xref: /linux/arch/x86/kvm/mmu/tdp_mmu.c (revision b8e85e6f3a09fc56b0ff574887798962ef8a8f80)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include "mmu.h"
5 #include "mmu_internal.h"
6 #include "mmutrace.h"
7 #include "tdp_iter.h"
8 #include "tdp_mmu.h"
9 #include "spte.h"
10 
11 #include <asm/cmpxchg.h>
12 #include <trace/events/kvm.h>
13 
14 /* Initializes the TDP MMU for the VM, if enabled. */
15 void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
16 {
17 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
18 	spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
19 }
20 
21 /* Arbitrarily returns true so that this may be used in if statements. */
22 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm,
23 							     bool shared)
24 {
25 	if (shared)
26 		lockdep_assert_held_read(&kvm->mmu_lock);
27 	else
28 		lockdep_assert_held_write(&kvm->mmu_lock);
29 
30 	return true;
31 }
32 
33 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
34 {
35 	/*
36 	 * Invalidate all roots, which besides the obvious, schedules all roots
37 	 * for zapping and thus puts the TDP MMU's reference to each root, i.e.
38 	 * ultimately frees all roots.
39 	 */
40 	kvm_tdp_mmu_invalidate_all_roots(kvm);
41 	kvm_tdp_mmu_zap_invalidated_roots(kvm);
42 
43 	WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages));
44 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
45 
46 	/*
47 	 * Ensure that all the outstanding RCU callbacks to free shadow pages
48 	 * can run before the VM is torn down.  Putting the last reference to
49 	 * zapped roots will create new callbacks.
50 	 */
51 	rcu_barrier();
52 }
53 
54 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
55 {
56 	free_page((unsigned long)sp->spt);
57 	kmem_cache_free(mmu_page_header_cache, sp);
58 }
59 
60 /*
61  * This is called through call_rcu in order to free TDP page table memory
62  * safely with respect to other kernel threads that may be operating on
63  * the memory.
64  * By only accessing TDP MMU page table memory in an RCU read critical
65  * section, and freeing it after a grace period, lockless access to that
66  * memory won't use it after it is freed.
67  */
68 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
69 {
70 	struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
71 					       rcu_head);
72 
73 	tdp_mmu_free_sp(sp);
74 }
75 
76 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
77 {
78 	if (!refcount_dec_and_test(&root->tdp_mmu_root_count))
79 		return;
80 
81 	/*
82 	 * The TDP MMU itself holds a reference to each root until the root is
83 	 * explicitly invalidated, i.e. the final reference should be never be
84 	 * put for a valid root.
85 	 */
86 	KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm);
87 
88 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
89 	list_del_rcu(&root->link);
90 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
91 	call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback);
92 }
93 
94 /*
95  * Returns the next root after @prev_root (or the first root if @prev_root is
96  * NULL).  A reference to the returned root is acquired, and the reference to
97  * @prev_root is released (the caller obviously must hold a reference to
98  * @prev_root if it's non-NULL).
99  *
100  * If @only_valid is true, invalid roots are skipped.
101  *
102  * Returns NULL if the end of tdp_mmu_roots was reached.
103  */
104 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
105 					      struct kvm_mmu_page *prev_root,
106 					      bool only_valid)
107 {
108 	struct kvm_mmu_page *next_root;
109 
110 	/*
111 	 * While the roots themselves are RCU-protected, fields such as
112 	 * role.invalid are protected by mmu_lock.
113 	 */
114 	lockdep_assert_held(&kvm->mmu_lock);
115 
116 	rcu_read_lock();
117 
118 	if (prev_root)
119 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
120 						  &prev_root->link,
121 						  typeof(*prev_root), link);
122 	else
123 		next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
124 						   typeof(*next_root), link);
125 
126 	while (next_root) {
127 		if ((!only_valid || !next_root->role.invalid) &&
128 		    kvm_tdp_mmu_get_root(next_root))
129 			break;
130 
131 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
132 				&next_root->link, typeof(*next_root), link);
133 	}
134 
135 	rcu_read_unlock();
136 
137 	if (prev_root)
138 		kvm_tdp_mmu_put_root(kvm, prev_root);
139 
140 	return next_root;
141 }
142 
143 /*
144  * Note: this iterator gets and puts references to the roots it iterates over.
145  * This makes it safe to release the MMU lock and yield within the loop, but
146  * if exiting the loop early, the caller must drop the reference to the most
147  * recent root. (Unless keeping a live reference is desirable.)
148  *
149  * If shared is set, this function is operating under the MMU lock in read
150  * mode.
151  */
152 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _only_valid)\
153 	for (_root = tdp_mmu_next_root(_kvm, NULL, _only_valid);	\
154 	     ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root;	\
155 	     _root = tdp_mmu_next_root(_kvm, _root, _only_valid))	\
156 		if (kvm_mmu_page_as_id(_root) != _as_id) {		\
157 		} else
158 
159 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id)	\
160 	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, true)
161 
162 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root)			\
163 	for (_root = tdp_mmu_next_root(_kvm, NULL, false);		\
164 	     ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root;	\
165 	     _root = tdp_mmu_next_root(_kvm, _root, false))
166 
167 /*
168  * Iterate over all TDP MMU roots.  Requires that mmu_lock be held for write,
169  * the implication being that any flow that holds mmu_lock for read is
170  * inherently yield-friendly and should use the yield-safe variant above.
171  * Holding mmu_lock for write obviates the need for RCU protection as the list
172  * is guaranteed to be stable.
173  */
174 #define for_each_tdp_mmu_root(_kvm, _root, _as_id)			\
175 	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)	\
176 		if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) &&	\
177 		    kvm_mmu_page_as_id(_root) != _as_id) {		\
178 		} else
179 
180 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu)
181 {
182 	struct kvm_mmu_page *sp;
183 
184 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
185 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
186 
187 	return sp;
188 }
189 
190 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep,
191 			    gfn_t gfn, union kvm_mmu_page_role role)
192 {
193 	INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
194 
195 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
196 
197 	sp->role = role;
198 	sp->gfn = gfn;
199 	sp->ptep = sptep;
200 	sp->tdp_mmu_page = true;
201 
202 	trace_kvm_mmu_get_page(sp, true);
203 }
204 
205 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp,
206 				  struct tdp_iter *iter)
207 {
208 	struct kvm_mmu_page *parent_sp;
209 	union kvm_mmu_page_role role;
210 
211 	parent_sp = sptep_to_sp(rcu_dereference(iter->sptep));
212 
213 	role = parent_sp->role;
214 	role.level--;
215 
216 	tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role);
217 }
218 
219 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
220 {
221 	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
222 	struct kvm *kvm = vcpu->kvm;
223 	struct kvm_mmu_page *root;
224 
225 	lockdep_assert_held_write(&kvm->mmu_lock);
226 
227 	/*
228 	 * Check for an existing root before allocating a new one.  Note, the
229 	 * role check prevents consuming an invalid root.
230 	 */
231 	for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) {
232 		if (root->role.word == role.word &&
233 		    kvm_tdp_mmu_get_root(root))
234 			goto out;
235 	}
236 
237 	root = tdp_mmu_alloc_sp(vcpu);
238 	tdp_mmu_init_sp(root, NULL, 0, role);
239 
240 	/*
241 	 * TDP MMU roots are kept until they are explicitly invalidated, either
242 	 * by a memslot update or by the destruction of the VM.  Initialize the
243 	 * refcount to two; one reference for the vCPU, and one reference for
244 	 * the TDP MMU itself, which is held until the root is invalidated and
245 	 * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots().
