xref: /linux/arch/x86/kvm/mmu/tdp_mmu.c (revision 78c3925c048c752334873f56c3a3d1c9d53e0416)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include "mmu.h"
5 #include "mmu_internal.h"
6 #include "mmutrace.h"
7 #include "tdp_iter.h"
8 #include "tdp_mmu.h"
9 #include "spte.h"
10 
11 #include <asm/cmpxchg.h>
12 #include <trace/events/kvm.h>
13 
14 /* Initializes the TDP MMU for the VM, if enabled. */
15 void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
16 {
17 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
18 	spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
19 }
20 
21 /* Arbitrarily returns true so that this may be used in if statements. */
22 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm,
23 							     bool shared)
24 {
25 	if (shared)
26 		lockdep_assert_held_read(&kvm->mmu_lock);
27 	else
28 		lockdep_assert_held_write(&kvm->mmu_lock);
29 
30 	return true;
31 }
32 
33 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
34 {
35 	/*
36 	 * Invalidate all roots, which besides the obvious, schedules all roots
37 	 * for zapping and thus puts the TDP MMU's reference to each root, i.e.
38 	 * ultimately frees all roots.
39 	 */
40 	kvm_tdp_mmu_invalidate_all_roots(kvm);
41 	kvm_tdp_mmu_zap_invalidated_roots(kvm);
42 
43 	WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages));
44 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
45 
46 	/*
47 	 * Ensure that all the outstanding RCU callbacks to free shadow pages
48 	 * can run before the VM is torn down.  Putting the last reference to
49 	 * zapped roots will create new callbacks.
50 	 */
51 	rcu_barrier();
52 }
53 
54 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
55 {
56 	free_page((unsigned long)sp->spt);
57 	kmem_cache_free(mmu_page_header_cache, sp);
58 }
59 
60 /*
61  * This is called through call_rcu in order to free TDP page table memory
62  * safely with respect to other kernel threads that may be operating on
63  * the memory.
64  * By only accessing TDP MMU page table memory in an RCU read critical
65  * section, and freeing it after a grace period, lockless access to that
66  * memory won't use it after it is freed.
67  */
68 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
69 {
70 	struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
71 					       rcu_head);
72 
73 	tdp_mmu_free_sp(sp);
74 }
75 
76 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
77 {
78 	if (!refcount_dec_and_test(&root->tdp_mmu_root_count))
79 		return;
80 
81 	/*
82 	 * The TDP MMU itself holds a reference to each root until the root is
83 	 * explicitly invalidated, i.e. the final reference should be never be
84 	 * put for a valid root.
85 	 */
86 	KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm);
87 
88 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
89 	list_del_rcu(&root->link);
90 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
91 	call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback);
92 }
93 
94 /*
95  * Returns the next root after @prev_root (or the first root if @prev_root is
96  * NULL).  A reference to the returned root is acquired, and the reference to
97  * @prev_root is released (the caller obviously must hold a reference to
98  * @prev_root if it's non-NULL).
99  *
100  * If @only_valid is true, invalid roots are skipped.
101  *
102  * Returns NULL if the end of tdp_mmu_roots was reached.
103  */
104 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
105 					      struct kvm_mmu_page *prev_root,
106 					      bool only_valid)
107 {
108 	struct kvm_mmu_page *next_root;
109 
110 	/*
111 	 * While the roots themselves are RCU-protected, fields such as
112 	 * role.invalid are protected by mmu_lock.
113 	 */
114 	lockdep_assert_held(&kvm->mmu_lock);
115 
116 	rcu_read_lock();
117 
118 	if (prev_root)
119 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
120 						  &prev_root->link,
121 						  typeof(*prev_root), link);
122 	else
123 		next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
124 						   typeof(*next_root), link);
125 
126 	while (next_root) {
127 		if ((!only_valid || !next_root->role.invalid) &&
128 		    kvm_tdp_mmu_get_root(next_root))
129 			break;
130 
131 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
132 				&next_root->link, typeof(*next_root), link);
133 	}
134 
135 	rcu_read_unlock();
136 
137 	if (prev_root)
138 		kvm_tdp_mmu_put_root(kvm, prev_root);
139 
140 	return next_root;
141 }
142 
143 /*
144  * Note: this iterator gets and puts references to the roots it iterates over.
145  * This makes it safe to release the MMU lock and yield within the loop, but
146  * if exiting the loop early, the caller must drop the reference to the most
147  * recent root. (Unless keeping a live reference is desirable.)
148  *
149  * If shared is set, this function is operating under the MMU lock in read
150  * mode.
151  */
152 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _only_valid)	\
153 	for (_root = tdp_mmu_next_root(_kvm, NULL, _only_valid);		\
154 	     ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root;		\
155 	     _root = tdp_mmu_next_root(_kvm, _root, _only_valid))		\
156 		if (_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) {	\
157 		} else
158 
159 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id)	\
160 	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, true)
161 
162 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root)			\
163 	for (_root = tdp_mmu_next_root(_kvm, NULL, false);		\
164 	     ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root;	\
165 	     _root = tdp_mmu_next_root(_kvm, _root, false))
166 
167 /*
168  * Iterate over all TDP MMU roots.  Requires that mmu_lock be held for write,
169  * the implication being that any flow that holds mmu_lock for read is
170  * inherently yield-friendly and should use the yield-safe variant above.
171  * Holding mmu_lock for write obviates the need for RCU protection as the list
172  * is guaranteed to be stable.
173  */
174 #define __for_each_tdp_mmu_root(_kvm, _root, _as_id, _only_valid)		\
175 	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)		\
176 		if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) &&		\
177 		    ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) ||	\
178 		     ((_only_valid) && (_root)->role.invalid))) {		\
179 		} else
180 
181 #define for_each_tdp_mmu_root(_kvm, _root, _as_id)			\
182 	__for_each_tdp_mmu_root(_kvm, _root, _as_id, false)
183 
184 #define for_each_valid_tdp_mmu_root(_kvm, _root, _as_id)		\
185 	__for_each_tdp_mmu_root(_kvm, _root, _as_id, true)
186 
187 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu)
188 {
189 	struct kvm_mmu_page *sp;
190 
191 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
192 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
193 
194 	return sp;
195 }
196 
197 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep,
198 			    gfn_t gfn, union kvm_mmu_page_role role)
199 {
200 	INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
201 
202 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
203 
204 	sp->role = role;
205 	sp->gfn = gfn;
206 	sp->ptep = sptep;
207 	sp->tdp_mmu_page = true;
208 
209 	trace_kvm_mmu_get_page(sp, true);
210 }
211 
212 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp,
213 				  struct tdp_iter *iter)
214 {
215 	struct kvm_mmu_page *parent_sp;
216 	union kvm_mmu_page_role role;
217 
218 	parent_sp = sptep_to_sp(rcu_dereference(iter->sptep));
219 
220 	role = parent_sp->role;
221 	role.level--;
222 
223 	tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role);
224 }
225 
226 int kvm_tdp_mmu_alloc_root(struct kvm_vcpu *vcpu)
227 {
228 	struct kvm_mmu *mmu = vcpu->arch.mmu;
229 	union kvm_mmu_page_role role = mmu->root_role;
230 	int as_id = kvm_mmu_role_as_id(role);
231 	struct kvm *kvm = vcpu->kvm;
232 	struct kvm_mmu_page *root;
233 
234 	/*
235 	 * Check for an existing root before acquiring the pages lock to avoid
236 	 * unnecessary serialization if multiple vCPUs are loading a new root.
237 	 * E.g. when bringing up secondary vCPUs, KVM will already have created
238 	 * a valid root on behalf of the primary vCPU.
