1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include "mmu.h" 5 #include "mmu_internal.h" 6 #include "mmutrace.h" 7 #include "tdp_iter.h" 8 #include "tdp_mmu.h" 9 #include "spte.h" 10 11 #include <asm/cmpxchg.h> 12 #include <trace/events/kvm.h> 13 14 /* Initializes the TDP MMU for the VM, if enabled. */ 15 void kvm_mmu_init_tdp_mmu(struct kvm *kvm) 16 { 17 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); 18 spin_lock_init(&kvm->arch.tdp_mmu_pages_lock); 19 } 20 21 /* Arbitrarily returns true so that this may be used in if statements. */ 22 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm, 23 bool shared) 24 { 25 if (shared) 26 lockdep_assert_held_read(&kvm->mmu_lock); 27 else 28 lockdep_assert_held_write(&kvm->mmu_lock); 29 30 return true; 31 } 32 33 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) 34 { 35 /* 36 * Invalidate all roots, which besides the obvious, schedules all roots 37 * for zapping and thus puts the TDP MMU's reference to each root, i.e. 38 * ultimately frees all roots. 39 */ 40 kvm_tdp_mmu_invalidate_roots(kvm, KVM_VALID_ROOTS); 41 kvm_tdp_mmu_zap_invalidated_roots(kvm, false); 42 43 #ifdef CONFIG_KVM_PROVE_MMU 44 KVM_MMU_WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages)); 45 #endif 46 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); 47 48 /* 49 * Ensure that all the outstanding RCU callbacks to free shadow pages 50 * can run before the VM is torn down. Putting the last reference to 51 * zapped roots will create new callbacks. 52 */ 53 rcu_barrier(); 54 } 55 56 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp) 57 { 58 free_page((unsigned long)sp->external_spt); 59 free_page((unsigned long)sp->spt); 60 kmem_cache_free(mmu_page_header_cache, sp); 61 } 62 63 /* 64 * This is called through call_rcu in order to free TDP page table memory 65 * safely with respect to other kernel threads that may be operating on 66 * the memory. 67 * By only accessing TDP MMU page table memory in an RCU read critical 68 * section, and freeing it after a grace period, lockless access to that 69 * memory won't use it after it is freed. 70 */ 71 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head) 72 { 73 struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page, 74 rcu_head); 75 76 tdp_mmu_free_sp(sp); 77 } 78 79 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root) 80 { 81 if (!refcount_dec_and_test(&root->tdp_mmu_root_count)) 82 return; 83 84 /* 85 * The TDP MMU itself holds a reference to each root until the root is 86 * explicitly invalidated, i.e. the final reference should be never be 87 * put for a valid root. 88 */ 89 KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm); 90 91 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 92 list_del_rcu(&root->link); 93 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 94 call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback); 95 } 96 97 static bool tdp_mmu_root_match(struct kvm_mmu_page *root, 98 enum kvm_tdp_mmu_root_types types) 99 { 100 if (WARN_ON_ONCE(!(types & KVM_VALID_ROOTS))) 101 return false; 102 103 if (root->role.invalid && !(types & KVM_INVALID_ROOTS)) 104 return false; 105 106 if (likely(!is_mirror_sp(root))) 107 return types & KVM_DIRECT_ROOTS; 108 return types & KVM_MIRROR_ROOTS; 109 } 110 111 /* 112 * Returns the next root after @prev_root (or the first root if @prev_root is 113 * NULL) that matches with @types. A reference to the returned root is 114 * acquired, and the reference to @prev_root is released (the caller obviously 115 * must hold a reference to @prev_root if it's non-NULL). 116 * 117 * Roots that doesn't match with @types are skipped. 118 * 119 * Returns NULL if the end of tdp_mmu_roots was reached. 120 */ 121 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, 122 struct kvm_mmu_page *prev_root, 123 enum kvm_tdp_mmu_root_types types) 124 { 125 struct kvm_mmu_page *next_root; 126 127 /* 128 * While the roots themselves are RCU-protected, fields such as 129 * role.invalid are protected by mmu_lock. 130 */ 131 lockdep_assert_held(&kvm->mmu_lock); 132 133 rcu_read_lock(); 134 135 if (prev_root) 136 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 137 &prev_root->link, 138 typeof(*prev_root), link); 139 else 140 next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots, 141 typeof(*next_root), link); 142 143 while (next_root) { 144 if (tdp_mmu_root_match(next_root, types) && 145 kvm_tdp_mmu_get_root(next_root)) 146 break; 147 148 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 149 &next_root->link, typeof(*next_root), link); 150 } 151 152 rcu_read_unlock(); 153 154 if (prev_root) 155 kvm_tdp_mmu_put_root(kvm, prev_root); 156 157 return next_root; 158 } 159 160 /* 161 * Note: this iterator gets and puts references to the roots it iterates over. 162 * This makes it safe to release the MMU lock and yield within the loop, but 163 * if exiting the loop early, the caller must drop the reference to the most 164 * recent root. (Unless keeping a live reference is desirable.) 165 * 166 * If shared is set, this function is operating under the MMU lock in read 167 * mode. 168 */ 169 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _types) \ 170 for (_root = tdp_mmu_next_root(_kvm, NULL, _types); \ 171 ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \ 172 _root = tdp_mmu_next_root(_kvm, _root, _types)) \ 173 if (_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) { \ 174 } else 175 176 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id) \ 177 __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, KVM_VALID_ROOTS) 178 179 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root) \ 180 for (_root = tdp_mmu_next_root(_kvm, NULL, KVM_ALL_ROOTS); \ 181 ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \ 182 _root = tdp_mmu_next_root(_kvm, _root, KVM_ALL_ROOTS)) 183 184 /* 185 * Iterate over all TDP MMU roots. Requires that mmu_lock be held for write, 186 * the implication being that any flow that holds mmu_lock for read is 187 * inherently yield-friendly and should use the yield-safe variant above. 188 * Holding mmu_lock for write obviates the need for RCU protection as the list 189 * is guaranteed to be stable. 190 */ 191 #define __for_each_tdp_mmu_root(_kvm, _root, _as_id, _types) \ 192 list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \ 193 if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \ 194 ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) || \ 195 !tdp_mmu_root_match((_root), (_types)))) { \ 196 } else 197 198 /* 199 * Iterate over all TDP MMU roots in an RCU read-side critical section. 200 * It is safe to iterate over the SPTEs under the root, but their values will 201 * be unstable, so all writes must be atomic. As this routine is meant to be 202 * used without holding the mmu_lock at all, any bits that are flipped must 203 * be reflected in kvm_tdp_mmu_spte_need_atomic_write(). 