xref: /linux/arch/x86/kvm/mmu/tdp_mmu.c (revision 402eb8ec54b36f8fc0649768c01abb57062d6f8b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "mmu.h"
4 #include "mmu_internal.h"
5 #include "mmutrace.h"
6 #include "tdp_iter.h"
7 #include "tdp_mmu.h"
8 #include "spte.h"
9 
10 #include <asm/cmpxchg.h>
11 #include <trace/events/kvm.h>
12 
13 static bool __read_mostly tdp_mmu_enabled = true;
14 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
15 
16 /* Initializes the TDP MMU for the VM, if enabled. */
17 int kvm_mmu_init_tdp_mmu(struct kvm *kvm)
18 {
19 	struct workqueue_struct *wq;
20 
21 	if (!tdp_enabled || !READ_ONCE(tdp_mmu_enabled))
22 		return 0;
23 
24 	wq = alloc_workqueue("kvm", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 0);
25 	if (!wq)
26 		return -ENOMEM;
27 
28 	/* This should not be changed for the lifetime of the VM. */
29 	kvm->arch.tdp_mmu_enabled = true;
30 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
31 	spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
32 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
33 	kvm->arch.tdp_mmu_zap_wq = wq;
34 	return 1;
35 }
36 
37 /* Arbitrarily returns true so that this may be used in if statements. */
38 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm,
39 							     bool shared)
40 {
41 	if (shared)
42 		lockdep_assert_held_read(&kvm->mmu_lock);
43 	else
44 		lockdep_assert_held_write(&kvm->mmu_lock);
45 
46 	return true;
47 }
48 
49 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
50 {
51 	if (!kvm->arch.tdp_mmu_enabled)
52 		return;
53 
54 	flush_workqueue(kvm->arch.tdp_mmu_zap_wq);
55 	destroy_workqueue(kvm->arch.tdp_mmu_zap_wq);
56 
57 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_pages));
58 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
59 
60 	/*
61 	 * Ensure that all the outstanding RCU callbacks to free shadow pages
62 	 * can run before the VM is torn down.  Work items on tdp_mmu_zap_wq
63 	 * can call kvm_tdp_mmu_put_root and create new callbacks.
64 	 */
65 	rcu_barrier();
66 }
67 
68 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
69 {
70 	free_page((unsigned long)sp->spt);
71 	kmem_cache_free(mmu_page_header_cache, sp);
72 }
73 
74 /*
75  * This is called through call_rcu in order to free TDP page table memory
76  * safely with respect to other kernel threads that may be operating on
77  * the memory.
78  * By only accessing TDP MMU page table memory in an RCU read critical
79  * section, and freeing it after a grace period, lockless access to that
80  * memory won't use it after it is freed.
81  */
82 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
83 {
84 	struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
85 					       rcu_head);
86 
87 	tdp_mmu_free_sp(sp);
88 }
89 
90 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
91 			     bool shared);
92 
93 static void tdp_mmu_zap_root_work(struct work_struct *work)
94 {
95 	struct kvm_mmu_page *root = container_of(work, struct kvm_mmu_page,
96 						 tdp_mmu_async_work);
97 	struct kvm *kvm = root->tdp_mmu_async_data;
98 
99 	read_lock(&kvm->mmu_lock);
100 
101 	/*
102 	 * A TLB flush is not necessary as KVM performs a local TLB flush when
103 	 * allocating a new root (see kvm_mmu_load()), and when migrating vCPU
104 	 * to a different pCPU.  Note, the local TLB flush on reuse also
105 	 * invalidates any paging-structure-cache entries, i.e. TLB entries for
106 	 * intermediate paging structures, that may be zapped, as such entries
107 	 * are associated with the ASID on both VMX and SVM.
108 	 */
109 	tdp_mmu_zap_root(kvm, root, true);
110 
111 	/*
112 	 * Drop the refcount using kvm_tdp_mmu_put_root() to test its logic for
113 	 * avoiding an infinite loop.  By design, the root is reachable while
114 	 * it's being asynchronously zapped, thus a different task can put its
115 	 * last reference, i.e. flowing through kvm_tdp_mmu_put_root() for an
116 	 * asynchronously zapped root is unavoidable.
117 	 */
118 	kvm_tdp_mmu_put_root(kvm, root, true);
119 
120 	read_unlock(&kvm->mmu_lock);
121 }
122 
123 static void tdp_mmu_schedule_zap_root(struct kvm *kvm, struct kvm_mmu_page *root)
124 {
125 	root->tdp_mmu_async_data = kvm;
126 	INIT_WORK(&root->tdp_mmu_async_work, tdp_mmu_zap_root_work);
127 	queue_work(kvm->arch.tdp_mmu_zap_wq, &root->tdp_mmu_async_work);
128 }
129 
130 static inline bool kvm_tdp_root_mark_invalid(struct kvm_mmu_page *page)
131 {
132 	union kvm_mmu_page_role role = page->role;
133 	role.invalid = true;
134 
135 	/* No need to use cmpxchg, only the invalid bit can change.  */
136 	role.word = xchg(&page->role.word, role.word);
137 	return role.invalid;
138 }
139 
140 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root,
141 			  bool shared)
142 {
143 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
144 
145 	if (!refcount_dec_and_test(&root->tdp_mmu_root_count))
146 		return;
147 
148 	WARN_ON(!root->tdp_mmu_page);
149 
150 	/*
151 	 * The root now has refcount=0.  It is valid, but readers already
152 	 * cannot acquire a reference to it because kvm_tdp_mmu_get_root()
153 	 * rejects it.  This remains true for the rest of the execution
154 	 * of this function, because readers visit valid roots only
155 	 * (except for tdp_mmu_zap_root_work(), which however
156 	 * does not acquire any reference itself).
157 	 *
158 	 * Even though there are flows that need to visit all roots for
159 	 * correctness, they all take mmu_lock for write, so they cannot yet
160 	 * run concurrently. The same is true after kvm_tdp_root_mark_invalid,
161 	 * since the root still has refcount=0.
162 	 *
163 	 * However, tdp_mmu_zap_root can yield, and writers do not expect to
164 	 * see refcount=0 (see for example kvm_tdp_mmu_invalidate_all_roots()).
165 	 * So the root temporarily gets an extra reference, going to refcount=1
166 	 * while staying invalid.  Readers still cannot acquire any reference;
167 	 * but writers are now allowed to run if tdp_mmu_zap_root yields and
168 	 * they might take an extra reference if they themselves yield.
169 	 * Therefore, when the reference is given back by the worker,
170 	 * there is no guarantee that the refcount is still 1.  If not, whoever
171 	 * puts the last reference will free the page, but they will not have to
172 	 * zap the root because a root cannot go from invalid to valid.
173 	 */
174 	if (!kvm_tdp_root_mark_invalid(root)) {
175 		refcount_set(&root->tdp_mmu_root_count, 1);
176 
177 		/*
178 		 * Zapping the root in a worker is not just "nice to have";
179 		 * it is required because kvm_tdp_mmu_invalidate_all_roots()
180 		 * skips already-invalid roots.  If kvm_tdp_mmu_put_root() did
181 		 * not add the root to the workqueue, kvm_tdp_mmu_zap_all_fast()
182 		 * might return with some roots not zapped yet.
183 		 */
184 		tdp_mmu_schedule_zap_root(kvm, root);
185 		return;
186 	}
187 
188 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
189 	list_del_rcu(&root->link);
190 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
191 	call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback);
192 }
193 
194 /*
195  * Returns the next root after @prev_root (or the first root if @prev_root is
196  * NULL).  A reference to the returned root is acquired, and the reference to
197  * @prev_root is released (the caller obviously must hold a reference to
198  * @prev_root if it's non-NULL).
199  *
200  * If @only_valid is true, invalid roots are skipped.
201  *
202  * Returns NULL if the end of tdp_mmu_roots was reached.
