1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include "mmu.h" 5 #include "mmu_internal.h" 6 #include "mmutrace.h" 7 #include "tdp_iter.h" 8 #include "tdp_mmu.h" 9 #include "spte.h" 10 11 #include <asm/cmpxchg.h> 12 #include <trace/events/kvm.h> 13 14 /* Initializes the TDP MMU for the VM, if enabled. */ 15 void kvm_mmu_init_tdp_mmu(struct kvm *kvm) 16 { 17 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); 18 spin_lock_init(&kvm->arch.tdp_mmu_pages_lock); 19 } 20 21 /* Arbitrarily returns true so that this may be used in if statements. */ 22 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm, 23 bool shared) 24 { 25 if (shared) 26 lockdep_assert_held_read(&kvm->mmu_lock); 27 else 28 lockdep_assert_held_write(&kvm->mmu_lock); 29 30 return true; 31 } 32 33 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) 34 { 35 /* 36 * Invalidate all roots, which besides the obvious, schedules all roots 37 * for zapping and thus puts the TDP MMU's reference to each root, i.e. 38 * ultimately frees all roots. 39 */ 40 kvm_tdp_mmu_invalidate_all_roots(kvm); 41 kvm_tdp_mmu_zap_invalidated_roots(kvm); 42 43 WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages)); 44 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); 45 46 /* 47 * Ensure that all the outstanding RCU callbacks to free shadow pages 48 * can run before the VM is torn down. Putting the last reference to 49 * zapped roots will create new callbacks. 50 */ 51 rcu_barrier(); 52 } 53 54 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp) 55 { 56 free_page((unsigned long)sp->spt); 57 kmem_cache_free(mmu_page_header_cache, sp); 58 } 59 60 /* 61 * This is called through call_rcu in order to free TDP page table memory 62 * safely with respect to other kernel threads that may be operating on 63 * the memory. 64 * By only accessing TDP MMU page table memory in an RCU read critical 65 * section, and freeing it after a grace period, lockless access to that 66 * memory won't use it after it is freed. 67 */ 68 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head) 69 { 70 struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page, 71 rcu_head); 72 73 tdp_mmu_free_sp(sp); 74 } 75 76 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root) 77 { 78 if (!refcount_dec_and_test(&root->tdp_mmu_root_count)) 79 return; 80 81 /* 82 * The TDP MMU itself holds a reference to each root until the root is 83 * explicitly invalidated, i.e. the final reference should be never be 84 * put for a valid root. 85 */ 86 KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm); 87 88 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 89 list_del_rcu(&root->link); 90 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 91 call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback); 92 } 93 94 /* 95 * Returns the next root after @prev_root (or the first root if @prev_root is 96 * NULL). A reference to the returned root is acquired, and the reference to 97 * @prev_root is released (the caller obviously must hold a reference to 98 * @prev_root if it's non-NULL). 99 * 100 * If @only_valid is true, invalid roots are skipped. 101 * 102 * Returns NULL if the end of tdp_mmu_roots was reached. 103 */ 104 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, 105 struct kvm_mmu_page *prev_root, 106 bool only_valid) 107 { 108 struct kvm_mmu_page *next_root; 109 110 /* 111 * While the roots themselves are RCU-protected, fields such as 112 * role.invalid are protected by mmu_lock. 113 */ 114 lockdep_assert_held(&kvm->mmu_lock); 115 116 rcu_read_lock(); 117 118 if (prev_root) 119 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 120 &prev_root->link, 121 typeof(*prev_root), link); 122 else 123 next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots, 124 typeof(*next_root), link); 125 126 while (next_root) { 127 if ((!only_valid || !next_root->role.invalid) && 128 kvm_tdp_mmu_get_root(next_root)) 129 break; 130 131 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 132 &next_root->link, typeof(*next_root), link); 133 } 134 135 rcu_read_unlock(); 136 137 if (prev_root) 138 kvm_tdp_mmu_put_root(kvm, prev_root); 139 140 return next_root; 141 } 142 143 /* 144 * Note: this iterator gets and puts references to the roots it iterates over. 145 * This makes it safe to release the MMU lock and yield within the loop, but 146 * if exiting the loop early, the caller must drop the reference to the most 147 * recent root. (Unless keeping a live reference is desirable.) 148 * 149 * If shared is set, this function is operating under the MMU lock in read 150 * mode. 151 */ 152 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _only_valid) \ 153 for (_root = tdp_mmu_next_root(_kvm, NULL, _only_valid); \ 154 ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \ 155 _root = tdp_mmu_next_root(_kvm, _root, _only_valid)) \ 156 if (_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) { \ 157 } else 158 159 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id) \ 160 __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, true) 161 162 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root) \ 163 for (_root = tdp_mmu_next_root(_kvm, NULL, false); \ 164 ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \ 165 _root = tdp_mmu_next_root(_kvm, _root, false)) 166 167 /* 168 * Iterate over all TDP MMU roots. Requires that mmu_lock be held for write, 169 * the implication being that any flow that holds mmu_lock for read is 170 * inherently yield-friendly and should use the yield-safe variant above. 171 * Holding mmu_lock for write obviates the need for RCU protection as the list 172 * is guaranteed to be stable. 173 */ 174 #define __for_each_tdp_mmu_root(_kvm, _root, _as_id, _only_valid) \ 175 list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \ 176 if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \ 177 ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) || \ 178 ((_only_valid) && (_root)->role.invalid))) { \ 179 } else 180 181 #define for_each_tdp_mmu_root(_kvm, _root, _as_id) \ 182 __for_each_tdp_mmu_root(_kvm, _root, _as_id, false) 183 184 #define for_each_valid_tdp_mmu_root(_kvm, _root, _as_id) \ 185 __for_each_tdp_mmu_root(_kvm, _root, _as_id, true) 186 187 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu) 188 { 189 struct kvm_mmu_page *sp; 190 191 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 192 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 193 194 return sp; 195 } 196 197 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep, 198 gfn_t gfn, union kvm_mmu_page_role role) 199 { 200 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 201 202 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 203 204 sp->role = role; 205 sp->gfn = gfn; 206 sp->ptep = sptep; 207 sp->tdp_mmu_page = true; 208 209 trace_kvm_mmu_get_page(sp, true); 210 } 211 212 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp, 213 struct tdp_iter *iter) 214 { 215 struct kvm_mmu_page *parent_sp; 216 union kvm_mmu_page_role role; 217 218 parent_sp = sptep_to_sp(rcu_dereference(iter->sptep)); 219 220 role = parent_sp->role; 221 role.level--; 222 223 tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role); 224 } 225 226 int kvm_tdp_mmu_alloc_root(struct kvm_vcpu *vcpu) 227 { 228 struct kvm_mmu *mmu = vcpu->arch.mmu; 229 union kvm_mmu_page_role role = mmu->root_role; 230 int as_id = kvm_mmu_role_as_id(role); 231 struct kvm *kvm = vcpu->kvm; 232 struct kvm_mmu_page *root; 233 234 /* 235 * Check for an existing root before acquiring the pages lock to avoid 236 * unnecessary serialization if multiple vCPUs are loading a new root. 237 * E.g. when bringing up secondary vCPUs, KVM will already have created 238 * a valid root on behalf of the primary vCPU. 239 */ 240 read_lock(&kvm->mmu_lock); 241 242 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, as_id) { 243 if (root->role.word == role.word) 244 goto out_read_unlock; 245 } 246 247 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 248 249 /* 250 * Recheck for an existing root after acquiring the pages lock, another 251 * vCPU may have raced ahead and created a new usable root. Manually 252 * walk the list of roots as the standard macros assume that the pages 253 * lock is *not* held. WARN if grabbing a reference to a usable root 254 * fails, as the last reference to a root can only be put *after* the 255 * root has been invalidated, which requires holding mmu_lock for write. 