kvm, root, range->slot->as_id) { 1216 rcu_read_lock(); 1217 1218 tdp_root_for_each_leaf_pte(iter, root, range->start, range->end) 1219 ret |= handler(kvm, &iter, range); 1220 1221 rcu_read_unlock(); 1222 } 1223 1224 return ret; 1225 } 1226 1227 /* 1228 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero 1229 * if any of the GFNs in the range have been accessed. 1230 * 1231 * No need to mark the corresponding PFN as accessed as this call is coming 1232 * from the clear_young() or clear_flush_young() notifier, which uses the 1233 * return value to determine if the page has been accessed. 1234 */ 1235 static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter, 1236 struct kvm_gfn_range *range) 1237 { 1238 u64 new_spte; 1239 1240 /* If we have a non-accessed entry we don't need to change the pte. */ 1241 if (!is_accessed_spte(iter->old_spte)) 1242 return false; 1243 1244 if (spte_ad_enabled(iter->old_spte)) { 1245 iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep, 1246 iter->old_spte, 1247 shadow_accessed_mask, 1248 iter->level); 1249 new_spte = iter->old_spte & ~shadow_accessed_mask; 1250 } else { 1251 /* 1252 * Capture the dirty status of the page, so that it doesn't get 1253 * lost when the SPTE is marked for access tracking. 1254 */ 1255 if (is_writable_pte(iter->old_spte)) 1256 kvm_set_pfn_dirty(spte_to_pfn(iter->old_spte)); 1257 1258 new_spte = mark_spte_for_access_track(iter->old_spte); 1259 iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep, 1260 iter->old_spte, new_spte, 1261 iter->level); 1262 } 1263 1264 trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level, 1265 iter->old_spte, new_spte); 1266 return true; 1267 } 1268 1269 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1270 { 1271 return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range); 1272 } 1273 1274 static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter, 1275 struct kvm_gfn_range *range) 1276 { 1277 return is_accessed_spte(iter->old_spte); 1278 } 1279 1280 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1281 { 1282 return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn); 1283 } 1284 1285 /* 1286 * Remove write access from all SPTEs at or above min_level that map GFNs 1287 * [start, end). Returns true if an SPTE has been changed and the TLBs need to 1288 * be flushed. 1289 */ 1290 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1291 gfn_t start, gfn_t end, int min_level) 1292 { 1293 struct tdp_iter iter; 1294 u64 new_spte; 1295 bool spte_set = false; 1296 1297 rcu_read_lock(); 1298 1299 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1300 1301 for_each_tdp_pte_min_level(iter, root, min_level, start, end) { 1302 retry: 1303 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1304 continue; 1305 1306 if (!is_shadow_present_pte(iter.old_spte) || 1307 !is_last_spte(iter.old_spte, iter.level) || 1308 !(iter.old_spte & PT_WRITABLE_MASK)) 1309 continue; 1310 1311 new_spte = iter.old_spte & ~PT_WRITABLE_MASK; 1312 1313 if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) 1314 goto retry; 1315 1316 spte_set = true; 1317 } 1318 1319 rcu_read_unlock(); 1320 return spte_set; 1321 } 1322 1323 /* 1324 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will 1325 * only affect leaf SPTEs down to min_level. 1326 * Returns true if an SPTE has been changed and the TLBs need to be flushed. 1327 */ 1328 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, 1329 const struct kvm_memory_slot *slot, int min_level) 1330 { 1331 struct kvm_mmu_page *root; 1332 bool spte_set = false; 1333 1334 lockdep_assert_held_read(&kvm->mmu_lock); 1335 1336 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1337 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, 1338 slot->base_gfn + slot->npages, min_level); 1339 1340 return spte_set; 1341 } 1342 1343 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(void) 1344 { 1345 struct kvm_mmu_page *sp; 1346 1347 sp = kmem_cache_zalloc(mmu_page_header_cache, GFP_KERNEL_ACCOUNT); 1348 if (!sp) 1349 return NULL; 1350 1351 sp->spt = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 1352 if (!sp->spt) { 1353 kmem_cache_free(mmu_page_header_cache, sp); 1354 return NULL; 1355 } 1356 1357 return sp; 1358 } 1359 1360 /* Note, the caller is responsible for initializing @sp. */ 1361 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, 