246 	 */
247 	refcount_set(&root->tdp_mmu_root_count, 2);
248 
249 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
250 	list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots);
251 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
252 
253 out:
254 	return __pa(root->spt);
255 }
256 
257 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
258 				u64 old_spte, u64 new_spte, int level,
259 				bool shared);
260 
261 static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
262 {
263 	kvm_account_pgtable_pages((void *)sp->spt, +1);
264 	atomic64_inc(&kvm->arch.tdp_mmu_pages);
265 }
266 
267 static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
268 {
269 	kvm_account_pgtable_pages((void *)sp->spt, -1);
270 	atomic64_dec(&kvm->arch.tdp_mmu_pages);
271 }
272 
273 /**
274  * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages
275  *
276  * @kvm: kvm instance
277  * @sp: the page to be removed
278  */
279 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
280 {
281 	tdp_unaccount_mmu_page(kvm, sp);
282 
283 	if (!sp->nx_huge_page_disallowed)
284 		return;
285 
286 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
287 	sp->nx_huge_page_disallowed = false;
288 	untrack_possible_nx_huge_page(kvm, sp);
289 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
290 }
291 
292 /**
293  * handle_removed_pt() - handle a page table removed from the TDP structure
294  *
295  * @kvm: kvm instance
296  * @pt: the page removed from the paging structure
297  * @shared: This operation may not be running under the exclusive use
298  *	    of the MMU lock and the operation must synchronize with other
299  *	    threads that might be modifying SPTEs.
300  *
301  * Given a page table that has been removed from the TDP paging structure,
302  * iterates through the page table to clear SPTEs and free child page tables.
303  *
304  * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
305  * protection. Since this thread removed it from the paging structure,
306  * this thread will be responsible for ensuring the page is freed. Hence the
307  * early rcu_dereferences in the function.
308  */
309 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
310 {
311 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
312 	int level = sp->role.level;
313 	gfn_t base_gfn = sp->gfn;
314 	int i;
315 
316 	trace_kvm_mmu_prepare_zap_page(sp);
317 
318 	tdp_mmu_unlink_sp(kvm, sp);
319 
320 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
321 		tdp_ptep_t sptep = pt + i;
322 		gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
323 		u64 old_spte;
324 
325 		if (shared) {
326 			/*
327 			 * Set the SPTE to a nonpresent value that other
328 			 * threads will not overwrite. If the SPTE was
329 			 * already marked as removed then another thread
330 			 * handling a page fault could overwrite it, so
331 			 * set the SPTE until it is set from some other
332 			 * value to the removed SPTE value.
333 			 */
334 			for (;;) {
335 				old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE);
336 				if (!is_removed_spte(old_spte))
337 					break;
338 				cpu_relax();
339 			}
340 		} else {
341 			/*
342 			 * If the SPTE is not MMU-present, there is no backing
343 			 * page associated with the SPTE and so no side effects
344 			 * that need to be recorded, and exclusive ownership of
345 			 * mmu_lock ensures the SPTE can't be made present.
346 			 * Note, zapping MMIO SPTEs is also unnecessary as they
347 			 * are guarded by the memslots generation, not by being
348 			 * unreachable.
349 			 */
350 			old_spte = kvm_tdp_mmu_read_spte(sptep);
351 			if (!is_shadow_present_pte(old_spte))
352 				continue;
353 
354 			/*
355 			 * Use the common helper instead of a raw WRITE_ONCE as
356 			 * the SPTE needs to be updated atomically if it can be
357 			 * modified by a different vCPU outside of mmu_lock.
358 			 * Even though the parent SPTE is !PRESENT, the TLB
359 			 * hasn't yet been flushed, and both Intel and AMD
360 			 * document that A/D assists can use upper-level PxE
361 			 * entries that are cached in the TLB, i.e. the CPU can
362 			 * still access the page and mark it dirty.
363 			 *
364 			 * No retry is needed in the atomic update path as the
365 			 * sole concern is dropping a Dirty bit, i.e. no other
366 			 * task can zap/remove the SPTE as mmu_lock is held for
367 			 * write.  Marking the SPTE as a removed SPTE is not
368 			 * strictly necessary for the same reason, but using
369 			 * the remove SPTE value keeps the shared/exclusive
370 			 * paths consistent and allows the handle_changed_spte()
371 			 * call below to hardcode the new value to REMOVED_SPTE.
372 			 *
373 			 * Note, even though dropping a Dirty bit is the only
374 			 * scenario where a non-atomic update could result in a
375 			 * functional bug, simply checking the Dirty bit isn't
376 			 * sufficient as a fast page fault could read the upper
377 			 * level SPTE before it is zapped, and then make this
378 			 * target SPTE writable, resume the guest, and set the
379 			 * Dirty bit between reading the SPTE above and writing
380 			 * it here.
381 			 */
382 			old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
383 							  REMOVED_SPTE, level);
384 		}
385 		handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
386 				    old_spte, REMOVED_SPTE, level, shared);
387 	}
388 
389 	call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
390 }
391 
392 /**
393  * handle_changed_spte - handle bookkeeping associated with an SPTE change
394  * @kvm: kvm instance
395  * @as_id: the address space of the paging structure the SPTE was a part of
396  * @gfn: the base GFN that was mapped by the SPTE
397  * @old_spte: The value of the SPTE before the change
398  * @new_spte: The value of the SPTE after the change
399  * @level: the level of the PT the SPTE is part of in the paging structure
400  * @shared: This operation may not be running under the exclusive use of
401  *	    the MMU lock and the operation must synchronize with other
402  *	    threads that might be modifying SPTEs.
403  *
404  * Handle bookkeeping that might result from the modification of a SPTE.  Note,
405  * dirty logging updates are handled in common code, not here (see make_spte()
406  * and fast_pf_fix_direct_spte()).
407  */
408 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
409 				u64 old_spte, u64 new_spte, int level,
410 				bool shared)
411 {
412 	bool was_present = is_shadow_present_pte(old_spte);
413 	bool is_present = is_shadow_present_pte(new_spte);
414 	bool was_leaf = was_present && is_last_spte(old_spte, level);
415 	bool is_leaf = is_present && is_last_spte(new_spte, level);
416 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
417 
418 	WARN_ON_ONCE(level > PT64_ROOT_MAX_LEVEL);
419 	WARN_ON_ONCE(level < PG_LEVEL_4K);
420 	WARN_ON_ONCE(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
421 
422 	/*
423 	 * If this warning were to trigger it would indicate that there was a
424 	 * missing MMU notifier or a race with some notifier handler.
425 	 * A present, leaf SPTE should never be directly replaced with another
426 	 * present leaf SPTE pointing to a different PFN. A notifier handler
427 	 * should be zapping the SPTE before the main MM's page table is
428 	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
429 	 * thread before replacement.
430 	 */
431 	if (was_leaf && is_leaf && pfn_changed) {
432 		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
433 		       "SPTE with another present leaf SPTE mapping a\n"
434 		       "different PFN!\n"
435 		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
436 		       as_id, gfn, old_spte, new_spte, level);
437 
438 		/*
439 		 * Crash the host to prevent error propagation and guest data
440 		 * corruption.