203  */
204 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
205 					      struct kvm_mmu_page *prev_root,
206 					      bool shared, bool only_valid)
207 {
208 	struct kvm_mmu_page *next_root;
209 
210 	rcu_read_lock();
211 
212 	if (prev_root)
213 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
214 						  &prev_root->link,
215 						  typeof(*prev_root), link);
216 	else
217 		next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
218 						   typeof(*next_root), link);
219 
220 	while (next_root) {
221 		if ((!only_valid || !next_root->role.invalid) &&
222 		    kvm_tdp_mmu_get_root(next_root))
223 			break;
224 
225 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
226 				&next_root->link, typeof(*next_root), link);
227 	}
228 
229 	rcu_read_unlock();
230 
231 	if (prev_root)
232 		kvm_tdp_mmu_put_root(kvm, prev_root, shared);
233 
234 	return next_root;
235 }
236 
237 /*
238  * Note: this iterator gets and puts references to the roots it iterates over.
239  * This makes it safe to release the MMU lock and yield within the loop, but
240  * if exiting the loop early, the caller must drop the reference to the most
241  * recent root. (Unless keeping a live reference is desirable.)
242  *
243  * If shared is set, this function is operating under the MMU lock in read
244  * mode. In the unlikely event that this thread must free a root, the lock
245  * will be temporarily dropped and reacquired in write mode.
246  */
247 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, _only_valid)\
248 	for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, _only_valid);	\
249 	     _root;								\
250 	     _root = tdp_mmu_next_root(_kvm, _root, _shared, _only_valid))	\
251 		if (kvm_lockdep_assert_mmu_lock_held(_kvm, _shared) &&		\
252 		    kvm_mmu_page_as_id(_root) != _as_id) {			\
253 		} else
254 
255 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared)	\
256 	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, true)
257 
258 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id)			\
259 	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, false, false)
260 
261 /*
262  * Iterate over all TDP MMU roots.  Requires that mmu_lock be held for write,
263  * the implication being that any flow that holds mmu_lock for read is
264  * inherently yield-friendly and should use the yield-safe variant above.
265  * Holding mmu_lock for write obviates the need for RCU protection as the list
266  * is guaranteed to be stable.
267  */
268 #define for_each_tdp_mmu_root(_kvm, _root, _as_id)			\
269 	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)	\
270 		if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) &&	\
271 		    kvm_mmu_page_as_id(_root) != _as_id) {		\
272 		} else
273 
274 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu)
275 {
276 	struct kvm_mmu_page *sp;
277 
278 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
279 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
280 
281 	return sp;
282 }
283 
284 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep,
285 			    gfn_t gfn, union kvm_mmu_page_role role)
286 {
287 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
288 
289 	sp->role = role;
290 	sp->gfn = gfn;
291 	sp->ptep = sptep;
292 	sp->tdp_mmu_page = true;
293 
294 	trace_kvm_mmu_get_page(sp, true);
295 }
296 
297 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp,
298 				  struct tdp_iter *iter)
299 {
300 	struct kvm_mmu_page *parent_sp;
301 	union kvm_mmu_page_role role;
302 
303 	parent_sp = sptep_to_sp(rcu_dereference(iter->sptep));
304 
305 	role = parent_sp->role;
306 	role.level--;
307 
308 	tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role);
309 }
310 
311 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
312 {
313 	union kvm_mmu_page_role role = vcpu->arch.mmu->mmu_role.base;
314 	struct kvm *kvm = vcpu->kvm;
315 	struct kvm_mmu_page *root;
316 
317 	lockdep_assert_held_write(&kvm->mmu_lock);
318 
319 	/*
320 	 * Check for an existing root before allocating a new one.  Note, the
321 	 * role check prevents consuming an invalid root.
322 	 */
323 	for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) {
324 		if (root->role.word == role.word &&
325 		    kvm_tdp_mmu_get_root(root))
326 			goto out;
327 	}
328 
329 	root = tdp_mmu_alloc_sp(vcpu);
330 	tdp_mmu_init_sp(root, NULL, 0, role);
331 
332 	refcount_set(&root->tdp_mmu_root_count, 1);
333 
334 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
335 	list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots);
336 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
337 
338 out:
339 	return __pa(root->spt);
340 }
341 
342 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
343 				u64 old_spte, u64 new_spte, int level,
344 				bool shared);
345 
346 static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
347 {
348 	if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
349 		return;
350 
351 	if (is_accessed_spte(old_spte) &&
352 	    (!is_shadow_present_pte(new_spte) || !is_accessed_spte(new_spte) ||
353 	     spte_to_pfn(old_spte) != spte_to_pfn(new_spte)))
354 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
355 }
356 
357 static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
358 					  u64 old_spte, u64 new_spte, int level)
359 {
360 	bool pfn_changed;
361 	struct kvm_memory_slot *slot;
362 
363 	if (level > PG_LEVEL_4K)
364 		return;
365 
366 	pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
367 
368 	if ((!is_writable_pte(old_spte) || pfn_changed) &&
369 	    is_writable_pte(new_spte)) {
370 		slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
371 		mark_page_dirty_in_slot(kvm, slot, gfn);
372 	}
373 }
374 
375 /**
376  * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages
377  *
378  * @kvm: kvm instance
379  * @sp: the page to be removed
380  * @shared: This operation may not be running under the exclusive use of
381  *	    the MMU lock and the operation must synchronize with other
382  *	    threads that might be adding or removing pages.
383  */
384 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp,
385 			      bool shared)
386 {
387 	if (shared)
388 		spin_lock(&kvm->arch.tdp_mmu_pages_lock);
389 	else
390 		lockdep_assert_held_write(&kvm->mmu_lock);
391 
392 	list_del(&sp->link);
393 	if (sp->lpage_disallowed)
394 		unaccount_huge_nx_page(kvm, sp);
395 
396 	if (shared)
397 		spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
398 }
399 
400 /**
401  * handle_removed_pt() - handle a page table removed from the TDP structure
402  *
403  * @kvm: kvm instance
404  * @pt: the page removed from the paging structure
405  * @shared: This operation may not be running under the exclusive use
406  *	    of the MMU lock and the operation must synchronize with other
407  *	    threads that might be modifying SPTEs.
408  *
409  * Given a page table that has been removed from the TDP paging structure,
410  * iterates through the page table to clear SPTEs and free child page tables.
411  *
412  * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
413  * protection. Since this thread removed it from the paging structure,
414  * this thread will be responsible for ensuring the page is freed. Hence the
415  * early rcu_dereferences in the function.
416  */
417 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
418 {
419 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
420 	int level = sp->role.level;
421 	gfn_t base_gfn = sp->gfn;
422 	int i;
423 
424 	trace_kvm_mmu_prepare_zap_page(sp);
425 
426 	tdp_mmu_unlink_sp(kvm, sp, shared);
427 
428 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
429 		u64 *sptep = rcu_dereference(pt) + i;
430 		gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
431 		u64 old_child_spte;
432 
433 		if (shared) {
434 			/*
435 			 * Set the SPTE to a nonpresent value that other
436 			 * threads will not overwrite. If the SPTE was
437 			 * already marked as removed then another thread
438 			 * handling a page fault could overwrite it, so
439 			 * set the SPTE until it is set from some other
440 			 * value to the removed SPTE value.
441 			 */
442 			for (;;) {
443 				old_child_spte = xchg(sptep, REMOVED_SPTE);
444 				if (!is_removed_spte(old_child_spte))
445 					break;
446 				cpu_relax();
447 			}
448 		} else {
449 			/*
450 			 * If the SPTE is not MMU-present, there is no backing
451 			 * page associated with the SPTE and so no side effects
452 			 * that need to be recorded, and exclusive ownership of
453 			 * mmu_lock ensures the SPTE can't be made present.