204 */ 205 #define for_each_tdp_mmu_root_rcu(_kvm, _root, _as_id, _types) \ 206 list_for_each_entry_rcu(_root, &_kvm->arch.tdp_mmu_roots, link) \ 207 if ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) || \ 208 !tdp_mmu_root_match((_root), (_types))) { \ 209 } else 210 211 #define for_each_valid_tdp_mmu_root(_kvm, _root, _as_id) \ 212 __for_each_tdp_mmu_root(_kvm, _root, _as_id, KVM_VALID_ROOTS) 213 214 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu) 215 { 216 struct kvm_mmu_page *sp; 217 218 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 219 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 220 221 return sp; 222 } 223 224 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep, 225 gfn_t gfn, union kvm_mmu_page_role role) 226 { 227 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 228 229 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 230 231 sp->role = role; 232 sp->gfn = gfn; 233 sp->ptep = sptep; 234 sp->tdp_mmu_page = true; 235 236 trace_kvm_mmu_get_page(sp, true); 237 } 238 239 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp, 240 struct tdp_iter *iter) 241 { 242 struct kvm_mmu_page *parent_sp; 243 union kvm_mmu_page_role role; 244 245 parent_sp = sptep_to_sp(rcu_dereference(iter->sptep)); 246 247 role = parent_sp->role; 248 role.level--; 249 250 tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role); 251 } 252 253 void kvm_tdp_mmu_alloc_root(struct kvm_vcpu *vcpu, bool mirror) 254 { 255 struct kvm_mmu *mmu = vcpu->arch.mmu; 256 union kvm_mmu_page_role role = mmu->root_role; 257 int as_id = kvm_mmu_role_as_id(role); 258 struct kvm *kvm = vcpu->kvm; 259 struct kvm_mmu_page *root; 260 261 if (mirror) 262 role.is_mirror = true; 263 264 /* 265 * Check for an existing root before acquiring the pages lock to avoid 266 * unnecessary serialization if multiple vCPUs are loading a new root. 267 * E.g. when bringing up secondary vCPUs, KVM will already have created 268 * a valid root on behalf of the primary vCPU. 269 */ 270 read_lock(&kvm->mmu_lock); 271 272 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, as_id) { 273 if (root->role.word == role.word) 274 goto out_read_unlock; 275 } 276 277 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 278 279 /* 280 * Recheck for an existing root after acquiring the pages lock, another 281 * vCPU may have raced ahead and created a new usable root. Manually 282 * walk the list of roots as the standard macros assume that the pages 283 * lock is *not* held. WARN if grabbing a reference to a usable root 284 * fails, as the last reference to a root can only be put *after* the 285 * root has been invalidated, which requires holding mmu_lock for write. 286 */ 287 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { 288 if (root->role.word == role.word && 289 !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root))) 290 goto out_spin_unlock; 291 } 292 293 root = tdp_mmu_alloc_sp(vcpu); 294 tdp_mmu_init_sp(root, NULL, 0, role); 295 296 /* 297 * TDP MMU roots are kept until they are explicitly invalidated, either 298 * by a memslot update or by the destruction of the VM. Initialize the 299 * refcount to two; one reference for the vCPU, and one reference for 300 * the TDP MMU itself, which is held until the root is invalidated and 301 * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots(). 302 */ 303 refcount_set(&root->tdp_mmu_root_count, 2); 304 list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots); 305 306 out_spin_unlock: 307 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 308 out_read_unlock: 309 read_unlock(&kvm->mmu_lock); 310 /* 311 * Note, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS will prevent entering the guest 312 * and actually consuming the root if it's invalidated after dropping 313 * mmu_lock, and the root can't be freed as this vCPU holds a reference. 314 */ 315 if (mirror) { 316 mmu->mirror_root_hpa = __pa(root->spt); 317 } else { 318 mmu->root.hpa = __pa(root->spt); 319 mmu->root.pgd = 0; 320 } 321 } 322 323 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 324 u64 old_spte, u64 new_spte, int level, 325 bool shared); 326 327 static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 328 { 329 kvm_account_pgtable_pages((void *)sp->spt, +1); 330 #ifdef CONFIG_KVM_PROVE_MMU 331 atomic64_inc(&kvm->arch.tdp_mmu_pages); 332 #endif 333 } 334 335 static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 336 { 337 kvm_account_pgtable_pages((void *)sp->spt, -1); 338 #ifdef CONFIG_KVM_PROVE_MMU 339 atomic64_dec(&kvm->arch.tdp_mmu_pages); 340 #endif 341 } 342 343 /** 344 * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages 345 * 346 * @kvm: kvm instance 347 * @sp: the page to be removed 348 */ 349 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 350 { 351 tdp_unaccount_mmu_page(kvm, sp); 352 353 if (!sp->nx_huge_page_disallowed) 354 return; 355 356 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 357 sp->nx_huge_page_disallowed = false; 358 untrack_possible_nx_huge_page(kvm, sp); 359 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 360 } 361 362 static void remove_external_spte(struct kvm *kvm, gfn_t gfn, u64 old_spte, 363 int level) 364 { 365 kvm_pfn_t old_pfn = spte_to_pfn(old_spte); 366 int ret; 367 368 /* 369 * External (TDX) SPTEs are limited to PG_LEVEL_4K, and external 370 * PTs are removed in a special order, involving free_external_spt(). 371 * But remove_external_spte() will be called on non-leaf PTEs via 372 * __tdp_mmu_zap_root(), so avoid the error the former would return 373 * in this case. 374 */ 375 if (!is_last_spte(old_spte, level)) 376 return; 377 378 /* Zapping leaf spte is allowed only when write lock is held. */ 379 lockdep_assert_held_write(&kvm->mmu_lock); 380 /* Because write lock is held, operation should success. */ 381 ret = static_call(kvm_x86_remove_external_spte)(kvm, gfn, level, old_pfn); 382 KVM_BUG_ON(ret, kvm); 383 } 384 385 /** 386 * handle_removed_pt() - handle a page table removed from the TDP structure 387 * 388 * @kvm: kvm instance 389 * @pt: the page removed from the paging structure 390 * @shared: This operation may not be running under the exclusive use 391 * of the MMU lock and the operation must synchronize with other 392 * threads that might be modifying SPTEs. 393 * 394 * Given a page table that has been removed from the TDP paging structure, 395 * iterates through the page table to clear SPTEs and free child page tables. 396 * 397 * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU 398 * protection. Since this thread removed it from the paging structure, 399 * this thread will be responsible for ensuring the page is freed. Hence the 400 * early rcu_dereferences in the function. 401 */ 402 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) 403 { 404 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt)); 405 int level = sp->role.level; 406 gfn_t base_gfn = sp->gfn; 407 int i; 408 409 trace_kvm_mmu_prepare_zap_page(sp); 410 411 tdp_mmu_unlink_sp(kvm, sp); 412 413 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 414 tdp_ptep_t sptep = pt + i; 415 gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level); 416 u64 old_spte; 417 418 if (shared) { 419 /* 420 * Set the SPTE to a nonpresent value that other 421 * threads will not overwrite. If the SPTE was 422 * already marked as frozen then another thread 423 * handling a page fault could overwrite it, so 424 * set the SPTE until it is set from some other 425 * value to the frozen SPTE value. 426 */ 427 for (;;) { 428 old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, FROZEN_SPTE); 429 if (!is_frozen_spte(old_spte)) 430 break; 431 cpu_relax(); 432 } 433 } else { 434 /* 435 * If the SPTE is not MMU-present, there is no backing 436 * page associated with the SPTE and so no side effects 437 * that need to be recorded, and exclusive ownership of 438 * mmu_lock ensures the SPTE can't be made present. 439 * Note, zapping MMIO SPTEs is also unnecessary as they 440 * are guarded by the memslots generation, not by being 441 * unreachable. 442 */ 443 old_spte = kvm_tdp_mmu_read_spte(sptep); 444 if (!is_shadow_present_pte(old_spte)) 445 continue; 446 447 /* 448 * Use the common helper instead of a raw WRITE_ONCE as 449 * the SPTE needs to be updated atomically if it can be 450 * modified by a different vCPU outside of mmu_lock. 451 * Even though the parent SPTE is !PRESENT, the TLB 452 * hasn't yet been flushed, and both Intel and AMD 453 * document that A/D assists can use upper-level PxE 454 * entries that are cached in the TLB, i.e. the CPU can 455 * still access the page and mark it dirty. 