239 	 */
240 	read_lock(&kvm->mmu_lock);
241 
242 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, as_id) {
243 		if (root->role.word == role.word)
244 			goto out_read_unlock;
245 	}
246 
247 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
248 
249 	/*
250 	 * Recheck for an existing root after acquiring the pages lock, another
251 	 * vCPU may have raced ahead and created a new usable root.  Manually
252 	 * walk the list of roots as the standard macros assume that the pages
253 	 * lock is *not* held.  WARN if grabbing a reference to a usable root
254 	 * fails, as the last reference to a root can only be put *after* the
255 	 * root has been invalidated, which requires holding mmu_lock for write.
256 	 */
257 	list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
258 		if (root->role.word == role.word &&
259 		    !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root)))
260 			goto out_spin_unlock;
261 	}
262 
263 	root = tdp_mmu_alloc_sp(vcpu);
264 	tdp_mmu_init_sp(root, NULL, 0, role);
265 
266 	/*
267 	 * TDP MMU roots are kept until they are explicitly invalidated, either
268 	 * by a memslot update or by the destruction of the VM.  Initialize the
269 	 * refcount to two; one reference for the vCPU, and one reference for
270 	 * the TDP MMU itself, which is held until the root is invalidated and
271 	 * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots().
272 	 */
273 	refcount_set(&root->tdp_mmu_root_count, 2);
274 	list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots);
275 
276 out_spin_unlock:
277 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
278 out_read_unlock:
279 	read_unlock(&kvm->mmu_lock);
280 	/*
281 	 * Note, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS will prevent entering the guest
282 	 * and actually consuming the root if it's invalidated after dropping
283 	 * mmu_lock, and the root can't be freed as this vCPU holds a reference.
284 	 */
285 	mmu->root.hpa = __pa(root->spt);
286 	mmu->root.pgd = 0;
287 	return 0;
288 }
289 
290 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
291 				u64 old_spte, u64 new_spte, int level,
292 				bool shared);
293 
294 static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
295 {
296 	kvm_account_pgtable_pages((void *)sp->spt, +1);
297 	atomic64_inc(&kvm->arch.tdp_mmu_pages);
298 }
299 
300 static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
301 {
302 	kvm_account_pgtable_pages((void *)sp->spt, -1);
303 	atomic64_dec(&kvm->arch.tdp_mmu_pages);
304 }
305 
306 /**
307  * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages
308  *
309  * @kvm: kvm instance
310  * @sp: the page to be removed
311  */
312 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
313 {
314 	tdp_unaccount_mmu_page(kvm, sp);
315 
316 	if (!sp->nx_huge_page_disallowed)
317 		return;
318 
319 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
320 	sp->nx_huge_page_disallowed = false;
321 	untrack_possible_nx_huge_page(kvm, sp);
322 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
323 }
324 
325 /**
326  * handle_removed_pt() - handle a page table removed from the TDP structure
327  *
328  * @kvm: kvm instance
329  * @pt: the page removed from the paging structure
330  * @shared: This operation may not be running under the exclusive use
331  *	    of the MMU lock and the operation must synchronize with other
332  *	    threads that might be modifying SPTEs.
333  *
334  * Given a page table that has been removed from the TDP paging structure,
335  * iterates through the page table to clear SPTEs and free child page tables.
336  *
337  * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
338  * protection. Since this thread removed it from the paging structure,
339  * this thread will be responsible for ensuring the page is freed. Hence the
340  * early rcu_dereferences in the function.
341  */
342 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
343 {
344 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
345 	int level = sp->role.level;
346 	gfn_t base_gfn = sp->gfn;
347 	int i;
348 
349 	trace_kvm_mmu_prepare_zap_page(sp);
350 
351 	tdp_mmu_unlink_sp(kvm, sp);
352 
353 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
354 		tdp_ptep_t sptep = pt + i;
355 		gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
356 		u64 old_spte;
357 
358 		if (shared) {
359 			/*
360 			 * Set the SPTE to a nonpresent value that other
361 			 * threads will not overwrite. If the SPTE was
362 			 * already marked as removed then another thread
363 			 * handling a page fault could overwrite it, so
364 			 * set the SPTE until it is set from some other
365 			 * value to the removed SPTE value.
366 			 */
367 			for (;;) {
368 				old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE);
369 				if (!is_removed_spte(old_spte))
370 					break;
371 				cpu_relax();
372 			}
373 		} else {
374 			/*
375 			 * If the SPTE is not MMU-present, there is no backing
376 			 * page associated with the SPTE and so no side effects
377 			 * that need to be recorded, and exclusive ownership of
378 			 * mmu_lock ensures the SPTE can't be made present.
379 			 * Note, zapping MMIO SPTEs is also unnecessary as they
380 			 * are guarded by the memslots generation, not by being
381 			 * unreachable.
382 			 */
383 			old_spte = kvm_tdp_mmu_read_spte(sptep);
384 			if (!is_shadow_present_pte(old_spte))
385 				continue;
386 
387 			/*
388 			 * Use the common helper instead of a raw WRITE_ONCE as
389 			 * the SPTE needs to be updated atomically if it can be
390 			 * modified by a different vCPU outside of mmu_lock.
391 			 * Even though the parent SPTE is !PRESENT, the TLB
392 			 * hasn't yet been flushed, and both Intel and AMD
393 			 * document that A/D assists can use upper-level PxE
394 			 * entries that are cached in the TLB, i.e. the CPU can
395 			 * still access the page and mark it dirty.
396 			 *
397 			 * No retry is needed in the atomic update path as the
398 			 * sole concern is dropping a Dirty bit, i.e. no other
399 			 * task can zap/remove the SPTE as mmu_lock is held for
400 			 * write.  Marking the SPTE as a removed SPTE is not
401 			 * strictly necessary for the same reason, but using
402 			 * the remove SPTE value keeps the shared/exclusive
403 			 * paths consistent and allows the handle_changed_spte()
404 			 * call below to hardcode the new value to REMOVED_SPTE.
405 			 *
406 			 * Note, even though dropping a Dirty bit is the only
407 			 * scenario where a non-atomic update could result in a
408 			 * functional bug, simply checking the Dirty bit isn't
409 			 * sufficient as a fast page fault could read the upper
410 			 * level SPTE before it is zapped, and then make this
411 			 * target SPTE writable, resume the guest, and set the
412 			 * Dirty bit between reading the SPTE above and writing
413 			 * it here.
414 			 */
415 			old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
416 							  REMOVED_SPTE, level);
417 		}
418 		handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
419 				    old_spte, REMOVED_SPTE, level, shared);
420 	}
421 
422 	call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
423 }
424 
425 /**
426  * handle_changed_spte - handle bookkeeping associated with an SPTE change
427  * @kvm: kvm instance
428  * @as_id: the address space of the paging structure the SPTE was a part of
429  * @gfn: the base GFN that was mapped by the SPTE
430  * @old_spte: The value of the SPTE before the change
431  * @new_spte: The value of the SPTE after the change
432  * @level: the level of the PT the SPTE is part of in the paging structure
433  * @shared: This operation may not be running under the exclusive use of
434  *	    the MMU lock and the operation must synchronize with other
435  *	    threads that might be modifying SPTEs.
436  *
437  * Handle bookkeeping that might result from the modification of a SPTE.  Note,
438  * dirty logging updates are handled in common code, not here (see make_spte()
439  * and fast_pf_fix_direct_spte()).
440  */
441 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
442 				u64 old_spte, u64 new_spte, int level,
443 				bool shared)
444 {
445 	bool was_present = is_shadow_present_pte(old_spte);
446 	bool is_present = is_shadow_present_pte(new_spte);
447 	bool was_leaf = was_present && is_last_spte(old_spte, level);
448 	bool is_leaf = is_present && is_last_spte(new_spte, level);
449 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
450 
451 	WARN_ON_ONCE(level > PT64_ROOT_MAX_LEVEL);
452 	WARN_ON_ONCE(level < PG_LEVEL_4K);
453 	WARN_ON_ONCE(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
454 
455 	/*
456 	 * If this warning were to trigger it would indicate that there was a
457 	 * missing MMU notifier or a race with some notifier handler.