454 			 * Note, zapping MMIO SPTEs is also unnecessary as they
455 			 * are guarded by the memslots generation, not by being
456 			 * unreachable.
457 			 */
458 			old_child_spte = READ_ONCE(*sptep);
459 			if (!is_shadow_present_pte(old_child_spte))
460 				continue;
461 
462 			/*
463 			 * Marking the SPTE as a removed SPTE is not
464 			 * strictly necessary here as the MMU lock will
465 			 * stop other threads from concurrently modifying
466 			 * this SPTE. Using the removed SPTE value keeps
467 			 * the two branches consistent and simplifies
468 			 * the function.
469 			 */
470 			WRITE_ONCE(*sptep, REMOVED_SPTE);
471 		}
472 		handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
473 				    old_child_spte, REMOVED_SPTE, level,
474 				    shared);
475 	}
476 
477 	call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
478 }
479 
480 /**
481  * __handle_changed_spte - handle bookkeeping associated with an SPTE change
482  * @kvm: kvm instance
483  * @as_id: the address space of the paging structure the SPTE was a part of
484  * @gfn: the base GFN that was mapped by the SPTE
485  * @old_spte: The value of the SPTE before the change
486  * @new_spte: The value of the SPTE after the change
487  * @level: the level of the PT the SPTE is part of in the paging structure
488  * @shared: This operation may not be running under the exclusive use of
489  *	    the MMU lock and the operation must synchronize with other
490  *	    threads that might be modifying SPTEs.
491  *
492  * Handle bookkeeping that might result from the modification of a SPTE.
493  * This function must be called for all TDP SPTE modifications.
494  */
495 static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
496 				  u64 old_spte, u64 new_spte, int level,
497 				  bool shared)
498 {
499 	bool was_present = is_shadow_present_pte(old_spte);
500 	bool is_present = is_shadow_present_pte(new_spte);
501 	bool was_leaf = was_present && is_last_spte(old_spte, level);
502 	bool is_leaf = is_present && is_last_spte(new_spte, level);
503 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
504 
505 	WARN_ON(level > PT64_ROOT_MAX_LEVEL);
506 	WARN_ON(level < PG_LEVEL_4K);
507 	WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
508 
509 	/*
510 	 * If this warning were to trigger it would indicate that there was a
511 	 * missing MMU notifier or a race with some notifier handler.
512 	 * A present, leaf SPTE should never be directly replaced with another
513 	 * present leaf SPTE pointing to a different PFN. A notifier handler
514 	 * should be zapping the SPTE before the main MM's page table is
515 	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
516 	 * thread before replacement.
517 	 */
518 	if (was_leaf && is_leaf && pfn_changed) {
519 		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
520 		       "SPTE with another present leaf SPTE mapping a\n"
521 		       "different PFN!\n"
522 		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
523 		       as_id, gfn, old_spte, new_spte, level);
524 
525 		/*
526 		 * Crash the host to prevent error propagation and guest data
527 		 * corruption.
528 		 */
529 		BUG();
530 	}
531 
532 	if (old_spte == new_spte)
533 		return;
534 
535 	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
536 
537 	if (is_leaf)
538 		check_spte_writable_invariants(new_spte);
539 
540 	/*
541 	 * The only times a SPTE should be changed from a non-present to
542 	 * non-present state is when an MMIO entry is installed/modified/
543 	 * removed. In that case, there is nothing to do here.
544 	 */
545 	if (!was_present && !is_present) {
546 		/*
547 		 * If this change does not involve a MMIO SPTE or removed SPTE,
548 		 * it is unexpected. Log the change, though it should not
549 		 * impact the guest since both the former and current SPTEs
550 		 * are nonpresent.
551 		 */
552 		if (WARN_ON(!is_mmio_spte(old_spte) &&
553 			    !is_mmio_spte(new_spte) &&
554 			    !is_removed_spte(new_spte)))
555 			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
556 			       "should not be replaced with another,\n"
557 			       "different nonpresent SPTE, unless one or both\n"
558 			       "are MMIO SPTEs, or the new SPTE is\n"
559 			       "a temporary removed SPTE.\n"
560 			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
561 			       as_id, gfn, old_spte, new_spte, level);
562 		return;
563 	}
564 
565 	if (is_leaf != was_leaf)
566 		kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1);
567 
568 	if (was_leaf && is_dirty_spte(old_spte) &&
569 	    (!is_present || !is_dirty_spte(new_spte) || pfn_changed))
570 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
571 
572 	/*
573 	 * Recursively handle child PTs if the change removed a subtree from
574 	 * the paging structure.  Note the WARN on the PFN changing without the
575 	 * SPTE being converted to a hugepage (leaf) or being zapped.  Shadow
576 	 * pages are kernel allocations and should never be migrated.
577 	 */
578 	if (was_present && !was_leaf &&
579 	    (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed)))
580 		handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared);
581 }
582 
583 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
584 				u64 old_spte, u64 new_spte, int level,
585 				bool shared)
586 {
587 	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level,
588 			      shared);
589 	handle_changed_spte_acc_track(old_spte, new_spte, level);
590 	handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
591 				      new_spte, level);
592 }
593 
594 /*
595  * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically
596  * and handle the associated bookkeeping.  Do not mark the page dirty
597  * in KVM's dirty bitmaps.
598  *
599  * If setting the SPTE fails because it has changed, iter->old_spte will be
600  * refreshed to the current value of the spte.
601  *
602  * @kvm: kvm instance
603  * @iter: a tdp_iter instance currently on the SPTE that should be set
604  * @new_spte: The value the SPTE should be set to
605  * Return:
606  * * 0      - If the SPTE was set.
607  * * -EBUSY - If the SPTE cannot be set. In this case this function will have
608  *            no side-effects other than setting iter->old_spte to the last
609  *            known value of the spte.
610  */
611 static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm,
612 					  struct tdp_iter *iter,
613 					  u64 new_spte)
614 {
615 	u64 *sptep = rcu_dereference(iter->sptep);
616 	u64 old_spte;
617 
618 	/*
619 	 * The caller is responsible for ensuring the old SPTE is not a REMOVED
620 	 * SPTE.  KVM should never attempt to zap or manipulate a REMOVED SPTE,
621 	 * and pre-checking before inserting a new SPTE is advantageous as it
622 	 * avoids unnecessary work.
623 	 */
624 	WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte));
625 
626 	lockdep_assert_held_read(&kvm->mmu_lock);
627 
628 	/*
629 	 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
630 	 * does not hold the mmu_lock.
631 	 */
632 	old_spte = cmpxchg64(sptep, iter->old_spte, new_spte);
633 	if (old_spte != iter->old_spte) {
634 		/*
635 		 * The page table entry was modified by a different logical
636 		 * CPU. Refresh iter->old_spte with the current value so the
637 		 * caller operates on fresh data, e.g. if it retries
638 		 * tdp_mmu_set_spte_atomic().
639 		 */
640 		iter->old_spte = old_spte;
641 		return -EBUSY;
642 	}
643 
644 	__handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
645 			      new_spte, iter->level, true);
646 	handle_changed_spte_acc_track(iter->old_spte, new_spte, iter->level);
647 
648 	return 0;
649 }
650 
651 static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
652 					  struct tdp_iter *iter)
653 {
654 	int ret;
655 
656 	/*
657 	 * Freeze the SPTE by setting it to a special,
658 	 * non-present value. This will stop other threads from
659 	 * immediately installing a present entry in its place
660 	 * before the TLBs are flushed.
661 	 */
662 	ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE);
663 	if (ret)
664 		return ret;
665 
666 	kvm_flush_remote_tlbs_with_address(kvm, iter->gfn,
667 					   KVM_PAGES_PER_HPAGE(iter->level));
668 
669 	/*
670 	 * No other thread can overwrite the removed SPTE as they
671 	 * must either wait on the MMU lock or use
672 	 * tdp_mmu_set_spte_atomic which will not overwrite the
673 	 * special removed SPTE value. No bookkeeping is needed
674 	 * here since the SPTE is going from non-present
675 	 * to non-present.