456 * 457 * No retry is needed in the atomic update path as the 458 * sole concern is dropping a Dirty bit, i.e. no other 459 * task can zap/remove the SPTE as mmu_lock is held for 460 * write. Marking the SPTE as a frozen SPTE is not 461 * strictly necessary for the same reason, but using 462 * the frozen SPTE value keeps the shared/exclusive 463 * paths consistent and allows the handle_changed_spte() 464 * call below to hardcode the new value to FROZEN_SPTE. 465 * 466 * Note, even though dropping a Dirty bit is the only 467 * scenario where a non-atomic update could result in a 468 * functional bug, simply checking the Dirty bit isn't 469 * sufficient as a fast page fault could read the upper 470 * level SPTE before it is zapped, and then make this 471 * target SPTE writable, resume the guest, and set the 472 * Dirty bit between reading the SPTE above and writing 473 * it here. 474 */ 475 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, 476 FROZEN_SPTE, level); 477 } 478 handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn, 479 old_spte, FROZEN_SPTE, level, shared); 480 481 if (is_mirror_sp(sp)) { 482 KVM_BUG_ON(shared, kvm); 483 remove_external_spte(kvm, gfn, old_spte, level); 484 } 485 } 486 487 if (is_mirror_sp(sp) && 488 WARN_ON(static_call(kvm_x86_free_external_spt)(kvm, base_gfn, sp->role.level, 489 sp->external_spt))) { 490 /* 491 * Failed to free page table page in mirror page table and 492 * there is nothing to do further. 493 * Intentionally leak the page to prevent the kernel from 494 * accessing the encrypted page. 495 */ 496 sp->external_spt = NULL; 497 } 498 499 call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback); 500 } 501 502 static void *get_external_spt(gfn_t gfn, u64 new_spte, int level) 503 { 504 if (is_shadow_present_pte(new_spte) && !is_last_spte(new_spte, level)) { 505 struct kvm_mmu_page *sp = spte_to_child_sp(new_spte); 506 507 WARN_ON_ONCE(sp->role.level + 1 != level); 508 WARN_ON_ONCE(sp->gfn != gfn); 509 return sp->external_spt; 510 } 511 512 return NULL; 513 } 514 515 static int __must_check set_external_spte_present(struct kvm *kvm, tdp_ptep_t sptep, 516 gfn_t gfn, u64 old_spte, 517 u64 new_spte, int level) 518 { 519 bool was_present = is_shadow_present_pte(old_spte); 520 bool is_present = is_shadow_present_pte(new_spte); 521 bool is_leaf = is_present && is_last_spte(new_spte, level); 522 kvm_pfn_t new_pfn = spte_to_pfn(new_spte); 523 int ret = 0; 524 525 KVM_BUG_ON(was_present, kvm); 526 527 lockdep_assert_held(&kvm->mmu_lock); 528 /* 529 * We need to lock out other updates to the SPTE until the external 530 * page table has been modified. Use FROZEN_SPTE similar to 531 * the zapping case. 532 */ 533 if (!try_cmpxchg64(rcu_dereference(sptep), &old_spte, FROZEN_SPTE)) 534 return -EBUSY; 535 536 /* 537 * Use different call to either set up middle level 538 * external page table, or leaf. 539 */ 540 if (is_leaf) { 541 ret = static_call(kvm_x86_set_external_spte)(kvm, gfn, level, new_pfn); 542 } else { 543 void *external_spt = get_external_spt(gfn, new_spte, level); 544 545 KVM_BUG_ON(!external_spt, kvm); 546 ret = static_call(kvm_x86_link_external_spt)(kvm, gfn, level, external_spt); 547 } 548 if (ret) 549 __kvm_tdp_mmu_write_spte(sptep, old_spte); 550 else 551 __kvm_tdp_mmu_write_spte(sptep, new_spte); 552 return ret; 553 } 554 555 /** 556 * handle_changed_spte - handle bookkeeping associated with an SPTE change 557 * @kvm: kvm instance 558 * @as_id: the address space of the paging structure the SPTE was a part of 559 * @gfn: the base GFN that was mapped by the SPTE 560 * @old_spte: The value of the SPTE before the change 561 * @new_spte: The value of the SPTE after the change 562 * @level: the level of the PT the SPTE is part of in the paging structure 563 * @shared: This operation may not be running under the exclusive use of 564 * the MMU lock and the operation must synchronize with other 565 * threads that might be modifying SPTEs. 566 * 567 * Handle bookkeeping that might result from the modification of a SPTE. Note, 568 * dirty logging updates are handled in common code, not here (see make_spte() 569 * and fast_pf_fix_direct_spte()). 570 */ 571 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 572 u64 old_spte, u64 new_spte, int level, 573 bool shared) 574 { 575 bool was_present = is_shadow_present_pte(old_spte); 576 bool is_present = is_shadow_present_pte(new_spte); 577 bool was_leaf = was_present && is_last_spte(old_spte, level); 578 bool is_leaf = is_present && is_last_spte(new_spte, level); 579 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); 580 581 WARN_ON_ONCE(level > PT64_ROOT_MAX_LEVEL); 582 WARN_ON_ONCE(level < PG_LEVEL_4K); 583 WARN_ON_ONCE(gfn & (KVM_PAGES_PER_HPAGE(level) - 1)); 584 585 /* 586 * If this warning were to trigger it would indicate that there was a 587 * missing MMU notifier or a race with some notifier handler. 588 * A present, leaf SPTE should never be directly replaced with another 589 * present leaf SPTE pointing to a different PFN. A notifier handler 590 * should be zapping the SPTE before the main MM's page table is 591 * changed, or the SPTE should be zeroed, and the TLBs flushed by the 592 * thread before replacement. 593 */ 594 if (was_leaf && is_leaf && pfn_changed) { 595 pr_err("Invalid SPTE change: cannot replace a present leaf\n" 596 "SPTE with another present leaf SPTE mapping a\n" 597 "different PFN!\n" 598 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 599 as_id, gfn, old_spte, new_spte, level); 600 601 /* 602 * Crash the host to prevent error propagation and guest data 603 * corruption. 604 */ 605 BUG(); 606 } 607 608 if (old_spte == new_spte) 609 return; 610 611 trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte); 612 613 if (is_leaf) 614 check_spte_writable_invariants(new_spte); 615 616 /* 617 * The only times a SPTE should be changed from a non-present to 618 * non-present state is when an MMIO entry is installed/modified/ 619 * removed. In that case, there is nothing to do here. 620 */ 621 if (!was_present && !is_present) { 622 /* 623 * If this change does not involve a MMIO SPTE or frozen SPTE, 624 * it is unexpected. Log the change, though it should not 625 * impact the guest since both the former and current SPTEs 626 * are nonpresent. 627 */ 628 if (WARN_ON_ONCE(!is_mmio_spte(kvm, old_spte) && 629 !is_mmio_spte(kvm, new_spte) && 630 !is_frozen_spte(new_spte))) 631 pr_err("Unexpected SPTE change! Nonpresent SPTEs\n" 632 "should not be replaced with another,\n" 633 "different nonpresent SPTE, unless one or both\n" 634 "are MMIO SPTEs, or the new SPTE is\n" 635 "a temporary frozen SPTE.\n" 636 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 637 as_id, gfn, old_spte, new_spte, level); 638 return; 639 } 640 641 if (is_leaf != was_leaf) 642 kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1); 643 644 /* 645 * Recursively handle child PTs if the change removed a subtree from 646 * the paging structure. Note the WARN on the PFN changing without the 647 * SPTE being converted to a hugepage (leaf) or being zapped. Shadow 648 * pages are kernel allocations and should never be migrated. 649 */ 650 if (was_present && !was_leaf && 651 (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed))) 652 handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared); 653 } 654 655 static inline int __must_check __tdp_mmu_set_spte_atomic(struct kvm *kvm, 656 struct tdp_iter *iter, 657 u64 new_spte) 658 { 659 /* 660 * The caller is responsible for ensuring the old SPTE is not a FROZEN 661 * SPTE. KVM should never attempt to zap or manipulate a FROZEN SPTE, 662 * and pre-checking before inserting a new SPTE is advantageous as it 663 * avoids unnecessary work. 664 */ 665 WARN_ON_ONCE(iter->yielded || is_frozen_spte(iter->old_spte)); 666 667 if (is_mirror_sptep(iter->sptep) && !is_frozen_spte(new_spte)) { 668 int ret; 669 670 /* 671 * Users of atomic zapping don't operate on mirror roots, 672 * so don't handle it and bug the VM if it's seen. 673 */ 674 if (KVM_BUG_ON(!is_shadow_present_pte(new_spte), kvm)) 675 return -EBUSY; 676 677 ret = set_external_spte_present(kvm, iter->sptep, iter->gfn, 678 iter->old_spte, new_spte, iter->level); 679 if (ret) 680 return ret; 681 } else { 682 u64 *sptep = rcu_dereference(iter->sptep); 683 684 /* 685 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs 686 * and does not hold the mmu_lock. On failure, i.e. if a 687 * different logical CPU modified the SPTE, try_cmpxchg64() 688 * updates iter->old_spte with the current value, so the caller 689 * operates on fresh data, e.g. if it retries 690 * tdp_mmu_set_spte_atomic() 691 */ 692 if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte)) 693 return -EBUSY; 694 } 695 696 return 0; 697 } 698 699 /* 700 * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically 701 * and handle the associated bookkeeping. Do not mark the page dirty 702 * in KVM's dirty bitmaps. 