441 		 */
442 		BUG();
443 	}
444 
445 	if (old_spte == new_spte)
446 		return;
447 
448 	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
449 
450 	if (is_leaf)
451 		check_spte_writable_invariants(new_spte);
452 
453 	/*
454 	 * The only times a SPTE should be changed from a non-present to
455 	 * non-present state is when an MMIO entry is installed/modified/
456 	 * removed. In that case, there is nothing to do here.
457 	 */
458 	if (!was_present && !is_present) {
459 		/*
460 		 * If this change does not involve a MMIO SPTE or removed SPTE,
461 		 * it is unexpected. Log the change, though it should not
462 		 * impact the guest since both the former and current SPTEs
463 		 * are nonpresent.
464 		 */
465 		if (WARN_ON_ONCE(!is_mmio_spte(old_spte) &&
466 				 !is_mmio_spte(new_spte) &&
467 				 !is_removed_spte(new_spte)))
468 			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
469 			       "should not be replaced with another,\n"
470 			       "different nonpresent SPTE, unless one or both\n"
471 			       "are MMIO SPTEs, or the new SPTE is\n"
472 			       "a temporary removed SPTE.\n"
473 			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
474 			       as_id, gfn, old_spte, new_spte, level);
475 		return;
476 	}
477 
478 	if (is_leaf != was_leaf)
479 		kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1);
480 
481 	if (was_leaf && is_dirty_spte(old_spte) &&
482 	    (!is_present || !is_dirty_spte(new_spte) || pfn_changed))
483 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
484 
485 	/*
486 	 * Recursively handle child PTs if the change removed a subtree from
487 	 * the paging structure.  Note the WARN on the PFN changing without the
488 	 * SPTE being converted to a hugepage (leaf) or being zapped.  Shadow
489 	 * pages are kernel allocations and should never be migrated.
490 	 */
491 	if (was_present && !was_leaf &&
492 	    (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed)))
493 		handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared);
494 
495 	if (was_leaf && is_accessed_spte(old_spte) &&
496 	    (!is_present || !is_accessed_spte(new_spte) || pfn_changed))
497 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
498 }
499 
500 /*
501  * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically
502  * and handle the associated bookkeeping.  Do not mark the page dirty
503  * in KVM's dirty bitmaps.
504  *
505  * If setting the SPTE fails because it has changed, iter->old_spte will be
506  * refreshed to the current value of the spte.
507  *
508  * @kvm: kvm instance
509  * @iter: a tdp_iter instance currently on the SPTE that should be set
510  * @new_spte: The value the SPTE should be set to
511  * Return:
512  * * 0      - If the SPTE was set.
513  * * -EBUSY - If the SPTE cannot be set. In this case this function will have
514  *            no side-effects other than setting iter->old_spte to the last
515  *            known value of the spte.
516  */
517 static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm,
518 					  struct tdp_iter *iter,
519 					  u64 new_spte)
520 {
521 	u64 *sptep = rcu_dereference(iter->sptep);
522 
523 	/*
524 	 * The caller is responsible for ensuring the old SPTE is not a REMOVED
525 	 * SPTE.  KVM should never attempt to zap or manipulate a REMOVED SPTE,
526 	 * and pre-checking before inserting a new SPTE is advantageous as it
527 	 * avoids unnecessary work.
528 	 */
529 	WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte));
530 
531 	lockdep_assert_held_read(&kvm->mmu_lock);
532 
533 	/*
534 	 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
535 	 * does not hold the mmu_lock.  On failure, i.e. if a different logical
536 	 * CPU modified the SPTE, try_cmpxchg64() updates iter->old_spte with
537 	 * the current value, so the caller operates on fresh data, e.g. if it
538 	 * retries tdp_mmu_set_spte_atomic()
539 	 */
540 	if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte))
541 		return -EBUSY;
542 
543 	handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
544 			    new_spte, iter->level, true);
545 
546 	return 0;
547 }
548 
549 static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
550 					  struct tdp_iter *iter)
551 {
552 	int ret;
553 
554 	/*
555 	 * Freeze the SPTE by setting it to a special,
556 	 * non-present value. This will stop other threads from
557 	 * immediately installing a present entry in its place
558 	 * before the TLBs are flushed.
559 	 */
560 	ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE);
561 	if (ret)
562 		return ret;
563 
564 	kvm_flush_remote_tlbs_gfn(kvm, iter->gfn, iter->level);
565 
566 	/*
567 	 * No other thread can overwrite the removed SPTE as they must either
568 	 * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not
569 	 * overwrite the special removed SPTE value. No bookkeeping is needed
570 	 * here since the SPTE is going from non-present to non-present.  Use
571 	 * the raw write helper to avoid an unnecessary check on volatile bits.
572 	 */
573 	__kvm_tdp_mmu_write_spte(iter->sptep, 0);
574 
575 	return 0;
576 }
577 
578 
579 /*
580  * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
581  * @kvm:	      KVM instance
582  * @as_id:	      Address space ID, i.e. regular vs. SMM
583  * @sptep:	      Pointer to the SPTE
584  * @old_spte:	      The current value of the SPTE
585  * @new_spte:	      The new value that will be set for the SPTE
586  * @gfn:	      The base GFN that was (or will be) mapped by the SPTE
587  * @level:	      The level _containing_ the SPTE (its parent PT's level)
588  *
589  * Returns the old SPTE value, which _may_ be different than @old_spte if the
590  * SPTE had voldatile bits.
591  */
592 static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
593 			    u64 old_spte, u64 new_spte, gfn_t gfn, int level)
594 {
595 	lockdep_assert_held_write(&kvm->mmu_lock);
596 
597 	/*
598 	 * No thread should be using this function to set SPTEs to or from the
599 	 * temporary removed SPTE value.
600 	 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
601 	 * should be used. If operating under the MMU lock in write mode, the
602 	 * use of the removed SPTE should not be necessary.
603 	 */
604 	WARN_ON_ONCE(is_removed_spte(old_spte) || is_removed_spte(new_spte));
605 
606 	old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
607 
608 	handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
609 	return old_spte;
610 }
611 
612 static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter,
613 					 u64 new_spte)
614 {
615 	WARN_ON_ONCE(iter->yielded);
616 	iter->old_spte = tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
617 					  iter->old_spte, new_spte,
618 					  iter->gfn, iter->level);
619 }
620 
621 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
622 	for_each_tdp_pte(_iter, _root, _start, _end)
623 
624 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
625 	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
626 		if (!is_shadow_present_pte(_iter.old_spte) ||		\
627 		    !is_last_spte(_iter.old_spte, _iter.level))		\
628 			continue;					\
629 		else
630 
631 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
632 	for_each_tdp_pte(_iter, root_to_sp(_mmu->root.hpa), _start, _end)
633 
634 /*
635  * Yield if the MMU lock is contended or this thread needs to return control
636  * to the scheduler.
637  *
638  * If this function should yield and flush is set, it will perform a remote
639  * TLB flush before yielding.
640  *
641  * If this function yields, iter->yielded is set and the caller must skip to
642  * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk
643  * over the paging structures to allow the iterator to continue its traversal
644  * from the paging structure root.
645  *
646  * Returns true if this function yielded.
