1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include "mmu.h" 5 #include "mmu_internal.h" 6 #include "mmutrace.h" 7 #include "tdp_iter.h" 8 #include "tdp_mmu.h" 9 #include "spte.h" 10 11 #include <asm/cmpxchg.h> 12 #include <trace/events/kvm.h> 13 14 /* Initializes the TDP MMU for the VM, if enabled. */ 15 void kvm_mmu_init_tdp_mmu(struct kvm *kvm) 16 { 17 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); 18 spin_lock_init(&kvm->arch.tdp_mmu_pages_lock); 19 } 20 21 /* Arbitrarily returns true so that this may be used in if statements. */ 22 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm, 23 bool shared) 24 { 25 if (shared) 26 lockdep_assert_held_read(&kvm->mmu_lock); 27 else 28 lockdep_assert_held_write(&kvm->mmu_lock); 29 30 return true; 31 } 32 33 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) 34 { 35 /* 36 * Invalidate all roots, which besides the obvious, schedules all roots 37 * for zapping and thus puts the TDP MMU's reference to each root, i.e. 38 * ultimately frees all roots. 39 */ 40 kvm_tdp_mmu_invalidate_all_roots(kvm); 41 kvm_tdp_mmu_zap_invalidated_roots(kvm); 42 43 WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages)); 44 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); 45 46 /* 47 * Ensure that all the outstanding RCU callbacks to free shadow pages 48 * can run before the VM is torn down. Putting the last reference to 49 * zapped roots will create new callbacks. 50 */ 51 rcu_barrier(); 52 } 53 54 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp) 55 { 56 free_page((unsigned long)sp->spt); 57 kmem_cache_free(mmu_page_header_cache, sp); 58 } 59 60 /* 61 * This is called through call_rcu in order to free TDP page table memory 62 * safely with respect to other kernel threads that may be operating on 63 * the memory. 64 * By only accessing TDP MMU page table memory in an RCU read critical 65 * section, and freeing it after a grace period, lockless access to that 66 * memory won't use it after it is freed. 67 */ 68 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head) 69 { 70 struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page, 71 rcu_head); 72 73 tdp_mmu_free_sp(sp); 74 } 75 76 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root) 77 { 78 if (!refcount_dec_and_test(&root->tdp_mmu_root_count)) 79 return; 80 81 /* 82 * The TDP MMU itself holds a reference to each root until the root is 83 * explicitly invalidated, i.e. the final reference should be never be 84 * put for a valid root. 85 */ 86 KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm); 87 88 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 89 list_del_rcu(&root->link); 90 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 91 call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback); 92 } 93 94 /* 95 * Returns the next root after @prev_root (or the first root if @prev_root is 96 * NULL). A reference to the returned root is acquired, and the reference to 97 * @prev_root is released (the caller obviously must hold a reference to 98 * @prev_root if it's non-NULL). 99 * 100 * If @only_valid is true, invalid roots are skipped. 101 * 102 * Returns NULL if the end of tdp_mmu_roots was reached. 103 */ 104 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, 105 struct kvm_mmu_page *prev_root, 106 bool only_valid) 107 { 108 struct kvm_mmu_page *next_root; 109 110 /* 111 * While the roots themselves are RCU-protected, fields such as 112 * role.invalid are protected by mmu_lock. 113 */ 114 lockdep_assert_held(&kvm->mmu_lock); 115 116 rcu_read_lock(); 117 118 if (prev_root) 119 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 120 &prev_root->link, 121 typeof(*prev_root), link); 122 else 123 next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots, 124 typeof(*next_root), link); 125 126 while (next_root) { 127 if ((!only_valid || !next_root->role.invalid) && 128 kvm_tdp_mmu_get_root(next_root)) 129 break; 130 131 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 132 &next_root->link, typeof(*next_root), link); 133 } 134 135 rcu_read_unlock(); 136 137 if (prev_root) 138 kvm_tdp_mmu_put_root(kvm, prev_root); 139 140 return next_root; 141 } 142 143 /* 144 * Note: this iterator gets and puts references to the roots it iterates over. 145 * This makes it safe to release the MMU lock and yield within the loop, but 146 * if exiting the loop early, the caller must drop the reference to the most 147 * recent root. (Unless keeping a live reference is desirable.) 148 * 149 * If shared is set, this function is operating under the MMU lock in read 150 * mode. 151 */ 152 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _only_valid) \ 153 for (_root = tdp_mmu_next_root(_kvm, NULL, _only_valid); \ 154 ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \ 155 _root = tdp_mmu_next_root(_kvm, _root, _only_valid)) \ 156 if (_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) { \ 157 } else 158 159 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id) \ 160 __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, true) 161 162 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root) \ 163 for (_root = tdp_mmu_next_root(_kvm, NULL, false); \ 164 ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \ 165 _root = tdp_mmu_next_root(_kvm, _root, false)) 166 167 /* 168 * Iterate over all TDP MMU roots. Requires that mmu_lock be held for write, 169 * the implication being that any flow that holds mmu_lock for read is 170 * inherently yield-friendly and should use the yield-safe variant above. 171 * Holding mmu_lock for write obviates the need for RCU protection as the list 172 * is guaranteed to be stable. 173 */ 174 #define __for_each_tdp_mmu_root(_kvm, _root, _as_id, _only_valid) \ 175 list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \ 176 if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \ 177 ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) || \ 178 ((_only_valid) && (_root)->role.invalid))) { \ 179 } else 180 181 #define for_each_tdp_mmu_root(_kvm, _root, _as_id) \ 182 __for_each_tdp_mmu_root(_kvm, _root, _as_id, false) 183 184 #define for_each_valid_tdp_mmu_root(_kvm, _root, _as_id) \ 185 __for_each_tdp_mmu_root(_kvm, _root, _as_id, true) 186 187 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu) 188 { 189 struct kvm_mmu_page *sp; 190 191 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 192 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 193 194 return sp; 195 } 196 197 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep, 198 gfn_t gfn, union kvm_mmu_page_role role) 199 { 200 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 201 202 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 203 204 sp->role = role; 205 sp->gfn = gfn; 206 sp->ptep = sptep; 207 sp->tdp_mmu_page = true; 208 209 trace_kvm_mmu_get_page(sp, true); 210 } 211 212 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp, 213 struct tdp_iter *iter) 214 { 215 struct kvm_mmu_page *parent_sp; 216 union kvm_mmu_page_role role; 217 218 parent_sp = sptep_to_sp(rcu_dereference(iter->sptep)); 219 220 role = parent_sp->role; 221 role.level--; 222 223 tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role); 224 } 225 226 int kvm_tdp_mmu_alloc_root(struct