703 * 704 * If setting the SPTE fails because it has changed, iter->old_spte will be 705 * refreshed to the current value of the spte. 706 * 707 * @kvm: kvm instance 708 * @iter: a tdp_iter instance currently on the SPTE that should be set 709 * @new_spte: The value the SPTE should be set to 710 * Return: 711 * * 0 - If the SPTE was set. 712 * * -EBUSY - If the SPTE cannot be set. In this case this function will have 713 * no side-effects other than setting iter->old_spte to the last 714 * known value of the spte. 715 */ 716 static inline int __must_check tdp_mmu_set_spte_atomic(struct kvm *kvm, 717 struct tdp_iter *iter, 718 u64 new_spte) 719 { 720 int ret; 721 722 lockdep_assert_held_read(&kvm->mmu_lock); 723 724 ret = __tdp_mmu_set_spte_atomic(kvm, iter, new_spte); 725 if (ret) 726 return ret; 727 728 handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, 729 new_spte, iter->level, true); 730 731 return 0; 732 } 733 734 /* 735 * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping 736 * @kvm: KVM instance 737 * @as_id: Address space ID, i.e. regular vs. SMM 738 * @sptep: Pointer to the SPTE 739 * @old_spte: The current value of the SPTE 740 * @new_spte: The new value that will be set for the SPTE 741 * @gfn: The base GFN that was (or will be) mapped by the SPTE 742 * @level: The level _containing_ the SPTE (its parent PT's level) 743 * 744 * Returns the old SPTE value, which _may_ be different than @old_spte if the 745 * SPTE had voldatile bits. 746 */ 747 static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep, 748 u64 old_spte, u64 new_spte, gfn_t gfn, int level) 749 { 750 lockdep_assert_held_write(&kvm->mmu_lock); 751 752 /* 753 * No thread should be using this function to set SPTEs to or from the 754 * temporary frozen SPTE value. 755 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic 756 * should be used. If operating under the MMU lock in write mode, the 757 * use of the frozen SPTE should not be necessary. 758 */ 759 WARN_ON_ONCE(is_frozen_spte(old_spte) || is_frozen_spte(new_spte)); 760 761 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level); 762 763 handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false); 764 765 /* 766 * Users that do non-atomic setting of PTEs don't operate on mirror 767 * roots, so don't handle it and bug the VM if it's seen. 768 */ 769 if (is_mirror_sptep(sptep)) { 770 KVM_BUG_ON(is_shadow_present_pte(new_spte), kvm); 771 remove_external_spte(kvm, gfn, old_spte, level); 772 } 773 774 return old_spte; 775 } 776 777 static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter, 778 u64 new_spte) 779 { 780 WARN_ON_ONCE(iter->yielded); 781 iter->old_spte = tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, 782 iter->old_spte, new_spte, 783 iter->gfn, iter->level); 784 } 785 786 #define tdp_root_for_each_pte(_iter, _kvm, _root, _start, _end) \ 787 for_each_tdp_pte(_iter, _kvm, _root, _start, _end) 788 789 #define tdp_root_for_each_leaf_pte(_iter, _kvm, _root, _start, _end) \ 790 tdp_root_for_each_pte(_iter, _kvm, _root, _start, _end) \ 791 if (!is_shadow_present_pte(_iter.old_spte) || \ 792 !is_last_spte(_iter.old_spte, _iter.level)) \ 793 continue; \ 794 else 795 796 static inline bool __must_check tdp_mmu_iter_need_resched(struct kvm *kvm, 797 struct tdp_iter *iter) 798 { 799 if (!need_resched() && !rwlock_needbreak(&kvm->mmu_lock)) 800 return false; 801 802 /* Ensure forward progress has been made before yielding. */ 803 return iter->next_last_level_gfn != iter->yielded_gfn; 804 } 805 806 /* 807 * Yield if the MMU lock is contended or this thread needs to return control 808 * to the scheduler. 809 * 810 * If this function should yield and flush is set, it will perform a remote 811 * TLB flush before yielding. 812 * 813 * If this function yields, iter->yielded is set and the caller must skip to 814 * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk 815 * over the paging structures to allow the iterator to continue its traversal 816 * from the paging structure root. 817 * 818 * Returns true if this function yielded. 819 */ 820 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm, 821 struct tdp_iter *iter, 822 bool flush, bool shared) 823 { 824 KVM_MMU_WARN_ON(iter->yielded); 825 826 if (!tdp_mmu_iter_need_resched(kvm, iter)) 827 return false; 828 829 if (flush) 830 kvm_flush_remote_tlbs(kvm); 831 832 rcu_read_unlock(); 833 834 if (shared) 835 cond_resched_rwlock_read(&kvm->mmu_lock); 836 else 837 cond_resched_rwlock_write(&kvm->mmu_lock); 838 839 rcu_read_lock(); 840 841 WARN_ON_ONCE(iter->gfn > iter->next_last_level_gfn); 842 843 iter->yielded = true; 844 return true; 845 } 846 847 static inline gfn_t tdp_mmu_max_gfn_exclusive(void) 848 { 849 /* 850 * Bound TDP MMU walks at host.MAXPHYADDR. KVM disallows memslots with 851 * a gpa range that would exceed the max gfn, and KVM does not create 852 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down 853 * the slow emulation path every time. 854 */ 855 return kvm_mmu_max_gfn() + 1; 856 } 857 858 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 859 bool shared, int zap_level) 860 { 861 struct tdp_iter iter; 862 863 for_each_tdp_pte_min_level_all(iter, root, zap_level) { 864 retry: 865 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 866 continue; 867 868 if (!is_shadow_present_pte(iter.old_spte)) 869 continue; 870 871 if (iter.level > zap_level) 872 continue; 873 874 if (!shared) 875 tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE); 876 else if (tdp_mmu_set_spte_atomic(kvm, &iter, SHADOW_NONPRESENT_VALUE)) 877 goto retry; 878 } 879 } 880 881 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 882 bool shared) 883 { 884 885 /* 886 * The root must have an elevated refcount so that it's reachable via 887 * mmu_notifier callbacks, which allows this path to yield and drop 888 * mmu_lock. When handling an unmap/release mmu_notifier command, KVM 889 * must drop all references to relevant pages prior to completing the 890 * callback. Dropping mmu_lock with an unreachable root would result 891 * in zapping SPTEs after a relevant mmu_notifier callback completes 892 * and lead to use-after-free as zapping a SPTE triggers "writeback" of 893 * dirty accessed bits to the SPTE's associated struct page. 894 */ 895 WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count)); 896 897 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 898 899 rcu_read_lock(); 900 901 /* 902 * Zap roots in multiple passes of decreasing granularity, i.e. zap at 903 * 4KiB=>2MiB=>1GiB=>root, in order to better honor need_resched() (all 904 * preempt models) or mmu_lock contention (full or real-time models). 905 * Zapping at finer granularity marginally increases the total time of 906 * the zap, but in most cases the zap itself isn't latency sensitive. 907 * 908 * If KVM is configured to prove the MMU, skip the 4KiB and 2MiB zaps 909 * in order to mimic the page fault path, which can replace a 1GiB page 910 * table with an equivalent 1GiB hugepage, i.e. can get saddled with 911 * zapping a 1GiB region that's fully populated with 4KiB SPTEs. This 912 * allows verifying that KVM can safely zap 1GiB regions, e.g. without 913 * inducing RCU stalls, without relying on a relatively rare event 914 * (zapping roots is orders of magnitude more common). Note, because 915 * zapping a SP recurses on its children, stepping down to PG_LEVEL_4K 916 * in the iterator itself is unnecessary. 917 */ 918 if (!IS_ENABLED(CONFIG_KVM_PROVE_MMU)) { 919 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_4K); 920 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_2M); 921 } 922 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G); 923 __tdp_mmu_zap_root(kvm, root, shared, root->role.level); 924 925 rcu_read_unlock(); 926 } 927 928 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 929 { 930 u64 old_spte; 931 932 /* 933 * This helper intentionally doesn't allow zapping a root shadow page, 934 * which doesn't have a parent page table and thus no associated entry. 