458 	 * A present, leaf SPTE should never be directly replaced with another
459 	 * present leaf SPTE pointing to a different PFN. A notifier handler
460 	 * should be zapping the SPTE before the main MM's page table is
461 	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
462 	 * thread before replacement.
463 	 */
464 	if (was_leaf && is_leaf && pfn_changed) {
465 		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
466 		       "SPTE with another present leaf SPTE mapping a\n"
467 		       "different PFN!\n"
468 		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
469 		       as_id, gfn, old_spte, new_spte, level);
470 
471 		/*
472 		 * Crash the host to prevent error propagation and guest data
473 		 * corruption.
474 		 */
475 		BUG();
476 	}
477 
478 	if (old_spte == new_spte)
479 		return;
480 
481 	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
482 
483 	if (is_leaf)
484 		check_spte_writable_invariants(new_spte);
485 
486 	/*
487 	 * The only times a SPTE should be changed from a non-present to
488 	 * non-present state is when an MMIO entry is installed/modified/
489 	 * removed. In that case, there is nothing to do here.
490 	 */
491 	if (!was_present && !is_present) {
492 		/*
493 		 * If this change does not involve a MMIO SPTE or removed SPTE,
494 		 * it is unexpected. Log the change, though it should not
495 		 * impact the guest since both the former and current SPTEs
496 		 * are nonpresent.
497 		 */
498 		if (WARN_ON_ONCE(!is_mmio_spte(old_spte) &&
499 				 !is_mmio_spte(new_spte) &&
500 				 !is_removed_spte(new_spte)))
501 			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
502 			       "should not be replaced with another,\n"
503 			       "different nonpresent SPTE, unless one or both\n"
504 			       "are MMIO SPTEs, or the new SPTE is\n"
505 			       "a temporary removed SPTE.\n"
506 			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
507 			       as_id, gfn, old_spte, new_spte, level);
508 		return;
509 	}
510 
511 	if (is_leaf != was_leaf)
512 		kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1);
513 
514 	if (was_leaf && is_dirty_spte(old_spte) &&
515 	    (!is_present || !is_dirty_spte(new_spte) || pfn_changed))
516 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
517 
518 	/*
519 	 * Recursively handle child PTs if the change removed a subtree from
520 	 * the paging structure.  Note the WARN on the PFN changing without the
521 	 * SPTE being converted to a hugepage (leaf) or being zapped.  Shadow
522 	 * pages are kernel allocations and should never be migrated.
523 	 */
524 	if (was_present && !was_leaf &&
525 	    (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed)))
526 		handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared);
527 
528 	if (was_leaf && is_accessed_spte(old_spte) &&
529 	    (!is_present || !is_accessed_spte(new_spte) || pfn_changed))
530 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
531 }
532 
533 /*
534  * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically
535  * and handle the associated bookkeeping.  Do not mark the page dirty
536  * in KVM's dirty bitmaps.
537  *
538  * If setting the SPTE fails because it has changed, iter->old_spte will be
539  * refreshed to the current value of the spte.
540  *
541  * @kvm: kvm instance
542  * @iter: a tdp_iter instance currently on the SPTE that should be set
543  * @new_spte: The value the SPTE should be set to
544  * Return:
545  * * 0      - If the SPTE was set.
546  * * -EBUSY - If the SPTE cannot be set. In this case this function will have
547  *            no side-effects other than setting iter->old_spte to the last
548  *            known value of the spte.
549  */
550 static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm,
551 					  struct tdp_iter *iter,
552 					  u64 new_spte)
553 {
554 	u64 *sptep = rcu_dereference(iter->sptep);
555 
556 	/*
557 	 * The caller is responsible for ensuring the old SPTE is not a REMOVED
558 	 * SPTE.  KVM should never attempt to zap or manipulate a REMOVED SPTE,
559 	 * and pre-checking before inserting a new SPTE is advantageous as it
560 	 * avoids unnecessary work.
561 	 */
562 	WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte));
563 
564 	lockdep_assert_held_read(&kvm->mmu_lock);
565 
566 	/*
567 	 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
568 	 * does not hold the mmu_lock.  On failure, i.e. if a different logical
569 	 * CPU modified the SPTE, try_cmpxchg64() updates iter->old_spte with
570 	 * the current value, so the caller operates on fresh data, e.g. if it
571 	 * retries tdp_mmu_set_spte_atomic()
572 	 */
573 	if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte))
574 		return -EBUSY;
575 
576 	handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
577 			    new_spte, iter->level, true);
578 
579 	return 0;
580 }
581 
582 static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
583 					  struct tdp_iter *iter)
584 {
585 	int ret;
586 
587 	/*
588 	 * Freeze the SPTE by setting it to a special,
589 	 * non-present value. This will stop other threads from
590 	 * immediately installing a present entry in its place
591 	 * before the TLBs are flushed.
592 	 */
593 	ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE);
594 	if (ret)
595 		return ret;
596 
597 	kvm_flush_remote_tlbs_gfn(kvm, iter->gfn, iter->level);
598 
599 	/*
600 	 * No other thread can overwrite the removed SPTE as they must either
601 	 * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not
602 	 * overwrite the special removed SPTE value. No bookkeeping is needed
603 	 * here since the SPTE is going from non-present to non-present.  Use
604 	 * the raw write helper to avoid an unnecessary check on volatile bits.
605 	 */
606 	__kvm_tdp_mmu_write_spte(iter->sptep, 0);
607 
608 	return 0;
609 }
610 
611 
612 /*
613  * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
614  * @kvm:	      KVM instance
615  * @as_id:	      Address space ID, i.e. regular vs. SMM
616  * @sptep:	      Pointer to the SPTE
617  * @old_spte:	      The current value of the SPTE
618  * @new_spte:	      The new value that will be set for the SPTE
619  * @gfn:	      The base GFN that was (or will be) mapped by the SPTE
620  * @level:	      The level _containing_ the SPTE (its parent PT's level)
621  *
622  * Returns the old SPTE value, which _may_ be different than @old_spte if the
623  * SPTE had voldatile bits.
624  */
625 static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
626 			    u64 old_spte, u64 new_spte, gfn_t gfn, int level)
627 {
628 	lockdep_assert_held_write(&kvm->mmu_lock);
629 
630 	/*
631 	 * No thread should be using this function to set SPTEs to or from the
632 	 * temporary removed SPTE value.
633 	 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
634 	 * should be used. If operating under the MMU lock in write mode, the
635 	 * use of the removed SPTE should not be necessary.
636 	 */
637 	WARN_ON_ONCE(is_removed_spte(old_spte) || is_removed_spte(new_spte));
638 
639 	old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
640 
641 	handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
642 	return old_spte;
643 }
644 
645 static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter,
646 					 u64 new_spte)
647 {
648 	WARN_ON_ONCE(iter->yielded);
649 	iter->old_spte = tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
650 					  iter->old_spte, new_spte,
651 					  iter->gfn, iter->level);
652 }
653 
654 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
655 	for_each_tdp_pte(_iter, _root, _start, _end)
656 
657 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
658 	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
659 		if (!is_shadow_present_pte(_iter.old_spte) ||		\
660 		    !is_last_spte(_iter.old_spte, _iter.level))		\
661 			continue;					\
662 		else
663 
664 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
665 	for_each_tdp_pte(_iter, root_to_sp(_mmu->root.hpa), _start, _end)
666 
667 /*
668  * Yield if the MMU lock is contended or this thread needs to return control
669  * to the scheduler.
670  *
671  * If this function should yield and flush is set, it will perform a remote
672  * TLB flush before yielding.