647  */
648 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm,
649 							  struct tdp_iter *iter,
650 							  bool flush, bool shared)
651 {
652 	WARN_ON_ONCE(iter->yielded);
653 
654 	/* Ensure forward progress has been made before yielding. */
655 	if (iter->next_last_level_gfn == iter->yielded_gfn)
656 		return false;
657 
658 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
659 		if (flush)
660 			kvm_flush_remote_tlbs(kvm);
661 
662 		rcu_read_unlock();
663 
664 		if (shared)
665 			cond_resched_rwlock_read(&kvm->mmu_lock);
666 		else
667 			cond_resched_rwlock_write(&kvm->mmu_lock);
668 
669 		rcu_read_lock();
670 
671 		WARN_ON_ONCE(iter->gfn > iter->next_last_level_gfn);
672 
673 		iter->yielded = true;
674 	}
675 
676 	return iter->yielded;
677 }
678 
679 static inline gfn_t tdp_mmu_max_gfn_exclusive(void)
680 {
681 	/*
682 	 * Bound TDP MMU walks at host.MAXPHYADDR.  KVM disallows memslots with
683 	 * a gpa range that would exceed the max gfn, and KVM does not create
684 	 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down
685 	 * the slow emulation path every time.
686 	 */
687 	return kvm_mmu_max_gfn() + 1;
688 }
689 
690 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
691 			       bool shared, int zap_level)
692 {
693 	struct tdp_iter iter;
694 
695 	gfn_t end = tdp_mmu_max_gfn_exclusive();
696 	gfn_t start = 0;
697 
698 	for_each_tdp_pte_min_level(iter, root, zap_level, start, end) {
699 retry:
700 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
701 			continue;
702 
703 		if (!is_shadow_present_pte(iter.old_spte))
704 			continue;
705 
706 		if (iter.level > zap_level)
707 			continue;
708 
709 		if (!shared)
710 			tdp_mmu_iter_set_spte(kvm, &iter, 0);
711 		else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0))
712 			goto retry;
713 	}
714 }
715 
716 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
717 			     bool shared)
718 {
719 
720 	/*
721 	 * The root must have an elevated refcount so that it's reachable via
722 	 * mmu_notifier callbacks, which allows this path to yield and drop
723 	 * mmu_lock.  When handling an unmap/release mmu_notifier command, KVM
724 	 * must drop all references to relevant pages prior to completing the
725 	 * callback.  Dropping mmu_lock with an unreachable root would result
726 	 * in zapping SPTEs after a relevant mmu_notifier callback completes
727 	 * and lead to use-after-free as zapping a SPTE triggers "writeback" of
728 	 * dirty accessed bits to the SPTE's associated struct page.
729 	 */
730 	WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count));
731 
732 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
733 
734 	rcu_read_lock();
735 
736 	/*
737 	 * To avoid RCU stalls due to recursively removing huge swaths of SPs,
738 	 * split the zap into two passes.  On the first pass, zap at the 1gb
739 	 * level, and then zap top-level SPs on the second pass.  "1gb" is not
740 	 * arbitrary, as KVM must be able to zap a 1gb shadow page without
741 	 * inducing a stall to allow in-place replacement with a 1gb hugepage.
742 	 *
743 	 * Because zapping a SP recurses on its children, stepping down to
744 	 * PG_LEVEL_4K in the iterator itself is unnecessary.
745 	 */
746 	__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G);
747 	__tdp_mmu_zap_root(kvm, root, shared, root->role.level);
748 
749 	rcu_read_unlock();
750 }
751 
752 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
753 {
754 	u64 old_spte;
755 
756 	/*
757 	 * This helper intentionally doesn't allow zapping a root shadow page,
758 	 * which doesn't have a parent page table and thus no associated entry.
759 	 */
760 	if (WARN_ON_ONCE(!sp->ptep))
761 		return false;
762 
763 	old_spte = kvm_tdp_mmu_read_spte(sp->ptep);
764 	if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte)))
765 		return false;
766 
767 	tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0,
768 			 sp->gfn, sp->role.level + 1);
769 
770 	return true;
771 }
772 
773 /*
774  * If can_yield is true, will release the MMU lock and reschedule if the
775  * scheduler needs the CPU or there is contention on the MMU lock. If this
776  * function cannot yield, it will not release the MMU lock or reschedule and
777  * the caller must ensure it does not supply too large a GFN range, or the
778  * operation can cause a soft lockup.
779  */
780 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root,
781 			      gfn_t start, gfn_t end, bool can_yield, bool flush)
782 {
783 	struct tdp_iter iter;
784 
785 	end = min(end, tdp_mmu_max_gfn_exclusive());
786 
787 	lockdep_assert_held_write(&kvm->mmu_lock);
788 
789 	rcu_read_lock();
790 
791 	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) {
792 		if (can_yield &&
793 		    tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) {
794 			flush = false;
795 			continue;
796 		}
797 
798 		if (!is_shadow_present_pte(iter.old_spte) ||
799 		    !is_last_spte(iter.old_spte, iter.level))
800 			continue;
801 
802 		tdp_mmu_iter_set_spte(kvm, &iter, 0);
803 		flush = true;
804 	}
805 
806 	rcu_read_unlock();
807 
808 	/*
809 	 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need
810 	 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed.
811 	 */
812 	return flush;
813 }
814 
815 /*
816  * Zap leaf SPTEs for the range of gfns, [start, end), for all roots. Returns
817  * true if a TLB flush is needed before releasing the MMU lock, i.e. if one or
818  * more SPTEs were zapped since the MMU lock was last acquired.
819  */
820 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush)
821 {
822 	struct kvm_mmu_page *root;
823 
824 	lockdep_assert_held_write(&kvm->mmu_lock);
825 	for_each_tdp_mmu_root_yield_safe(kvm, root)
826 		flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush);
827 
828 	return flush;
829 }
830 
831 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
832 {
833 	struct kvm_mmu_page *root;
834 
835 	/*
836 	 * Zap all roots, including invalid roots, as all SPTEs must be dropped
837 	 * before returning to the caller.  Zap directly even if the root is
838 	 * also being zapped by a worker.  Walking zapped top-level SPTEs isn't
839 	 * all that expensive and mmu_lock is already held, which means the
840 	 * worker has yielded, i.e. flushing the work instead of zapping here
841 	 * isn't guaranteed to be any faster.
842 	 *
843 	 * A TLB flush is unnecessary, KVM zaps everything if and only the VM
844 	 * is being destroyed or the userspace VMM has exited.  In both cases,
845 	 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request.
846 	 */
847 	lockdep_assert_held_write(&kvm->mmu_lock);
848 	for_each_tdp_mmu_root_yield_safe(kvm, root)
849 		tdp_mmu_zap_root(kvm, root, false);
850 }
851 
852 /*
853  * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast
854  * zap" completes.
855  */
856 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm)
857 {
858 	struct kvm_mmu_page *root;
859 
860 	read_lock(&kvm->mmu_lock);
861 
862 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
863 		if (!root->tdp_mmu_scheduled_root_to_zap)
864 			continue;
865 
866 		root->tdp_mmu_scheduled_root_to_zap = false;
867 		KVM_BUG_ON(!root->role.invalid, kvm);
868 
869 		/*
870 		 * A TLB flush is not necessary as KVM performs a local TLB
871 		 * flush when allocating a new root (see kvm_mmu_load()), and
872 		 * when migrating a vCPU to a different pCPU.  Note, the local
873 		 * TLB flush on reuse also invalidates paging-structure-cache
874 		 * entries, i.e. TLB entries for intermediate paging structures,
875 		 * that may be zapped, as such entries are associated with the
876 		 * ASID on both VMX and SVM.