256 */ 257 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { 258 if (root->role.word == role.word && 259 !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root))) 260 goto out_spin_unlock; 261 } 262 263 root = tdp_mmu_alloc_sp(vcpu); 264 tdp_mmu_init_sp(root, NULL, 0, role); 265 266 /* 267 * TDP MMU roots are kept until they are explicitly invalidated, either 268 * by a memslot update or by the destruction of the VM. Initialize the 269 * refcount to two; one reference for the vCPU, and one reference for 270 * the TDP MMU itself, which is held until the root is invalidated and 271 * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots(). 272 */ 273 refcount_set(&root->tdp_mmu_root_count, 2); 274 list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots); 275 276 out_spin_unlock: 277 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 278 out_read_unlock: 279 read_unlock(&kvm->mmu_lock); 280 /* 281 * Note, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS will prevent entering the guest 282 * and actually consuming the root if it's invalidated after dropping 283 * mmu_lock, and the root can't be freed as this vCPU holds a reference. 284 */ 285 mmu->root.hpa = __pa(root->spt); 286 mmu->root.pgd = 0; 287 return 0; 288 } 289 290 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 291 u64 old_spte, u64 new_spte, int level, 292 bool shared); 293 294 static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 295 { 296 kvm_account_pgtable_pages((void *)sp->spt, +1); 297 atomic64_inc(&kvm->arch.tdp_mmu_pages); 298 } 299 300 static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 301 { 302 kvm_account_pgtable_pages((void *)sp->spt, -1); 303 atomic64_dec(&kvm->arch.tdp_mmu_pages); 304 } 305 306 /** 307 * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages 308 * 309 * @kvm: kvm instance 310 * @sp: the page to be removed 311 */ 312 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 313 { 314 tdp_unaccount_mmu_page(kvm, sp); 315 316 if (!sp->nx_huge_page_disallowed) 317 return; 318 319 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 320 sp->nx_huge_page_disallowed = false; 321 untrack_possible_nx_huge_page(kvm, sp); 322 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 323 } 324 325 /** 326 * handle_removed_pt() - handle a page table removed from the TDP structure 327 * 328 * @kvm: kvm instance 329 * @pt: the page removed from the paging structure 330 * @shared: This operation may not be running under the exclusive use 331 * of the MMU lock and the operation must synchronize with other 332 * threads that might be modifying SPTEs. 333 * 334 * Given a page table that has been removed from the TDP paging structure, 335 * iterates through the page table to clear SPTEs and free child page tables. 336 * 337 * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU 338 * protection. Since this thread removed it from the paging structure, 339 * this thread will be responsible for ensuring the page is freed. Hence the 340 * early rcu_dereferences in the function. 341 */ 342 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) 343 { 344 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt)); 345 int level = sp->role.level; 346 gfn_t base_gfn = sp->gfn; 347 int i; 348 349 trace_kvm_mmu_prepare_zap_page(sp); 350 351 tdp_mmu_unlink_sp(kvm, sp); 352 353 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 354 tdp_ptep_t sptep = pt + i; 355 gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level); 356 u64 old_spte; 357 358 if (shared) { 359 /* 360 * Set the SPTE to a nonpresent value that other 361 * threads will not overwrite. If the SPTE was 362 * already marked as removed then another thread 363 * handling a page fault could overwrite it, so 364 * set the SPTE until it is set from some other 365 * value to the removed SPTE value. 366 */ 367 for (;;) { 368 old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE); 369 if (!is_removed_spte(old_spte)) 370 break; 371 cpu_relax(); 372 } 373 } else { 374 /* 375 * If the SPTE is not MMU-present, there is no backing 376 * page associated with the SPTE and so no side effects 377 * that need to be recorded, and exclusive ownership of 378 * mmu_lock ensures the SPTE can't be made present. 379 * Note, zapping MMIO SPTEs is also unnecessary as they 380 * are guarded by the memslots generation, not by being 381 * unreachable. 382 */ 383 old_spte = kvm_tdp_mmu_read_spte(sptep); 384 if (!is_shadow_present_pte(old_spte)) 385 continue; 386 387 /* 388 * Use the common helper instead of a raw WRITE_ONCE as 389 * the SPTE needs to be updated atomically if it can be 390 * modified by a different vCPU outside of mmu_lock. 391 * Even though the parent SPTE is !PRESENT, the TLB 392 * hasn't yet been flushed, and both Intel and AMD 393 * document that A/D assists can use upper-level PxE 394 * entries that are cached in the TLB, i.e. the CPU can 395 * still access the page and mark it dirty. 396 * 397 * No retry is needed in the atomic update path as the 398 * sole concern is dropping a Dirty bit, i.e. no other 399 * task can zap/remove the SPTE as mmu_lock is held for 400 * write. Marking the SPTE as a removed SPTE is not 401 * strictly necessary for the same reason, but using 402 * the remove SPTE value keeps the shared/exclusive 403 * paths consistent and allows the handle_changed_spte() 404 * call below to hardcode the new value to REMOVED_SPTE. 405 * 406 * Note, even though dropping a Dirty bit is the only 407 * scenario where a non-atomic update could result in a 408 * functional bug, simply checking the Dirty bit isn't 409 * sufficient as a fast page fault could read the upper 410 * level SPTE before it is zapped, and then make this 411 * target SPTE writable, resume the guest, and set the 412 * Dirty bit between reading the SPTE above and writing 413 * it here. 414 */ 415 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, 416 REMOVED_SPTE, level); 417 } 418 handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn, 419 old_spte, REMOVED_SPTE, level, shared); 420 } 421 422 call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback); 423 } 424 425 /** 426 * handle_changed_spte - handle bookkeeping associated with an SPTE change 427 * @kvm: kvm instance 428 * @as_id: the address space of the paging structure the SPTE was a part of 429 * @gfn: the base GFN that was mapped by the SPTE 430 * @old_spte: The value of the SPTE before the change 431 * @new_spte: The value of the SPTE after the change 432 * @level: the level of the PT the SPTE is part of in the paging structure 433 * @shared: This operation may not be running under the exclusive use of 434 * the MMU lock and the operation must synchronize with other 435 * threads that might be modifying SPTEs. 436 * 437 * Handle bookkeeping that might result from the modification of a SPTE. Note, 438 * dirty logging updates are handled in common code, not here (see make_spte() 439 * and fast_pf_fix_direct_spte()). 