1362 struct kvm_mmu_page *sp, bool shared) 1363 { 1364 const u64 huge_spte = iter->old_spte; 1365 const int level = iter->level; 1366 int ret, i; 1367 1368 /* 1369 * No need for atomics when writing to sp->spt since the page table has 1370 * not been linked in yet and thus is not reachable from any other CPU. 1371 */ 1372 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) 1373 sp->spt[i] = make_huge_page_split_spte(kvm, huge_spte, sp->role, i); 1374 1375 /* 1376 * Replace the huge spte with a pointer to the populated lower level 1377 * page table. Since we are making this change without a TLB flush vCPUs 1378 * will see a mix of the split mappings and the original huge mapping, 1379 * depending on what's currently in their TLB. This is fine from a 1380 * correctness standpoint since the translation will be the same either 1381 * way. 1382 */ 1383 ret = tdp_mmu_link_sp(kvm, iter, sp, shared); 1384 if (ret) 1385 goto out; 1386 1387 /* 1388 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we 1389 * are overwriting from the page stats. But we have to manually update 1390 * the page stats with the new present child pages. 1391 */ 1392 kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE); 1393 1394 out: 1395 trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret); 1396 return ret; 1397 } 1398 1399 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm, 1400 struct kvm_mmu_page *root, 1401 gfn_t start, gfn_t end, 1402 int target_level, bool shared) 1403 { 1404 struct kvm_mmu_page *sp = NULL; 1405 struct tdp_iter iter; 1406 1407 rcu_read_lock(); 1408 1409 /* 1410 * Traverse the page table splitting all huge pages above the target 1411 * level into one lower level. For example, if we encounter a 1GB page 1412 * we split it into 512 2MB pages. 1413 * 1414 * Since the TDP iterator uses a pre-order traversal, we are guaranteed 1415 * to visit an SPTE before ever visiting its children, which means we 1416 * will correctly recursively split huge pages that are more than one 1417 * level above the target level (e.g. splitting a 1GB to 512 2MB pages, 1418 * and then splitting each of those to 512 4KB pages). 1419 */ 1420 for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) { 1421 retry: 1422 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 1423 continue; 1424 1425 if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte)) 1426 continue; 1427 1428 if (!sp) { 1429 rcu_read_unlock(); 1430 1431 if (shared) 1432 read_unlock(&kvm->mmu_lock); 1433 else 1434 write_unlock(&kvm->mmu_lock); 1435 1436 sp = tdp_mmu_alloc_sp_for_split(); 1437 1438 if (shared) 1439 read_lock(&kvm->mmu_lock); 1440 else 1441 write_lock(&kvm->mmu_lock); 1442 1443 if (!sp) { 1444 trace_kvm_mmu_split_huge_page(iter.gfn, 1445 iter.old_spte, 1446 iter.level, -ENOMEM); 1447 return -ENOMEM; 1448 } 1449 1450 rcu_read_lock(); 1451 1452 iter.yielded = true; 1453 continue; 1454 } 1455 1456 tdp_mmu_init_child_sp(sp, &iter); 1457 1458 if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared)) 1459 goto retry; 1460 1461 sp = NULL; 1462 } 1463 1464 rcu_read_unlock(); 1465 1466 /* 1467 * It's possible to exit the loop having never used the last sp if, for 1468 * example, a vCPU doing HugePage NX splitting wins the race and 1469 * installs its own sp in place of the last sp we tried to split. 1470 */ 1471 if (sp) 1472 tdp_mmu_free_sp(sp); 1473 1474 return 0; 1475 } 1476 1477 1478 /* 1479 * Try to split all huge pages mapped by the TDP MMU down to the target level. 1480 */ 1481 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, 1482 const struct kvm_memory_slot *slot, 1483 gfn_t start, gfn_t end, 1484 int target_level, bool shared) 1485 { 1486 struct kvm_mmu_page *root; 1487 int r = 0; 1488 1489 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 1490 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) { 1491 r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared); 1492 if (r) { 1493 kvm_tdp_mmu_put_root(kvm, root); 1494 break; 1495 } 1496 } 1497 } 1498 1499 static bool tdp_mmu_need_write_protect(struct kvm_mmu_page *sp) 1500 { 1501 /* 1502 * All TDP MMU shadow pages share the same role as their root, aside 1503 * from level, so it is valid to key off any shadow page to determine if 1504 * write protection is needed for an entire tree. 1505 */ 1506 return kvm_mmu_page_ad_need_write_protect(sp) || !kvm_ad_enabled(); 