kvm_vcpu *vcpu) 227 { 228 struct kvm_mmu *mmu = vcpu->arch.mmu; 229 union kvm_mmu_page_role role = mmu->root_role; 230 int as_id = kvm_mmu_role_as_id(role); 231 struct kvm *kvm = vcpu->kvm; 232 struct kvm_mmu_page *root; 233 234 /* 235 * Check for an existing root before acquiring the pages lock to avoid 236 * unnecessary serialization if multiple vCPUs are loading a new root. 237 * E.g. when bringing up secondary vCPUs, KVM will already have created 238 * a valid root on behalf of the primary vCPU. 239 */ 240 read_lock(&kvm->mmu_lock); 241 242 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, as_id) { 243 if (root->role.word == role.word) 244 goto out_read_unlock; 245 } 246 247 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 248 249 /* 250 * Recheck for an existing root after acquiring the pages lock, another 251 * vCPU may have raced ahead and created a new usable root. Manually 252 * walk the list of roots as the standard macros assume that the pages 253 * lock is *not* held. WARN if grabbing a reference to a usable root 254 * fails, as the last reference to a root can only be put *after* the 255 * root has been invalidated, which requires holding mmu_lock for write. 256 */ 257 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { 258 if (root->role.word == role.word && 259 !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root))) 260 goto out_spin_unlock; 261 } 262 263 root = tdp_mmu_alloc_sp(vcpu); 264 tdp_mmu_init_sp(root, NULL, 0, role); 265 266 /* 267 * TDP MMU roots are kept until they are explicitly invalidated, either 268 * by a memslot update or by the destruction of the VM. Initialize the 269 * refcount to two; one reference for the vCPU, and one reference for 270 * the TDP MMU itself, which is held until the root is invalidated and 271 * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots(). 272 */ 273 refcount_set(&root->tdp_mmu_root_count, 2); 274 list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots); 275 276 out_spin_unlock: 277 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 278 out_read_unlock: 279 read_unlock(&kvm->mmu_lock); 280 /* 281 * Note, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS will prevent entering the guest 282 * and actually consuming the root if it's invalidated after dropping 283 * mmu_lock, and the root can't be freed as this vCPU holds a reference. 284 */ 285 mmu->root.hpa = __pa(root->spt); 286 mmu->root.pgd = 0; 287 return 0; 288 } 289 290 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 291 u64 old_spte, u64 new_spte, int level, 292 bool shared); 293 294 static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 295 { 296 kvm_account_pgtable_pages((void *)sp->spt, +1); 297 atomic64_inc(&kvm->arch.tdp_mmu_pages); 298 } 299 300 static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 301 { 302 kvm_account_pgtable_pages((void *)sp->spt, -1); 303 atomic64_dec(&kvm->arch.tdp_mmu_pages); 304 } 305 306 /** 307 * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages 308 * 309 * @kvm: kvm instance 310 * @sp: the page to be removed 311 */ 312 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 313 { 314 tdp_unaccount_mmu_page(kvm, sp); 315 316 if (!sp->nx_huge_page_disallowed) 317 return; 318 319 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 320 sp->nx_huge_page_disallowed = false; 321 untrack_possible_nx_huge_page(kvm, sp); 322 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 323 } 324 325 /** 326 * handle_removed_pt() - handle a page table removed from the TDP structure 327 * 328 * @kvm: kvm instance 329 * @pt: the page removed from the paging structure 330 * @shared: This operation may not be running under the exclusive use 331 * of the MMU lock and the operation must synchronize with other 332 * threads that might be modifying SPTEs. 333 * 334 * Given a page table that has been removed from the TDP paging structure, 335 * iterates through the page table to clear SPTEs and free child page tables. 336 * 337 * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU 338 * protection. Since this thread removed it from the paging structure, 339 * this thread will be responsible for ensuring the page is freed. Hence the 340 * early rcu_dereferences in the function. 341 */ 342 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) 343 { 344 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt)); 345 int level = sp->role.level; 346 gfn_t base_gfn = sp->gfn; 347 int i; 348 349 trace_kvm_mmu_prepare_zap_page(sp); 350 351 tdp_mmu_unlink_sp(kvm, sp); 352 353 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 354 tdp_ptep_t sptep = pt + i; 355 gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level); 356 u64 old_spte; 357 358 if (shared) { 359 /* 360 * Set the SPTE to a nonpresent value that other 361 * threads will not overwrite. If the SPTE was 362 * already marked as frozen then another thread 363 * handling a page fault could overwrite it, so 364 * set the SPTE until it is set from some other 365 * value to the frozen SPTE value. 366 */ 367 for (;;) { 368 old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, FROZEN_SPTE); 369 if (!is_frozen_spte(old_spte)) 370 break; 371 cpu_relax(); 372 } 373 } else { 374 /* 375 * If the SPTE is not MMU-present, there is no backing 376 * page associated with the SPTE and so no side effects 377 * that need to be recorded, and exclusive ownership of 378 * mmu_lock ensures the SPTE can't be made present. 379 * Note, zapping MMIO SPTEs is also unnecessary as they 380 * are guarded by the memslots generation, not by being 381 * unreachable. 382 */ 383 old_spte = kvm_tdp_mmu_read_spte(sptep); 384 if (!is_shadow_present_pte(old_spte)) 385 continue; 386 387 /* 388 * Use the common helper instead of a raw WRITE_ONCE as 389 * the SPTE needs to be updated atomically if it can be 390 * modified by a different vCPU outside of mmu_lock. 391 * Even though the parent SPTE is !PRESENT, the TLB 392 * hasn't yet been flushed, and both Intel and AMD 393 * document that A/D assists can use upper-level PxE 394 * entries that are cached in the TLB, i.e. the CPU can 395 * still access the page and mark it dirty. 396 * 397 * No retry is needed in the atomic update path as the 398 * sole concern is dropping a Dirty bit, i.e. no other 399 * task can zap/remove the SPTE as mmu_lock is held for 400 * write. Marking the SPTE as a frozen SPTE is not 401 * strictly necessary for the same reason, but using 402 * the frozen SPTE value keeps the shared/exclusive 403 * paths consistent and allows the handle_changed_spte() 404 * call below to hardcode the new value to FROZEN_SPTE. 405 * 406 * Note, even though dropping a Dirty bit is the only 407 * scenario where a non-atomic update could result in a 408 * functional bug, simply checking the Dirty bit isn't 409 * sufficient as a fast page fault could read the upper 410 * level SPTE before it is zapped, and then make this 411 * target SPTE writable, resume the guest, and set the 412 * Dirty bit between reading the SPTE above and writing 413 * it here. 414 */ 415 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, 416 FROZEN_SPTE, level); 417 } 418 handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn, 419 old_spte, FROZEN_SPTE, level, shared); 420 } 421 422 call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback); 423 } 424 425 /** 426 * handle_changed_spte - handle bookkeeping associated with an SPTE change 427 * @kvm: kvm instance 428 * @as_id: the address space of the paging structure the SPTE was a part of 429 * @gfn: the base GFN that was mapped by the SPTE 430 * @old_spte: The value of the SPTE before the change 431 * @new_spte: The value of the SPTE after the change 432 * @level: the level of the PT the SPTE is part of in the paging structure 433 * @shared: This operation may not be running under the exclusive use of 434 * the MMU lock and the operation must synchronize with other 435 * threads that might be modifying SPTEs. 