440 */ 441 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 442 u64 old_spte, u64 new_spte, int level, 443 bool shared) 444 { 445 bool was_present = is_shadow_present_pte(old_spte); 446 bool is_present = is_shadow_present_pte(new_spte); 447 bool was_leaf = was_present && is_last_spte(old_spte, level); 448 bool is_leaf = is_present && is_last_spte(new_spte, level); 449 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); 450 451 WARN_ON_ONCE(level > PT64_ROOT_MAX_LEVEL); 452 WARN_ON_ONCE(level < PG_LEVEL_4K); 453 WARN_ON_ONCE(gfn & (KVM_PAGES_PER_HPAGE(level) - 1)); 454 455 /* 456 * If this warning were to trigger it would indicate that there was a 457 * missing MMU notifier or a race with some notifier handler. 458 * A present, leaf SPTE should never be directly replaced with another 459 * present leaf SPTE pointing to a different PFN. A notifier handler 460 * should be zapping the SPTE before the main MM's page table is 461 * changed, or the SPTE should be zeroed, and the TLBs flushed by the 462 * thread before replacement. 463 */ 464 if (was_leaf && is_leaf && pfn_changed) { 465 pr_err("Invalid SPTE change: cannot replace a present leaf\n" 466 "SPTE with another present leaf SPTE mapping a\n" 467 "different PFN!\n" 468 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 469 as_id, gfn, old_spte, new_spte, level); 470 471 /* 472 * Crash the host to prevent error propagation and guest data 473 * corruption. 474 */ 475 BUG(); 476 } 477 478 if (old_spte == new_spte) 479 return; 480 481 trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte); 482 483 if (is_leaf) 484 check_spte_writable_invariants(new_spte); 485 486 /* 487 * The only times a SPTE should be changed from a non-present to 488 * non-present state is when an MMIO entry is installed/modified/ 489 * removed. In that case, there is nothing to do here. 490 */ 491 if (!was_present && !is_present) { 492 /* 493 * If this change does not involve a MMIO SPTE or removed SPTE, 494 * it is unexpected. Log the change, though it should not 495 * impact the guest since both the former and current SPTEs 496 * are nonpresent. 497 */ 498 if (WARN_ON_ONCE(!is_mmio_spte(old_spte) && 499 !is_mmio_spte(new_spte) && 500 !is_removed_spte(new_spte))) 501 pr_err("Unexpected SPTE change! Nonpresent SPTEs\n" 502 "should not be replaced with another,\n" 503 "different nonpresent SPTE, unless one or both\n" 504 "are MMIO SPTEs, or the new SPTE is\n" 505 "a temporary removed SPTE.\n" 506 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 507 as_id, gfn, old_spte, new_spte, level); 508 return; 509 } 510 511 if (is_leaf != was_leaf) 512 kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1); 513 514 if (was_leaf && is_dirty_spte(old_spte) && 515 (!is_present || !is_dirty_spte(new_spte) || pfn_changed)) 516 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 517 518 /* 519 * Recursively handle child PTs if the change removed a subtree from 520 * the paging structure. Note the WARN on the PFN changing without the 521 * SPTE being converted to a hugepage (leaf) or being zapped. Shadow 522 * pages are kernel allocations and should never be migrated. 523 */ 524 if (was_present && !was_leaf && 525 (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed))) 526 handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared); 527 528 if (was_leaf && is_accessed_spte(old_spte) && 529 (!is_present || !is_accessed_spte(new_spte) || pfn_changed)) 530 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 531 } 532 533 /* 534 * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically 535 * and handle the associated bookkeeping. Do not mark the page dirty 536 * in KVM's dirty bitmaps. 537 * 538 * If setting the SPTE fails because it has changed, iter->old_spte will be 539 * refreshed to the current value of the spte. 540 * 541 * @kvm: kvm instance 542 * @iter: a tdp_iter instance currently on the SPTE that should be set 543 * @new_spte: The value the SPTE should be set to 544 * Return: 545 * * 0 - If the SPTE was set. 546 * * -EBUSY - If the SPTE cannot be set. In this case this function will have 547 * no side-effects other than setting iter->old_spte to the last 548 * known value of the spte. 549 */ 550 static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm, 551 struct tdp_iter *iter, 552 u64 new_spte) 553 { 554 u64 *sptep = rcu_dereference(iter->sptep); 555 556 /* 557 * The caller is responsible for ensuring the old SPTE is not a REMOVED 558 * SPTE. KVM should never attempt to zap or manipulate a REMOVED SPTE, 559 * and pre-checking before inserting a new SPTE is advantageous as it 560 * avoids unnecessary work. 561 */ 562 WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte)); 563 564 lockdep_assert_held_read(&kvm->mmu_lock); 565 566 /* 567 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and 568 * does not hold the mmu_lock. On failure, i.e. if a different logical 569 * CPU modified the SPTE, try_cmpxchg64() updates iter->old_spte with 570 * the current value, so the caller operates on fresh data, e.g. if it 571 * retries tdp_mmu_set_spte_atomic() 572 */ 573 if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte)) 574 return -EBUSY; 575 576 handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, 577 new_spte, iter->level, true); 578 579 return 0; 580 } 581 582 static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm, 583 struct tdp_iter *iter) 584 { 585 int ret; 586 587 /* 588 * Freeze the SPTE by setting it to a special, 589 * non-present value. This will stop other threads from 590 * immediately installing a present entry in its place 591 * before the TLBs are flushed. 592 */ 593 ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE); 594 if (ret) 595 return ret; 596 597 kvm_flush_remote_tlbs_gfn(kvm, iter->gfn, iter->level); 598 599 /* 600 * No other thread can overwrite the removed SPTE as they must either 601 * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not 602 * overwrite the special removed SPTE value. No bookkeeping is needed 603 * here since the SPTE is going from non-present to non-present. Use 604 * the raw write helper to avoid an unnecessary check on volatile bits. 605 */ 606 __kvm_tdp_mmu_write_spte(iter->sptep, 0); 607 608 return 0; 609 } 610 611 612 /* 613 * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping 614 * @kvm: KVM instance 615 * @as_id: Address space ID, i.e. regular vs. SMM 616 * @sptep: Pointer to the SPTE 617 * @old_spte: The current value of the SPTE 618 * @new_spte: The new value that will be set for the SPTE 619 * @gfn: The base GFN that was (or will be) mapped by the SPTE 620 * @level: The level _containing_ the SPTE (its parent PT's level) 621 * 622 * Returns the old SPTE value, which _may_ be different than @old_spte if the 623 * SPTE had voldatile bits. 624 */ 625 static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep, 626 u64 old_spte, u64 new_spte, gfn_t gfn, int level) 627 { 628 lockdep_assert_held_write(&kvm->mmu_lock); 629 630 /* 631 * No thread should be using this function to set SPTEs to or from the 632 * temporary removed SPTE value. 633 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic 634 * should be used. If operating under the MMU lock in write mode, the 635 * use of the removed SPTE should not be necessary. 