935 */ 936 if (WARN_ON_ONCE(!sp->ptep)) 937 return false; 938 939 old_spte = kvm_tdp_mmu_read_spte(sp->ptep); 940 if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte))) 941 return false; 942 943 tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 944 SHADOW_NONPRESENT_VALUE, sp->gfn, sp->role.level + 1); 945 946 return true; 947 } 948 949 /* 950 * If can_yield is true, will release the MMU lock and reschedule if the 951 * scheduler needs the CPU or there is contention on the MMU lock. If this 952 * function cannot yield, it will not release the MMU lock or reschedule and 953 * the caller must ensure it does not supply too large a GFN range, or the 954 * operation can cause a soft lockup. 955 */ 956 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root, 957 gfn_t start, gfn_t end, bool can_yield, bool flush) 958 { 959 struct tdp_iter iter; 960 961 end = min(end, tdp_mmu_max_gfn_exclusive()); 962 963 lockdep_assert_held_write(&kvm->mmu_lock); 964 965 rcu_read_lock(); 966 967 for_each_tdp_pte_min_level(iter, kvm, root, PG_LEVEL_4K, start, end) { 968 if (can_yield && 969 tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) { 970 flush = false; 971 continue; 972 } 973 974 if (!is_shadow_present_pte(iter.old_spte) || 975 !is_last_spte(iter.old_spte, iter.level)) 976 continue; 977 978 tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE); 979 980 /* 981 * Zappings SPTEs in invalid roots doesn't require a TLB flush, 982 * see kvm_tdp_mmu_zap_invalidated_roots() for details. 983 */ 984 if (!root->role.invalid) 985 flush = true; 986 } 987 988 rcu_read_unlock(); 989 990 /* 991 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need 992 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed. 993 */ 994 return flush; 995 } 996 997 /* 998 * Zap leaf SPTEs for the range of gfns, [start, end), for all *VALID** roots. 999 * Returns true if a TLB flush is needed before releasing the MMU lock, i.e. if 1000 * one or more SPTEs were zapped since the MMU lock was last acquired. 1001 */ 1002 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush) 1003 { 1004 struct kvm_mmu_page *root; 1005 1006 lockdep_assert_held_write(&kvm->mmu_lock); 1007 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, -1) 1008 flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush); 1009 1010 return flush; 1011 } 1012 1013 void kvm_tdp_mmu_zap_all(struct kvm *kvm) 1014 { 1015 struct kvm_mmu_page *root; 1016 1017 /* 1018 * Zap all direct roots, including invalid direct roots, as all direct 1019 * SPTEs must be dropped before returning to the caller. For TDX, mirror 1020 * roots don't need handling in response to the mmu notifier (the caller). 1021 * 1022 * Zap directly even if the root is also being zapped by a concurrent 1023 * "fast zap". Walking zapped top-level SPTEs isn't all that expensive 1024 * and mmu_lock is already held, which means the other thread has yielded. 1025 * 1026 * A TLB flush is unnecessary, KVM zaps everything if and only the VM 1027 * is being destroyed or the userspace VMM has exited. In both cases, 1028 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request. 1029 */ 1030 lockdep_assert_held_write(&kvm->mmu_lock); 1031 __for_each_tdp_mmu_root_yield_safe(kvm, root, -1, 1032 KVM_DIRECT_ROOTS | KVM_INVALID_ROOTS) 1033 tdp_mmu_zap_root(kvm, root, false); 1034 } 1035 1036 /* 1037 * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast 1038 * zap" completes. 1039 */ 1040 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm, bool shared) 1041 { 1042 struct kvm_mmu_page *root; 1043 1044 if (shared) 1045 read_lock(&kvm->mmu_lock); 1046 else 1047 write_lock(&kvm->mmu_lock); 1048 1049 for_each_tdp_mmu_root_yield_safe(kvm, root) { 1050 if (!root->tdp_mmu_scheduled_root_to_zap) 1051 continue; 1052 1053 root->tdp_mmu_scheduled_root_to_zap = false; 1054 KVM_BUG_ON(!root->role.invalid, kvm); 1055 1056 /* 1057 * A TLB flush is not necessary as KVM performs a local TLB 1058 * flush when allocating a new root (see kvm_mmu_load()), and 1059 * when migrating a vCPU to a different pCPU. Note, the local 1060 * TLB flush on reuse also invalidates paging-structure-cache 1061 * entries, i.e. TLB entries for intermediate paging structures, 1062 * that may be zapped, as such entries are associated with the 1063 * ASID on both VMX and SVM. 1064 */ 1065 tdp_mmu_zap_root(kvm, root, shared); 1066 1067 /* 1068 * The referenced needs to be put *after* zapping the root, as 1069 * the root must be reachable by mmu_notifiers while it's being 1070 * zapped 1071 */ 1072 kvm_tdp_mmu_put_root(kvm, root); 1073 } 1074 1075 if (shared) 1076 read_unlock(&kvm->mmu_lock); 1077 else 1078 write_unlock(&kvm->mmu_lock); 1079 } 1080 1081 /* 1082 * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that 1083 * is about to be zapped, e.g. in response to a memslots update. The actual 1084 * zapping is done separately so that it happens with mmu_lock with read, 1085 * whereas invalidating roots must be done with mmu_lock held for write (unless 1086 * the VM is being destroyed). 1087 * 1088 * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference. 1089 * See kvm_tdp_mmu_alloc_root(). 1090 */ 1091 void kvm_tdp_mmu_invalidate_roots(struct kvm *kvm, 1092 enum kvm_tdp_mmu_root_types root_types) 1093 { 1094 struct kvm_mmu_page *root; 1095 1096 /* 1097 * Invalidating invalid roots doesn't make sense, prevent developers from 1098 * having to think about it. 1099 */ 1100 if (WARN_ON_ONCE(root_types & KVM_INVALID_ROOTS)) 1101 root_types &= ~KVM_INVALID_ROOTS; 1102 1103 /* 1104 * mmu_lock must be held for write to ensure that a root doesn't become 1105 * invalid while there are active readers (invalidating a root while 1106 * there are active readers may or may not be problematic in practice, 1107 * but it's uncharted territory and not supported). 1108 * 1109 * Waive the assertion if there are no users of @kvm, i.e. the VM is 1110 * being destroyed after all references have been put, or if no vCPUs 1111 * have been created (which means there are no roots), i.e. the VM is 1112 * being destroyed in an error path of KVM_CREATE_VM. 1113 */ 1114 if (IS_ENABLED(CONFIG_PROVE_LOCKING) && 1115 refcount_read(&kvm->users_count) && kvm->created_vcpus) 1116 lockdep_assert_held_write(&kvm->mmu_lock); 1117 1118 /* 1119 * As above, mmu_lock isn't held when destroying the VM! There can't 1120 * be other references to @kvm, i.e. nothing else can invalidate roots 1121 * or get/put references to roots. 1122 */ 1123 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { 1124 if (!tdp_mmu_root_match(root, root_types)) 1125 continue; 1126 1127 /* 1128 * Note, invalid roots can outlive a memslot update! Invalid 1129 * roots must be *zapped* before the memslot update completes, 1130 * but a different task can acquire a reference and keep the 1131 * root alive after its been zapped. 1132 */ 1133 if (!root->role.invalid) { 1134 root->tdp_mmu_scheduled_root_to_zap = true; 1135 root->role.invalid = true; 1136 } 1137 } 1138 } 1139 1140 /* 1141 * Installs a last-level SPTE to handle a TDP page fault. 1142 * (NPT/EPT violation/misconfiguration) 1143 */ 1144 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, 1145 struct kvm_page_fault *fault, 1146 struct tdp_iter *iter) 1147 { 1148 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep)); 1149 u64 new_spte; 1150 int ret = RET_PF_FIXED; 1151 bool wrprot = false; 1152 1153 if (WARN_ON_ONCE(sp->role.level != fault->goal_level)) 1154 return RET_PF_RETRY; 1155 1156 if (fault->prefetch && is_shadow_present_pte(iter->old_spte)) 1157 return RET_PF_SPURIOUS; 1158 1159 if (is_shadow_present_pte(iter->old_spte) && 1160 is_access_allowed(fault, iter->old_spte) && 1161 is_last_spte(iter->old_spte, iter->level)) 1162 return RET_PF_SPURIOUS; 1163 1164 if (unlikely(!fault->slot)) 1165 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); 1166 else 1167 wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn, 1168 fault->pfn, iter->old_spte, fault->prefetch, 1169 false, fault->map_writable, &new_spte); 1170 1171 if (new_spte == iter->old_spte) 1172 ret = RET_PF_SPURIOUS; 1173 else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte)) 1174 return RET_PF_RETRY; 1175 else if (is_shadow_present_pte(iter->old_spte) && 1176 (!is_last_spte(iter->old_spte, iter->level) || 1177 WARN_ON_ONCE(leaf_spte_change_needs_tlb_flush(iter->old_spte, new_spte)))) 1178 kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level); 1179 1180 /* 1181 * If the page fault was caused by a write but the page is write 1182 * protected, emulation is needed. If the emulation was skipped, 1183 * the vCPU would have the same fault again. 