436 * 437 * Handle bookkeeping that might result from the modification of a SPTE. Note, 438 * dirty logging updates are handled in common code, not here (see make_spte() 439 * and fast_pf_fix_direct_spte()). 440 */ 441 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 442 u64 old_spte, u64 new_spte, int level, 443 bool shared) 444 { 445 bool was_present = is_shadow_present_pte(old_spte); 446 bool is_present = is_shadow_present_pte(new_spte); 447 bool was_leaf = was_present && is_last_spte(old_spte, level); 448 bool is_leaf = is_present && is_last_spte(new_spte, level); 449 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); 450 451 WARN_ON_ONCE(level > PT64_ROOT_MAX_LEVEL); 452 WARN_ON_ONCE(level < PG_LEVEL_4K); 453 WARN_ON_ONCE(gfn & (KVM_PAGES_PER_HPAGE(level) - 1)); 454 455 /* 456 * If this warning were to trigger it would indicate that there was a 457 * missing MMU notifier or a race with some notifier handler. 458 * A present, leaf SPTE should never be directly replaced with another 459 * present leaf SPTE pointing to a different PFN. A notifier handler 460 * should be zapping the SPTE before the main MM's page table is 461 * changed, or the SPTE should be zeroed, and the TLBs flushed by the 462 * thread before replacement. 463 */ 464 if (was_leaf && is_leaf && pfn_changed) { 465 pr_err("Invalid SPTE change: cannot replace a present leaf\n" 466 "SPTE with another present leaf SPTE mapping a\n" 467 "different PFN!\n" 468 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 469 as_id, gfn, old_spte, new_spte, level); 470 471 /* 472 * Crash the host to prevent error propagation and guest data 473 * corruption. 474 */ 475 BUG(); 476 } 477 478 if (old_spte == new_spte) 479 return; 480 481 trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte); 482 483 if (is_leaf) 484 check_spte_writable_invariants(new_spte); 485 486 /* 487 * The only times a SPTE should be changed from a non-present to 488 * non-present state is when an MMIO entry is installed/modified/ 489 * removed. In that case, there is nothing to do here. 490 */ 491 if (!was_present && !is_present) { 492 /* 493 * If this change does not involve a MMIO SPTE or frozen SPTE, 494 * it is unexpected. Log the change, though it should not 495 * impact the guest since both the former and current SPTEs 496 * are nonpresent. 497 */ 498 if (WARN_ON_ONCE(!is_mmio_spte(kvm, old_spte) && 499 !is_mmio_spte(kvm, new_spte) && 500 !is_frozen_spte(new_spte))) 501 pr_err("Unexpected SPTE change! Nonpresent SPTEs\n" 502 "should not be replaced with another,\n" 503 "different nonpresent SPTE, unless one or both\n" 504 "are MMIO SPTEs, or the new SPTE is\n" 505 "a temporary frozen SPTE.\n" 506 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 507 as_id, gfn, old_spte, new_spte, level); 508 return; 509 } 510 511 if (is_leaf != was_leaf) 512 kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1); 513 514 /* 515 * Recursively handle child PTs if the change removed a subtree from 516 * the paging structure. Note the WARN on the PFN changing without the 517 * SPTE being converted to a hugepage (leaf) or being zapped. Shadow 518 * pages are kernel allocations and should never be migrated. 519 */ 520 if (was_present && !was_leaf && 521 (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed))) 522 handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared); 523 } 524 525 static inline int __must_check __tdp_mmu_set_spte_atomic(struct tdp_iter *iter, 526 u64 new_spte) 527 { 528 u64 *sptep = rcu_dereference(iter->sptep); 529 530 /* 531 * The caller is responsible for ensuring the old SPTE is not a FROZEN 532 * SPTE. KVM should never attempt to zap or manipulate a FROZEN SPTE, 533 * and pre-checking before inserting a new SPTE is advantageous as it 534 * avoids unnecessary work. 535 */ 536 WARN_ON_ONCE(iter->yielded || is_frozen_spte(iter->old_spte)); 537 538 /* 539 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and 540 * does not hold the mmu_lock. On failure, i.e. if a different logical 541 * CPU modified the SPTE, try_cmpxchg64() updates iter->old_spte with 542 * the current value, so the caller operates on fresh data, e.g. if it 543 * retries tdp_mmu_set_spte_atomic() 544 */ 545 if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte)) 546 return -EBUSY; 547 548 return 0; 549 } 550 551 /* 552 * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically 553 * and handle the associated bookkeeping. Do not mark the page dirty 554 * in KVM's dirty bitmaps. 555 * 556 * If setting the SPTE fails because it has changed, iter->old_spte will be 557 * refreshed to the current value of the spte. 558 * 559 * @kvm: kvm instance 560 * @iter: a tdp_iter instance currently on the SPTE that should be set 561 * @new_spte: The value the SPTE should be set to 562 * Return: 563 * * 0 - If the SPTE was set. 564 * * -EBUSY - If the SPTE cannot be set. In this case this function will have 565 * no side-effects other than setting iter->old_spte to the last 566 * known value of the spte. 567 */ 568 static inline int __must_check tdp_mmu_set_spte_atomic(struct kvm *kvm, 569 struct tdp_iter *iter, 570 u64 new_spte) 571 { 572 int ret; 573 574 lockdep_assert_held_read(&kvm->mmu_lock); 575 576 ret = __tdp_mmu_set_spte_atomic(iter, new_spte); 577 if (ret) 578 return ret; 579 580 handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, 581 new_spte, iter->level, true); 582 583 return 0; 584 } 585 586 /* 587 * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping 588 * @kvm: KVM instance 589 * @as_id: Address space ID, i.e. regular vs. SMM 590 * @sptep: Pointer to the SPTE 591 * @old_spte: The current value of the SPTE 592 * @new_spte: The new value that will be set for the SPTE 593 * @gfn: The base GFN that was (or will be) mapped by the SPTE 594 * @level: The level _containing_ the SPTE (its parent PT's level) 595 * 596 * Returns the old SPTE value, which _may_ be different than @old_spte if the 597 * SPTE had voldatile bits. 598 */ 599 static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep, 600 u64 old_spte, u64 new_spte, gfn_t gfn, int level) 601 { 602 lockdep_assert_held_write(&kvm->mmu_lock); 603 604 /* 605 * No thread should be using this function to set SPTEs to or from the 606 * temporary frozen SPTE value. 607 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic 608 * should be used. If operating under the MMU lock in write mode, the 609 * use of the frozen SPTE should not be necessary. 