636 */ 637 WARN_ON_ONCE(is_removed_spte(old_spte) || is_removed_spte(new_spte)); 638 639 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level); 640 641 handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false); 642 return old_spte; 643 } 644 645 static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter, 646 u64 new_spte) 647 { 648 WARN_ON_ONCE(iter->yielded); 649 iter->old_spte = tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, 650 iter->old_spte, new_spte, 651 iter->gfn, iter->level); 652 } 653 654 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \ 655 for_each_tdp_pte(_iter, _root, _start, _end) 656 657 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \ 658 tdp_root_for_each_pte(_iter, _root, _start, _end) \ 659 if (!is_shadow_present_pte(_iter.old_spte) || \ 660 !is_last_spte(_iter.old_spte, _iter.level)) \ 661 continue; \ 662 else 663 664 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \ 665 for_each_tdp_pte(_iter, root_to_sp(_mmu->root.hpa), _start, _end) 666 667 /* 668 * Yield if the MMU lock is contended or this thread needs to return control 669 * to the scheduler. 670 * 671 * If this function should yield and flush is set, it will perform a remote 672 * TLB flush before yielding. 673 * 674 * If this function yields, iter->yielded is set and the caller must skip to 675 * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk 676 * over the paging structures to allow the iterator to continue its traversal 677 * from the paging structure root. 678 * 679 * Returns true if this function yielded. 680 */ 681 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm, 682 struct tdp_iter *iter, 683 bool flush, bool shared) 684 { 685 WARN_ON_ONCE(iter->yielded); 686 687 /* Ensure forward progress has been made before yielding. */ 688 if (iter->next_last_level_gfn == iter->yielded_gfn) 689 return false; 690 691 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 692 if (flush) 693 kvm_flush_remote_tlbs(kvm); 694 695 rcu_read_unlock(); 696 697 if (shared) 698 cond_resched_rwlock_read(&kvm->mmu_lock); 699 else 700 cond_resched_rwlock_write(&kvm->mmu_lock); 701 702 rcu_read_lock(); 703 704 WARN_ON_ONCE(iter->gfn > iter->next_last_level_gfn); 705 706 iter->yielded = true; 707 } 708 709 return iter->yielded; 710 } 711 712 static inline gfn_t tdp_mmu_max_gfn_exclusive(void) 713 { 714 /* 715 * Bound TDP MMU walks at host.MAXPHYADDR. KVM disallows memslots with 716 * a gpa range that would exceed the max gfn, and KVM does not create 717 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down 718 * the slow emulation path every time. 719 */ 720 return kvm_mmu_max_gfn() + 1; 721 } 722 723 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 724 bool shared, int zap_level) 725 { 726 struct tdp_iter iter; 727 728 gfn_t end = tdp_mmu_max_gfn_exclusive(); 729 gfn_t start = 0; 730 731 for_each_tdp_pte_min_level(iter, root, zap_level, start, end) { 732 retry: 733 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 734 continue; 735 736 if (!is_shadow_present_pte(iter.old_spte)) 737 continue; 738 739 if (iter.level > zap_level) 740 continue; 741 742 if (!shared) 743 tdp_mmu_iter_set_spte(kvm, &iter, 0); 744 else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0)) 745 goto retry; 746 } 747 } 748 749 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 750 bool shared) 751 { 752 753 /* 754 * The root must have an elevated refcount so that it's reachable via 755 * mmu_notifier callbacks, which allows this path to yield and drop 756 * mmu_lock. When handling an unmap/release mmu_notifier command, KVM 757 * must drop all references to relevant pages prior to completing the 758 * callback. Dropping mmu_lock with an unreachable root would result 759 * in zapping SPTEs after a relevant mmu_notifier callback completes 760 * and lead to use-after-free as zapping a SPTE triggers "writeback" of 761 * dirty accessed bits to the SPTE's associated struct page. 762 */ 763 WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count)); 764 765 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 766 767 rcu_read_lock(); 768 769 /* 770 * Zap roots in multiple passes of decreasing granularity, i.e. zap at 771 * 4KiB=>2MiB=>1GiB=>root, in order to better honor need_resched() (all 772 * preempt models) or mmu_lock contention (full or real-time models). 773 * Zapping at finer granularity marginally increases the total time of 774 * the zap, but in most cases the zap itself isn't latency sensitive. 775 * 776 * If KVM is configured to prove the MMU, skip the 4KiB and 2MiB zaps 777 * in order to mimic the page fault path, which can replace a 1GiB page 778 * table with an equivalent 1GiB hugepage, i.e. can get saddled with 779 * zapping a 1GiB region that's fully populated with 4KiB SPTEs. This 780 * allows verifying that KVM can safely zap 1GiB regions, e.g. without 781 * inducing RCU stalls, without relying on a relatively rare event 782 * (zapping roots is orders of magnitude more common). Note, because 783 * zapping a SP recurses on its children, stepping down to PG_LEVEL_4K 784 * in the iterator itself is unnecessary. 785 */ 786 if (!IS_ENABLED(CONFIG_KVM_PROVE_MMU)) { 787 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_4K); 788 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_2M); 789 } 790 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G); 791 __tdp_mmu_zap_root(kvm, root, shared, root->role.level); 792 793 rcu_read_unlock(); 794 } 795 796 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 797 { 798 u64 old_spte; 799 800 /* 801 * This helper intentionally doesn't allow zapping a root shadow page, 802 * which doesn't have a parent page table and thus no associated entry. 803 */ 804 if (WARN_ON_ONCE(!sp->ptep)) 805 return false; 806 807 old_spte = kvm_tdp_mmu_read_spte(sp->ptep); 808 if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte))) 809 return false; 810 811 tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0, 812 sp->gfn, sp->role.level + 1); 813 814 return true; 815 } 816 817 /* 818 * If can_yield is true, will release the MMU lock and reschedule if the 819 * scheduler needs the CPU or there is contention on the MMU lock. If this 820 * function cannot yield, it will not release the MMU lock or reschedule and 821 * the caller must ensure it does not supply too large a GFN range, or the 822 * operation can cause a soft lockup. 823 */ 824 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root, 825 gfn_t start, gfn_t end, bool can_yield, bool flush) 826 { 827 struct tdp_iter iter; 828 829 end = min(end, tdp_mmu_max_gfn_exclusive()); 830 831 lockdep_assert_held_write(&kvm->mmu_lock); 832 833 rcu_read_lock(); 834 835 for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) { 836 if (can_yield && 837 tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) { 838 flush = false; 839 continue; 840 } 841 842 if (!is_shadow_present_pte(iter.old_spte) || 843 !is_last_spte(iter.old_spte, iter.level)) 844 continue; 845 846 tdp_mmu_iter_set_spte(kvm, &iter, 0); 847 848 /* 849 * Zappings SPTEs in invalid roots doesn't require a TLB flush, 850 * see kvm_tdp_mmu_zap_invalidated_roots() for details. 851 */ 852 if (!root->role.invalid) 853 flush = true; 854 } 855 856 rcu_read_unlock(); 857 858 /* 859 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need 860 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed. 861 */ 862 return flush; 863 } 864 865 /* 866 * Zap leaf SPTEs for the range of gfns, [start, end), for all *VALID** roots. 867 * Returns true if a TLB flush is needed before releasing the MMU lock, i.e. if 868 * one or more SPTEs were zapped since the MMU lock was last acquired. 