1184 */ 1185 if (wrprot && fault->write) 1186 ret = RET_PF_WRITE_PROTECTED; 1187 1188 /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ 1189 if (unlikely(is_mmio_spte(vcpu->kvm, new_spte))) { 1190 vcpu->stat.pf_mmio_spte_created++; 1191 trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn, 1192 new_spte); 1193 ret = RET_PF_EMULATE; 1194 } else { 1195 trace_kvm_mmu_set_spte(iter->level, iter->gfn, 1196 rcu_dereference(iter->sptep)); 1197 } 1198 1199 return ret; 1200 } 1201 1202 /* 1203 * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the 1204 * provided page table. 1205 * 1206 * @kvm: kvm instance 1207 * @iter: a tdp_iter instance currently on the SPTE that should be set 1208 * @sp: The new TDP page table to install. 1209 * @shared: This operation is running under the MMU lock in read mode. 1210 * 1211 * Returns: 0 if the new page table was installed. Non-0 if the page table 1212 * could not be installed (e.g. the atomic compare-exchange failed). 1213 */ 1214 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter, 1215 struct kvm_mmu_page *sp, bool shared) 1216 { 1217 u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled); 1218 int ret = 0; 1219 1220 if (shared) { 1221 ret = tdp_mmu_set_spte_atomic(kvm, iter, spte); 1222 if (ret) 1223 return ret; 1224 } else { 1225 tdp_mmu_iter_set_spte(kvm, iter, spte); 1226 } 1227 1228 tdp_account_mmu_page(kvm, sp); 1229 1230 return 0; 1231 } 1232 1233 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, 1234 struct kvm_mmu_page *sp, bool shared); 1235 1236 /* 1237 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing 1238 * page tables and SPTEs to translate the faulting guest physical address. 1239 */ 1240 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 1241 { 1242 struct kvm_mmu_page *root = tdp_mmu_get_root_for_fault(vcpu, fault); 1243 struct kvm *kvm = vcpu->kvm; 1244 struct tdp_iter iter; 1245 struct kvm_mmu_page *sp; 1246 int ret = RET_PF_RETRY; 1247 1248 kvm_mmu_hugepage_adjust(vcpu, fault); 1249 1250 trace_kvm_mmu_spte_requested(fault); 1251 1252 rcu_read_lock(); 1253 1254 for_each_tdp_pte(iter, kvm, root, fault->gfn, fault->gfn + 1) { 1255 int r; 1256 1257 if (fault->nx_huge_page_workaround_enabled) 1258 disallowed_hugepage_adjust(fault, iter.old_spte, iter.level); 1259 1260 /* 1261 * If SPTE has been frozen by another thread, just give up and 1262 * retry, avoiding unnecessary page table allocation and free. 1263 */ 1264 if (is_frozen_spte(iter.old_spte)) 1265 goto retry; 1266 1267 if (iter.level == fault->goal_level) 1268 goto map_target_level; 1269 1270 /* Step down into the lower level page table if it exists. */ 1271 if (is_shadow_present_pte(iter.old_spte) && 1272 !is_large_pte(iter.old_spte)) 1273 continue; 1274 1275 /* 1276 * The SPTE is either non-present or points to a huge page that 1277 * needs to be split. 1278 */ 1279 sp = tdp_mmu_alloc_sp(vcpu); 1280 tdp_mmu_init_child_sp(sp, &iter); 1281 if (is_mirror_sp(sp)) 1282 kvm_mmu_alloc_external_spt(vcpu, sp); 1283 1284 sp->nx_huge_page_disallowed = fault->huge_page_disallowed; 1285 1286 if (is_shadow_present_pte(iter.old_spte)) { 1287 /* Don't support large page for mirrored roots (TDX) */ 1288 KVM_BUG_ON(is_mirror_sptep(iter.sptep), vcpu->kvm); 1289 r = tdp_mmu_split_huge_page(kvm, &iter, sp, true); 1290 } else { 1291 r = tdp_mmu_link_sp(kvm, &iter, sp, true); 1292 } 1293 1294 /* 1295 * Force the guest to retry if installing an upper level SPTE 1296 * failed, e.g. because a different task modified the SPTE. 1297 */ 1298 if (r) { 1299 tdp_mmu_free_sp(sp); 1300 goto retry; 1301 } 1302 1303 if (fault->huge_page_disallowed && 1304 fault->req_level >= iter.level) { 1305 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 1306 if (sp->nx_huge_page_disallowed) 1307 track_possible_nx_huge_page(kvm, sp); 1308 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 1309 } 1310 } 1311 1312 /* 1313 * The walk aborted before reaching the target level, e.g. because the 1314 * iterator detected an upper level SPTE was frozen during traversal. 1315 */ 1316 WARN_ON_ONCE(iter.level == fault->goal_level); 1317 goto retry; 1318 1319 map_target_level: 1320 ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter); 1321 1322 retry: 1323 rcu_read_unlock(); 1324 return ret; 1325 } 1326 1327 /* Used by mmu notifier via kvm_unmap_gfn_range() */ 1328 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, 1329 bool flush) 1330 { 1331 enum kvm_tdp_mmu_root_types types; 1332 struct kvm_mmu_page *root; 1333 1334 types = kvm_gfn_range_filter_to_root_types(kvm, range->attr_filter) | KVM_INVALID_ROOTS; 1335 1336 __for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, types) 1337 flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end, 1338 range->may_block, flush); 1339 1340 return flush; 1341 } 1342 1343 /* 1344 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero 1345 * if any of the GFNs in the range have been accessed. 1346 * 1347 * No need to mark the corresponding PFN as accessed as this call is coming 1348 * from the clear_young() or clear_flush_young() notifier, which uses the 1349 * return value to determine if the page has been accessed. 1350 */ 1351 static void kvm_tdp_mmu_age_spte(struct kvm *kvm, struct tdp_iter *iter) 1352 { 1353 u64 new_spte; 1354 1355 if (spte_ad_enabled(iter->old_spte)) { 1356 iter->old_spte = tdp_mmu_clear_spte_bits_atomic(iter->sptep, 1357 shadow_accessed_mask); 1358 new_spte = iter->old_spte & ~shadow_accessed_mask; 1359 } else { 1360 new_spte = mark_spte_for_access_track(iter->old_spte); 1361 /* 1362 * It is safe for the following cmpxchg to fail. Leave the 1363 * Accessed bit set, as the spte is most likely young anyway. 1364 */ 1365 if (__tdp_mmu_set_spte_atomic(kvm, iter, new_spte)) 1366 return; 1367 } 1368 1369 trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level, 1370 iter->old_spte, new_spte); 1371 } 1372 1373 static bool __kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, 1374 struct kvm_gfn_range *range, 1375 bool test_only) 1376 { 1377 enum kvm_tdp_mmu_root_types types; 1378 struct kvm_mmu_page *root; 1379 struct tdp_iter iter; 1380 bool ret = false; 1381 1382 types = kvm_gfn_range_filter_to_root_types(kvm, range->attr_filter); 1383 1384 /* 1385 * Don't support rescheduling, none of the MMU notifiers that funnel 1386 * into this helper allow blocking; it'd be dead, wasteful code. Note, 1387 * this helper must NOT be used to unmap GFNs, as it processes only 1388 * valid roots! 1389 */ 1390 WARN_ON(types & ~KVM_VALID_ROOTS); 1391 1392 guard(rcu)(); 1393 for_each_tdp_mmu_root_rcu(kvm, root, range->slot->as_id, types) { 1394 tdp_root_for_each_leaf_pte(iter, kvm, root, range->start, range->end) { 1395 if (!is_accessed_spte(iter.old_spte)) 1396 continue; 1397 1398 if (test_only) 1399 return true; 1400 1401 ret = true; 1402 kvm_tdp_mmu_age_spte(kvm, &iter); 1403 } 1404 } 1405 1406 return ret; 1407 } 1408 1409 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1410 { 1411 return __kvm_tdp_mmu_age_gfn_range(kvm, range, false); 1412 } 1413 1414 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1415 { 1416 return __kvm_tdp_mmu_age_gfn_range(kvm, range, true); 1417 } 1418 1419 /* 1420 * Remove write access from all SPTEs at or above min_level that map GFNs 1421 * [start, end). Returns true if an SPTE has been changed and the TLBs need to 1422 * be flushed. 