877 		 */
878 		tdp_mmu_zap_root(kvm, root, true);
879 
880 		/*
881 		 * The referenced needs to be put *after* zapping the root, as
882 		 * the root must be reachable by mmu_notifiers while it's being
883 		 * zapped
884 		 */
885 		kvm_tdp_mmu_put_root(kvm, root);
886 	}
887 
888 	read_unlock(&kvm->mmu_lock);
889 }
890 
891 /*
892  * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that
893  * is about to be zapped, e.g. in response to a memslots update.  The actual
894  * zapping is done separately so that it happens with mmu_lock with read,
895  * whereas invalidating roots must be done with mmu_lock held for write (unless
896  * the VM is being destroyed).
897  *
898  * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference.
899  * See kvm_tdp_mmu_get_vcpu_root_hpa().
900  */
901 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm)
902 {
903 	struct kvm_mmu_page *root;
904 
905 	/*
906 	 * mmu_lock must be held for write to ensure that a root doesn't become
907 	 * invalid while there are active readers (invalidating a root while
908 	 * there are active readers may or may not be problematic in practice,
909 	 * but it's uncharted territory and not supported).
910 	 *
911 	 * Waive the assertion if there are no users of @kvm, i.e. the VM is
912 	 * being destroyed after all references have been put, or if no vCPUs
913 	 * have been created (which means there are no roots), i.e. the VM is
914 	 * being destroyed in an error path of KVM_CREATE_VM.
915 	 */
916 	if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
917 	    refcount_read(&kvm->users_count) && kvm->created_vcpus)
918 		lockdep_assert_held_write(&kvm->mmu_lock);
919 
920 	/*
921 	 * As above, mmu_lock isn't held when destroying the VM!  There can't
922 	 * be other references to @kvm, i.e. nothing else can invalidate roots
923 	 * or get/put references to roots.
924 	 */
925 	list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
926 		/*
927 		 * Note, invalid roots can outlive a memslot update!  Invalid
928 		 * roots must be *zapped* before the memslot update completes,
929 		 * but a different task can acquire a reference and keep the
930 		 * root alive after its been zapped.
931 		 */
932 		if (!root->role.invalid) {
933 			root->tdp_mmu_scheduled_root_to_zap = true;
934 			root->role.invalid = true;
935 		}
936 	}
937 }
938 
939 /*
940  * Installs a last-level SPTE to handle a TDP page fault.
941  * (NPT/EPT violation/misconfiguration)
942  */
943 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
944 					  struct kvm_page_fault *fault,
945 					  struct tdp_iter *iter)
946 {
947 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep));
948 	u64 new_spte;
949 	int ret = RET_PF_FIXED;
950 	bool wrprot = false;
951 
952 	if (WARN_ON_ONCE(sp->role.level != fault->goal_level))
953 		return RET_PF_RETRY;
954 
955 	if (unlikely(!fault->slot))
956 		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
957 	else
958 		wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn,
959 					 fault->pfn, iter->old_spte, fault->prefetch, true,
960 					 fault->map_writable, &new_spte);
961 
962 	if (new_spte == iter->old_spte)
963 		ret = RET_PF_SPURIOUS;
964 	else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte))
965 		return RET_PF_RETRY;
966 	else if (is_shadow_present_pte(iter->old_spte) &&
967 		 !is_last_spte(iter->old_spte, iter->level))
968 		kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level);
969 
970 	/*
971 	 * If the page fault was caused by a write but the page is write
972 	 * protected, emulation is needed. If the emulation was skipped,
973 	 * the vCPU would have the same fault again.
974 	 */
975 	if (wrprot) {
976 		if (fault->write)
977 			ret = RET_PF_EMULATE;
978 	}
979 
980 	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
981 	if (unlikely(is_mmio_spte(new_spte))) {
982 		vcpu->stat.pf_mmio_spte_created++;
983 		trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
984 				     new_spte);
985 		ret = RET_PF_EMULATE;
986 	} else {
987 		trace_kvm_mmu_set_spte(iter->level, iter->gfn,
988 				       rcu_dereference(iter->sptep));
989 	}
990 
991 	return ret;
992 }
993 
994 /*
995  * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the
996  * provided page table.
997  *
998  * @kvm: kvm instance
999  * @iter: a tdp_iter instance currently on the SPTE that should be set
1000  * @sp: The new TDP page table to install.
1001  * @shared: This operation is running under the MMU lock in read mode.
1002  *
1003  * Returns: 0 if the new page table was installed. Non-0 if the page table
1004  *          could not be installed (e.g. the atomic compare-exchange failed).
1005  */
1006 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
1007 			   struct kvm_mmu_page *sp, bool shared)
1008 {
1009 	u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled());
1010 	int ret = 0;
1011 
1012 	if (shared) {
1013 		ret = tdp_mmu_set_spte_atomic(kvm, iter, spte);
1014 		if (ret)
1015 			return ret;
1016 	} else {
1017 		tdp_mmu_iter_set_spte(kvm, iter, spte);
1018 	}
1019 
1020 	tdp_account_mmu_page(kvm, sp);
1021 
1022 	return 0;
1023 }
1024 
1025 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1026 				   struct kvm_mmu_page *sp, bool shared);
1027 
1028 /*
1029  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
1030  * page tables and SPTEs to translate the faulting guest physical address.
1031  */
1032 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
1033 {
1034 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1035 	struct kvm *kvm = vcpu->kvm;
1036 	struct tdp_iter iter;
1037 	struct kvm_mmu_page *sp;
1038 	int ret = RET_PF_RETRY;
1039 
1040 	kvm_mmu_hugepage_adjust(vcpu, fault);
1041 
1042 	trace_kvm_mmu_spte_requested(fault);
1043 
1044 	rcu_read_lock();
1045 
1046 	tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) {
1047 		int r;
1048 
1049 		if (fault->nx_huge_page_workaround_enabled)
1050 			disallowed_hugepage_adjust(fault, iter.old_spte, iter.level);
1051 
1052 		/*
1053 		 * If SPTE has been frozen by another thread, just give up and
1054 		 * retry, avoiding unnecessary page table allocation and free.
1055 		 */
1056 		if (is_removed_spte(iter.old_spte))
1057 			goto retry;
1058 
1059 		if (iter.level == fault->goal_level)
1060 			goto map_target_level;
1061 
1062 		/* Step down into the lower level page table if it exists. */
1063 		if (is_shadow_present_pte(iter.old_spte) &&
1064 		    !is_large_pte(iter.old_spte))
1065 			continue;
1066 
1067 		/*
1068 		 * The SPTE is either non-present or points to a huge page that
1069 		 * needs to be split.
1070 		 */
1071 		sp = tdp_mmu_alloc_sp(vcpu);
1072 		tdp_mmu_init_child_sp(sp, &iter);
1073 
1074 		sp->nx_huge_page_disallowed = fault->huge_page_disallowed;
1075 
1076 		if (is_shadow_present_pte(iter.old_spte))
1077 			r = tdp_mmu_split_huge_page(kvm, &iter, sp, true);
1078 		else
1079 			r = tdp_mmu_link_sp(kvm, &iter, sp, true);
1080 
1081 		/*
1082 		 * Force the guest to retry if installing an upper level SPTE
1083 		 * failed, e.g. because a different task modified the SPTE.
1084 		 */
1085 		if (r) {
1086 			tdp_mmu_free_sp(sp);
1087 			goto retry;
1088 		}
1089 
1090 		if (fault->huge_page_disallowed &&
1091 		    fault->req_level >= iter.level) {
1092 			spin_lock(&kvm->arch.tdp_mmu_pages_lock);
1093 			if (sp->nx_huge_page_disallowed)
1094 				track_possible_nx_huge_page(kvm, sp);
1095 			spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
1096 		}
1097 	}
1098 
1099 	/*
1100 	 * The walk aborted before reaching the target level, e.g. because the
1101 	 * iterator detected an upper level SPTE was frozen during traversal.