676 	 */
677 	kvm_tdp_mmu_write_spte(iter->sptep, 0);
678 
679 	return 0;
680 }
681 
682 
683 /*
684  * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
685  * @kvm:	      KVM instance
686  * @as_id:	      Address space ID, i.e. regular vs. SMM
687  * @sptep:	      Pointer to the SPTE
688  * @old_spte:	      The current value of the SPTE
689  * @new_spte:	      The new value that will be set for the SPTE
690  * @gfn:	      The base GFN that was (or will be) mapped by the SPTE
691  * @level:	      The level _containing_ the SPTE (its parent PT's level)
692  * @record_acc_track: Notify the MM subsystem of changes to the accessed state
693  *		      of the page. Should be set unless handling an MMU
694  *		      notifier for access tracking. Leaving record_acc_track
695  *		      unset in that case prevents page accesses from being
696  *		      double counted.
697  * @record_dirty_log: Record the page as dirty in the dirty bitmap if
698  *		      appropriate for the change being made. Should be set
699  *		      unless performing certain dirty logging operations.
700  *		      Leaving record_dirty_log unset in that case prevents page
701  *		      writes from being double counted.
702  */
703 static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
704 			       u64 old_spte, u64 new_spte, gfn_t gfn, int level,
705 			       bool record_acc_track, bool record_dirty_log)
706 {
707 	lockdep_assert_held_write(&kvm->mmu_lock);
708 
709 	/*
710 	 * No thread should be using this function to set SPTEs to or from the
711 	 * temporary removed SPTE value.
712 	 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
713 	 * should be used. If operating under the MMU lock in write mode, the
714 	 * use of the removed SPTE should not be necessary.
715 	 */
716 	WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte));
717 
718 	kvm_tdp_mmu_write_spte(sptep, new_spte);
719 
720 	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
721 
722 	if (record_acc_track)
723 		handle_changed_spte_acc_track(old_spte, new_spte, level);
724 	if (record_dirty_log)
725 		handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
726 					      new_spte, level);
727 }
728 
729 static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
730 				     u64 new_spte, bool record_acc_track,
731 				     bool record_dirty_log)
732 {
733 	WARN_ON_ONCE(iter->yielded);
734 
735 	__tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, iter->old_spte,
736 			   new_spte, iter->gfn, iter->level,
737 			   record_acc_track, record_dirty_log);
738 }
739 
740 static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
741 				    u64 new_spte)
742 {
743 	_tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
744 }
745 
746 static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
747 						 struct tdp_iter *iter,
748 						 u64 new_spte)
749 {
750 	_tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
751 }
752 
753 static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
754 						 struct tdp_iter *iter,
755 						 u64 new_spte)
756 {
757 	_tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
758 }
759 
760 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
761 	for_each_tdp_pte(_iter, _root, _start, _end)
762 
763 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
764 	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
765 		if (!is_shadow_present_pte(_iter.old_spte) ||		\
766 		    !is_last_spte(_iter.old_spte, _iter.level))		\
767 			continue;					\
768 		else
769 
770 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
771 	for_each_tdp_pte(_iter, to_shadow_page(_mmu->root.hpa), _start, _end)
772 
773 /*
774  * Yield if the MMU lock is contended or this thread needs to return control
775  * to the scheduler.
776  *
777  * If this function should yield and flush is set, it will perform a remote
778  * TLB flush before yielding.
779  *
780  * If this function yields, iter->yielded is set and the caller must skip to
781  * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk
782  * over the paging structures to allow the iterator to continue its traversal
783  * from the paging structure root.
784  *
785  * Returns true if this function yielded.
786  */
787 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm,
788 							  struct tdp_iter *iter,
789 							  bool flush, bool shared)
790 {
791 	WARN_ON(iter->yielded);
792 
793 	/* Ensure forward progress has been made before yielding. */
794 	if (iter->next_last_level_gfn == iter->yielded_gfn)
795 		return false;
796 
797 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
798 		if (flush)
799 			kvm_flush_remote_tlbs(kvm);
800 
801 		rcu_read_unlock();
802 
803 		if (shared)
804 			cond_resched_rwlock_read(&kvm->mmu_lock);
805 		else
806 			cond_resched_rwlock_write(&kvm->mmu_lock);
807 
808 		rcu_read_lock();
809 
810 		WARN_ON(iter->gfn > iter->next_last_level_gfn);
811 
812 		iter->yielded = true;
813 	}
814 
815 	return iter->yielded;
816 }
817 
818 static inline gfn_t tdp_mmu_max_gfn_host(void)
819 {
820 	/*
821 	 * Bound TDP MMU walks at host.MAXPHYADDR, guest accesses beyond that
822 	 * will hit a #PF(RSVD) and never hit an EPT Violation/Misconfig / #NPF,
823 	 * and so KVM will never install a SPTE for such addresses.
824 	 */
825 	return 1ULL << (shadow_phys_bits - PAGE_SHIFT);
826 }
827 
828 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
829 			       bool shared, int zap_level)
830 {
831 	struct tdp_iter iter;
832 
833 	gfn_t end = tdp_mmu_max_gfn_host();
834 	gfn_t start = 0;
835 
836 	for_each_tdp_pte_min_level(iter, root, zap_level, start, end) {
837 retry:
838 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
839 			continue;
840 
841 		if (!is_shadow_present_pte(iter.old_spte))
842 			continue;
843 
844 		if (iter.level > zap_level)
845 			continue;
846 
847 		if (!shared)
848 			tdp_mmu_set_spte(kvm, &iter, 0);
849 		else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0))
850 			goto retry;
851 	}
852 }
853 
854 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
855 			     bool shared)
856 {
857 
858 	/*
859 	 * The root must have an elevated refcount so that it's reachable via
860 	 * mmu_notifier callbacks, which allows this path to yield and drop
861 	 * mmu_lock.  When handling an unmap/release mmu_notifier command, KVM
862 	 * must drop all references to relevant pages prior to completing the
863 	 * callback.  Dropping mmu_lock with an unreachable root would result
864 	 * in zapping SPTEs after a relevant mmu_notifier callback completes
865 	 * and lead to use-after-free as zapping a SPTE triggers "writeback" of
866 	 * dirty accessed bits to the SPTE's associated struct page.
867 	 */
868 	WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count));
869 
870 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
871 
872 	rcu_read_lock();
873 
874 	/*
875 	 * To avoid RCU stalls due to recursively removing huge swaths of SPs,
876 	 * split the zap into two passes.  On the first pass, zap at the 1gb
877 	 * level, and then zap top-level SPs on the second pass.  "1gb" is not
878 	 * arbitrary, as KVM must be able to zap a 1gb shadow page without
879 	 * inducing a stall to allow in-place replacement with a 1gb hugepage.
880 	 *
881 	 * Because zapping a SP recurses on its children, stepping down to
882 	 * PG_LEVEL_4K in the iterator itself is unnecessary.
883 	 */
884 	__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G);
885 	__tdp_mmu_zap_root(kvm, root, shared, root->role.level);
886 
887 	rcu_read_unlock();
888 }
889 
890 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
891 {
892 	u64 old_spte;
893 
894 	/*
895 	 * This helper intentionally doesn't allow zapping a root shadow page,
896 	 * which doesn't have a parent page table and thus no associated entry.
897 	 */
898 	if (WARN_ON_ONCE(!sp->ptep))
899 		return false;
900 
901 	old_spte = kvm_tdp_mmu_read_spte(sp->ptep);
902 	if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte)))
903 		return false;
904 
905 	__tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0,
906 			   sp->gfn, sp->role.level + 1, true, true);
907 
908 	return true;
909 }
910 
911 /*
912  * Zap leafs SPTEs for the range of gfns, [start, end). Returns true if SPTEs
913  * have been cleared and a TLB flush is needed before releasing the MMU lock.