869 */ 870 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush) 871 { 872 struct kvm_mmu_page *root; 873 874 lockdep_assert_held_write(&kvm->mmu_lock); 875 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, -1) 876 flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush); 877 878 return flush; 879 } 880 881 void kvm_tdp_mmu_zap_all(struct kvm *kvm) 882 { 883 struct kvm_mmu_page *root; 884 885 /* 886 * Zap all roots, including invalid roots, as all SPTEs must be dropped 887 * before returning to the caller. Zap directly even if the root is 888 * also being zapped by a worker. Walking zapped top-level SPTEs isn't 889 * all that expensive and mmu_lock is already held, which means the 890 * worker has yielded, i.e. flushing the work instead of zapping here 891 * isn't guaranteed to be any faster. 892 * 893 * A TLB flush is unnecessary, KVM zaps everything if and only the VM 894 * is being destroyed or the userspace VMM has exited. In both cases, 895 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request. 896 */ 897 lockdep_assert_held_write(&kvm->mmu_lock); 898 for_each_tdp_mmu_root_yield_safe(kvm, root) 899 tdp_mmu_zap_root(kvm, root, false); 900 } 901 902 /* 903 * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast 904 * zap" completes. 905 */ 906 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm) 907 { 908 struct kvm_mmu_page *root; 909 910 read_lock(&kvm->mmu_lock); 911 912 for_each_tdp_mmu_root_yield_safe(kvm, root) { 913 if (!root->tdp_mmu_scheduled_root_to_zap) 914 continue; 915 916 root->tdp_mmu_scheduled_root_to_zap = false; 917 KVM_BUG_ON(!root->role.invalid, kvm); 918 919 /* 920 * A TLB flush is not necessary as KVM performs a local TLB 921 * flush when allocating a new root (see kvm_mmu_load()), and 922 * when migrating a vCPU to a different pCPU. Note, the local 923 * TLB flush on reuse also invalidates paging-structure-cache 924 * entries, i.e. TLB entries for intermediate paging structures, 925 * that may be zapped, as such entries are associated with the 926 * ASID on both VMX and SVM. 927 */ 928 tdp_mmu_zap_root(kvm, root, true); 929 930 /* 931 * The referenced needs to be put *after* zapping the root, as 932 * the root must be reachable by mmu_notifiers while it's being 933 * zapped 934 */ 935 kvm_tdp_mmu_put_root(kvm, root); 936 } 937 938 read_unlock(&kvm->mmu_lock); 939 } 940 941 /* 942 * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that 943 * is about to be zapped, e.g. in response to a memslots update. The actual 944 * zapping is done separately so that it happens with mmu_lock with read, 945 * whereas invalidating roots must be done with mmu_lock held for write (unless 946 * the VM is being destroyed). 947 * 948 * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference. 949 * See kvm_tdp_mmu_alloc_root(). 950 */ 951 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm) 952 { 953 struct kvm_mmu_page *root; 954 955 /* 956 * mmu_lock must be held for write to ensure that a root doesn't become 957 * invalid while there are active readers (invalidating a root while 958 * there are active readers may or may not be problematic in practice, 959 * but it's uncharted territory and not supported). 960 * 961 * Waive the assertion if there are no users of @kvm, i.e. the VM is 962 * being destroyed after all references have been put, or if no vCPUs 963 * have been created (which means there are no roots), i.e. the VM is 964 * being destroyed in an error path of KVM_CREATE_VM. 965 */ 966 if (IS_ENABLED(CONFIG_PROVE_LOCKING) && 967 refcount_read(&kvm->users_count) && kvm->created_vcpus) 968 lockdep_assert_held_write(&kvm->mmu_lock); 969 970 /* 971 * As above, mmu_lock isn't held when destroying the VM! There can't 972 * be other references to @kvm, i.e. nothing else can invalidate roots 973 * or get/put references to roots. 974 */ 975 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { 976 /* 977 * Note, invalid roots can outlive a memslot update! Invalid 978 * roots must be *zapped* before the memslot update completes, 979 * but a different task can acquire a reference and keep the 980 * root alive after its been zapped. 981 */ 982 if (!root->role.invalid) { 983 root->tdp_mmu_scheduled_root_to_zap = true; 984 root->role.invalid = true; 985 } 986 } 987 } 988 989 /* 990 * Installs a last-level SPTE to handle a TDP page fault. 991 * (NPT/EPT violation/misconfiguration) 992 */ 993 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, 994 struct kvm_page_fault *fault, 995 struct tdp_iter *iter) 996 { 997 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep)); 998 u64 new_spte; 999 int ret = RET_PF_FIXED; 1000 bool wrprot = false; 1001 1002 if (WARN_ON_ONCE(sp->role.level != fault->goal_level)) 1003 return RET_PF_RETRY; 1004 1005 if (unlikely(!fault->slot)) 1006 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); 1007 else 1008 wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn, 1009 fault->pfn, iter->old_spte, fault->prefetch, true, 1010 fault->map_writable, &new_spte); 1011 1012 if (new_spte == iter->old_spte) 1013 ret = RET_PF_SPURIOUS; 1014 else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte)) 1015 return RET_PF_RETRY; 1016 else if (is_shadow_present_pte(iter->old_spte) && 1017 !is_last_spte(iter->old_spte, iter->level)) 1018 kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level); 1019 1020 /* 1021 * If the page fault was caused by a write but the page is write 1022 * protected, emulation is needed. If the emulation was skipped, 1023 * the vCPU would have the same fault again. 1024 */ 1025 if (wrprot) { 1026 if (fault->write) 1027 ret = RET_PF_EMULATE; 1028 } 1029 1030 /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ 1031 if (unlikely(is_mmio_spte(new_spte))) { 1032 vcpu->stat.pf_mmio_spte_created++; 1033 trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn, 1034 new_spte); 1035 ret = RET_PF_EMULATE; 1036 } else { 1037 trace_kvm_mmu_set_spte(iter->level, iter->gfn, 1038 rcu_dereference(iter->sptep)); 1039 } 1040 1041 return ret; 1042 } 1043 1044 /* 1045 * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the 1046 * provided page table. 1047 * 1048 * @kvm: kvm instance 1049 * @iter: a tdp_iter instance currently on the SPTE that should be set 1050 * @sp: The new TDP page table to install. 1051 * @shared: This operation is running under the MMU lock in read mode. 1052 * 1053 * Returns: 0 if the new page table was installed. Non-0 if the page table 1054 * could not be installed (e.g. the atomic compare-exchange failed). 1055 */ 1056 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter, 1057 struct kvm_mmu_page *sp, bool shared) 1058 { 1059 u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled()); 1060 int ret = 0; 1061 1062 if (shared) { 1063 ret = tdp_mmu_set_spte_atomic(kvm, iter, spte); 1064 if (ret) 1065 return ret; 1066 } else { 1067 tdp_mmu_iter_set_spte(kvm, iter, spte); 1068 } 1069 1070 tdp_account_mmu_page(kvm, sp); 1071 1072 return 0; 1073 } 1074 1075 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, 1076 struct kvm_mmu_page *sp, bool shared); 1077 1078 /* 1079 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing 1080 * page tables and SPTEs to translate the faulting guest physical address. 1081 */ 1082 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 1083 { 1084 struct kvm_mmu *mmu = vcpu->arch.mmu; 1085 struct kvm *kvm = vcpu->kvm; 1086 struct tdp_iter iter; 1087 struct kvm_mmu_page *sp; 1088 int ret = RET_PF_RETRY; 1089 1090 kvm_mmu_hugepage_adjust(vcpu, fault); 1091 1092 trace_kvm_mmu_spte_requested(fault); 1093 1094 rcu_read_lock(); 1095 1096 tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) { 1097 int r; 1098 1099 if (fault->nx_huge_page_workaround_enabled) 1100 disallowed_hugepage_adjust(fault, iter.old_spte, iter.level); 1101 1102 /* 1103 * If SPTE has been frozen by another thread, just give up and 1104 * retry, avoiding unnecessary page table allocation and free. 1105 */ 1106 if (is_removed_spte(iter.old_spte)) 1107 goto retry; 1108 1109 if (iter.level == fault->goal_level) 1110 goto map_target_level; 1111 1112 /* Step down into the lower level page table if it exists. */ 1113 if (is_shadow_present_pte(iter.old_spte) && 1114 !is_large_pte(iter.old_spte)) 1115 continue; 1116 1117 /* 1118 * The SPTE is either non-present or points to a huge page that 1119 * needs to be split. 