610 */ 611 WARN_ON_ONCE(is_frozen_spte(old_spte) || is_frozen_spte(new_spte)); 612 613 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level); 614 615 handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false); 616 return old_spte; 617 } 618 619 static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter, 620 u64 new_spte) 621 { 622 WARN_ON_ONCE(iter->yielded); 623 iter->old_spte = tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, 624 iter->old_spte, new_spte, 625 iter->gfn, iter->level); 626 } 627 628 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \ 629 for_each_tdp_pte(_iter, _root, _start, _end) 630 631 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \ 632 tdp_root_for_each_pte(_iter, _root, _start, _end) \ 633 if (!is_shadow_present_pte(_iter.old_spte) || \ 634 !is_last_spte(_iter.old_spte, _iter.level)) \ 635 continue; \ 636 else 637 638 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \ 639 for_each_tdp_pte(_iter, root_to_sp(_mmu->root.hpa), _start, _end) 640 641 static inline bool __must_check tdp_mmu_iter_need_resched(struct kvm *kvm, 642 struct tdp_iter *iter) 643 { 644 if (!need_resched() && !rwlock_needbreak(&kvm->mmu_lock)) 645 return false; 646 647 /* Ensure forward progress has been made before yielding. */ 648 return iter->next_last_level_gfn != iter->yielded_gfn; 649 } 650 651 /* 652 * Yield if the MMU lock is contended or this thread needs to return control 653 * to the scheduler. 654 * 655 * If this function should yield and flush is set, it will perform a remote 656 * TLB flush before yielding. 657 * 658 * If this function yields, iter->yielded is set and the caller must skip to 659 * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk 660 * over the paging structures to allow the iterator to continue its traversal 661 * from the paging structure root. 662 * 663 * Returns true if this function yielded. 664 */ 665 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm, 666 struct tdp_iter *iter, 667 bool flush, bool shared) 668 { 669 KVM_MMU_WARN_ON(iter->yielded); 670 671 if (!tdp_mmu_iter_need_resched(kvm, iter)) 672 return false; 673 674 if (flush) 675 kvm_flush_remote_tlbs(kvm); 676 677 rcu_read_unlock(); 678 679 if (shared) 680 cond_resched_rwlock_read(&kvm->mmu_lock); 681 else 682 cond_resched_rwlock_write(&kvm->mmu_lock); 683 684 rcu_read_lock(); 685 686 WARN_ON_ONCE(iter->gfn > iter->next_last_level_gfn); 687 688 iter->yielded = true; 689 return true; 690 } 691 692 static inline gfn_t tdp_mmu_max_gfn_exclusive(void) 693 { 694 /* 695 * Bound TDP MMU walks at host.MAXPHYADDR. KVM disallows memslots with 696 * a gpa range that would exceed the max gfn, and KVM does not create 697 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down 698 * the slow emulation path every time. 699 */ 700 return kvm_mmu_max_gfn() + 1; 701 } 702 703 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 704 bool shared, int zap_level) 705 { 706 struct tdp_iter iter; 707 708 gfn_t end = tdp_mmu_max_gfn_exclusive(); 709 gfn_t start = 0; 710 711 for_each_tdp_pte_min_level(iter, root, zap_level, start, end) { 712 retry: 713 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 714 continue; 715 716 if (!is_shadow_present_pte(iter.old_spte)) 717 continue; 718 719 if (iter.level > zap_level) 720 continue; 721 722 if (!shared) 723 tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE); 724 else if (tdp_mmu_set_spte_atomic(kvm, &iter, SHADOW_NONPRESENT_VALUE)) 725 goto retry; 726 } 727 } 728 729 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 730 bool shared) 731 { 732 733 /* 734 * The root must have an elevated refcount so that it's reachable via 735 * mmu_notifier callbacks, which allows this path to yield and drop 736 * mmu_lock. When handling an unmap/release mmu_notifier command, KVM 737 * must drop all references to relevant pages prior to completing the 738 * callback. Dropping mmu_lock with an unreachable root would result 739 * in zapping SPTEs after a relevant mmu_notifier callback completes 740 * and lead to use-after-free as zapping a SPTE triggers "writeback" of 741 * dirty accessed bits to the SPTE's associated struct page. 742 */ 743 WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count)); 744 745 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 746 747 rcu_read_lock(); 748 749 /* 750 * Zap roots in multiple passes of decreasing granularity, i.e. zap at 751 * 4KiB=>2MiB=>1GiB=>root, in order to better honor need_resched() (all 752 * preempt models) or mmu_lock contention (full or real-time models). 753 * Zapping at finer granularity marginally increases the total time of 754 * the zap, but in most cases the zap itself isn't latency sensitive. 755 * 756 * If KVM is configured to prove the MMU, skip the 4KiB and 2MiB zaps 757 * in order to mimic the page fault path, which can replace a 1GiB page 758 * table with an equivalent 1GiB hugepage, i.e. can get saddled with 759 * zapping a 1GiB region that's fully populated with 4KiB SPTEs. This 760 * allows verifying that KVM can safely zap 1GiB regions, e.g. without 761 * inducing RCU stalls, without relying on a relatively rare event 762 * (zapping roots is orders of magnitude more common). Note, because 763 * zapping a SP recurses on its children, stepping down to PG_LEVEL_4K 764 * in the iterator itself is unnecessary. 765 */ 766 if (!IS_ENABLED(CONFIG_KVM_PROVE_MMU)) { 767 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_4K); 768 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_2M); 769 } 770 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G); 771 __tdp_mmu_zap_root(kvm, root, shared, root->role.level); 772 773 rcu_read_unlock(); 774 } 775 776 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 777 { 778 u64 old_spte; 779 780 /* 781 * This helper intentionally doesn't allow zapping a root shadow page, 782 * which doesn't have a parent page table and thus no associated entry. 783 */ 784 if (WARN_ON_ONCE(!sp->ptep)) 785 return false; 786 787 old_spte = kvm_tdp_mmu_read_spte(sp->ptep); 788 if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte))) 789 return false; 790 791 tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 792 SHADOW_NONPRESENT_VALUE, sp->gfn, sp->role.level + 1); 793 794 return true; 795 } 796 797 /* 798 * If can_yield is true, will release the MMU lock and reschedule if the 799 * scheduler needs the CPU or there is contention on the MMU lock. If this 800 * function cannot yield, it will not release the MMU lock or reschedule and 801 * the caller must ensure it does not supply too large a GFN range, or the 802 * operation can cause a soft lockup. 803 */ 804 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root, 805 gfn_t start, gfn_t end, bool can_yield, bool flush) 806 { 807 struct tdp_iter iter; 808 809 end = min(end, tdp_mmu_max_gfn_exclusive()); 810 811 lockdep_assert_held_write(&kvm->mmu_lock); 812 813 rcu_read_lock(); 814 815 for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) { 816 if (can_yield && 817 tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) { 818 flush = false; 819 continue; 820 } 821 822 if (!is_shadow_present_pte(iter.old_spte) || 823 !is_last_spte(iter.old_spte, iter.level)) 824 continue; 825 826 tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE); 827 828 /* 829 * Zappings SPTEs in invalid roots doesn't require a TLB flush, 830 * see kvm_tdp_mmu_zap_invalidated_roots() for details. 