1102 	 */
1103 	WARN_ON_ONCE(iter.level == fault->goal_level);
1104 	goto retry;
1105 
1106 map_target_level:
1107 	ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter);
1108 
1109 retry:
1110 	rcu_read_unlock();
1111 	return ret;
1112 }
1113 
1114 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
1115 				 bool flush)
1116 {
1117 	struct kvm_mmu_page *root;
1118 
1119 	__for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, false)
1120 		flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end,
1121 					  range->may_block, flush);
1122 
1123 	return flush;
1124 }
1125 
1126 typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter,
1127 			      struct kvm_gfn_range *range);
1128 
1129 static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm,
1130 						   struct kvm_gfn_range *range,
1131 						   tdp_handler_t handler)
1132 {
1133 	struct kvm_mmu_page *root;
1134 	struct tdp_iter iter;
1135 	bool ret = false;
1136 
1137 	/*
1138 	 * Don't support rescheduling, none of the MMU notifiers that funnel
1139 	 * into this helper allow blocking; it'd be dead, wasteful code.
1140 	 */
1141 	for_each_tdp_mmu_root(kvm, root, range->slot->as_id) {
1142 		rcu_read_lock();
1143 
1144 		tdp_root_for_each_leaf_pte(iter, root, range->start, range->end)
1145 			ret |= handler(kvm, &iter, range);
1146 
1147 		rcu_read_unlock();
1148 	}
1149 
1150 	return ret;
1151 }
1152 
1153 /*
1154  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
1155  * if any of the GFNs in the range have been accessed.
1156  *
1157  * No need to mark the corresponding PFN as accessed as this call is coming
1158  * from the clear_young() or clear_flush_young() notifier, which uses the
1159  * return value to determine if the page has been accessed.
1160  */
1161 static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter,
1162 			  struct kvm_gfn_range *range)
1163 {
1164 	u64 new_spte;
1165 
1166 	/* If we have a non-accessed entry we don't need to change the pte. */
1167 	if (!is_accessed_spte(iter->old_spte))
1168 		return false;
1169 
1170 	if (spte_ad_enabled(iter->old_spte)) {
1171 		iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep,
1172 							 iter->old_spte,
1173 							 shadow_accessed_mask,
1174 							 iter->level);
1175 		new_spte = iter->old_spte & ~shadow_accessed_mask;
1176 	} else {
1177 		/*
1178 		 * Capture the dirty status of the page, so that it doesn't get
1179 		 * lost when the SPTE is marked for access tracking.
1180 		 */
1181 		if (is_writable_pte(iter->old_spte))
1182 			kvm_set_pfn_dirty(spte_to_pfn(iter->old_spte));
1183 
1184 		new_spte = mark_spte_for_access_track(iter->old_spte);
1185 		iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep,
1186 							iter->old_spte, new_spte,
1187 							iter->level);
1188 	}
1189 
1190 	trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level,
1191 				       iter->old_spte, new_spte);
1192 	return true;
1193 }
1194 
1195 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1196 {
1197 	return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range);
1198 }
1199 
1200 static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter,
1201 			 struct kvm_gfn_range *range)
1202 {
1203 	return is_accessed_spte(iter->old_spte);
1204 }
1205 
1206 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1207 {
1208 	return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn);
1209 }
1210 
1211 static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter,
1212 			 struct kvm_gfn_range *range)
1213 {
1214 	u64 new_spte;
1215 
1216 	/* Huge pages aren't expected to be modified without first being zapped. */
1217 	WARN_ON_ONCE(pte_huge(range->arg.pte) || range->start + 1 != range->end);
1218 
1219 	if (iter->level != PG_LEVEL_4K ||
1220 	    !is_shadow_present_pte(iter->old_spte))
1221 		return false;
1222 
1223 	/*
1224 	 * Note, when changing a read-only SPTE, it's not strictly necessary to
1225 	 * zero the SPTE before setting the new PFN, but doing so preserves the
1226 	 * invariant that the PFN of a present * leaf SPTE can never change.
1227 	 * See handle_changed_spte().
1228 	 */
1229 	tdp_mmu_iter_set_spte(kvm, iter, 0);
1230 
1231 	if (!pte_write(range->arg.pte)) {
1232 		new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte,
1233 								  pte_pfn(range->arg.pte));
1234 
1235 		tdp_mmu_iter_set_spte(kvm, iter, new_spte);
1236 	}
1237 
1238 	return true;
1239 }
1240 
1241 /*
1242  * Handle the changed_pte MMU notifier for the TDP MMU.
1243  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
1244  * notifier.
1245  * Returns non-zero if a flush is needed before releasing the MMU lock.
1246  */
1247 bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1248 {
1249 	/*
1250 	 * No need to handle the remote TLB flush under RCU protection, the
1251 	 * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a
1252 	 * shadow page. See the WARN on pfn_changed in handle_changed_spte().
1253 	 */
1254 	return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn);
1255 }
1256 
1257 /*
1258  * Remove write access from all SPTEs at or above min_level that map GFNs
1259  * [start, end). Returns true if an SPTE has been changed and the TLBs need to
1260  * be flushed.
1261  */
1262 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1263 			     gfn_t start, gfn_t end, int min_level)
1264 {
1265 	struct tdp_iter iter;
1266 	u64 new_spte;
1267 	bool spte_set = false;
1268 
1269 	rcu_read_lock();
1270 
1271 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1272 
1273 	for_each_tdp_pte_min_level(iter, root, min_level, start, end) {
1274 retry:
1275 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1276 			continue;
1277 
1278 		if (!is_shadow_present_pte(iter.old_spte) ||
1279 		    !is_last_spte(iter.old_spte, iter.level) ||
1280 		    !(iter.old_spte & PT_WRITABLE_MASK))
1281 			continue;
1282 
1283 		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1284 
1285 		if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1286 			goto retry;
1287 
1288 		spte_set = true;
1289 	}
1290 
1291 	rcu_read_unlock();
1292 	return spte_set;
1293 }
1294 
1295 /*
1296  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
1297  * only affect leaf SPTEs down to min_level.
1298  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1299  */
1300 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm,
1301 			     const struct kvm_memory_slot *slot, int min_level)
1302 {
1303 	struct kvm_mmu_page *root;
1304 	bool spte_set = false;
1305 
1306 	lockdep_assert_held_read(&kvm->mmu_lock);
1307 
1308 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1309 		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
1310 			     slot->base_gfn + slot->npages, min_level);
1311 
1312 	return spte_set;
1313 }
1314 
1315 static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp)
1316 {
1317 	struct kvm_mmu_page *sp;
1318 
1319 	gfp |= __GFP_ZERO;
1320 
1321 	sp = kmem_cache_alloc(mmu_page_header_cache, gfp);
1322 	if (!sp)
1323 		return NULL;
1324 
1325 	sp->spt = (void *)__get_free_page(gfp);
1326 	if (!sp->spt) {
1327 		kmem_cache_free(mmu_page_header_cache, sp);
1328 		return NULL;
1329 	}
1330 
1331 	return sp;
1332 }
1333 
1334 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm,
1335 						       struct tdp_iter *iter,
1336 						       bool shared)
1337 {
1338 	struct kvm_mmu_page *sp;
1339 
1340 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
1341 
1342 	/*
1343 	 * Since we are allocating while under the MMU lock we have to be
1344 	 * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct
1345 	 * reclaim and to avoid making any filesystem callbacks (which can end
1346 	 * up invoking KVM MMU notifiers, resulting in a deadlock).