673  *
674  * If this function yields, iter->yielded is set and the caller must skip to
675  * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk
676  * over the paging structures to allow the iterator to continue its traversal
677  * from the paging structure root.
678  *
679  * Returns true if this function yielded.
680  */
681 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm,
682 							  struct tdp_iter *iter,
683 							  bool flush, bool shared)
684 {
685 	WARN_ON_ONCE(iter->yielded);
686 
687 	/* Ensure forward progress has been made before yielding. */
688 	if (iter->next_last_level_gfn == iter->yielded_gfn)
689 		return false;
690 
691 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
692 		if (flush)
693 			kvm_flush_remote_tlbs(kvm);
694 
695 		rcu_read_unlock();
696 
697 		if (shared)
698 			cond_resched_rwlock_read(&kvm->mmu_lock);
699 		else
700 			cond_resched_rwlock_write(&kvm->mmu_lock);
701 
702 		rcu_read_lock();
703 
704 		WARN_ON_ONCE(iter->gfn > iter->next_last_level_gfn);
705 
706 		iter->yielded = true;
707 	}
708 
709 	return iter->yielded;
710 }
711 
712 static inline gfn_t tdp_mmu_max_gfn_exclusive(void)
713 {
714 	/*
715 	 * Bound TDP MMU walks at host.MAXPHYADDR.  KVM disallows memslots with
716 	 * a gpa range that would exceed the max gfn, and KVM does not create
717 	 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down
718 	 * the slow emulation path every time.
719 	 */
720 	return kvm_mmu_max_gfn() + 1;
721 }
722 
723 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
724 			       bool shared, int zap_level)
725 {
726 	struct tdp_iter iter;
727 
728 	gfn_t end = tdp_mmu_max_gfn_exclusive();
729 	gfn_t start = 0;
730 
731 	for_each_tdp_pte_min_level(iter, root, zap_level, start, end) {
732 retry:
733 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
734 			continue;
735 
736 		if (!is_shadow_present_pte(iter.old_spte))
737 			continue;
738 
739 		if (iter.level > zap_level)
740 			continue;
741 
742 		if (!shared)
743 			tdp_mmu_iter_set_spte(kvm, &iter, 0);
744 		else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0))
745 			goto retry;
746 	}
747 }
748 
749 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
750 			     bool shared)
751 {
752 
753 	/*
754 	 * The root must have an elevated refcount so that it's reachable via
755 	 * mmu_notifier callbacks, which allows this path to yield and drop
756 	 * mmu_lock.  When handling an unmap/release mmu_notifier command, KVM
757 	 * must drop all references to relevant pages prior to completing the
758 	 * callback.  Dropping mmu_lock with an unreachable root would result
759 	 * in zapping SPTEs after a relevant mmu_notifier callback completes
760 	 * and lead to use-after-free as zapping a SPTE triggers "writeback" of
761 	 * dirty accessed bits to the SPTE's associated struct page.
762 	 */
763 	WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count));
764 
765 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
766 
767 	rcu_read_lock();
768 
769 	/*
770 	 * Zap roots in multiple passes of decreasing granularity, i.e. zap at
771 	 * 4KiB=>2MiB=>1GiB=>root, in order to better honor need_resched() (all
772 	 * preempt models) or mmu_lock contention (full or real-time models).
773 	 * Zapping at finer granularity marginally increases the total time of
774 	 * the zap, but in most cases the zap itself isn't latency sensitive.
775 	 *
776 	 * If KVM is configured to prove the MMU, skip the 4KiB and 2MiB zaps
777 	 * in order to mimic the page fault path, which can replace a 1GiB page
778 	 * table with an equivalent 1GiB hugepage, i.e. can get saddled with
779 	 * zapping a 1GiB region that's fully populated with 4KiB SPTEs.  This
780 	 * allows verifying that KVM can safely zap 1GiB regions, e.g. without
781 	 * inducing RCU stalls, without relying on a relatively rare event
782 	 * (zapping roots is orders of magnitude more common).  Note, because
783 	 * zapping a SP recurses on its children, stepping down to PG_LEVEL_4K
784 	 * in the iterator itself is unnecessary.
785 	 */
786 	if (!IS_ENABLED(CONFIG_KVM_PROVE_MMU)) {
787 		__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_4K);
788 		__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_2M);
789 	}
790 	__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G);
791 	__tdp_mmu_zap_root(kvm, root, shared, root->role.level);
792 
793 	rcu_read_unlock();
794 }
795 
796 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
797 {
798 	u64 old_spte;
799 
800 	/*
801 	 * This helper intentionally doesn't allow zapping a root shadow page,
802 	 * which doesn't have a parent page table and thus no associated entry.
803 	 */
804 	if (WARN_ON_ONCE(!sp->ptep))
805 		return false;
806 
807 	old_spte = kvm_tdp_mmu_read_spte(sp->ptep);
808 	if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte)))
809 		return false;
810 
811 	tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0,
812 			 sp->gfn, sp->role.level + 1);
813 
814 	return true;
815 }
816 
817 /*
818  * If can_yield is true, will release the MMU lock and reschedule if the
819  * scheduler needs the CPU or there is contention on the MMU lock. If this
820  * function cannot yield, it will not release the MMU lock or reschedule and
821  * the caller must ensure it does not supply too large a GFN range, or the
822  * operation can cause a soft lockup.
823  */
824 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root,
825 			      gfn_t start, gfn_t end, bool can_yield, bool flush)
826 {
827 	struct tdp_iter iter;
828 
829 	end = min(end, tdp_mmu_max_gfn_exclusive());
830 
831 	lockdep_assert_held_write(&kvm->mmu_lock);
832 
833 	rcu_read_lock();
834 
835 	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) {
836 		if (can_yield &&
837 		    tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) {
838 			flush = false;
839 			continue;
840 		}
841 
842 		if (!is_shadow_present_pte(iter.old_spte) ||
843 		    !is_last_spte(iter.old_spte, iter.level))
844 			continue;
845 
846 		tdp_mmu_iter_set_spte(kvm, &iter, 0);
847 
848 		/*
849 		 * Zappings SPTEs in invalid roots doesn't require a TLB flush,
850 		 * see kvm_tdp_mmu_zap_invalidated_roots() for details.
851 		 */
852 		if (!root->role.invalid)
853 			flush = true;
854 	}
855 
856 	rcu_read_unlock();
857 
858 	/*
859 	 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need
860 	 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed.
861 	 */
862 	return flush;
863 }
864 
865 /*
866  * Zap leaf SPTEs for the range of gfns, [start, end), for all *VALID** roots.
867  * Returns true if a TLB flush is needed before releasing the MMU lock, i.e. if
868  * one or more SPTEs were zapped since the MMU lock was last acquired.
869  */
870 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush)
871 {
872 	struct kvm_mmu_page *root;
873 
874 	lockdep_assert_held_write(&kvm->mmu_lock);
875 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, -1)
876 		flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush);
877 
878 	return flush;
879 }
880 
881 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
882 {
883 	struct kvm_mmu_page *root;
884 
885 	/*
886 	 * Zap all roots, including invalid roots, as all SPTEs must be dropped
887 	 * before returning to the caller.  Zap directly even if the root is
888 	 * also being zapped by a worker.  Walking zapped top-level SPTEs isn't
889 	 * all that expensive and mmu_lock is already held, which means the
890 	 * worker has yielded, i.e. flushing the work instead of zapping here
891 	 * isn't guaranteed to be any faster.
892 	 *
893 	 * A TLB flush is unnecessary, KVM zaps everything if and only the VM
894 	 * is being destroyed or the userspace VMM has exited.  In both cases,
895 	 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request.
896 	 */
897 	lockdep_assert_held_write(&kvm->mmu_lock);
898 	for_each_tdp_mmu_root_yield_safe(kvm, root)
899 		tdp_mmu_zap_root(kvm, root, false);
900 }
901 
902 /*
903  * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast
904  * zap" completes.