831 */ 832 if (!root->role.invalid) 833 flush = true; 834 } 835 836 rcu_read_unlock(); 837 838 /* 839 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need 840 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed. 841 */ 842 return flush; 843 } 844 845 /* 846 * Zap leaf SPTEs for the range of gfns, [start, end), for all *VALID** roots. 847 * Returns true if a TLB flush is needed before releasing the MMU lock, i.e. if 848 * one or more SPTEs were zapped since the MMU lock was last acquired. 849 */ 850 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush) 851 { 852 struct kvm_mmu_page *root; 853 854 lockdep_assert_held_write(&kvm->mmu_lock); 855 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, -1) 856 flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush); 857 858 return flush; 859 } 860 861 void kvm_tdp_mmu_zap_all(struct kvm *kvm) 862 { 863 struct kvm_mmu_page *root; 864 865 /* 866 * Zap all roots, including invalid roots, as all SPTEs must be dropped 867 * before returning to the caller. Zap directly even if the root is 868 * also being zapped by a worker. Walking zapped top-level SPTEs isn't 869 * all that expensive and mmu_lock is already held, which means the 870 * worker has yielded, i.e. flushing the work instead of zapping here 871 * isn't guaranteed to be any faster. 872 * 873 * A TLB flush is unnecessary, KVM zaps everything if and only the VM 874 * is being destroyed or the userspace VMM has exited. In both cases, 875 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request. 876 */ 877 lockdep_assert_held_write(&kvm->mmu_lock); 878 for_each_tdp_mmu_root_yield_safe(kvm, root) 879 tdp_mmu_zap_root(kvm, root, false); 880 } 881 882 /* 883 * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast 884 * zap" completes. 885 */ 886 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm) 887 { 888 struct kvm_mmu_page *root; 889 890 read_lock(&kvm->mmu_lock); 891 892 for_each_tdp_mmu_root_yield_safe(kvm, root) { 893 if (!root->tdp_mmu_scheduled_root_to_zap) 894 continue; 895 896 root->tdp_mmu_scheduled_root_to_zap = false; 897 KVM_BUG_ON(!root->role.invalid, kvm); 898 899 /* 900 * A TLB flush is not necessary as KVM performs a local TLB 901 * flush when allocating a new root (see kvm_mmu_load()), and 902 * when migrating a vCPU to a different pCPU. Note, the local 903 * TLB flush on reuse also invalidates paging-structure-cache 904 * entries, i.e. TLB entries for intermediate paging structures, 905 * that may be zapped, as such entries are associated with the 906 * ASID on both VMX and SVM. 907 */ 908 tdp_mmu_zap_root(kvm, root, true); 909 910 /* 911 * The referenced needs to be put *after* zapping the root, as 912 * the root must be reachable by mmu_notifiers while it's being 913 * zapped 914 */ 915 kvm_tdp_mmu_put_root(kvm, root); 916 } 917 918 read_unlock(&kvm->mmu_lock); 919 } 920 921 /* 922 * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that 923 * is about to be zapped, e.g. in response to a memslots update. The actual 924 * zapping is done separately so that it happens with mmu_lock with read, 925 * whereas invalidating roots must be done with mmu_lock held for write (unless 926 * the VM is being destroyed). 927 * 928 * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference. 929 * See kvm_tdp_mmu_alloc_root(). 930 */ 931 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm) 932 { 933 struct kvm_mmu_page *root; 934 935 /* 936 * mmu_lock must be held for write to ensure that a root doesn't become 937 * invalid while there are active readers (invalidating a root while 938 * there are active readers may or may not be problematic in practice, 939 * but it's uncharted territory and not supported). 940 * 941 * Waive the assertion if there are no users of @kvm, i.e. the VM is 942 * being destroyed after all references have been put, or if no vCPUs 943 * have been created (which means there are no roots), i.e. the VM is 944 * being destroyed in an error path of KVM_CREATE_VM. 945 */ 946 if (IS_ENABLED(CONFIG_PROVE_LOCKING) && 947 refcount_read(&kvm->users_count) && kvm->created_vcpus) 948 lockdep_assert_held_write(&kvm->mmu_lock); 949 950 /* 951 * As above, mmu_lock isn't held when destroying the VM! There can't 952 * be other references to @kvm, i.e. nothing else can invalidate roots 953 * or get/put references to roots. 954 */ 955 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { 956 /* 957 * Note, invalid roots can outlive a memslot update! Invalid 958 * roots must be *zapped* before the memslot update completes, 959 * but a different task can acquire a reference and keep the 960 * root alive after its been zapped. 961 */ 962 if (!root->role.invalid) { 963 root->tdp_mmu_scheduled_root_to_zap = true; 964 root->role.invalid = true; 965 } 966 } 967 } 968 969 /* 970 * Installs a last-level SPTE to handle a TDP page fault. 971 * (NPT/EPT violation/misconfiguration) 972 */ 973 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, 974 struct kvm_page_fault *fault, 975 struct tdp_iter *iter) 976 { 977 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep)); 978 u64 new_spte; 979 int ret = RET_PF_FIXED; 980 bool wrprot = false; 981 982 if (WARN_ON_ONCE(sp->role.level != fault->goal_level)) 983 return RET_PF_RETRY; 984 985 if (fault->prefetch && is_shadow_present_pte(iter->old_spte)) 986 return RET_PF_SPURIOUS; 987 988 if (unlikely(!fault->slot)) 989 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); 990 else 991 wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn, 992 fault->pfn, iter->old_spte, fault->prefetch, 993 false, fault->map_writable, &new_spte); 994 995 if (new_spte == iter->old_spte) 996 ret = RET_PF_SPURIOUS; 997 else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte)) 998 return RET_PF_RETRY; 999 else if (is_shadow_present_pte(iter->old_spte) && 1000 (!is_last_spte(iter->old_spte, iter->level) || 1001 WARN_ON_ONCE(leaf_spte_change_needs_tlb_flush(iter->old_spte, new_spte)))) 1002 kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level); 1003 1004 /* 1005 * If the page fault was caused by a write but the page is write 1006 * protected, emulation is needed. If the emulation was skipped, 1007 * the vCPU would have the same fault again. 1008 */ 1009 if (wrprot && fault->write) 1010 ret = RET_PF_WRITE_PROTECTED; 1011 1012 /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ 1013 if (unlikely(is_mmio_spte(vcpu->kvm, new_spte))) { 1014 vcpu->stat.pf_mmio_spte_created++; 1015 trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn, 1016 new_spte); 1017 ret = RET_PF_EMULATE; 1018 } else { 1019 trace_kvm_mmu_set_spte(iter->level, iter->gfn, 1020 rcu_dereference(iter->sptep)); 1021 } 1022 1023 return ret; 1024 } 1025 1026 /* 1027 * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the 1028 * provided page table. 1029 * 1030 * @kvm: kvm instance 1031 * @iter: a tdp_iter instance currently on the SPTE that should be set 1032 * @sp: The new TDP page table to install. 1033 * @shared: This operation is running under the MMU lock in read mode. 1034 * 1035 * Returns: 0 if the new page table was installed. Non-0 if the page table 1036 * could not be installed (e.g. the atomic compare-exchange failed). 