1423 */ 1424 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1425 gfn_t start, gfn_t end, int min_level) 1426 { 1427 struct tdp_iter iter; 1428 u64 new_spte; 1429 bool spte_set = false; 1430 1431 rcu_read_lock(); 1432 1433 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1434 1435 for_each_tdp_pte_min_level(iter, kvm, root, min_level, start, end) { 1436 retry: 1437 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1438 continue; 1439 1440 if (!is_shadow_present_pte(iter.old_spte) || 1441 !is_last_spte(iter.old_spte, iter.level) || 1442 !(iter.old_spte & PT_WRITABLE_MASK)) 1443 continue; 1444 1445 new_spte = iter.old_spte & ~PT_WRITABLE_MASK; 1446 1447 if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) 1448 goto retry; 1449 1450 spte_set = true; 1451 } 1452 1453 rcu_read_unlock(); 1454 return spte_set; 1455 } 1456 1457 /* 1458 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will 1459 * only affect leaf SPTEs down to min_level. 1460 * Returns true if an SPTE has been changed and the TLBs need to be flushed. 1461 */ 1462 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, 1463 const struct kvm_memory_slot *slot, int min_level) 1464 { 1465 struct kvm_mmu_page *root; 1466 bool spte_set = false; 1467 1468 lockdep_assert_held_read(&kvm->mmu_lock); 1469 1470 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1471 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, 1472 slot->base_gfn + slot->npages, min_level); 1473 1474 return spte_set; 1475 } 1476 1477 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(void) 1478 { 1479 struct kvm_mmu_page *sp; 1480 1481 sp = kmem_cache_zalloc(mmu_page_header_cache, GFP_KERNEL_ACCOUNT); 1482 if (!sp) 1483 return NULL; 1484 1485 sp->spt = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 1486 if (!sp->spt) { 1487 kmem_cache_free(mmu_page_header_cache, sp); 1488 return NULL; 1489 } 1490 1491 return sp; 1492 } 1493 1494 /* Note, the caller is responsible for initializing @sp. */ 1495 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, 1496 struct kvm_mmu_page *sp, bool shared) 1497 { 1498 const u64 huge_spte = iter->old_spte; 1499 const int level = iter->level; 1500 int ret, i; 1501 1502 /* 1503 * No need for atomics when writing to sp->spt since the page table has 1504 * not been linked in yet and thus is not reachable from any other CPU. 1505 */ 1506 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) 1507 sp->spt[i] = make_small_spte(kvm, huge_spte, sp->role, i); 1508 1509 /* 1510 * Replace the huge spte with a pointer to the populated lower level 1511 * page table. Since we are making this change without a TLB flush vCPUs 1512 * will see a mix of the split mappings and the original huge mapping, 1513 * depending on what's currently in their TLB. This is fine from a 1514 * correctness standpoint since the translation will be the same either 1515 * way. 1516 */ 1517 ret = tdp_mmu_link_sp(kvm, iter, sp, shared); 1518 if (ret) 1519 goto out; 1520 1521 /* 1522 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we 1523 * are overwriting from the page stats. But we have to manually update 1524 * the page stats with the new present child pages. 1525 */ 1526 kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE); 1527 1528 out: 1529 trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret); 1530 return ret; 1531 } 1532 1533 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm, 1534 struct kvm_mmu_page *root, 1535 gfn_t start, gfn_t end, 1536 int target_level, bool shared) 1537 { 1538 struct kvm_mmu_page *sp = NULL; 1539 struct tdp_iter iter; 1540 1541 rcu_read_lock(); 1542 1543 /* 1544 * Traverse the page table splitting all huge pages above the target 1545 * level into one lower level. For example, if we encounter a 1GB page 1546 * we split it into 512 2MB pages. 1547 * 1548 * Since the TDP iterator uses a pre-order traversal, we are guaranteed 1549 * to visit an SPTE before ever visiting its children, which means we 1550 * will correctly recursively split huge pages that are more than one 1551 * level above the target level (e.g. splitting a 1GB to 512 2MB pages, 1552 * and then splitting each of those to 512 4KB pages). 1553 */ 1554 for_each_tdp_pte_min_level(iter, kvm, root, target_level + 1, start, end) { 1555 retry: 1556 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 1557 continue; 1558 1559 if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte)) 1560 continue; 1561 1562 if (!sp) { 1563 rcu_read_unlock(); 1564 1565 if (shared) 1566 read_unlock(&kvm->mmu_lock); 1567 else 1568 write_unlock(&kvm->mmu_lock); 1569 1570 sp = tdp_mmu_alloc_sp_for_split(); 1571 1572 if (shared) 1573 read_lock(&kvm->mmu_lock); 1574 else 1575 write_lock(&kvm->mmu_lock); 1576 1577 if (!sp) { 1578 trace_kvm_mmu_split_huge_page(iter.gfn, 1579 iter.old_spte, 1580 iter.level, -ENOMEM); 1581 return -ENOMEM; 1582 } 1583 1584 rcu_read_lock(); 1585 1586 iter.yielded = true; 1587 continue; 1588 } 1589 1590 tdp_mmu_init_child_sp(sp, &iter); 1591 1592 if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared)) 1593 goto retry; 1594 1595 sp = NULL; 1596 } 1597 1598 rcu_read_unlock(); 1599 1600 /* 1601 * It's possible to exit the loop having never used the last sp if, for 1602 * example, a vCPU doing HugePage NX splitting wins the race and 1603 * installs its own sp in place of the last sp we tried to split. 1604 */ 1605 if (sp) 1606 tdp_mmu_free_sp(sp); 1607 1608 return 0; 1609 } 1610 1611 1612 /* 1613 * Try to split all huge pages mapped by the TDP MMU down to the target level. 1614 */ 1615 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, 1616 const struct kvm_memory_slot *slot, 1617 gfn_t start, gfn_t end, 1618 int target_level, bool shared) 1619 { 1620 struct kvm_mmu_page *root; 1621 int r = 0; 1622 1623 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 1624 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) { 1625 r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared); 1626 if (r) { 1627 kvm_tdp_mmu_put_root(kvm, root); 1628 break; 1629 } 1630 } 1631 } 1632 1633 static bool tdp_mmu_need_write_protect(struct kvm_mmu_page *sp) 1634 { 1635 /* 1636 * All TDP MMU shadow pages share the same role as their root, aside 1637 * from level, so it is valid to key off any shadow page to determine if 1638 * write protection is needed for an entire tree. 1639 */ 1640 return kvm_mmu_page_ad_need_write_protect(sp) || !kvm_ad_enabled; 1641 } 1642 1643 static void clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1644 gfn_t start, gfn_t end) 1645 { 1646 const u64 dbit = tdp_mmu_need_write_protect(root) ? PT_WRITABLE_MASK : 1647 shadow_dirty_mask; 1648 struct tdp_iter iter; 1649 1650 rcu_read_lock(); 1651 1652 tdp_root_for_each_pte(iter, kvm, root, start, end) { 1653 retry: 1654 if (!is_shadow_present_pte(iter.old_spte) || 1655 !is_last_spte(iter.old_spte, iter.level)) 1656 continue; 1657 1658 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1659 continue; 1660 1661 KVM_MMU_WARN_ON(dbit == shadow_dirty_mask && 1662 spte_ad_need_write_protect(iter.old_spte)); 1663 1664 if (!(iter.old_spte & dbit)) 1665 continue; 1666 1667 if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit)) 1668 goto retry; 1669 } 1670 1671 rcu_read_unlock(); 1672 } 1673 1674 /* 1675 * Clear the dirty status (D-bit or W-bit) of all the SPTEs mapping GFNs in the 1676 * memslot. 1677 */ 1678 void kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, 1679 const struct kvm_memory_slot *slot) 1680 { 1681 struct kvm_mmu_page *root; 1682 1683 lockdep_assert_held_read(&kvm->mmu_lock); 1684 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1685 clear_dirty_gfn_range(kvm, root, slot->base_gfn, 1686 slot->base_gfn + slot->npages); 1687 } 1688 1689 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, 1690 gfn_t gfn, unsigned long mask, bool wrprot) 1691 { 1692 const u64 dbit = (wrprot || tdp_mmu_need_write_protect(root)) ? PT_WRITABLE_MASK : 1693 shadow_dirty_mask; 1694 struct tdp_iter iter; 1695 1696 lockdep_assert_held_write(&kvm->mmu_lock); 1697 1698 rcu_read_lock(); 1699 1700 tdp_root_for_each_leaf_pte(iter, kvm, root, gfn + __ffs(mask), 1701 gfn + BITS_PER_LONG) { 1702 if (!mask) 1703 break; 1704 1705 KVM_MMU_WARN_ON(dbit == shadow_dirty_mask && 1706 spte_ad_need_write_protect(iter.old_spte)); 1707 1708 if (iter.level > PG_LEVEL_4K || 1709 !