905  */
906 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm)
907 {
908 	struct kvm_mmu_page *root;
909 
910 	read_lock(&kvm->mmu_lock);
911 
912 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
913 		if (!root->tdp_mmu_scheduled_root_to_zap)
914 			continue;
915 
916 		root->tdp_mmu_scheduled_root_to_zap = false;
917 		KVM_BUG_ON(!root->role.invalid, kvm);
918 
919 		/*
920 		 * A TLB flush is not necessary as KVM performs a local TLB
921 		 * flush when allocating a new root (see kvm_mmu_load()), and
922 		 * when migrating a vCPU to a different pCPU.  Note, the local
923 		 * TLB flush on reuse also invalidates paging-structure-cache
924 		 * entries, i.e. TLB entries for intermediate paging structures,
925 		 * that may be zapped, as such entries are associated with the
926 		 * ASID on both VMX and SVM.
927 		 */
928 		tdp_mmu_zap_root(kvm, root, true);
929 
930 		/*
931 		 * The referenced needs to be put *after* zapping the root, as
932 		 * the root must be reachable by mmu_notifiers while it's being
933 		 * zapped
934 		 */
935 		kvm_tdp_mmu_put_root(kvm, root);
936 	}
937 
938 	read_unlock(&kvm->mmu_lock);
939 }
940 
941 /*
942  * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that
943  * is about to be zapped, e.g. in response to a memslots update.  The actual
944  * zapping is done separately so that it happens with mmu_lock with read,
945  * whereas invalidating roots must be done with mmu_lock held for write (unless
946  * the VM is being destroyed).
947  *
948  * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference.
949  * See kvm_tdp_mmu_alloc_root().
950  */
951 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm)
952 {
953 	struct kvm_mmu_page *root;
954 
955 	/*
956 	 * mmu_lock must be held for write to ensure that a root doesn't become
957 	 * invalid while there are active readers (invalidating a root while
958 	 * there are active readers may or may not be problematic in practice,
959 	 * but it's uncharted territory and not supported).
960 	 *
961 	 * Waive the assertion if there are no users of @kvm, i.e. the VM is
962 	 * being destroyed after all references have been put, or if no vCPUs
963 	 * have been created (which means there are no roots), i.e. the VM is
964 	 * being destroyed in an error path of KVM_CREATE_VM.
965 	 */
966 	if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
967 	    refcount_read(&kvm->users_count) && kvm->created_vcpus)
968 		lockdep_assert_held_write(&kvm->mmu_lock);
969 
970 	/*
971 	 * As above, mmu_lock isn't held when destroying the VM!  There can't
972 	 * be other references to @kvm, i.e. nothing else can invalidate roots
973 	 * or get/put references to roots.
974 	 */
975 	list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
976 		/*
977 		 * Note, invalid roots can outlive a memslot update!  Invalid
978 		 * roots must be *zapped* before the memslot update completes,
979 		 * but a different task can acquire a reference and keep the
980 		 * root alive after its been zapped.
981 		 */
982 		if (!root->role.invalid) {
983 			root->tdp_mmu_scheduled_root_to_zap = true;
984 			root->role.invalid = true;
985 		}
986 	}
987 }
988 
989 /*
990  * Installs a last-level SPTE to handle a TDP page fault.
991  * (NPT/EPT violation/misconfiguration)
992  */
993 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
994 					  struct kvm_page_fault *fault,
995 					  struct tdp_iter *iter)
996 {
997 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep));
998 	u64 new_spte;
999 	int ret = RET_PF_FIXED;
1000 	bool wrprot = false;
1001 
1002 	if (WARN_ON_ONCE(sp->role.level != fault->goal_level))
1003 		return RET_PF_RETRY;
1004 
1005 	if (unlikely(!fault->slot))
1006 		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
1007 	else
1008 		wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn,
1009 					 fault->pfn, iter->old_spte, fault->prefetch, true,
1010 					 fault->map_writable, &new_spte);
1011 
1012 	if (new_spte == iter->old_spte)
1013 		ret = RET_PF_SPURIOUS;
1014 	else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte))
1015 		return RET_PF_RETRY;
1016 	else if (is_shadow_present_pte(iter->old_spte) &&
1017 		 !is_last_spte(iter->old_spte, iter->level))
1018 		kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level);
1019 
1020 	/*
1021 	 * If the page fault was caused by a write but the page is write
1022 	 * protected, emulation is needed. If the emulation was skipped,
1023 	 * the vCPU would have the same fault again.
1024 	 */
1025 	if (wrprot) {
1026 		if (fault->write)
1027 			ret = RET_PF_EMULATE;
1028 	}
1029 
1030 	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
1031 	if (unlikely(is_mmio_spte(new_spte))) {
1032 		vcpu->stat.pf_mmio_spte_created++;
1033 		trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
1034 				     new_spte);
1035 		ret = RET_PF_EMULATE;
1036 	} else {
1037 		trace_kvm_mmu_set_spte(iter->level, iter->gfn,
1038 				       rcu_dereference(iter->sptep));
1039 	}
1040 
1041 	return ret;
1042 }
1043 
1044 /*
1045  * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the
1046  * provided page table.
1047  *
1048  * @kvm: kvm instance
1049  * @iter: a tdp_iter instance currently on the SPTE that should be set
1050  * @sp: The new TDP page table to install.
1051  * @shared: This operation is running under the MMU lock in read mode.
1052  *
1053  * Returns: 0 if the new page table was installed. Non-0 if the page table
1054  *          could not be installed (e.g. the atomic compare-exchange failed).
1055  */
1056 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
1057 			   struct kvm_mmu_page *sp, bool shared)
1058 {
1059 	u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled());
1060 	int ret = 0;
1061 
1062 	if (shared) {
1063 		ret = tdp_mmu_set_spte_atomic(kvm, iter, spte);
1064 		if (ret)
1065 			return ret;
1066 	} else {
1067 		tdp_mmu_iter_set_spte(kvm, iter, spte);
1068 	}
1069 
1070 	tdp_account_mmu_page(kvm, sp);
1071 
1072 	return 0;
1073 }
1074 
1075 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1076 				   struct kvm_mmu_page *sp, bool shared);
1077 
1078 /*
1079  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
1080  * page tables and SPTEs to translate the faulting guest physical address.
1081  */
1082 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
1083 {
1084 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1085 	struct kvm *kvm = vcpu->kvm;
1086 	struct tdp_iter iter;
1087 	struct kvm_mmu_page *sp;
1088 	int ret = RET_PF_RETRY;
1089 
1090 	kvm_mmu_hugepage_adjust(vcpu, fault);
1091 
1092 	trace_kvm_mmu_spte_requested(fault);
1093 
1094 	rcu_read_lock();
1095 
1096 	tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) {
1097 		int r;
1098 
1099 		if (fault->nx_huge_page_workaround_enabled)
1100 			disallowed_hugepage_adjust(fault, iter.old_spte, iter.level);
1101 
1102 		/*
1103 		 * If SPTE has been frozen by another thread, just give up and
1104 		 * retry, avoiding unnecessary page table allocation and free.
1105 		 */
1106 		if (is_removed_spte(iter.old_spte))
1107 			goto retry;
1108 
1109 		if (iter.level == fault->goal_level)
1110 			goto map_target_level;
1111 
1112 		/* Step down into the lower level page table if it exists. */
1113 		if (is_shadow_present_pte(iter.old_spte) &&
1114 		    !is_large_pte(iter.old_spte))
1115 			continue;
1116 
1117 		/*
1118 		 * The SPTE is either non-present or points to a huge page that
1119 		 * needs to be split.