1037 */ 1038 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter, 1039 struct kvm_mmu_page *sp, bool shared) 1040 { 1041 u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled); 1042 int ret = 0; 1043 1044 if (shared) { 1045 ret = tdp_mmu_set_spte_atomic(kvm, iter, spte); 1046 if (ret) 1047 return ret; 1048 } else { 1049 tdp_mmu_iter_set_spte(kvm, iter, spte); 1050 } 1051 1052 tdp_account_mmu_page(kvm, sp); 1053 1054 return 0; 1055 } 1056 1057 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, 1058 struct kvm_mmu_page *sp, bool shared); 1059 1060 /* 1061 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing 1062 * page tables and SPTEs to translate the faulting guest physical address. 1063 */ 1064 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 1065 { 1066 struct kvm_mmu *mmu = vcpu->arch.mmu; 1067 struct kvm *kvm = vcpu->kvm; 1068 struct tdp_iter iter; 1069 struct kvm_mmu_page *sp; 1070 int ret = RET_PF_RETRY; 1071 1072 kvm_mmu_hugepage_adjust(vcpu, fault); 1073 1074 trace_kvm_mmu_spte_requested(fault); 1075 1076 rcu_read_lock(); 1077 1078 tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) { 1079 int r; 1080 1081 if (fault->nx_huge_page_workaround_enabled) 1082 disallowed_hugepage_adjust(fault, iter.old_spte, iter.level); 1083 1084 /* 1085 * If SPTE has been frozen by another thread, just give up and 1086 * retry, avoiding unnecessary page table allocation and free. 1087 */ 1088 if (is_frozen_spte(iter.old_spte)) 1089 goto retry; 1090 1091 if (iter.level == fault->goal_level) 1092 goto map_target_level; 1093 1094 /* Step down into the lower level page table if it exists. */ 1095 if (is_shadow_present_pte(iter.old_spte) && 1096 !is_large_pte(iter.old_spte)) 1097 continue; 1098 1099 /* 1100 * The SPTE is either non-present or points to a huge page that 1101 * needs to be split. 1102 */ 1103 sp = tdp_mmu_alloc_sp(vcpu); 1104 tdp_mmu_init_child_sp(sp, &iter); 1105 1106 sp->nx_huge_page_disallowed = fault->huge_page_disallowed; 1107 1108 if (is_shadow_present_pte(iter.old_spte)) 1109 r = tdp_mmu_split_huge_page(kvm, &iter, sp, true); 1110 else 1111 r = tdp_mmu_link_sp(kvm, &iter, sp, true); 1112 1113 /* 1114 * Force the guest to retry if installing an upper level SPTE 1115 * failed, e.g. because a different task modified the SPTE. 1116 */ 1117 if (r) { 1118 tdp_mmu_free_sp(sp); 1119 goto retry; 1120 } 1121 1122 if (fault->huge_page_disallowed && 1123 fault->req_level >= iter.level) { 1124 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 1125 if (sp->nx_huge_page_disallowed) 1126 track_possible_nx_huge_page(kvm, sp); 1127 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 1128 } 1129 } 1130 1131 /* 1132 * The walk aborted before reaching the target level, e.g. because the 1133 * iterator detected an upper level SPTE was frozen during traversal. 1134 */ 1135 WARN_ON_ONCE(iter.level == fault->goal_level); 1136 goto retry; 1137 1138 map_target_level: 1139 ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter); 1140 1141 retry: 1142 rcu_read_unlock(); 1143 return ret; 1144 } 1145 1146 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, 1147 bool flush) 1148 { 1149 struct kvm_mmu_page *root; 1150 1151 __for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, false) 1152 flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end, 1153 range->may_block, flush); 1154 1155 return flush; 1156 } 1157 1158 /* 1159 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero 1160 * if any of the GFNs in the range have been accessed. 1161 * 1162 * No need to mark the corresponding PFN as accessed as this call is coming 1163 * from the clear_young() or clear_flush_young() notifier, which uses the 1164 * return value to determine if the page has been accessed. 1165 */ 1166 static void kvm_tdp_mmu_age_spte(struct tdp_iter *iter) 1167 { 1168 u64 new_spte; 1169 1170 if (spte_ad_enabled(iter->old_spte)) { 1171 iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep, 1172 iter->old_spte, 1173 shadow_accessed_mask, 1174 iter->level); 1175 new_spte = iter->old_spte & ~shadow_accessed_mask; 1176 } else { 1177 new_spte = mark_spte_for_access_track(iter->old_spte); 1178 iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep, 1179 iter->old_spte, new_spte, 1180 iter->level); 1181 } 1182 1183 trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level, 1184 iter->old_spte, new_spte); 1185 } 1186 1187 static bool __kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, 1188 struct kvm_gfn_range *range, 1189 bool test_only) 1190 { 1191 struct kvm_mmu_page *root; 1192 struct tdp_iter iter; 1193 bool ret = false; 1194 1195 /* 1196 * Don't support rescheduling, none of the MMU notifiers that funnel 1197 * into this helper allow blocking; it'd be dead, wasteful code. Note, 1198 * this helper must NOT be used to unmap GFNs, as it processes only 1199 * valid roots! 1200 */ 1201 for_each_valid_tdp_mmu_root(kvm, root, range->slot->as_id) { 1202 guard(rcu)(); 1203 1204 tdp_root_for_each_leaf_pte(iter, root, range->start, range->end) { 1205 if (!is_accessed_spte(iter.old_spte)) 1206 continue; 1207 1208 if (test_only) 1209 return true; 1210 1211 ret = true; 1212 kvm_tdp_mmu_age_spte(&iter); 1213 } 1214 } 1215 1216 return ret; 1217 } 1218 1219 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1220 { 1221 return __kvm_tdp_mmu_age_gfn_range(kvm, range, false); 1222 } 1223 1224 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1225 { 1226 return __kvm_tdp_mmu_age_gfn_range(kvm, range, true); 1227 } 1228 1229 /* 1230 * Remove write access from all SPTEs at or above min_level that map GFNs 1231 * [start, end). Returns true if an SPTE has been changed and the TLBs need to 1232 * be flushed. 1233 */ 1234 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1235 gfn_t start, gfn_t end, int min_level) 1236 { 1237 struct tdp_iter iter; 1238 u64 new_spte; 1239 bool spte_set = false; 1240 1241 rcu_read_lock(); 1242 1243 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1244 1245 for_each_tdp_pte_min_level(iter, root, min_level, start, end) { 1246 retry: 1247 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1248 continue; 1249 1250 if (!is_shadow_present_pte(iter.old_spte) || 1251 !is_last_spte(iter.old_spte, iter.level) || 1252 !(iter.old_spte & PT_WRITABLE_MASK)) 1253 continue; 1254 1255 new_spte = iter.old_spte & ~PT_WRITABLE_MASK; 1256 1257 if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) 1258 goto retry; 1259 1260 spte_set = true; 1261 } 1262 1263 rcu_read_unlock(); 1264 return spte_set; 1265 } 1266 1267 /* 1268 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will 1269 * only affect leaf SPTEs down to min_level. 1270 * Returns true if an SPTE has been changed and the TLBs need to be flushed. 