1347 	 *
1348 	 * If this allocation fails we drop the lock and retry with reclaim
1349 	 * allowed.
1350 	 */
1351 	sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT);
1352 	if (sp)
1353 		return sp;
1354 
1355 	rcu_read_unlock();
1356 
1357 	if (shared)
1358 		read_unlock(&kvm->mmu_lock);
1359 	else
1360 		write_unlock(&kvm->mmu_lock);
1361 
1362 	iter->yielded = true;
1363 	sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT);
1364 
1365 	if (shared)
1366 		read_lock(&kvm->mmu_lock);
1367 	else
1368 		write_lock(&kvm->mmu_lock);
1369 
1370 	rcu_read_lock();
1371 
1372 	return sp;
1373 }
1374 
1375 /* Note, the caller is responsible for initializing @sp. */
1376 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1377 				   struct kvm_mmu_page *sp, bool shared)
1378 {
1379 	const u64 huge_spte = iter->old_spte;
1380 	const int level = iter->level;
1381 	int ret, i;
1382 
1383 	/*
1384 	 * No need for atomics when writing to sp->spt since the page table has
1385 	 * not been linked in yet and thus is not reachable from any other CPU.
1386 	 */
1387 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++)
1388 		sp->spt[i] = make_huge_page_split_spte(kvm, huge_spte, sp->role, i);
1389 
1390 	/*
1391 	 * Replace the huge spte with a pointer to the populated lower level
1392 	 * page table. Since we are making this change without a TLB flush vCPUs
1393 	 * will see a mix of the split mappings and the original huge mapping,
1394 	 * depending on what's currently in their TLB. This is fine from a
1395 	 * correctness standpoint since the translation will be the same either
1396 	 * way.
1397 	 */
1398 	ret = tdp_mmu_link_sp(kvm, iter, sp, shared);
1399 	if (ret)
1400 		goto out;
1401 
1402 	/*
1403 	 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we
1404 	 * are overwriting from the page stats. But we have to manually update
1405 	 * the page stats with the new present child pages.
1406 	 */
1407 	kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE);
1408 
1409 out:
1410 	trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret);
1411 	return ret;
1412 }
1413 
1414 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm,
1415 					 struct kvm_mmu_page *root,
1416 					 gfn_t start, gfn_t end,
1417 					 int target_level, bool shared)
1418 {
1419 	struct kvm_mmu_page *sp = NULL;
1420 	struct tdp_iter iter;
1421 	int ret = 0;
1422 
1423 	rcu_read_lock();
1424 
1425 	/*
1426 	 * Traverse the page table splitting all huge pages above the target
1427 	 * level into one lower level. For example, if we encounter a 1GB page
1428 	 * we split it into 512 2MB pages.
1429 	 *
1430 	 * Since the TDP iterator uses a pre-order traversal, we are guaranteed
1431 	 * to visit an SPTE before ever visiting its children, which means we
1432 	 * will correctly recursively split huge pages that are more than one
1433 	 * level above the target level (e.g. splitting a 1GB to 512 2MB pages,
1434 	 * and then splitting each of those to 512 4KB pages).
1435 	 */
1436 	for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) {
1437 retry:
1438 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
1439 			continue;
1440 
1441 		if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte))
1442 			continue;
1443 
1444 		if (!sp) {
1445 			sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared);
1446 			if (!sp) {
1447 				ret = -ENOMEM;
1448 				trace_kvm_mmu_split_huge_page(iter.gfn,
1449 							      iter.old_spte,
1450 							      iter.level, ret);
1451 				break;
1452 			}
1453 
1454 			if (iter.yielded)
1455 				continue;
1456 		}
1457 
1458 		tdp_mmu_init_child_sp(sp, &iter);
1459 
1460 		if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared))
1461 			goto retry;
1462 
1463 		sp = NULL;
1464 	}
1465 
1466 	rcu_read_unlock();
1467 
1468 	/*
1469 	 * It's possible to exit the loop having never used the last sp if, for
1470 	 * example, a vCPU doing HugePage NX splitting wins the race and
1471 	 * installs its own sp in place of the last sp we tried to split.
1472 	 */
1473 	if (sp)
1474 		tdp_mmu_free_sp(sp);
1475 
1476 	return ret;
1477 }
1478 
1479 
1480 /*
1481  * Try to split all huge pages mapped by the TDP MMU down to the target level.
1482  */
1483 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm,
1484 				      const struct kvm_memory_slot *slot,
1485 				      gfn_t start, gfn_t end,
1486 				      int target_level, bool shared)
1487 {
1488 	struct kvm_mmu_page *root;
1489 	int r = 0;
1490 
1491 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
1492 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) {
1493 		r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared);
1494 		if (r) {
1495 			kvm_tdp_mmu_put_root(kvm, root);
1496 			break;
1497 		}
1498 	}
1499 }
1500 
1501 /*
1502  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1503  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1504  * If AD bits are not enabled, this will require clearing the writable bit on
1505  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1506  * be flushed.
1507  */
1508 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1509 			   gfn_t start, gfn_t end)
1510 {
1511 	u64 dbit = kvm_ad_enabled() ? shadow_dirty_mask : PT_WRITABLE_MASK;
1512 	struct tdp_iter iter;
1513 	bool spte_set = false;
1514 
1515 	rcu_read_lock();
1516 
1517 	tdp_root_for_each_pte(iter, root, start, end) {
1518 retry:
1519 		if (!is_shadow_present_pte(iter.old_spte) ||
1520 		    !is_last_spte(iter.old_spte, iter.level))
1521 			continue;
1522 
1523 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1524 			continue;
1525 
1526 		KVM_MMU_WARN_ON(kvm_ad_enabled() &&
1527 				spte_ad_need_write_protect(iter.old_spte));
1528 
1529 		if (!(iter.old_spte & dbit))
1530 			continue;
1531 
1532 		if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit))
1533 			goto retry;
1534 
1535 		spte_set = true;
1536 	}
1537 
1538 	rcu_read_unlock();
1539 	return spte_set;
1540 }
1541 
1542 /*
1543  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1544  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1545  * If AD bits are not enabled, this will require clearing the writable bit on
1546  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1547  * be flushed.