914  *
915  * If can_yield is true, will release the MMU lock and reschedule if the
916  * scheduler needs the CPU or there is contention on the MMU lock. If this
917  * function cannot yield, it will not release the MMU lock or reschedule and
918  * the caller must ensure it does not supply too large a GFN range, or the
919  * operation can cause a soft lockup.
920  */
921 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root,
922 			      gfn_t start, gfn_t end, bool can_yield, bool flush)
923 {
924 	struct tdp_iter iter;
925 
926 	end = min(end, tdp_mmu_max_gfn_host());
927 
928 	lockdep_assert_held_write(&kvm->mmu_lock);
929 
930 	rcu_read_lock();
931 
932 	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) {
933 		if (can_yield &&
934 		    tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) {
935 			flush = false;
936 			continue;
937 		}
938 
939 		if (!is_shadow_present_pte(iter.old_spte) ||
940 		    !is_last_spte(iter.old_spte, iter.level))
941 			continue;
942 
943 		tdp_mmu_set_spte(kvm, &iter, 0);
944 		flush = true;
945 	}
946 
947 	rcu_read_unlock();
948 
949 	/*
950 	 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need
951 	 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed.
952 	 */
953 	return flush;
954 }
955 
956 /*
957  * Tears down the mappings for the range of gfns, [start, end), and frees the
958  * non-root pages mapping GFNs strictly within that range. Returns true if
959  * SPTEs have been cleared and a TLB flush is needed before releasing the
960  * MMU lock.
961  */
962 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end,
963 			   bool can_yield, bool flush)
964 {
965 	struct kvm_mmu_page *root;
966 
967 	for_each_tdp_mmu_root_yield_safe(kvm, root, as_id)
968 		flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, flush);
969 
970 	return flush;
971 }
972 
973 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
974 {
975 	struct kvm_mmu_page *root;
976 	int i;
977 
978 	/*
979 	 * Zap all roots, including invalid roots, as all SPTEs must be dropped
980 	 * before returning to the caller.  Zap directly even if the root is
981 	 * also being zapped by a worker.  Walking zapped top-level SPTEs isn't
982 	 * all that expensive and mmu_lock is already held, which means the
983 	 * worker has yielded, i.e. flushing the work instead of zapping here
984 	 * isn't guaranteed to be any faster.
985 	 *
986 	 * A TLB flush is unnecessary, KVM zaps everything if and only the VM
987 	 * is being destroyed or the userspace VMM has exited.  In both cases,
988 	 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request.
989 	 */
990 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
991 		for_each_tdp_mmu_root_yield_safe(kvm, root, i)
992 			tdp_mmu_zap_root(kvm, root, false);
993 	}
994 }
995 
996 /*
997  * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast
998  * zap" completes.
999  */
1000 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm)
1001 {
1002 	flush_workqueue(kvm->arch.tdp_mmu_zap_wq);
1003 }
1004 
1005 /*
1006  * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that
1007  * is about to be zapped, e.g. in response to a memslots update.  The actual
1008  * zapping is performed asynchronously, so a reference is taken on all roots.
1009  * Using a separate workqueue makes it easy to ensure that the destruction is
1010  * performed before the "fast zap" completes, without keeping a separate list
1011  * of invalidated roots; the list is effectively the list of work items in
1012  * the workqueue.
1013  *
1014  * Get a reference even if the root is already invalid, the asynchronous worker
1015  * assumes it was gifted a reference to the root it processes.  Because mmu_lock
1016  * is held for write, it should be impossible to observe a root with zero refcount,
1017  * i.e. the list of roots cannot be stale.
1018  *
1019  * This has essentially the same effect for the TDP MMU
1020  * as updating mmu_valid_gen does for the shadow MMU.
1021  */
1022 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm)
1023 {
1024 	struct kvm_mmu_page *root;
1025 
1026 	lockdep_assert_held_write(&kvm->mmu_lock);
1027 	list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
1028 		if (!root->role.invalid &&
1029 		    !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root))) {
1030 			root->role.invalid = true;
1031 			tdp_mmu_schedule_zap_root(kvm, root);
1032 		}
1033 	}
1034 }
1035 
1036 /*
1037  * Installs a last-level SPTE to handle a TDP page fault.
1038  * (NPT/EPT violation/misconfiguration)
1039  */
1040 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
1041 					  struct kvm_page_fault *fault,
1042 					  struct tdp_iter *iter)
1043 {
1044 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep));
1045 	u64 new_spte;
1046 	int ret = RET_PF_FIXED;
1047 	bool wrprot = false;
1048 
1049 	WARN_ON(sp->role.level != fault->goal_level);
1050 	if (unlikely(!fault->slot))
1051 		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
1052 	else
1053 		wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn,
1054 					 fault->pfn, iter->old_spte, fault->prefetch, true,
1055 					 fault->map_writable, &new_spte);
1056 
1057 	if (new_spte == iter->old_spte)
1058 		ret = RET_PF_SPURIOUS;
1059 	else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte))
1060 		return RET_PF_RETRY;
1061 	else if (is_shadow_present_pte(iter->old_spte) &&
1062 		 !is_last_spte(iter->old_spte, iter->level))
1063 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1064 						   KVM_PAGES_PER_HPAGE(iter->level + 1));
1065 
1066 	/*
1067 	 * If the page fault was caused by a write but the page is write
1068 	 * protected, emulation is needed. If the emulation was skipped,
1069 	 * the vCPU would have the same fault again.
1070 	 */
1071 	if (wrprot) {
1072 		if (fault->write)
1073 			ret = RET_PF_EMULATE;
1074 	}
1075 
1076 	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
1077 	if (unlikely(is_mmio_spte(new_spte))) {
1078 		trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
1079 				     new_spte);
1080 		ret = RET_PF_EMULATE;
1081 	} else {
1082 		trace_kvm_mmu_set_spte(iter->level, iter->gfn,
1083 				       rcu_dereference(iter->sptep));
1084 	}
1085 
1086 	/*
1087 	 * Increase pf_fixed in both RET_PF_EMULATE and RET_PF_FIXED to be
1088 	 * consistent with legacy MMU behavior.
1089 	 */
1090 	if (ret != RET_PF_SPURIOUS)
1091 		vcpu->stat.pf_fixed++;
1092 
1093 	return ret;
1094 }
1095 
1096 /*
1097  * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the
1098  * provided page table.
1099  *
1100  * @kvm: kvm instance
1101  * @iter: a tdp_iter instance currently on the SPTE that should be set
1102  * @sp: The new TDP page table to install.
1103  * @account_nx: True if this page table is being installed to split a
1104  *              non-executable huge page.
1105  * @shared: This operation is running under the MMU lock in read mode.
1106  *
1107  * Returns: 0 if the new page table was installed. Non-0 if the page table
1108  *          could not be installed (e.g. the atomic compare-exchange failed).
1109  */
1110 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
1111 			   struct kvm_mmu_page *sp, bool account_nx,
1112 			   bool shared)
1113 {
1114 	u64 spte = make_nonleaf_spte(sp->spt, !shadow_accessed_mask);
1115 	int ret = 0;
1116 
1117 	if (shared) {
1118 		ret = tdp_mmu_set_spte_atomic(kvm, iter, spte);
1119 		if (ret)
1120 			return ret;
1121 	} else {
1122 		tdp_mmu_set_spte(kvm, iter, spte);
1123 	}
1124 
1125 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
1126 	list_add(&sp->link, &kvm->arch.tdp_mmu_pages);
1127 	if (account_nx)
1128 		account_huge_nx_page(kvm, sp);
1129 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
1130 
1131 	return 0;
1132 }
1133 
1134 /*
1135  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
1136  * page tables and SPTEs to translate the faulting guest physical address.