1507 } 1508 1509 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1510 gfn_t start, gfn_t end) 1511 { 1512 const u64 dbit = tdp_mmu_need_write_protect(root) ? PT_WRITABLE_MASK : 1513 shadow_dirty_mask; 1514 struct tdp_iter iter; 1515 bool spte_set = false; 1516 1517 rcu_read_lock(); 1518 1519 tdp_root_for_each_pte(iter, root, start, end) { 1520 retry: 1521 if (!is_shadow_present_pte(iter.old_spte) || 1522 !is_last_spte(iter.old_spte, iter.level)) 1523 continue; 1524 1525 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1526 continue; 1527 1528 KVM_MMU_WARN_ON(dbit == shadow_dirty_mask && 1529 spte_ad_need_write_protect(iter.old_spte)); 1530 1531 if (!(iter.old_spte & dbit)) 1532 continue; 1533 1534 if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit)) 1535 goto retry; 1536 1537 spte_set = true; 1538 } 1539 1540 rcu_read_unlock(); 1541 return spte_set; 1542 } 1543 1544 /* 1545 * Clear the dirty status (D-bit or W-bit) of all the SPTEs mapping GFNs in the 1546 * memslot. Returns true if an SPTE has been changed and the TLBs need to be 1547 * flushed. 1548 */ 1549 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, 1550 const struct kvm_memory_slot *slot) 1551 { 1552 struct kvm_mmu_page *root; 1553 bool spte_set = false; 1554 1555 lockdep_assert_held_read(&kvm->mmu_lock); 1556 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1557 spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn, 1558 slot->base_gfn + slot->npages); 1559 1560 return spte_set; 1561 } 1562 1563 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, 1564 gfn_t gfn, unsigned long mask, bool wrprot) 1565 { 1566 const u64 dbit = (wrprot || tdp_mmu_need_write_protect(root)) ? PT_WRITABLE_MASK : 1567 shadow_dirty_mask; 1568 struct tdp_iter iter; 1569 1570 lockdep_assert_held_write(&kvm->mmu_lock); 1571 1572 rcu_read_lock(); 1573 1574 tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask), 1575 gfn + BITS_PER_LONG) { 1576 if (!mask) 1577 break; 1578 1579 KVM_MMU_WARN_ON(dbit == shadow_dirty_mask && 1580 spte_ad_need_write_protect(iter.old_spte)); 1581 1582 if (iter.level > PG_LEVEL_4K || 1583 !(mask & (1UL << (iter.gfn - gfn)))) 1584 continue; 1585 1586 mask &= ~(1UL << (iter.gfn - gfn)); 1587 1588 if (!(iter.old_spte & dbit)) 1589 continue; 1590 1591 iter.old_spte = tdp_mmu_clear_spte_bits(iter.sptep, 1592 iter.old_spte, dbit, 1593 iter.level); 1594 1595 trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level, 1596 iter.old_spte, 1597 iter.old_spte & ~dbit); 1598 kvm_set_pfn_dirty(spte_to_pfn(iter.old_spte)); 1599 } 1600 1601 rcu_read_unlock(); 1602 } 1603 1604 /* 1605 * Clear the dirty status (D-bit or W-bit) of all the 4k SPTEs mapping GFNs for 1606 * which a bit is set in mask, starting at gfn. The given memslot is expected to 1607 * contain all the GFNs represented by set bits in the mask. 1608 */ 1609 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1610 struct kvm_memory_slot *slot, 1611 gfn_t gfn, unsigned long mask, 1612 bool wrprot) 1613 { 1614 struct kvm_mmu_page *root; 1615 1616 for_each_valid_tdp_mmu_root(kvm, root, slot->as_id) 1617 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); 1618 } 1619 1620 static void zap_collapsible_spte_range(struct kvm *kvm, 1621 struct kvm_mmu_page *root, 1622 const struct kvm_memory_slot *slot) 1623 { 1624 gfn_t start = slot->base_gfn; 1625 gfn_t end = start + slot->npages; 1626 struct tdp_iter iter; 1627 int max_mapping_level; 1628 1629 rcu_read_lock(); 1630 1631 for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) { 1632 retry: 1633 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1634 continue; 1635 1636 if (iter.level > KVM_MAX_HUGEPAGE_LEVEL || 1637 !is_shadow_present_pte(iter.old_spte)) 1638 continue; 1639 1640 /* 1641 * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with 1642 * a large page size, then its parent would have been zapped 1643 * instead of stepping down. 1644 */ 1645 if (is_last_spte(iter.old_spte, iter.level)) 1646 continue; 1647 1648 /* 1649 * If iter.gfn resides outside of the slot, i.e. the page for 1650 * the current level overlaps but is not contained by the slot, 1651 * then the SPTE can't be made huge. More importantly, trying 1652 * to query that info from slot->arch.lpage_info will cause an 1653 * out-of-bounds access. 