1271 */ 1272 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, 1273 const struct kvm_memory_slot *slot, int min_level) 1274 { 1275 struct kvm_mmu_page *root; 1276 bool spte_set = false; 1277 1278 lockdep_assert_held_read(&kvm->mmu_lock); 1279 1280 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1281 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, 1282 slot->base_gfn + slot->npages, min_level); 1283 1284 return spte_set; 1285 } 1286 1287 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(void) 1288 { 1289 struct kvm_mmu_page *sp; 1290 1291 sp = kmem_cache_zalloc(mmu_page_header_cache, GFP_KERNEL_ACCOUNT); 1292 if (!sp) 1293 return NULL; 1294 1295 sp->spt = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 1296 if (!sp->spt) { 1297 kmem_cache_free(mmu_page_header_cache, sp); 1298 return NULL; 1299 } 1300 1301 return sp; 1302 } 1303 1304 /* Note, the caller is responsible for initializing @sp. */ 1305 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, 1306 struct kvm_mmu_page *sp, bool shared) 1307 { 1308 const u64 huge_spte = iter->old_spte; 1309 const int level = iter->level; 1310 int ret, i; 1311 1312 /* 1313 * No need for atomics when writing to sp->spt since the page table has 1314 * not been linked in yet and thus is not reachable from any other CPU. 1315 */ 1316 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) 1317 sp->spt[i] = make_small_spte(kvm, huge_spte, sp->role, i); 1318 1319 /* 1320 * Replace the huge spte with a pointer to the populated lower level 1321 * page table. Since we are making this change without a TLB flush vCPUs 1322 * will see a mix of the split mappings and the original huge mapping, 1323 * depending on what's currently in their TLB. This is fine from a 1324 * correctness standpoint since the translation will be the same either 1325 * way. 1326 */ 1327 ret = tdp_mmu_link_sp(kvm, iter, sp, shared); 1328 if (ret) 1329 goto out; 1330 1331 /* 1332 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we 1333 * are overwriting from the page stats. But we have to manually update 1334 * the page stats with the new present child pages. 1335 */ 1336 kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE); 1337 1338 out: 1339 trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret); 1340 return ret; 1341 } 1342 1343 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm, 1344 struct kvm_mmu_page *root, 1345 gfn_t start, gfn_t end, 1346 int target_level, bool shared) 1347 { 1348 struct kvm_mmu_page *sp = NULL; 1349 struct tdp_iter iter; 1350 1351 rcu_read_lock(); 1352 1353 /* 1354 * Traverse the page table splitting all huge pages above the target 1355 * level into one lower level. For example, if we encounter a 1GB page 1356 * we split it into 512 2MB pages. 1357 * 1358 * Since the TDP iterator uses a pre-order traversal, we are guaranteed 1359 * to visit an SPTE before ever visiting its children, which means we 1360 * will correctly recursively split huge pages that are more than one 1361 * level above the target level (e.g. splitting a 1GB to 512 2MB pages, 1362 * and then splitting each of those to 512 4KB pages). 1363 */ 1364 for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) { 1365 retry: 1366 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 1367 continue; 1368 1369 if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte)) 1370 continue; 1371 1372 if (!sp) { 1373 rcu_read_unlock(); 1374 1375 if (shared) 1376 read_unlock(&kvm->mmu_lock); 1377 else 1378 write_unlock(&kvm->mmu_lock); 1379 1380 sp = tdp_mmu_alloc_sp_for_split(); 1381 1382 if (shared) 1383 read_lock(&kvm->mmu_lock); 1384 else 1385 write_lock(&kvm->mmu_lock); 1386 1387 if (!sp) { 1388 trace_kvm_mmu_split_huge_page(iter.gfn, 1389 iter.old_spte, 1390 iter.level, -ENOMEM); 1391 return -ENOMEM; 1392 } 1393 1394 rcu_read_lock(); 1395 1396 iter.yielded = true; 1397 continue; 1398 } 1399 1400 tdp_mmu_init_child_sp(sp, &iter); 1401 1402 if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared)) 1403 goto retry; 1404 1405 sp = NULL; 1406 } 1407 1408 rcu_read_unlock(); 1409 1410 /* 1411 * It's possible to exit the loop having never used the last sp if, for 1412 * example, a vCPU doing HugePage NX splitting wins the race and 1413 * installs its own sp in place of the last sp we tried to split. 1414 */ 1415 if (sp) 1416 tdp_mmu_free_sp(sp); 1417 1418 return 0; 1419 } 1420 1421 1422 /* 1423 * Try to split all huge pages mapped by the TDP MMU down to the target level. 1424 */ 1425 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, 1426 const struct kvm_memory_slot *slot, 1427 gfn_t start, gfn_t end, 1428 int target_level, bool shared) 1429 { 1430 struct kvm_mmu_page *root; 1431 int r = 0; 1432 1433 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 1434 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) { 1435 r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared); 1436 if (r) { 1437 kvm_tdp_mmu_put_root(kvm, root); 1438 break; 1439 } 1440 } 1441 } 1442 1443 static bool tdp_mmu_need_write_protect(struct kvm_mmu_page *sp) 1444 { 1445 /* 1446 * All TDP MMU shadow pages share the same role as their root, aside 1447 * from level, so it is valid to key off any shadow page to determine if 1448 * write protection is needed for an entire tree. 1449 */ 1450 return kvm_mmu_page_ad_need_write_protect(sp) || !kvm_ad_enabled; 1451 } 1452 1453 static void clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1454 gfn_t start, gfn_t end) 1455 { 1456 const u64 dbit = tdp_mmu_need_write_protect(root) ? PT_WRITABLE_MASK : 1457 shadow_dirty_mask; 1458 struct tdp_iter iter; 1459 1460 rcu_read_lock(); 1461 1462 tdp_root_for_each_pte(iter, root, start, end) { 1463 retry: 1464 if (!is_shadow_present_pte(iter.old_spte) || 1465 !is_last_spte(iter.old_spte, iter.level)) 1466 continue; 1467 1468 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1469 continue; 1470 1471 KVM_MMU_WARN_ON(dbit == shadow_dirty_mask && 1472 spte_ad_need_write_protect(iter.old_spte)); 1473 1474 if (!(iter.old_spte & dbit)) 1475 continue; 1476 1477 if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit)) 1478 goto retry; 1479 } 1480 1481 rcu_read_unlock(); 1482 } 1483 1484 /* 1485 * Clear the dirty status (D-bit or W-bit) of all the SPTEs mapping GFNs in the 1486 * memslot. 1487 */ 1488 void kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, 1489 const struct kvm_memory_slot *slot) 1490 { 1491 struct kvm_mmu_page *root; 1492 1493 lockdep_assert_held_read(&kvm->mmu_lock); 1494 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1495 clear_dirty_gfn_range(kvm, root, slot->base_gfn, 1496 slot->base_gfn + slot->npages); 1497 } 1498 1499 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, 1500 gfn_t gfn, unsigned long mask, bool wrprot) 1501 { 1502 const u64 dbit = (wrprot || tdp_mmu_need_write_protect(root)) ? PT_WRITABLE_MASK : 1503 shadow_dirty_mask; 1504 struct tdp_iter iter; 1505 1506 lockdep_assert_held_write(&kvm->mmu_lock); 1507 1508 rcu_read_lock(); 1509 1510 tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask), 1511 gfn + BITS_PER_LONG) { 1512 if (!mask) 1513 break; 1514 1515 KVM_MMU_WARN_ON(dbit == shadow_dirty_mask && 1516 spte_ad_need_write_protect(iter.old_spte)); 1517 1518 if (iter.level > PG_LEVEL_4K || 1519 !(mask & (1UL << (iter.gfn - gfn)))) 1520 continue; 1521 1522 mask &= ~(1UL << (iter.gfn - gfn)); 1523 1524 if (!