(mask & (1UL << (iter.gfn - gfn)))) 1710 continue; 1711 1712 mask &= ~(1UL << (iter.gfn - gfn)); 1713 1714 if (!(iter.old_spte & dbit)) 1715 continue; 1716 1717 iter.old_spte = tdp_mmu_clear_spte_bits(iter.sptep, 1718 iter.old_spte, dbit, 1719 iter.level); 1720 1721 trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level, 1722 iter.old_spte, 1723 iter.old_spte & ~dbit); 1724 } 1725 1726 rcu_read_unlock(); 1727 } 1728 1729 /* 1730 * Clear the dirty status (D-bit or W-bit) of all the 4k SPTEs mapping GFNs for 1731 * which a bit is set in mask, starting at gfn. The given memslot is expected to 1732 * contain all the GFNs represented by set bits in the mask. 1733 */ 1734 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1735 struct kvm_memory_slot *slot, 1736 gfn_t gfn, unsigned long mask, 1737 bool wrprot) 1738 { 1739 struct kvm_mmu_page *root; 1740 1741 for_each_valid_tdp_mmu_root(kvm, root, slot->as_id) 1742 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); 1743 } 1744 1745 static int tdp_mmu_make_huge_spte(struct kvm *kvm, 1746 struct tdp_iter *parent, 1747 u64 *huge_spte) 1748 { 1749 struct kvm_mmu_page *root = spte_to_child_sp(parent->old_spte); 1750 gfn_t start = parent->gfn; 1751 gfn_t end = start + KVM_PAGES_PER_HPAGE(parent->level); 1752 struct tdp_iter iter; 1753 1754 tdp_root_for_each_leaf_pte(iter, kvm, root, start, end) { 1755 /* 1756 * Use the parent iterator when checking for forward progress so 1757 * that KVM doesn't get stuck continuously trying to yield (i.e. 1758 * returning -EAGAIN here and then failing the forward progress 1759 * check in the caller ad nauseam). 1760 */ 1761 if (tdp_mmu_iter_need_resched(kvm, parent)) 1762 return -EAGAIN; 1763 1764 *huge_spte = make_huge_spte(kvm, iter.old_spte, parent->level); 1765 return 0; 1766 } 1767 1768 return -ENOENT; 1769 } 1770 1771 static void recover_huge_pages_range(struct kvm *kvm, 1772 struct kvm_mmu_page *root, 1773 const struct kvm_memory_slot *slot) 1774 { 1775 gfn_t start = slot->base_gfn; 1776 gfn_t end = start + slot->npages; 1777 struct tdp_iter iter; 1778 int max_mapping_level; 1779 bool flush = false; 1780 u64 huge_spte; 1781 int r; 1782 1783 if (WARN_ON_ONCE(kvm_slot_dirty_track_enabled(slot))) 1784 return; 1785 1786 rcu_read_lock(); 1787 1788 for_each_tdp_pte_min_level(iter, kvm, root, PG_LEVEL_2M, start, end) { 1789 retry: 1790 if (tdp_mmu_iter_cond_resched(kvm, &iter, flush, true)) { 1791 flush = false; 1792 continue; 1793 } 1794 1795 if (iter.level > KVM_MAX_HUGEPAGE_LEVEL || 1796 !is_shadow_present_pte(iter.old_spte)) 1797 continue; 1798 1799 /* 1800 * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with 1801 * a large page size, then its parent would have been zapped 1802 * instead of stepping down. 1803 */ 1804 if (is_last_spte(iter.old_spte, iter.level)) 1805 continue; 1806 1807 /* 1808 * If iter.gfn resides outside of the slot, i.e. the page for 1809 * the current level overlaps but is not contained by the slot, 1810 * then the SPTE can't be made huge. More importantly, trying 1811 * to query that info from slot->arch.lpage_info will cause an 1812 * out-of-bounds access. 1813 */ 1814 if (iter.gfn < start || iter.gfn >= end) 1815 continue; 1816 1817 max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot, iter.gfn); 1818 if (max_mapping_level < iter.level) 1819 continue; 1820 1821 r = tdp_mmu_make_huge_spte(kvm, &iter, &huge_spte); 1822 if (r == -EAGAIN) 1823 goto retry; 1824 else if (r) 1825 continue; 1826 1827 if (tdp_mmu_set_spte_atomic(kvm, &iter, huge_spte)) 1828 goto retry; 1829 1830 flush = true; 1831 } 1832 1833 if (flush) 1834 kvm_flush_remote_tlbs_memslot(kvm, slot); 1835 1836 rcu_read_unlock(); 1837 } 1838 1839 /* 1840 * Recover huge page mappings within the slot by replacing non-leaf SPTEs with 1841 * huge SPTEs where possible. 1842 */ 1843 void kvm_tdp_mmu_recover_huge_pages(struct kvm *kvm, 1844 const struct kvm_memory_slot *slot) 1845 { 1846 struct kvm_mmu_page *root; 1847 1848 lockdep_assert_held_read(&kvm->mmu_lock); 1849 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1850 recover_huge_pages_range(kvm, root, slot); 1851 } 1852 1853 /* 1854 * Removes write access on the last level SPTE mapping this GFN and unsets the 1855 * MMU-writable bit to ensure future writes continue to be intercepted. 1856 * Returns true if an SPTE was set and a TLB flush is needed. 1857 */ 1858 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root, 1859 gfn_t gfn, int min_level) 1860 { 1861 struct tdp_iter iter; 1862 u64 new_spte; 1863 bool spte_set = false; 1864 1865 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1866 1867 rcu_read_lock(); 1868 1869 for_each_tdp_pte_min_level(iter, kvm, root, min_level, gfn, gfn + 1) { 1870 if (!is_shadow_present_pte(iter.old_spte) || 1871 !is_last_spte(iter.old_spte, iter.level)) 1872 continue; 1873 1874 new_spte = iter.old_spte & 1875 ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); 1876 1877 if (new_spte == iter.old_spte) 1878 break; 1879 1880 tdp_mmu_iter_set_spte(kvm, &iter, new_spte); 1881 spte_set = true; 1882 } 1883 1884 rcu_read_unlock(); 1885 1886 return spte_set; 1887 } 1888 1889 /* 1890 * Removes write access on the last level SPTE mapping this GFN and unsets the 1891 * MMU-writable bit to ensure future writes continue to be intercepted. 1892 * Returns true if an SPTE was set and a TLB flush is needed. 1893 */ 1894 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, 1895 struct kvm_memory_slot *slot, gfn_t gfn, 1896 int min_level) 1897 { 1898 struct kvm_mmu_page *root; 1899 bool spte_set = false; 1900 1901 lockdep_assert_held_write(&kvm->mmu_lock); 1902 for_each_valid_tdp_mmu_root(kvm, root, slot->as_id) 1903 spte_set |= write_protect_gfn(kvm, root, gfn, min_level); 1904 1905 return spte_set; 1906 } 1907 1908 /* 1909 * Return the level of the lowest level SPTE added to sptes. 1910 * That SPTE may be non-present. 1911 * 1912 * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1913 */ 1914 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 1915 int *root_level) 1916 { 1917 struct kvm_mmu_page *root = root_to_sp(vcpu->arch.mmu->root.hpa); 1918 struct tdp_iter iter; 1919 gfn_t gfn = addr >> PAGE_SHIFT; 1920 int leaf = -1; 1921 1922 *root_level = vcpu->arch.mmu->root_role.level; 1923 1924 for_each_tdp_pte(iter, vcpu->kvm, root, gfn, gfn + 1) { 1925 leaf = iter.level; 1926 sptes[leaf] = iter.old_spte; 1927 } 1928 1929 return leaf; 1930 } 1931 1932 /* 1933 * Returns the last level spte pointer of the shadow page walk for the given 1934 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 1935 * walk could be performed, returns NULL and *spte does not contain valid data. 1936 * 1937 * Contract: 1938 * - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1939 * - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end. 1940 * 1941 * WARNING: This function is only intended to be called during fast_page_fault. 1942 */ 1943 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gfn_t gfn, 1944 u64 *spte) 1945 { 1946 /* Fast pf is not supported for mirrored roots */ 1947 struct kvm_mmu_page *root = tdp_mmu_get_root(vcpu, KVM_DIRECT_ROOTS); 1948 struct tdp_iter iter; 1949 tdp_ptep_t sptep = NULL; 1950 1951 for_each_tdp_pte(iter, vcpu->kvm, root, gfn, gfn + 1) { 1952 *spte = iter.old_spte; 1953 sptep = iter.sptep; 1954 } 1955 1956 /* 1957 * Perform the rcu_dereference to get the raw spte pointer value since 1958 * we are passing it up to fast_page_fault, which is shared with the 1959 * legacy MMU and thus does not retain the TDP MMU-specific __rcu 1960 * annotation. 1961 * 1962 * This is safe since fast_page_fault obeys the contracts of this 1963 * function as well as all TDP MMU contracts around modifying SPTEs 1964 * outside of mmu_lock. 1965 */ 1966 return rcu_dereference(sptep); 1967 } 1968