1137  */
1138 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
1139 {
1140 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1141 	struct tdp_iter iter;
1142 	struct kvm_mmu_page *sp;
1143 	int ret;
1144 
1145 	kvm_mmu_hugepage_adjust(vcpu, fault);
1146 
1147 	trace_kvm_mmu_spte_requested(fault);
1148 
1149 	rcu_read_lock();
1150 
1151 	tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) {
1152 		if (fault->nx_huge_page_workaround_enabled)
1153 			disallowed_hugepage_adjust(fault, iter.old_spte, iter.level);
1154 
1155 		if (iter.level == fault->goal_level)
1156 			break;
1157 
1158 		/*
1159 		 * If there is an SPTE mapping a large page at a higher level
1160 		 * than the target, that SPTE must be cleared and replaced
1161 		 * with a non-leaf SPTE.
1162 		 */
1163 		if (is_shadow_present_pte(iter.old_spte) &&
1164 		    is_large_pte(iter.old_spte)) {
1165 			if (tdp_mmu_zap_spte_atomic(vcpu->kvm, &iter))
1166 				break;
1167 
1168 			/*
1169 			 * The iter must explicitly re-read the spte here
1170 			 * because the new value informs the !present
1171 			 * path below.
1172 			 */
1173 			iter.old_spte = kvm_tdp_mmu_read_spte(iter.sptep);
1174 		}
1175 
1176 		if (!is_shadow_present_pte(iter.old_spte)) {
1177 			bool account_nx = fault->huge_page_disallowed &&
1178 					  fault->req_level >= iter.level;
1179 
1180 			/*
1181 			 * If SPTE has been frozen by another thread, just
1182 			 * give up and retry, avoiding unnecessary page table
1183 			 * allocation and free.
1184 			 */
1185 			if (is_removed_spte(iter.old_spte))
1186 				break;
1187 
1188 			sp = tdp_mmu_alloc_sp(vcpu);
1189 			tdp_mmu_init_child_sp(sp, &iter);
1190 
1191 			if (tdp_mmu_link_sp(vcpu->kvm, &iter, sp, account_nx, true)) {
1192 				tdp_mmu_free_sp(sp);
1193 				break;
1194 			}
1195 		}
1196 	}
1197 
1198 	/*
1199 	 * Force the guest to retry the access if the upper level SPTEs aren't
1200 	 * in place, or if the target leaf SPTE is frozen by another CPU.
1201 	 */
1202 	if (iter.level != fault->goal_level || is_removed_spte(iter.old_spte)) {
1203 		rcu_read_unlock();
1204 		return RET_PF_RETRY;
1205 	}
1206 
1207 	ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter);
1208 	rcu_read_unlock();
1209 
1210 	return ret;
1211 }
1212 
1213 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
1214 				 bool flush)
1215 {
1216 	return kvm_tdp_mmu_zap_leafs(kvm, range->slot->as_id, range->start,
1217 				     range->end, range->may_block, flush);
1218 }
1219 
1220 typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter,
1221 			      struct kvm_gfn_range *range);
1222 
1223 static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm,
1224 						   struct kvm_gfn_range *range,
1225 						   tdp_handler_t handler)
1226 {
1227 	struct kvm_mmu_page *root;
1228 	struct tdp_iter iter;
1229 	bool ret = false;
1230 
1231 	/*
1232 	 * Don't support rescheduling, none of the MMU notifiers that funnel
1233 	 * into this helper allow blocking; it'd be dead, wasteful code.
1234 	 */
1235 	for_each_tdp_mmu_root(kvm, root, range->slot->as_id) {
1236 		rcu_read_lock();
1237 
1238 		tdp_root_for_each_leaf_pte(iter, root, range->start, range->end)
1239 			ret |= handler(kvm, &iter, range);
1240 
1241 		rcu_read_unlock();
1242 	}
1243 
1244 	return ret;
1245 }
1246 
1247 /*
1248  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
1249  * if any of the GFNs in the range have been accessed.
1250  */
1251 static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter,
1252 			  struct kvm_gfn_range *range)
1253 {
1254 	u64 new_spte = 0;
1255 
1256 	/* If we have a non-accessed entry we don't need to change the pte. */
1257 	if (!is_accessed_spte(iter->old_spte))
1258 		return false;
1259 
1260 	new_spte = iter->old_spte;
1261 
1262 	if (spte_ad_enabled(new_spte)) {
1263 		new_spte &= ~shadow_accessed_mask;
1264 	} else {
1265 		/*
1266 		 * Capture the dirty status of the page, so that it doesn't get
1267 		 * lost when the SPTE is marked for access tracking.
1268 		 */
1269 		if (is_writable_pte(new_spte))
1270 			kvm_set_pfn_dirty(spte_to_pfn(new_spte));
1271 
1272 		new_spte = mark_spte_for_access_track(new_spte);
1273 	}
1274 
1275 	tdp_mmu_set_spte_no_acc_track(kvm, iter, new_spte);
1276 
1277 	return true;
1278 }
1279 
1280 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1281 {
1282 	return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range);
1283 }
1284 
1285 static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter,
1286 			 struct kvm_gfn_range *range)
1287 {
1288 	return is_accessed_spte(iter->old_spte);
1289 }
1290 
1291 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1292 {
1293 	return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn);
1294 }
1295 
1296 static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter,
1297 			 struct kvm_gfn_range *range)
1298 {
1299 	u64 new_spte;
1300 
1301 	/* Huge pages aren't expected to be modified without first being zapped. */
1302 	WARN_ON(pte_huge(range->pte) || range->start + 1 != range->end);
1303 
1304 	if (iter->level != PG_LEVEL_4K ||
1305 	    !is_shadow_present_pte(iter->old_spte))
1306 		return false;
1307 
1308 	/*
1309 	 * Note, when changing a read-only SPTE, it's not strictly necessary to
1310 	 * zero the SPTE before setting the new PFN, but doing so preserves the
1311 	 * invariant that the PFN of a present * leaf SPTE can never change.
1312 	 * See __handle_changed_spte().
1313 	 */
1314 	tdp_mmu_set_spte(kvm, iter, 0);
1315 
1316 	if (!pte_write(range->pte)) {
1317 		new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte,
1318 								  pte_pfn(range->pte));
1319 
1320 		tdp_mmu_set_spte(kvm, iter, new_spte);
1321 	}
1322 
1323 	return true;
1324 }
1325 
1326 /*
1327  * Handle the changed_pte MMU notifier for the TDP MMU.
1328  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
1329  * notifier.
1330  * Returns non-zero if a flush is needed before releasing the MMU lock.
1331  */
1332 bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1333 {
1334 	/*
1335 	 * No need to handle the remote TLB flush under RCU protection, the
1336 	 * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a
1337 	 * shadow page.  See the WARN on pfn_changed in __handle_changed_spte().
1338 	 */
1339 	return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn);
1340 }
1341 
1342 /*
1343  * Remove write access from all SPTEs at or above min_level that map GFNs
1344  * [start, end). Returns true if an SPTE has been changed and the TLBs need to
1345  * be flushed.
1346  */
1347 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1348 			     gfn_t start, gfn_t end, int min_level)
1349 {
1350 	struct tdp_iter iter;
1351 	u64 new_spte;
1352 	bool spte_set = false;
1353 
1354 	rcu_read_lock();
1355 
1356 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1357 
1358 	for_each_tdp_pte_min_level(iter, root, min_level, start, end) {
1359 retry:
1360 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1361 			continue;
1362 
1363 		if (!is_shadow_present_pte(iter.old_spte) ||
1364 		    !is_last_spte(iter.old_spte, iter.level) ||
1365 		    !(iter.old_spte & PT_WRITABLE_MASK))
1366 			continue;
1367 
1368 		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1369 
1370 		if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1371 			goto retry;
1372 
1373 		spte_set = true;
1374 	}
1375 
1376 	rcu_read_unlock();
1377 	return spte_set;
1378 }
1379 
1380 /*
1381  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
1382  * only affect leaf SPTEs down to min_level.