(iter.old_spte & dbit)) 1525 continue; 1526 1527 iter.old_spte = tdp_mmu_clear_spte_bits(iter.sptep, 1528 iter.old_spte, dbit, 1529 iter.level); 1530 1531 trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level, 1532 iter.old_spte, 1533 iter.old_spte & ~dbit); 1534 } 1535 1536 rcu_read_unlock(); 1537 } 1538 1539 /* 1540 * Clear the dirty status (D-bit or W-bit) of all the 4k SPTEs mapping GFNs for 1541 * which a bit is set in mask, starting at gfn. The given memslot is expected to 1542 * contain all the GFNs represented by set bits in the mask. 1543 */ 1544 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1545 struct kvm_memory_slot *slot, 1546 gfn_t gfn, unsigned long mask, 1547 bool wrprot) 1548 { 1549 struct kvm_mmu_page *root; 1550 1551 for_each_valid_tdp_mmu_root(kvm, root, slot->as_id) 1552 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); 1553 } 1554 1555 static int tdp_mmu_make_huge_spte(struct kvm *kvm, 1556 struct tdp_iter *parent, 1557 u64 *huge_spte) 1558 { 1559 struct kvm_mmu_page *root = spte_to_child_sp(parent->old_spte); 1560 gfn_t start = parent->gfn; 1561 gfn_t end = start + KVM_PAGES_PER_HPAGE(parent->level); 1562 struct tdp_iter iter; 1563 1564 tdp_root_for_each_leaf_pte(iter, root, start, end) { 1565 /* 1566 * Use the parent iterator when checking for forward progress so 1567 * that KVM doesn't get stuck continuously trying to yield (i.e. 1568 * returning -EAGAIN here and then failing the forward progress 1569 * check in the caller ad nauseam). 1570 */ 1571 if (tdp_mmu_iter_need_resched(kvm, parent)) 1572 return -EAGAIN; 1573 1574 *huge_spte = make_huge_spte(kvm, iter.old_spte, parent->level); 1575 return 0; 1576 } 1577 1578 return -ENOENT; 1579 } 1580 1581 static void recover_huge_pages_range(struct kvm *kvm, 1582 struct kvm_mmu_page *root, 1583 const struct kvm_memory_slot *slot) 1584 { 1585 gfn_t start = slot->base_gfn; 1586 gfn_t end = start + slot->npages; 1587 struct tdp_iter iter; 1588 int max_mapping_level; 1589 bool flush = false; 1590 u64 huge_spte; 1591 int r; 1592 1593 if (WARN_ON_ONCE(kvm_slot_dirty_track_enabled(slot))) 1594 return; 1595 1596 rcu_read_lock(); 1597 1598 for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) { 1599 retry: 1600 if (tdp_mmu_iter_cond_resched(kvm, &iter, flush, true)) { 1601 flush = false; 1602 continue; 1603 } 1604 1605 if (iter.level > KVM_MAX_HUGEPAGE_LEVEL || 1606 !is_shadow_present_pte(iter.old_spte)) 1607 continue; 1608 1609 /* 1610 * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with 1611 * a large page size, then its parent would have been zapped 1612 * instead of stepping down. 1613 */ 1614 if (is_last_spte(iter.old_spte, iter.level)) 1615 continue; 1616 1617 /* 1618 * If iter.gfn resides outside of the slot, i.e. the page for 1619 * the current level overlaps but is not contained by the slot, 1620 * then the SPTE can't be made huge. More importantly, trying 1621 * to query that info from slot->arch.lpage_info will cause an 1622 * out-of-bounds access. 1623 */ 1624 if (iter.gfn < start || iter.gfn >= end) 1625 continue; 1626 1627 max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot, iter.gfn); 1628 if (max_mapping_level < iter.level) 1629 continue; 1630 1631 r = tdp_mmu_make_huge_spte(kvm, &iter, &huge_spte); 1632 if (r == -EAGAIN) 1633 goto retry; 1634 else if (r) 1635 continue; 1636 1637 if (tdp_mmu_set_spte_atomic(kvm, &iter, huge_spte)) 1638 goto retry; 1639 1640 flush = true; 1641 } 1642 1643 if (flush) 1644 kvm_flush_remote_tlbs_memslot(kvm, slot); 1645 1646 rcu_read_unlock(); 1647 } 1648 1649 /* 1650 * Recover huge page mappings within the slot by replacing non-leaf SPTEs with 1651 * huge SPTEs where possible. 1652 */ 1653 void kvm_tdp_mmu_recover_huge_pages(struct kvm *kvm, 1654 const struct kvm_memory_slot *slot) 1655 { 1656 struct kvm_mmu_page *root; 1657 1658 lockdep_assert_held_read(&kvm->mmu_lock); 1659 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1660 recover_huge_pages_range(kvm, root, slot); 1661 } 1662 1663 /* 1664 * Removes write access on the last level SPTE mapping this GFN and unsets the 1665 * MMU-writable bit to ensure future writes continue to be intercepted. 1666 * Returns true if an SPTE was set and a TLB flush is needed. 1667 */ 1668 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root, 1669 gfn_t gfn, int min_level) 1670 { 1671 struct tdp_iter iter; 1672 u64 new_spte; 1673 bool spte_set = false; 1674 1675 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1676 1677 rcu_read_lock(); 1678 1679 for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) { 1680 if (!is_shadow_present_pte(iter.old_spte) || 1681 !is_last_spte(iter.old_spte, iter.level)) 1682 continue; 1683 1684 new_spte = iter.old_spte & 1685 ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); 1686 1687 if (new_spte == iter.old_spte) 1688 break; 1689 1690 tdp_mmu_iter_set_spte(kvm, &iter, new_spte); 1691 spte_set = true; 1692 } 1693 1694 rcu_read_unlock(); 1695 1696 return spte_set; 1697 } 1698 1699 /* 1700 * Removes write access on the last level SPTE mapping this GFN and unsets the 1701 * MMU-writable bit to ensure future writes continue to be intercepted. 1702 * Returns true if an SPTE was set and a TLB flush is needed. 1703 */ 1704 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, 1705 struct kvm_memory_slot *slot, gfn_t gfn, 1706 int min_level) 1707 { 1708 struct kvm_mmu_page *root; 1709 bool spte_set = false; 1710 1711 lockdep_assert_held_write(&kvm->mmu_lock); 1712 for_each_valid_tdp_mmu_root(kvm, root, slot->as_id) 1713 spte_set |= write_protect_gfn(kvm, root, gfn, min_level); 1714 1715 return spte_set; 1716 } 1717 1718 /* 1719 * Return the level of the lowest level SPTE added to sptes. 1720 * That SPTE may be non-present. 1721 * 1722 * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1723 */ 1724 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 1725 int *root_level) 1726 { 1727 struct tdp_iter iter; 1728 struct kvm_mmu *mmu = vcpu->arch.mmu; 1729 gfn_t gfn = addr >> PAGE_SHIFT; 1730 int leaf = -1; 1731 1732 *root_level = vcpu->arch.mmu->root_role.level; 1733 1734 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { 1735 leaf = iter.level; 1736 sptes[leaf] = iter.old_spte; 1737 } 1738 1739 return leaf; 1740 } 1741 1742 /* 1743 * Returns the last level spte pointer of the shadow page walk for the given 1744 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 1745 * walk could be performed, returns NULL and *spte does not contain valid data. 1746 * 1747 * Contract: 1748 * - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1749 * - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end. 1750 * 1751 * WARNING: This function is only intended to be called during fast_page_fault. 1752 */ 1753 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gfn_t gfn, 1754 u64 *spte) 1755 { 1756 struct tdp_iter iter; 1757 struct kvm_mmu *mmu = vcpu->arch.mmu; 1758 tdp_ptep_t sptep = NULL; 1759 1760 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { 1761 *spte = iter.old_spte; 1762 sptep = iter.sptep; 1763 } 1764 1765 /* 1766 * Perform the rcu_dereference to get the raw spte pointer value since 1767 * we are passing it up to fast_page_fault, which is shared with the 1768 * legacy MMU and thus does not retain the TDP MMU-specific __rcu 1769 * annotation. 1770 * 1771 * This is safe since fast_page_fault obeys the contracts of this 1772 * function as well as all TDP MMU contracts around modifying SPTEs 1773 * outside of mmu_lock. 1774 */ 1775 return rcu_dereference(sptep); 1776 } 1777