1548  */
1549 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
1550 				  const struct kvm_memory_slot *slot)
1551 {
1552 	struct kvm_mmu_page *root;
1553 	bool spte_set = false;
1554 
1555 	lockdep_assert_held_read(&kvm->mmu_lock);
1556 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1557 		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
1558 				slot->base_gfn + slot->npages);
1559 
1560 	return spte_set;
1561 }
1562 
1563 /*
1564  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1565  * set in mask, starting at gfn. The given memslot is expected to contain all
1566  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1567  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1568  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1569  */
1570 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
1571 				  gfn_t gfn, unsigned long mask, bool wrprot)
1572 {
1573 	u64 dbit = (wrprot || !kvm_ad_enabled()) ? PT_WRITABLE_MASK :
1574 						   shadow_dirty_mask;
1575 	struct tdp_iter iter;
1576 
1577 	lockdep_assert_held_write(&kvm->mmu_lock);
1578 
1579 	rcu_read_lock();
1580 
1581 	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
1582 				    gfn + BITS_PER_LONG) {
1583 		if (!mask)
1584 			break;
1585 
1586 		KVM_MMU_WARN_ON(kvm_ad_enabled() &&
1587 				spte_ad_need_write_protect(iter.old_spte));
1588 
1589 		if (iter.level > PG_LEVEL_4K ||
1590 		    !(mask & (1UL << (iter.gfn - gfn))))
1591 			continue;
1592 
1593 		mask &= ~(1UL << (iter.gfn - gfn));
1594 
1595 		if (!(iter.old_spte & dbit))
1596 			continue;
1597 
1598 		iter.old_spte = tdp_mmu_clear_spte_bits(iter.sptep,
1599 							iter.old_spte, dbit,
1600 							iter.level);
1601 
1602 		trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level,
1603 					       iter.old_spte,
1604 					       iter.old_spte & ~dbit);
1605 		kvm_set_pfn_dirty(spte_to_pfn(iter.old_spte));
1606 	}
1607 
1608 	rcu_read_unlock();
1609 }
1610 
1611 /*
1612  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1613  * set in mask, starting at gfn. The given memslot is expected to contain all
1614  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1615  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1616  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1617  */
1618 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1619 				       struct kvm_memory_slot *slot,
1620 				       gfn_t gfn, unsigned long mask,
1621 				       bool wrprot)
1622 {
1623 	struct kvm_mmu_page *root;
1624 
1625 	for_each_tdp_mmu_root(kvm, root, slot->as_id)
1626 		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1627 }
1628 
1629 static void zap_collapsible_spte_range(struct kvm *kvm,
1630 				       struct kvm_mmu_page *root,
1631 				       const struct kvm_memory_slot *slot)
1632 {
1633 	gfn_t start = slot->base_gfn;
1634 	gfn_t end = start + slot->npages;
1635 	struct tdp_iter iter;
1636 	int max_mapping_level;
1637 
1638 	rcu_read_lock();
1639 
1640 	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) {
1641 retry:
1642 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1643 			continue;
1644 
1645 		if (iter.level > KVM_MAX_HUGEPAGE_LEVEL ||
1646 		    !is_shadow_present_pte(iter.old_spte))
1647 			continue;
1648 
1649 		/*
1650 		 * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with
1651 		 * a large page size, then its parent would have been zapped
1652 		 * instead of stepping down.
1653 		 */
1654 		if (is_last_spte(iter.old_spte, iter.level))
1655 			continue;
1656 
1657 		/*
1658 		 * If iter.gfn resides outside of the slot, i.e. the page for
1659 		 * the current level overlaps but is not contained by the slot,
1660 		 * then the SPTE can't be made huge.  More importantly, trying
1661 		 * to query that info from slot->arch.lpage_info will cause an
1662 		 * out-of-bounds access.
1663 		 */
1664 		if (iter.gfn < start || iter.gfn >= end)
1665 			continue;
1666 
1667 		max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot,
1668 							      iter.gfn, PG_LEVEL_NUM);
1669 		if (max_mapping_level < iter.level)
1670 			continue;
1671 
1672 		/* Note, a successful atomic zap also does a remote TLB flush. */
1673 		if (tdp_mmu_zap_spte_atomic(kvm, &iter))
1674 			goto retry;
1675 	}
1676 
1677 	rcu_read_unlock();
1678 }
1679 
1680 /*
1681  * Zap non-leaf SPTEs (and free their associated page tables) which could
1682  * be replaced by huge pages, for GFNs within the slot.
1683  */
1684 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1685 				       const struct kvm_memory_slot *slot)
1686 {
1687 	struct kvm_mmu_page *root;
1688 
1689 	lockdep_assert_held_read(&kvm->mmu_lock);
1690 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1691 		zap_collapsible_spte_range(kvm, root, slot);
1692 }
1693 
1694 /*
1695  * Removes write access on the last level SPTE mapping this GFN and unsets the
1696  * MMU-writable bit to ensure future writes continue to be intercepted.
1697  * Returns true if an SPTE was set and a TLB flush is needed.
1698  */
1699 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1700 			      gfn_t gfn, int min_level)
1701 {
1702 	struct tdp_iter iter;
1703 	u64 new_spte;
1704 	bool spte_set = false;
1705 
1706 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1707 
1708 	rcu_read_lock();
1709 
1710 	for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) {
1711 		if (!is_shadow_present_pte(iter.old_spte) ||
1712 		    !is_last_spte(iter.old_spte, iter.level))
1713 			continue;
1714 
1715 		new_spte = iter.old_spte &
1716 			~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
1717 
1718 		if (new_spte == iter.old_spte)
1719 			break;
1720 
1721 		tdp_mmu_iter_set_spte(kvm, &iter, new_spte);
1722 		spte_set = true;
1723 	}
1724 
1725 	rcu_read_unlock();
1726 
1727 	return spte_set;
1728 }
1729 
1730 /*
1731  * Removes write access on the last level SPTE mapping this GFN and unsets the
1732  * MMU-writable bit to ensure future writes continue to be intercepted.
1733  * Returns true if an SPTE was set and a TLB flush is needed.
1734  */
1735 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1736 				   struct kvm_memory_slot *slot, gfn_t gfn,
1737 				   int min_level)
1738 {
1739 	struct kvm_mmu_page *root;
1740 	bool spte_set = false;
1741 
1742 	lockdep_assert_held_write(&kvm->mmu_lock);
1743 	for_each_tdp_mmu_root(kvm, root, slot->as_id)
1744 		spte_set |= write_protect_gfn(kvm, root, gfn, min_level);
1745 
1746 	return spte_set;
1747 }
1748 
1749 /*
1750  * Return the level of the lowest level SPTE added to sptes.
1751  * That SPTE may be non-present.
1752  *
1753  * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1754  */
1755 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1756 			 int *root_level)
1757 {
1758 	struct tdp_iter iter;
1759 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1760 	gfn_t gfn = addr >> PAGE_SHIFT;
1761 	int leaf = -1;
1762 
1763 	*root_level = vcpu->arch.mmu->root_role.level;
1764 
1765 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1766 		leaf = iter.level;
1767 		sptes[leaf] = iter.old_spte;
1768 	}
1769 
1770 	return leaf;
1771 }
1772 
1773 /*
1774  * Returns the last level spte pointer of the shadow page walk for the given
1775  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
1776  * walk could be performed, returns NULL and *spte does not contain valid data.
1777  *
1778  * Contract:
1779  *  - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1780  *  - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end.
1781  *
1782  * WARNING: This function is only intended to be called during fast_page_fault.
1783  */
1784 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr,
1785 					u64 *spte)
1786 {
1787 	struct tdp_iter iter;
1788 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1789 	gfn_t gfn = addr >> PAGE_SHIFT;
1790 	tdp_ptep_t sptep = NULL;
1791 
1792 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1793 		*spte = iter.old_spte;
1794 		sptep = iter.sptep;
1795 	}
1796 
1797 	/*
1798 	 * Perform the rcu_dereference to get the raw spte pointer value since
1799 	 * we are passing it up to fast_page_fault, which is shared with the
1800 	 * legacy MMU and thus does not retain the TDP MMU-specific __rcu
1801 	 * annotation.
1802 	 *
1803 	 * This is safe since fast_page_fault obeys the contracts of this
1804 	 * function as well as all TDP MMU contracts around modifying SPTEs
1805 	 * outside of mmu_lock.
1806 	 */
1807 	return rcu_dereference(sptep);
1808 }
1809