1383  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1384  */
1385 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm,
1386 			     const struct kvm_memory_slot *slot, int min_level)
1387 {
1388 	struct kvm_mmu_page *root;
1389 	bool spte_set = false;
1390 
1391 	lockdep_assert_held_read(&kvm->mmu_lock);
1392 
1393 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1394 		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
1395 			     slot->base_gfn + slot->npages, min_level);
1396 
1397 	return spte_set;
1398 }
1399 
1400 static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp)
1401 {
1402 	struct kvm_mmu_page *sp;
1403 
1404 	gfp |= __GFP_ZERO;
1405 
1406 	sp = kmem_cache_alloc(mmu_page_header_cache, gfp);
1407 	if (!sp)
1408 		return NULL;
1409 
1410 	sp->spt = (void *)__get_free_page(gfp);
1411 	if (!sp->spt) {
1412 		kmem_cache_free(mmu_page_header_cache, sp);
1413 		return NULL;
1414 	}
1415 
1416 	return sp;
1417 }
1418 
1419 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm,
1420 						       struct tdp_iter *iter,
1421 						       bool shared)
1422 {
1423 	struct kvm_mmu_page *sp;
1424 
1425 	/*
1426 	 * Since we are allocating while under the MMU lock we have to be
1427 	 * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct
1428 	 * reclaim and to avoid making any filesystem callbacks (which can end
1429 	 * up invoking KVM MMU notifiers, resulting in a deadlock).
1430 	 *
1431 	 * If this allocation fails we drop the lock and retry with reclaim
1432 	 * allowed.
1433 	 */
1434 	sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT);
1435 	if (sp)
1436 		return sp;
1437 
1438 	rcu_read_unlock();
1439 
1440 	if (shared)
1441 		read_unlock(&kvm->mmu_lock);
1442 	else
1443 		write_unlock(&kvm->mmu_lock);
1444 
1445 	iter->yielded = true;
1446 	sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT);
1447 
1448 	if (shared)
1449 		read_lock(&kvm->mmu_lock);
1450 	else
1451 		write_lock(&kvm->mmu_lock);
1452 
1453 	rcu_read_lock();
1454 
1455 	return sp;
1456 }
1457 
1458 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1459 				   struct kvm_mmu_page *sp, bool shared)
1460 {
1461 	const u64 huge_spte = iter->old_spte;
1462 	const int level = iter->level;
1463 	int ret, i;
1464 
1465 	tdp_mmu_init_child_sp(sp, iter);
1466 
1467 	/*
1468 	 * No need for atomics when writing to sp->spt since the page table has
1469 	 * not been linked in yet and thus is not reachable from any other CPU.
1470 	 */
1471 	for (i = 0; i < PT64_ENT_PER_PAGE; i++)
1472 		sp->spt[i] = make_huge_page_split_spte(huge_spte, level, i);
1473 
1474 	/*
1475 	 * Replace the huge spte with a pointer to the populated lower level
1476 	 * page table. Since we are making this change without a TLB flush vCPUs
1477 	 * will see a mix of the split mappings and the original huge mapping,
1478 	 * depending on what's currently in their TLB. This is fine from a
1479 	 * correctness standpoint since the translation will be the same either
1480 	 * way.
1481 	 */
1482 	ret = tdp_mmu_link_sp(kvm, iter, sp, false, shared);
1483 	if (ret)
1484 		goto out;
1485 
1486 	/*
1487 	 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we
1488 	 * are overwriting from the page stats. But we have to manually update
1489 	 * the page stats with the new present child pages.
1490 	 */
1491 	kvm_update_page_stats(kvm, level - 1, PT64_ENT_PER_PAGE);
1492 
1493 out:
1494 	trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret);
1495 	return ret;
1496 }
1497 
1498 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm,
1499 					 struct kvm_mmu_page *root,
1500 					 gfn_t start, gfn_t end,
1501 					 int target_level, bool shared)
1502 {
1503 	struct kvm_mmu_page *sp = NULL;
1504 	struct tdp_iter iter;
1505 	int ret = 0;
1506 
1507 	rcu_read_lock();
1508 
1509 	/*
1510 	 * Traverse the page table splitting all huge pages above the target
1511 	 * level into one lower level. For example, if we encounter a 1GB page
1512 	 * we split it into 512 2MB pages.
1513 	 *
1514 	 * Since the TDP iterator uses a pre-order traversal, we are guaranteed
1515 	 * to visit an SPTE before ever visiting its children, which means we
1516 	 * will correctly recursively split huge pages that are more than one
1517 	 * level above the target level (e.g. splitting a 1GB to 512 2MB pages,
1518 	 * and then splitting each of those to 512 4KB pages).
1519 	 */
1520 	for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) {
1521 retry:
1522 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
1523 			continue;
1524 
1525 		if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte))
1526 			continue;
1527 
1528 		if (!sp) {
1529 			sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared);
1530 			if (!sp) {
1531 				ret = -ENOMEM;
1532 				trace_kvm_mmu_split_huge_page(iter.gfn,
1533 							      iter.old_spte,
1534 							      iter.level, ret);
1535 				break;
1536 			}
1537 
1538 			if (iter.yielded)
1539 				continue;
1540 		}
1541 
1542 		if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared))
1543 			goto retry;
1544 
1545 		sp = NULL;
1546 	}
1547 
1548 	rcu_read_unlock();
1549 
1550 	/*
1551 	 * It's possible to exit the loop having never used the last sp if, for
1552 	 * example, a vCPU doing HugePage NX splitting wins the race and
1553 	 * installs its own sp in place of the last sp we tried to split.
1554 	 */
1555 	if (sp)
1556 		tdp_mmu_free_sp(sp);
1557 
1558 	return ret;
1559 }
1560 
1561 
1562 /*
1563  * Try to split all huge pages mapped by the TDP MMU down to the target level.
1564  */
1565 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm,
1566 				      const struct kvm_memory_slot *slot,
1567 				      gfn_t start, gfn_t end,
1568 				      int target_level, bool shared)
1569 {
1570 	struct kvm_mmu_page *root;
1571 	int r = 0;
1572 
1573 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
1574 
1575 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, shared) {
1576 		r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared);
1577 		if (r) {
1578 			kvm_tdp_mmu_put_root(kvm, root, shared);
1579 			break;
1580 		}
1581 	}
1582 }
1583 
1584 /*
1585  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1586  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1587  * If AD bits are not enabled, this will require clearing the writable bit on
1588  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1589  * be flushed.
1590  */
1591 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1592 			   gfn_t start, gfn_t end)
1593 {
1594 	struct tdp_iter iter;
1595 	u64 new_spte;
1596 	bool spte_set = false;
1597 
1598 	rcu_read_lock();
1599 
1600 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
1601 retry:
1602 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1603 			continue;
1604 
1605 		if (!is_shadow_present_pte(iter.old_spte))
1606 			continue;
1607 
1608 		if (spte_ad_need_write_protect(iter.old_spte)) {
1609 			if (is_writable_pte(iter.old_spte))
1610 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1611 			else
1612 				continue;
1613 		} else {
1614 			if (iter.old_spte & shadow_dirty_mask)
1615 				new_spte = iter.old_spte & ~shadow_dirty_mask;
1616 			else
1617 				continue;
1618 		}
1619 
1620 		if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1621 			goto retry;
1622 
1623 		spte_set = true;
1624 	}
1625 
1626 	rcu_read_unlock();
1627 	return spte_set;
1628 }
1629 
1630 /*
1631  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1632  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1633  * If AD bits are not enabled, this will require clearing the writable bit on
1634  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1635  * be flushed.