1120 */ 1121 sp = tdp_mmu_alloc_sp(vcpu); 1122 tdp_mmu_init_child_sp(sp, &iter); 1123 1124 sp->nx_huge_page_disallowed = fault->huge_page_disallowed; 1125 1126 if (is_shadow_present_pte(iter.old_spte)) 1127 r = tdp_mmu_split_huge_page(kvm, &iter, sp, true); 1128 else 1129 r = tdp_mmu_link_sp(kvm, &iter, sp, true); 1130 1131 /* 1132 * Force the guest to retry if installing an upper level SPTE 1133 * failed, e.g. because a different task modified the SPTE. 1134 */ 1135 if (r) { 1136 tdp_mmu_free_sp(sp); 1137 goto retry; 1138 } 1139 1140 if (fault->huge_page_disallowed && 1141 fault->req_level >= iter.level) { 1142 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 1143 if (sp->nx_huge_page_disallowed) 1144 track_possible_nx_huge_page(kvm, sp); 1145 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 1146 } 1147 } 1148 1149 /* 1150 * The walk aborted before reaching the target level, e.g. because the 1151 * iterator detected an upper level SPTE was frozen during traversal. 1152 */ 1153 WARN_ON_ONCE(iter.level == fault->goal_level); 1154 goto retry; 1155 1156 map_target_level: 1157 ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter); 1158 1159 retry: 1160 rcu_read_unlock(); 1161 return ret; 1162 } 1163 1164 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, 1165 bool flush) 1166 { 1167 struct kvm_mmu_page *root; 1168 1169 __for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, false) 1170 flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end, 1171 range->may_block, flush); 1172 1173 return flush; 1174 } 1175 1176 typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter, 1177 struct kvm_gfn_range *range); 1178 1179 static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm, 1180 struct kvm_gfn_range *range, 1181 tdp_handler_t handler) 1182 { 1183 struct kvm_mmu_page *root; 1184 struct tdp_iter iter; 1185 bool ret = false; 1186 1187 /* 1188 * Don't support rescheduling, none of the MMU notifiers that funnel 1189 * into this helper allow blocking; it'd be dead, wasteful code. 1190 */ 1191 for_each_tdp_mmu_root(kvm, root, range->slot->as_id) { 1192 rcu_read_lock(); 1193 1194 tdp_root_for_each_leaf_pte(iter, root, range->start, range->end) 1195 ret |= handler(kvm, &iter, range); 1196 1197 rcu_read_unlock(); 1198 } 1199 1200 return ret; 1201 } 1202 1203 /* 1204 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero 1205 * if any of the GFNs in the range have been accessed. 1206 * 1207 * No need to mark the corresponding PFN as accessed as this call is coming 1208 * from the clear_young() or clear_flush_young() notifier, which uses the 1209 * return value to determine if the page has been accessed. 1210 */ 1211 static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter, 1212 struct kvm_gfn_range *range) 1213 { 1214 u64 new_spte; 1215 1216 /* If we have a non-accessed entry we don't need to change the pte. */ 1217 if (!is_accessed_spte(iter->old_spte)) 1218 return false; 1219 1220 if (spte_ad_enabled(iter->old_spte)) { 1221 iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep, 1222 iter->old_spte, 1223 shadow_accessed_mask, 1224 iter->level); 1225 new_spte = iter->old_spte & ~shadow_accessed_mask; 1226 } else { 1227 /* 1228 * Capture the dirty status of the page, so that it doesn't get 1229 * lost when the SPTE is marked for access tracking. 1230 */ 1231 if (is_writable_pte(iter->old_spte)) 1232 kvm_set_pfn_dirty(spte_to_pfn(iter->old_spte)); 1233 1234 new_spte = mark_spte_for_access_track(iter->old_spte); 1235 iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep, 1236 iter->old_spte, new_spte, 1237 iter->level); 1238 } 1239 1240 trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level, 1241 iter->old_spte, new_spte); 1242 return true; 1243 } 1244 1245 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1246 { 1247 return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range); 1248 } 1249 1250 static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter, 1251 struct kvm_gfn_range *range) 1252 { 1253 return is_accessed_spte(iter->old_spte); 1254 } 1255 1256 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1257 { 1258 return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn); 1259 } 1260 1261 static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter, 1262 struct kvm_gfn_range *range) 1263 { 1264 u64 new_spte; 1265 1266 /* Huge pages aren't expected to be modified without first being zapped. */ 1267 WARN_ON_ONCE(pte_huge(range->arg.pte) || range->start + 1 != range->end); 1268 1269 if (iter->level != PG_LEVEL_4K || 1270 !is_shadow_present_pte(iter->old_spte)) 1271 return false; 1272 1273 /* 1274 * Note, when changing a read-only SPTE, it's not strictly necessary to 1275 * zero the SPTE before setting the new PFN, but doing so preserves the 1276 * invariant that the PFN of a present * leaf SPTE can never change. 1277 * See handle_changed_spte(). 1278 */ 1279 tdp_mmu_iter_set_spte(kvm, iter, 0); 1280 1281 if (!pte_write(range->arg.pte)) { 1282 new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte, 1283 pte_pfn(range->arg.pte)); 1284 1285 tdp_mmu_iter_set_spte(kvm, iter, new_spte); 1286 } 1287 1288 return true; 1289 } 1290 1291 /* 1292 * Handle the changed_pte MMU notifier for the TDP MMU. 1293 * data is a pointer to the new pte_t mapping the HVA specified by the MMU 1294 * notifier. 1295 * Returns non-zero if a flush is needed before releasing the MMU lock. 1296 */ 1297 bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1298 { 1299 /* 1300 * No need to handle the remote TLB flush under RCU protection, the 1301 * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a 1302 * shadow page. See the WARN on pfn_changed in handle_changed_spte(). 1303 */ 1304 return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn); 1305 } 1306 1307 /* 1308 * Remove write access from all SPTEs at or above min_level that map GFNs 1309 * [start, end). Returns true if an SPTE has been changed and the TLBs need to 1310 * be flushed. 1311 */ 1312 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1313 gfn_t start, gfn_t end, int min_level) 1314 { 1315 struct tdp_iter iter; 1316 u64 new_spte; 1317 bool spte_set = false; 1318 1319 rcu_read_lock(); 1320 1321 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1322 1323 for_each_tdp_pte_min_level(iter, root, min_level, start, end) { 1324 retry: 1325 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1326 continue; 1327 1328 if (!is_shadow_present_pte(iter.old_spte) || 1329 !is_last_spte(iter.old_spte, iter.level) || 1330 !(iter.old_spte & PT_WRITABLE_MASK)) 1331 continue; 1332 1333 new_spte = iter.old_spte & ~PT_WRITABLE_MASK; 1334 1335 if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) 1336 goto retry; 1337 1338 spte_set = true; 1339 } 1340 1341 rcu_read_unlock(); 1342 return spte_set; 1343 } 1344 1345 /* 1346 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will 1347 * only affect leaf SPTEs down to min_level. 1348 * Returns true if an SPTE has been changed and the TLBs need to be flushed. 