1120 		 */
1121 		sp = tdp_mmu_alloc_sp(vcpu);
1122 		tdp_mmu_init_child_sp(sp, &iter);
1123 
1124 		sp->nx_huge_page_disallowed = fault->huge_page_disallowed;
1125 
1126 		if (is_shadow_present_pte(iter.old_spte))
1127 			r = tdp_mmu_split_huge_page(kvm, &iter, sp, true);
1128 		else
1129 			r = tdp_mmu_link_sp(kvm, &iter, sp, true);
1130 
1131 		/*
1132 		 * Force the guest to retry if installing an upper level SPTE
1133 		 * failed, e.g. because a different task modified the SPTE.
1134 		 */
1135 		if (r) {
1136 			tdp_mmu_free_sp(sp);
1137 			goto retry;
1138 		}
1139 
1140 		if (fault->huge_page_disallowed &&
1141 		    fault->req_level >= iter.level) {
1142 			spin_lock(&kvm->arch.tdp_mmu_pages_lock);
1143 			if (sp->nx_huge_page_disallowed)
1144 				track_possible_nx_huge_page(kvm, sp);
1145 			spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
1146 		}
1147 	}
1148 
1149 	/*
1150 	 * The walk aborted before reaching the target level, e.g. because the
1151 	 * iterator detected an upper level SPTE was frozen during traversal.
1152 	 */
1153 	WARN_ON_ONCE(iter.level == fault->goal_level);
1154 	goto retry;
1155 
1156 map_target_level:
1157 	ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter);
1158 
1159 retry:
1160 	rcu_read_unlock();
1161 	return ret;
1162 }
1163 
1164 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
1165 				 bool flush)
1166 {
1167 	struct kvm_mmu_page *root;
1168 
1169 	__for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, false)
1170 		flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end,
1171 					  range->may_block, flush);
1172 
1173 	return flush;
1174 }
1175 
1176 typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter,
1177 			      struct kvm_gfn_range *range);
1178 
1179 static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm,
1180 						   struct kvm_gfn_range *range,
1181 						   tdp_handler_t handler)
1182 {
1183 	struct kvm_mmu_page *root;
1184 	struct tdp_iter iter;
1185 	bool ret = false;
1186 
1187 	/*
1188 	 * Don't support rescheduling, none of the MMU notifiers that funnel
1189 	 * into this helper allow blocking; it'd be dead, wasteful code.
1190 	 */
1191 	for_each_tdp_mmu_root(kvm, root, range->slot->as_id) {
1192 		rcu_read_lock();
1193 
1194 		tdp_root_for_each_leaf_pte(iter, root, range->start, range->end)
1195 			ret |= handler(kvm, &iter, range);
1196 
1197 		rcu_read_unlock();
1198 	}
1199 
1200 	return ret;
1201 }
1202 
1203 /*
1204  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
1205  * if any of the GFNs in the range have been accessed.
1206  *
1207  * No need to mark the corresponding PFN as accessed as this call is coming
1208  * from the clear_young() or clear_flush_young() notifier, which uses the
1209  * return value to determine if the page has been accessed.
1210  */
1211 static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter,
1212 			  struct kvm_gfn_range *range)
1213 {
1214 	u64 new_spte;
1215 
1216 	/* If we have a non-accessed entry we don't need to change the pte. */
1217 	if (!is_accessed_spte(iter->old_spte))
1218 		return false;
1219 
1220 	if (spte_ad_enabled(iter->old_spte)) {
1221 		iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep,
1222 							 iter->old_spte,
1223 							 shadow_accessed_mask,
1224 							 iter->level);
1225 		new_spte = iter->old_spte & ~shadow_accessed_mask;
1226 	} else {
1227 		/*
1228 		 * Capture the dirty status of the page, so that it doesn't get
1229 		 * lost when the SPTE is marked for access tracking.
1230 		 */
1231 		if (is_writable_pte(iter->old_spte))
1232 			kvm_set_pfn_dirty(spte_to_pfn(iter->old_spte));
1233 
1234 		new_spte = mark_spte_for_access_track(iter->old_spte);
1235 		iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep,
1236 							iter->old_spte, new_spte,
1237 							iter->level);
1238 	}
1239 
1240 	trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level,
1241 				       iter->old_spte, new_spte);
1242 	return true;
1243 }
1244 
1245 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1246 {
1247 	return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range);
1248 }
1249 
1250 static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter,
1251 			 struct kvm_gfn_range *range)
1252 {
1253 	return is_accessed_spte(iter->old_spte);
1254 }
1255 
1256 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1257 {
1258 	return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn);
1259 }
1260 
1261 static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter,
1262 			 struct kvm_gfn_range *range)
1263 {
1264 	u64 new_spte;
1265 
1266 	/* Huge pages aren't expected to be modified without first being zapped. */
1267 	WARN_ON_ONCE(pte_huge(range->arg.pte) || range->start + 1 != range->end);
1268 
1269 	if (iter->level != PG_LEVEL_4K ||
1270 	    !is_shadow_present_pte(iter->old_spte))
1271 		return false;
1272 
1273 	/*
1274 	 * Note, when changing a read-only SPTE, it's not strictly necessary to
1275 	 * zero the SPTE before setting the new PFN, but doing so preserves the
1276 	 * invariant that the PFN of a present * leaf SPTE can never change.
1277 	 * See handle_changed_spte().
1278 	 */
1279 	tdp_mmu_iter_set_spte(kvm, iter, 0);
1280 
1281 	if (!pte_write(range->arg.pte)) {
1282 		new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte,
1283 								  pte_pfn(range->arg.pte));
1284 
1285 		tdp_mmu_iter_set_spte(kvm, iter, new_spte);
1286 	}
1287 
1288 	return true;
1289 }
1290 
1291 /*
1292  * Handle the changed_pte MMU notifier for the TDP MMU.
1293  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
1294  * notifier.
1295  * Returns non-zero if a flush is needed before releasing the MMU lock.
1296  */
1297 bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1298 {
1299 	/*
1300 	 * No need to handle the remote TLB flush under RCU protection, the
1301 	 * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a
1302 	 * shadow page. See the WARN on pfn_changed in handle_changed_spte().
1303 	 */
1304 	return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn);
1305 }
1306 
1307 /*
1308  * Remove write access from all SPTEs at or above min_level that map GFNs
1309  * [start, end). Returns true if an SPTE has been changed and the TLBs need to
1310  * be flushed.
1311  */
1312 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1313 			     gfn_t start, gfn_t end, int min_level)
1314 {
1315 	struct tdp_iter iter;
1316 	u64 new_spte;
1317 	bool spte_set = false;
1318 
1319 	rcu_read_lock();
1320 
1321 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1322 
1323 	for_each_tdp_pte_min_level(iter, root, min_level, start, end) {
1324 retry:
1325 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1326 			continue;
1327 
1328 		if (!is_shadow_present_pte(iter.old_spte) ||
1329 		    !is_last_spte(iter.old_spte, iter.level) ||
1330 		    !(iter.old_spte & PT_WRITABLE_MASK))
1331 			continue;
1332 
1333 		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1334 
1335 		if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1336 			goto retry;
1337 
1338 		spte_set = true;
1339 	}
1340 
1341 	rcu_read_unlock();
1342 	return spte_set;
1343 }
1344 
1345 /*
1346  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
1347  * only affect leaf SPTEs down to min_level.