1636  */
1637 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
1638 				  const struct kvm_memory_slot *slot)
1639 {
1640 	struct kvm_mmu_page *root;
1641 	bool spte_set = false;
1642 
1643 	lockdep_assert_held_read(&kvm->mmu_lock);
1644 
1645 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1646 		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
1647 				slot->base_gfn + slot->npages);
1648 
1649 	return spte_set;
1650 }
1651 
1652 /*
1653  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1654  * set in mask, starting at gfn. The given memslot is expected to contain all
1655  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1656  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1657  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1658  */
1659 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
1660 				  gfn_t gfn, unsigned long mask, bool wrprot)
1661 {
1662 	struct tdp_iter iter;
1663 	u64 new_spte;
1664 
1665 	rcu_read_lock();
1666 
1667 	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
1668 				    gfn + BITS_PER_LONG) {
1669 		if (!mask)
1670 			break;
1671 
1672 		if (iter.level > PG_LEVEL_4K ||
1673 		    !(mask & (1UL << (iter.gfn - gfn))))
1674 			continue;
1675 
1676 		mask &= ~(1UL << (iter.gfn - gfn));
1677 
1678 		if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
1679 			if (is_writable_pte(iter.old_spte))
1680 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1681 			else
1682 				continue;
1683 		} else {
1684 			if (iter.old_spte & shadow_dirty_mask)
1685 				new_spte = iter.old_spte & ~shadow_dirty_mask;
1686 			else
1687 				continue;
1688 		}
1689 
1690 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
1691 	}
1692 
1693 	rcu_read_unlock();
1694 }
1695 
1696 /*
1697  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1698  * set in mask, starting at gfn. The given memslot is expected to contain all
1699  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1700  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1701  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1702  */
1703 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1704 				       struct kvm_memory_slot *slot,
1705 				       gfn_t gfn, unsigned long mask,
1706 				       bool wrprot)
1707 {
1708 	struct kvm_mmu_page *root;
1709 
1710 	lockdep_assert_held_write(&kvm->mmu_lock);
1711 	for_each_tdp_mmu_root(kvm, root, slot->as_id)
1712 		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1713 }
1714 
1715 /*
1716  * Clear leaf entries which could be replaced by large mappings, for
1717  * GFNs within the slot.
1718  */
1719 static void zap_collapsible_spte_range(struct kvm *kvm,
1720 				       struct kvm_mmu_page *root,
1721 				       const struct kvm_memory_slot *slot)
1722 {
1723 	gfn_t start = slot->base_gfn;
1724 	gfn_t end = start + slot->npages;
1725 	struct tdp_iter iter;
1726 	kvm_pfn_t pfn;
1727 
1728 	rcu_read_lock();
1729 
1730 	tdp_root_for_each_pte(iter, root, start, end) {
1731 retry:
1732 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1733 			continue;
1734 
1735 		if (!is_shadow_present_pte(iter.old_spte) ||
1736 		    !is_last_spte(iter.old_spte, iter.level))
1737 			continue;
1738 
1739 		pfn = spte_to_pfn(iter.old_spte);
1740 		if (kvm_is_reserved_pfn(pfn) ||
1741 		    iter.level >= kvm_mmu_max_mapping_level(kvm, slot, iter.gfn,
1742 							    pfn, PG_LEVEL_NUM))
1743 			continue;
1744 
1745 		/* Note, a successful atomic zap also does a remote TLB flush. */
1746 		if (tdp_mmu_zap_spte_atomic(kvm, &iter))
1747 			goto retry;
1748 	}
1749 
1750 	rcu_read_unlock();
1751 }
1752 
1753 /*
1754  * Clear non-leaf entries (and free associated page tables) which could
1755  * be replaced by large mappings, for GFNs within the slot.
1756  */
1757 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1758 				       const struct kvm_memory_slot *slot)
1759 {
1760 	struct kvm_mmu_page *root;
1761 
1762 	lockdep_assert_held_read(&kvm->mmu_lock);
1763 
1764 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1765 		zap_collapsible_spte_range(kvm, root, slot);
1766 }
1767 
1768 /*
1769  * Removes write access on the last level SPTE mapping this GFN and unsets the
1770  * MMU-writable bit to ensure future writes continue to be intercepted.
1771  * Returns true if an SPTE was set and a TLB flush is needed.
1772  */
1773 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1774 			      gfn_t gfn, int min_level)
1775 {
1776 	struct tdp_iter iter;
1777 	u64 new_spte;
1778 	bool spte_set = false;
1779 
1780 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1781 
1782 	rcu_read_lock();
1783 
1784 	for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) {
1785 		if (!is_shadow_present_pte(iter.old_spte) ||
1786 		    !is_last_spte(iter.old_spte, iter.level))
1787 			continue;
1788 
1789 		new_spte = iter.old_spte &
1790 			~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
1791 
1792 		if (new_spte == iter.old_spte)
1793 			break;
1794 
1795 		tdp_mmu_set_spte(kvm, &iter, new_spte);
1796 		spte_set = true;
1797 	}
1798 
1799 	rcu_read_unlock();
1800 
1801 	return spte_set;
1802 }
1803 
1804 /*
1805  * Removes write access on the last level SPTE mapping this GFN and unsets the
1806  * MMU-writable bit to ensure future writes continue to be intercepted.
1807  * Returns true if an SPTE was set and a TLB flush is needed.
1808  */
1809 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1810 				   struct kvm_memory_slot *slot, gfn_t gfn,
1811 				   int min_level)
1812 {
1813 	struct kvm_mmu_page *root;
1814 	bool spte_set = false;
1815 
1816 	lockdep_assert_held_write(&kvm->mmu_lock);
1817 	for_each_tdp_mmu_root(kvm, root, slot->as_id)
1818 		spte_set |= write_protect_gfn(kvm, root, gfn, min_level);
1819 
1820 	return spte_set;
1821 }
1822 
1823 /*
1824  * Return the level of the lowest level SPTE added to sptes.
1825  * That SPTE may be non-present.
1826  *
1827  * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1828  */
1829 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1830 			 int *root_level)
1831 {
1832 	struct tdp_iter iter;
1833 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1834 	gfn_t gfn = addr >> PAGE_SHIFT;
1835 	int leaf = -1;
1836 
1837 	*root_level = vcpu->arch.mmu->shadow_root_level;
1838 
1839 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1840 		leaf = iter.level;
1841 		sptes[leaf] = iter.old_spte;
1842 	}
1843 
1844 	return leaf;
1845 }
1846 
1847 /*
1848  * Returns the last level spte pointer of the shadow page walk for the given
1849  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
1850  * walk could be performed, returns NULL and *spte does not contain valid data.
1851  *
1852  * Contract:
1853  *  - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1854  *  - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end.
1855  *
1856  * WARNING: This function is only intended to be called during fast_page_fault.
1857  */
1858 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr,
1859 					u64 *spte)
1860 {
1861 	struct tdp_iter iter;
1862 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1863 	gfn_t gfn = addr >> PAGE_SHIFT;
1864 	tdp_ptep_t sptep = NULL;
1865 
1866 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1867 		*spte = iter.old_spte;
1868 		sptep = iter.sptep;
1869 	}
1870 
1871 	/*
1872 	 * Perform the rcu_dereference to get the raw spte pointer value since
1873 	 * we are passing it up to fast_page_fault, which is shared with the
1874 	 * legacy MMU and thus does not retain the TDP MMU-specific __rcu
1875 	 * annotation.
1876 	 *
1877 	 * This is safe since fast_page_fault obeys the contracts of this
1878 	 * function as well as all TDP MMU contracts around modifying SPTEs
1879 	 * outside of mmu_lock.
1880 	 */
1881 	return rcu_dereference(sptep);
1882 }
1883