1349 */ 1350 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, 1351 const struct kvm_memory_slot *slot, int min_level) 1352 { 1353 struct kvm_mmu_page *root; 1354 bool spte_set = false; 1355 1356 lockdep_assert_held_read(&kvm->mmu_lock); 1357 1358 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1359 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, 1360 slot->base_gfn + slot->npages, min_level); 1361 1362 return spte_set; 1363 } 1364 1365 static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp) 1366 { 1367 struct kvm_mmu_page *sp; 1368 1369 gfp |= __GFP_ZERO; 1370 1371 sp = kmem_cache_alloc(mmu_page_header_cache, gfp); 1372 if (!sp) 1373 return NULL; 1374 1375 sp->spt = (void *)__get_free_page(gfp); 1376 if (!sp->spt) { 1377 kmem_cache_free(mmu_page_header_cache, sp); 1378 return NULL; 1379 } 1380 1381 return sp; 1382 } 1383 1384 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm, 1385 struct tdp_iter *iter, 1386 bool shared) 1387 { 1388 struct kvm_mmu_page *sp; 1389 1390 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 1391 1392 /* 1393 * Since we are allocating while under the MMU lock we have to be 1394 * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct 1395 * reclaim and to avoid making any filesystem callbacks (which can end 1396 * up invoking KVM MMU notifiers, resulting in a deadlock). 1397 * 1398 * If this allocation fails we drop the lock and retry with reclaim 1399 * allowed. 1400 */ 1401 sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT); 1402 if (sp) 1403 return sp; 1404 1405 rcu_read_unlock(); 1406 1407 if (shared) 1408 read_unlock(&kvm->mmu_lock); 1409 else 1410 write_unlock(&kvm->mmu_lock); 1411 1412 iter->yielded = true; 1413 sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT); 1414 1415 if (shared) 1416 read_lock(&kvm->mmu_lock); 1417 else 1418 write_lock(&kvm->mmu_lock); 1419 1420 rcu_read_lock(); 1421 1422 return sp; 1423 } 1424 1425 /* Note, the caller is responsible for initializing @sp. */ 1426 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, 1427 struct kvm_mmu_page *sp, bool shared) 1428 { 1429 const u64 huge_spte = iter->old_spte; 1430 const int level = iter->level; 1431 int ret, i; 1432 1433 /* 1434 * No need for atomics when writing to sp->spt since the page table has 1435 * not been linked in yet and thus is not reachable from any other CPU. 1436 */ 1437 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) 1438 sp->spt[i] = make_huge_page_split_spte(kvm, huge_spte, sp->role, i); 1439 1440 /* 1441 * Replace the huge spte with a pointer to the populated lower level 1442 * page table. Since we are making this change without a TLB flush vCPUs 1443 * will see a mix of the split mappings and the original huge mapping, 1444 * depending on what's currently in their TLB. This is fine from a 1445 * correctness standpoint since the translation will be the same either 1446 * way. 1447 */ 1448 ret = tdp_mmu_link_sp(kvm, iter, sp, shared); 1449 if (ret) 1450 goto out; 1451 1452 /* 1453 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we 1454 * are overwriting from the page stats. But we have to manually update 1455 * the page stats with the new present child pages. 1456 */ 1457 kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE); 1458 1459 out: 1460 trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret); 1461 return ret; 1462 } 1463 1464 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm, 1465 struct kvm_mmu_page *root, 1466 gfn_t start, gfn_t end, 1467 int target_level, bool shared) 1468 { 1469 struct kvm_mmu_page *sp = NULL; 1470 struct tdp_iter iter; 1471 int ret = 0; 1472 1473 rcu_read_lock(); 1474 1475 /* 1476 * Traverse the page table splitting all huge pages above the target 1477 * level into one lower level. For example, if we encounter a 1GB page 1478 * we split it into 512 2MB pages. 1479 * 1480 * Since the TDP iterator uses a pre-order traversal, we are guaranteed 1481 * to visit an SPTE before ever visiting its children, which means we 1482 * will correctly recursively split huge pages that are more than one 1483 * level above the target level (e.g. splitting a 1GB to 512 2MB pages, 1484 * and then splitting each of those to 512 4KB pages). 1485 */ 1486 for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) { 1487 retry: 1488 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 1489 continue; 1490 1491 if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte)) 1492 continue; 1493 1494 if (!sp) { 1495 sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared); 1496 if (!sp) { 1497 ret = -ENOMEM; 1498 trace_kvm_mmu_split_huge_page(iter.gfn, 1499 iter.old_spte, 1500 iter.level, ret); 1501 break; 1502 } 1503 1504 if (iter.yielded) 1505 continue; 1506 } 1507 1508 tdp_mmu_init_child_sp(sp, &iter); 1509 1510 if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared)) 1511 goto retry; 1512 1513 sp = NULL; 1514 } 1515 1516 rcu_read_unlock(); 1517 1518 /* 1519 * It's possible to exit the loop having never used the last sp if, for 1520 * example, a vCPU doing HugePage NX splitting wins the race and 1521 * installs its own sp in place of the last sp we tried to split. 1522 */ 1523 if (sp) 1524 tdp_mmu_free_sp(sp); 1525 1526 return ret; 1527 } 1528 1529 1530 /* 1531 * Try to split all huge pages mapped by the TDP MMU down to the target level. 1532 */ 1533 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, 1534 const struct kvm_memory_slot *slot, 1535 gfn_t start, gfn_t end, 1536 int target_level, bool shared) 1537 { 1538 struct kvm_mmu_page *root; 1539 int r = 0; 1540 1541 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 1542 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) { 1543 r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared); 1544 if (r) { 1545 kvm_tdp_mmu_put_root(kvm, root); 1546 break; 1547 } 1548 } 1549 } 1550 1551 /* 1552 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If 1553 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. 1554 * If AD bits are not enabled, this will require clearing the writable bit on 1555 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to 1556 * be flushed. 1557 */ 1558 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1559 gfn_t start, gfn_t end) 1560 { 1561 u64 dbit = kvm_ad_enabled() ? shadow_dirty_mask : PT_WRITABLE_MASK; 1562 struct tdp_iter iter; 1563 bool spte_set = false; 1564 1565 rcu_read_lock(); 1566 1567 tdp_root_for_each_pte(iter, root, start, end) { 1568 retry: 1569 if (!is_shadow_present_pte(iter.old_spte) || 1570 !is_last_spte(iter.old_spte, iter.level)) 1571 continue; 1572 1573 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1574 continue; 1575 1576 KVM_MMU_WARN_ON(kvm_ad_enabled() && 1577 spte_ad_need_write_protect(iter.old_spte)); 1578 1579 if (!(iter.old_spte & dbit)) 1580 continue; 1581 1582 if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit)) 1583 goto retry; 1584 1585 spte_set = true; 1586 } 1587 1588 rcu_read_unlock(); 1589 return spte_set; 1590 } 1591 1592 /* 1593 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If 1594 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. 1595 * If AD bits are not enabled, this will require clearing the writable bit on 1596 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to 1597 * be flushed. 