1348  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1349  */
1350 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm,
1351 			     const struct kvm_memory_slot *slot, int min_level)
1352 {
1353 	struct kvm_mmu_page *root;
1354 	bool spte_set = false;
1355 
1356 	lockdep_assert_held_read(&kvm->mmu_lock);
1357 
1358 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1359 		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
1360 			     slot->base_gfn + slot->npages, min_level);
1361 
1362 	return spte_set;
1363 }
1364 
1365 static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp)
1366 {
1367 	struct kvm_mmu_page *sp;
1368 
1369 	gfp |= __GFP_ZERO;
1370 
1371 	sp = kmem_cache_alloc(mmu_page_header_cache, gfp);
1372 	if (!sp)
1373 		return NULL;
1374 
1375 	sp->spt = (void *)__get_free_page(gfp);
1376 	if (!sp->spt) {
1377 		kmem_cache_free(mmu_page_header_cache, sp);
1378 		return NULL;
1379 	}
1380 
1381 	return sp;
1382 }
1383 
1384 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm,
1385 						       struct tdp_iter *iter,
1386 						       bool shared)
1387 {
1388 	struct kvm_mmu_page *sp;
1389 
1390 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
1391 
1392 	/*
1393 	 * Since we are allocating while under the MMU lock we have to be
1394 	 * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct
1395 	 * reclaim and to avoid making any filesystem callbacks (which can end
1396 	 * up invoking KVM MMU notifiers, resulting in a deadlock).
1397 	 *
1398 	 * If this allocation fails we drop the lock and retry with reclaim
1399 	 * allowed.
1400 	 */
1401 	sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT);
1402 	if (sp)
1403 		return sp;
1404 
1405 	rcu_read_unlock();
1406 
1407 	if (shared)
1408 		read_unlock(&kvm->mmu_lock);
1409 	else
1410 		write_unlock(&kvm->mmu_lock);
1411 
1412 	iter->yielded = true;
1413 	sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT);
1414 
1415 	if (shared)
1416 		read_lock(&kvm->mmu_lock);
1417 	else
1418 		write_lock(&kvm->mmu_lock);
1419 
1420 	rcu_read_lock();
1421 
1422 	return sp;
1423 }
1424 
1425 /* Note, the caller is responsible for initializing @sp. */
1426 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1427 				   struct kvm_mmu_page *sp, bool shared)
1428 {
1429 	const u64 huge_spte = iter->old_spte;
1430 	const int level = iter->level;
1431 	int ret, i;
1432 
1433 	/*
1434 	 * No need for atomics when writing to sp->spt since the page table has
1435 	 * not been linked in yet and thus is not reachable from any other CPU.
1436 	 */
1437 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++)
1438 		sp->spt[i] = make_huge_page_split_spte(kvm, huge_spte, sp->role, i);
1439 
1440 	/*
1441 	 * Replace the huge spte with a pointer to the populated lower level
1442 	 * page table. Since we are making this change without a TLB flush vCPUs
1443 	 * will see a mix of the split mappings and the original huge mapping,
1444 	 * depending on what's currently in their TLB. This is fine from a
1445 	 * correctness standpoint since the translation will be the same either
1446 	 * way.
1447 	 */
1448 	ret = tdp_mmu_link_sp(kvm, iter, sp, shared);
1449 	if (ret)
1450 		goto out;
1451 
1452 	/*
1453 	 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we
1454 	 * are overwriting from the page stats. But we have to manually update
1455 	 * the page stats with the new present child pages.
1456 	 */
1457 	kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE);
1458 
1459 out:
1460 	trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret);
1461 	return ret;
1462 }
1463 
1464 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm,
1465 					 struct kvm_mmu_page *root,
1466 					 gfn_t start, gfn_t end,
1467 					 int target_level, bool shared)
1468 {
1469 	struct kvm_mmu_page *sp = NULL;
1470 	struct tdp_iter iter;
1471 	int ret = 0;
1472 
1473 	rcu_read_lock();
1474 
1475 	/*
1476 	 * Traverse the page table splitting all huge pages above the target
1477 	 * level into one lower level. For example, if we encounter a 1GB page
1478 	 * we split it into 512 2MB pages.
1479 	 *
1480 	 * Since the TDP iterator uses a pre-order traversal, we are guaranteed
1481 	 * to visit an SPTE before ever visiting its children, which means we
1482 	 * will correctly recursively split huge pages that are more than one
1483 	 * level above the target level (e.g. splitting a 1GB to 512 2MB pages,
1484 	 * and then splitting each of those to 512 4KB pages).
1485 	 */
1486 	for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) {
1487 retry:
1488 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
1489 			continue;
1490 
1491 		if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte))
1492 			continue;
1493 
1494 		if (!sp) {
1495 			sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared);
1496 			if (!sp) {
1497 				ret = -ENOMEM;
1498 				trace_kvm_mmu_split_huge_page(iter.gfn,
1499 							      iter.old_spte,
1500 							      iter.level, ret);
1501 				break;
1502 			}
1503 
1504 			if (iter.yielded)
1505 				continue;
1506 		}
1507 
1508 		tdp_mmu_init_child_sp(sp, &iter);
1509 
1510 		if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared))
1511 			goto retry;
1512 
1513 		sp = NULL;
1514 	}
1515 
1516 	rcu_read_unlock();
1517 
1518 	/*
1519 	 * It's possible to exit the loop having never used the last sp if, for
1520 	 * example, a vCPU doing HugePage NX splitting wins the race and
1521 	 * installs its own sp in place of the last sp we tried to split.
1522 	 */
1523 	if (sp)
1524 		tdp_mmu_free_sp(sp);
1525 
1526 	return ret;
1527 }
1528 
1529 
1530 /*
1531  * Try to split all huge pages mapped by the TDP MMU down to the target level.
1532  */
1533 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm,
1534 				      const struct kvm_memory_slot *slot,
1535 				      gfn_t start, gfn_t end,
1536 				      int target_level, bool shared)
1537 {
1538 	struct kvm_mmu_page *root;
1539 	int r = 0;
1540 
1541 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
1542 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) {
1543 		r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared);
1544 		if (r) {
1545 			kvm_tdp_mmu_put_root(kvm, root);
1546 			break;
1547 		}
1548 	}
1549 }
1550 
1551 /*
1552  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1553  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1554  * If AD bits are not enabled, this will require clearing the writable bit on
1555  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1556  * be flushed.
1557  */
1558 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1559 			   gfn_t start, gfn_t end)
1560 {
1561 	u64 dbit = kvm_ad_enabled() ? shadow_dirty_mask : PT_WRITABLE_MASK;
1562 	struct tdp_iter iter;
1563 	bool spte_set = false;
1564 
1565 	rcu_read_lock();
1566 
1567 	tdp_root_for_each_pte(iter, root, start, end) {
1568 retry:
1569 		if (!is_shadow_present_pte(iter.old_spte) ||
1570 		    !is_last_spte(iter.old_spte, iter.level))
1571 			continue;
1572 
1573 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1574 			continue;
1575 
1576 		KVM_MMU_WARN_ON(kvm_ad_enabled() &&
1577 				spte_ad_need_write_protect(iter.old_spte));
1578 
1579 		if (!(iter.old_spte & dbit))
1580 			continue;
1581 
1582 		if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit))
1583 			goto retry;
1584 
1585 		spte_set = true;
1586 	}
1587 
1588 	rcu_read_unlock();
1589 	return spte_set;
1590 }
1591 
1592 /*
1593  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1594  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1595  * If AD bits are not enabled, this will require clearing the writable bit on
1596  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1597  * be flushed.