1654 */ 1655 if (iter.gfn < start || iter.gfn >= end) 1656 continue; 1657 1658 max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot, 1659 iter.gfn, PG_LEVEL_NUM); 1660 if (max_mapping_level < iter.level) 1661 continue; 1662 1663 /* Note, a successful atomic zap also does a remote TLB flush. */ 1664 if (tdp_mmu_zap_spte_atomic(kvm, &iter)) 1665 goto retry; 1666 } 1667 1668 rcu_read_unlock(); 1669 } 1670 1671 /* 1672 * Zap non-leaf SPTEs (and free their associated page tables) which could 1673 * be replaced by huge pages, for GFNs within the slot. 1674 */ 1675 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, 1676 const struct kvm_memory_slot *slot) 1677 { 1678 struct kvm_mmu_page *root; 1679 1680 lockdep_assert_held_read(&kvm->mmu_lock); 1681 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1682 zap_collapsible_spte_range(kvm, root, slot); 1683 } 1684 1685 /* 1686 * Removes write access on the last level SPTE mapping this GFN and unsets the 1687 * MMU-writable bit to ensure future writes continue to be intercepted. 1688 * Returns true if an SPTE was set and a TLB flush is needed. 1689 */ 1690 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root, 1691 gfn_t gfn, int min_level) 1692 { 1693 struct tdp_iter iter; 1694 u64 new_spte; 1695 bool spte_set = false; 1696 1697 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1698 1699 rcu_read_lock(); 1700 1701 for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) { 1702 if (!is_shadow_present_pte(iter.old_spte) || 1703 !is_last_spte(iter.old_spte, iter.level)) 1704 continue; 1705 1706 new_spte = iter.old_spte & 1707 ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); 1708 1709 if (new_spte == iter.old_spte) 1710 break; 1711 1712 tdp_mmu_iter_set_spte(kvm, &iter, new_spte); 1713 spte_set = true; 1714 } 1715 1716 rcu_read_unlock(); 1717 1718 return spte_set; 1719 } 1720 1721 /* 1722 * Removes write access on the last level SPTE mapping this GFN and unsets the 1723 * MMU-writable bit to ensure future writes continue to be intercepted. 1724 * Returns true if an SPTE was set and a TLB flush is needed. 1725 */ 1726 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, 1727 struct kvm_memory_slot *slot, gfn_t gfn, 1728 int min_level) 1729 { 1730 struct kvm_mmu_page *root; 1731 bool spte_set = false; 1732 1733 lockdep_assert_held_write(&kvm->mmu_lock); 1734 for_each_valid_tdp_mmu_root(kvm, root, slot->as_id) 1735 spte_set |= write_protect_gfn(kvm, root, gfn, min_level); 1736 1737 return spte_set; 1738 } 1739 1740 /* 1741 * Return the level of the lowest level SPTE added to sptes. 1742 * That SPTE may be non-present. 1743 * 1744 * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1745 */ 1746 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 1747 int *root_level) 1748 { 1749 struct tdp_iter iter; 1750 struct kvm_mmu *mmu = vcpu->arch.mmu; 1751 gfn_t gfn = addr >> PAGE_SHIFT; 1752 int leaf = -1; 1753 1754 *root_level = vcpu->arch.mmu->root_role.level; 1755 1756 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { 1757 leaf = iter.level; 1758 sptes[leaf] = iter.old_spte; 1759 } 1760 1761 return leaf; 1762 } 1763 1764 /* 1765 * Returns the last level spte pointer of the shadow page walk for the given 1766 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 1767 * walk could be performed, returns NULL and *spte does not contain valid data. 1768 * 1769 * Contract: 1770 * - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1771 * - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end. 1772 * 1773 * WARNING: This function is only intended to be called during fast_page_fault. 1774 */ 1775 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gfn_t gfn, 1776 u64 *spte) 1777 { 1778 struct tdp_iter iter; 1779 struct kvm_mmu *mmu = vcpu->arch.mmu; 1780 tdp_ptep_t sptep = NULL; 1781 1782 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { 1783 *spte = iter.old_spte; 1784 sptep = iter.sptep; 1785 } 1786 1787 /* 1788 * Perform the rcu_dereference to get the raw spte pointer value since 1789 * we are passing it up to fast_page_fault, which is shared with the 1790 * legacy MMU and thus does not retain the TDP MMU-specific __rcu 1791 * annotation. 1792 * 1793 * This is safe since fast_page_fault obeys the contracts of this 1794 * function as well as all TDP MMU contracts around modifying SPTEs 1795 * outside of mmu_lock. 1796 */ 1797 return rcu_dereference(sptep); 1798 } 1799