1598 */ 1599 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, 1600 const struct kvm_memory_slot *slot) 1601 { 1602 struct kvm_mmu_page *root; 1603 bool spte_set = false; 1604 1605 lockdep_assert_held_read(&kvm->mmu_lock); 1606 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1607 spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn, 1608 slot->base_gfn + slot->npages); 1609 1610 return spte_set; 1611 } 1612 1613 /* 1614 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is 1615 * set in mask, starting at gfn. The given memslot is expected to contain all 1616 * the GFNs represented by set bits in the mask. If AD bits are enabled, 1617 * clearing the dirty status will involve clearing the dirty bit on each SPTE 1618 * or, if AD bits are not enabled, clearing the writable bit on each SPTE. 1619 */ 1620 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, 1621 gfn_t gfn, unsigned long mask, bool wrprot) 1622 { 1623 u64 dbit = (wrprot || !kvm_ad_enabled()) ? PT_WRITABLE_MASK : 1624 shadow_dirty_mask; 1625 struct tdp_iter iter; 1626 1627 lockdep_assert_held_write(&kvm->mmu_lock); 1628 1629 rcu_read_lock(); 1630 1631 tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask), 1632 gfn + BITS_PER_LONG) { 1633 if (!mask) 1634 break; 1635 1636 KVM_MMU_WARN_ON(kvm_ad_enabled() && 1637 spte_ad_need_write_protect(iter.old_spte)); 1638 1639 if (iter.level > PG_LEVEL_4K || 1640 !(mask & (1UL << (iter.gfn - gfn)))) 1641 continue; 1642 1643 mask &= ~(1UL << (iter.gfn - gfn)); 1644 1645 if (!(iter.old_spte & dbit)) 1646 continue; 1647 1648 iter.old_spte = tdp_mmu_clear_spte_bits(iter.sptep, 1649 iter.old_spte, dbit, 1650 iter.level); 1651 1652 trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level, 1653 iter.old_spte, 1654 iter.old_spte & ~dbit); 1655 kvm_set_pfn_dirty(spte_to_pfn(iter.old_spte)); 1656 } 1657 1658 rcu_read_unlock(); 1659 } 1660 1661 /* 1662 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is 1663 * set in mask, starting at gfn. The given memslot is expected to contain all 1664 * the GFNs represented by set bits in the mask. If AD bits are enabled, 1665 * clearing the dirty status will involve clearing the dirty bit on each SPTE 1666 * or, if AD bits are not enabled, clearing the writable bit on each SPTE. 1667 */ 1668 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1669 struct kvm_memory_slot *slot, 1670 gfn_t gfn, unsigned long mask, 1671 bool wrprot) 1672 { 1673 struct kvm_mmu_page *root; 1674 1675 for_each_valid_tdp_mmu_root(kvm, root, slot->as_id) 1676 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); 1677 } 1678 1679 static void zap_collapsible_spte_range(struct kvm *kvm, 1680 struct kvm_mmu_page *root, 1681 const struct kvm_memory_slot *slot) 1682 { 1683 gfn_t start = slot->base_gfn; 1684 gfn_t end = start + slot->npages; 1685 struct tdp_iter iter; 1686 int max_mapping_level; 1687 1688 rcu_read_lock(); 1689 1690 for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) { 1691 retry: 1692 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1693 continue; 1694 1695 if (iter.level > KVM_MAX_HUGEPAGE_LEVEL || 1696 !is_shadow_present_pte(iter.old_spte)) 1697 continue; 1698 1699 /* 1700 * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with 1701 * a large page size, then its parent would have been zapped 1702 * instead of stepping down. 1703 */ 1704 if (is_last_spte(iter.old_spte, iter.level)) 1705 continue; 1706 1707 /* 1708 * If iter.gfn resides outside of the slot, i.e. the page for 1709 * the current level overlaps but is not contained by the slot, 1710 * then the SPTE can't be made huge. More importantly, trying 1711 * to query that info from slot->arch.lpage_info will cause an 1712 * out-of-bounds access. 1713 */ 1714 if (iter.gfn < start || iter.gfn >= end) 1715 continue; 1716 1717 max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot, 1718 iter.gfn, PG_LEVEL_NUM); 1719 if (max_mapping_level < iter.level) 1720 continue; 1721 1722 /* Note, a successful atomic zap also does a remote TLB flush. */ 1723 if (tdp_mmu_zap_spte_atomic(kvm, &iter)) 1724 goto retry; 1725 } 1726 1727 rcu_read_unlock(); 1728 } 1729 1730 /* 1731 * Zap non-leaf SPTEs (and free their associated page tables) which could 1732 * be replaced by huge pages, for GFNs within the slot. 1733 */ 1734 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, 1735 const struct kvm_memory_slot *slot) 1736 { 1737 struct kvm_mmu_page *root; 1738 1739 lockdep_assert_held_read(&kvm->mmu_lock); 1740 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1741 zap_collapsible_spte_range(kvm, root, slot); 1742 } 1743 1744 /* 1745 * Removes write access on the last level SPTE mapping this GFN and unsets the 1746 * MMU-writable bit to ensure future writes continue to be intercepted. 1747 * Returns true if an SPTE was set and a TLB flush is needed. 1748 */ 1749 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root, 1750 gfn_t gfn, int min_level) 1751 { 1752 struct tdp_iter iter; 1753 u64 new_spte; 1754 bool spte_set = false; 1755 1756 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1757 1758 rcu_read_lock(); 1759 1760 for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) { 1761 if (!is_shadow_present_pte(iter.old_spte) || 1762 !is_last_spte(iter.old_spte, iter.level)) 1763 continue; 1764 1765 new_spte = iter.old_spte & 1766 ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); 1767 1768 if (new_spte == iter.old_spte) 1769 break; 1770 1771 tdp_mmu_iter_set_spte(kvm, &iter, new_spte); 1772 spte_set = true; 1773 } 1774 1775 rcu_read_unlock(); 1776 1777 return spte_set; 1778 } 1779 1780 /* 1781 * Removes write access on the last level SPTE mapping this GFN and unsets the 1782 * MMU-writable bit to ensure future writes continue to be intercepted. 1783 * Returns true if an SPTE was set and a TLB flush is needed. 1784 */ 1785 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, 1786 struct kvm_memory_slot *slot, gfn_t gfn, 1787 int min_level) 1788 { 1789 struct kvm_mmu_page *root; 1790 bool spte_set = false; 1791 1792 lockdep_assert_held_write(&kvm->mmu_lock); 1793 for_each_valid_tdp_mmu_root(kvm, root, slot->as_id) 1794 spte_set |= write_protect_gfn(kvm, root, gfn, min_level); 1795 1796 return spte_set; 1797 } 1798 1799 /* 1800 * Return the level of the lowest level SPTE added to sptes. 1801 * That SPTE may be non-present. 1802 * 1803 * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1804 */ 1805 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 1806 int *root_level) 1807 { 1808 struct tdp_iter iter; 1809 struct kvm_mmu *mmu = vcpu->arch.mmu; 1810 gfn_t gfn = addr >> PAGE_SHIFT; 1811 int leaf = -1; 1812 1813 *root_level = vcpu->arch.mmu->root_role.level; 1814 1815 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { 1816 leaf = iter.level; 1817 sptes[leaf] = iter.old_spte; 1818 } 1819 1820 return leaf; 1821 } 1822 1823 /* 1824 * Returns the last level spte pointer of the shadow page walk for the given 1825 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 1826 * walk could be performed, returns NULL and *spte does not contain valid data. 1827 * 1828 * Contract: 1829 * - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1830 * - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end. 1831 * 1832 * WARNING: This function is only intended to be called during fast_page_fault. 1833 */ 1834 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr, 1835 u64 *spte) 1836 { 1837 struct tdp_iter iter; 1838 struct kvm_mmu *mmu = vcpu->arch.mmu; 1839 gfn_t gfn = addr >> PAGE_SHIFT; 1840 tdp_ptep_t sptep = NULL; 1841 1842 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { 1843 *spte = iter.old_spte; 1844 sptep = iter.sptep; 1845 } 1846 1847 /* 1848 * Perform the rcu_dereference to get the raw spte pointer value since 1849 * we are passing it up to fast_page_fault, which is shared with the 1850 * legacy MMU and thus does not retain the TDP MMU-specific __rcu 1851 * annotation. 1852 * 1853 * This is safe since fast_page_fault obeys the contracts of this 1854 * function as well as all TDP MMU contracts around modifying SPTEs 1855 * outside of mmu_lock. 1856 */ 1857 return rcu_dereference(sptep); 1858 } 1859