1598  */
1599 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
1600 				  const struct kvm_memory_slot *slot)
1601 {
1602 	struct kvm_mmu_page *root;
1603 	bool spte_set = false;
1604 
1605 	lockdep_assert_held_read(&kvm->mmu_lock);
1606 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1607 		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
1608 				slot->base_gfn + slot->npages);
1609 
1610 	return spte_set;
1611 }
1612 
1613 /*
1614  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1615  * set in mask, starting at gfn. The given memslot is expected to contain all
1616  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1617  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1618  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1619  */
1620 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
1621 				  gfn_t gfn, unsigned long mask, bool wrprot)
1622 {
1623 	u64 dbit = (wrprot || !kvm_ad_enabled()) ? PT_WRITABLE_MASK :
1624 						   shadow_dirty_mask;
1625 	struct tdp_iter iter;
1626 
1627 	lockdep_assert_held_write(&kvm->mmu_lock);
1628 
1629 	rcu_read_lock();
1630 
1631 	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
1632 				    gfn + BITS_PER_LONG) {
1633 		if (!mask)
1634 			break;
1635 
1636 		KVM_MMU_WARN_ON(kvm_ad_enabled() &&
1637 				spte_ad_need_write_protect(iter.old_spte));
1638 
1639 		if (iter.level > PG_LEVEL_4K ||
1640 		    !(mask & (1UL << (iter.gfn - gfn))))
1641 			continue;
1642 
1643 		mask &= ~(1UL << (iter.gfn - gfn));
1644 
1645 		if (!(iter.old_spte & dbit))
1646 			continue;
1647 
1648 		iter.old_spte = tdp_mmu_clear_spte_bits(iter.sptep,
1649 							iter.old_spte, dbit,
1650 							iter.level);
1651 
1652 		trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level,
1653 					       iter.old_spte,
1654 					       iter.old_spte & ~dbit);
1655 		kvm_set_pfn_dirty(spte_to_pfn(iter.old_spte));
1656 	}
1657 
1658 	rcu_read_unlock();
1659 }
1660 
1661 /*
1662  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1663  * set in mask, starting at gfn. The given memslot is expected to contain all
1664  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1665  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1666  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1667  */
1668 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1669 				       struct kvm_memory_slot *slot,
1670 				       gfn_t gfn, unsigned long mask,
1671 				       bool wrprot)
1672 {
1673 	struct kvm_mmu_page *root;
1674 
1675 	for_each_valid_tdp_mmu_root(kvm, root, slot->as_id)
1676 		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1677 }
1678 
1679 static void zap_collapsible_spte_range(struct kvm *kvm,
1680 				       struct kvm_mmu_page *root,
1681 				       const struct kvm_memory_slot *slot)
1682 {
1683 	gfn_t start = slot->base_gfn;
1684 	gfn_t end = start + slot->npages;
1685 	struct tdp_iter iter;
1686 	int max_mapping_level;
1687 
1688 	rcu_read_lock();
1689 
1690 	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) {
1691 retry:
1692 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1693 			continue;
1694 
1695 		if (iter.level > KVM_MAX_HUGEPAGE_LEVEL ||
1696 		    !is_shadow_present_pte(iter.old_spte))
1697 			continue;
1698 
1699 		/*
1700 		 * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with
1701 		 * a large page size, then its parent would have been zapped
1702 		 * instead of stepping down.
1703 		 */
1704 		if (is_last_spte(iter.old_spte, iter.level))
1705 			continue;
1706 
1707 		/*
1708 		 * If iter.gfn resides outside of the slot, i.e. the page for
1709 		 * the current level overlaps but is not contained by the slot,
1710 		 * then the SPTE can't be made huge.  More importantly, trying
1711 		 * to query that info from slot->arch.lpage_info will cause an
1712 		 * out-of-bounds access.
1713 		 */
1714 		if (iter.gfn < start || iter.gfn >= end)
1715 			continue;
1716 
1717 		max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot,
1718 							      iter.gfn, PG_LEVEL_NUM);
1719 		if (max_mapping_level < iter.level)
1720 			continue;
1721 
1722 		/* Note, a successful atomic zap also does a remote TLB flush. */
1723 		if (tdp_mmu_zap_spte_atomic(kvm, &iter))
1724 			goto retry;
1725 	}
1726 
1727 	rcu_read_unlock();
1728 }
1729 
1730 /*
1731  * Zap non-leaf SPTEs (and free their associated page tables) which could
1732  * be replaced by huge pages, for GFNs within the slot.
1733  */
1734 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1735 				       const struct kvm_memory_slot *slot)
1736 {
1737 	struct kvm_mmu_page *root;
1738 
1739 	lockdep_assert_held_read(&kvm->mmu_lock);
1740 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1741 		zap_collapsible_spte_range(kvm, root, slot);
1742 }
1743 
1744 /*
1745  * Removes write access on the last level SPTE mapping this GFN and unsets the
1746  * MMU-writable bit to ensure future writes continue to be intercepted.
1747  * Returns true if an SPTE was set and a TLB flush is needed.
1748  */
1749 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1750 			      gfn_t gfn, int min_level)
1751 {
1752 	struct tdp_iter iter;
1753 	u64 new_spte;
1754 	bool spte_set = false;
1755 
1756 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1757 
1758 	rcu_read_lock();
1759 
1760 	for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) {
1761 		if (!is_shadow_present_pte(iter.old_spte) ||
1762 		    !is_last_spte(iter.old_spte, iter.level))
1763 			continue;
1764 
1765 		new_spte = iter.old_spte &
1766 			~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
1767 
1768 		if (new_spte == iter.old_spte)
1769 			break;
1770 
1771 		tdp_mmu_iter_set_spte(kvm, &iter, new_spte);
1772 		spte_set = true;
1773 	}
1774 
1775 	rcu_read_unlock();
1776 
1777 	return spte_set;
1778 }
1779 
1780 /*
1781  * Removes write access on the last level SPTE mapping this GFN and unsets the
1782  * MMU-writable bit to ensure future writes continue to be intercepted.
1783  * Returns true if an SPTE was set and a TLB flush is needed.
1784  */
1785 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1786 				   struct kvm_memory_slot *slot, gfn_t gfn,
1787 				   int min_level)
1788 {
1789 	struct kvm_mmu_page *root;
1790 	bool spte_set = false;
1791 
1792 	lockdep_assert_held_write(&kvm->mmu_lock);
1793 	for_each_valid_tdp_mmu_root(kvm, root, slot->as_id)
1794 		spte_set |= write_protect_gfn(kvm, root, gfn, min_level);
1795 
1796 	return spte_set;
1797 }
1798 
1799 /*
1800  * Return the level of the lowest level SPTE added to sptes.
1801  * That SPTE may be non-present.
1802  *
1803  * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1804  */
1805 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1806 			 int *root_level)
1807 {
1808 	struct tdp_iter iter;
1809 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1810 	gfn_t gfn = addr >> PAGE_SHIFT;
1811 	int leaf = -1;
1812 
1813 	*root_level = vcpu->arch.mmu->root_role.level;
1814 
1815 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1816 		leaf = iter.level;
1817 		sptes[leaf] = iter.old_spte;
1818 	}
1819 
1820 	return leaf;
1821 }
1822 
1823 /*
1824  * Returns the last level spte pointer of the shadow page walk for the given
1825  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
1826  * walk could be performed, returns NULL and *spte does not contain valid data.
1827  *
1828  * Contract:
1829  *  - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1830  *  - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end.
1831  *
1832  * WARNING: This function is only intended to be called during fast_page_fault.
1833  */
1834 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr,
1835 					u64 *spte)
1836 {
1837 	struct tdp_iter iter;
1838 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1839 	gfn_t gfn = addr >> PAGE_SHIFT;
1840 	tdp_ptep_t sptep = NULL;
1841 
1842 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1843 		*spte = iter.old_spte;
1844 		sptep = iter.sptep;
1845 	}
1846 
1847 	/*
1848 	 * Perform the rcu_dereference to get the raw spte pointer value since
1849 	 * we are passing it up to fast_page_fault, which is shared with the
1850 	 * legacy MMU and thus does not retain the TDP MMU-specific __rcu
1851 	 * annotation.
1852 	 *
1853 	 * This is safe since fast_page_fault obeys the contracts of this
1854 	 * function as well as all TDP MMU contracts around modifying SPTEs
1855 	 * outside of mmu_lock.
1856 	 */
1857 	return rcu_dereference(sptep);
1858 }
1859