1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include "mmu.h" 5 #include "mmu_internal.h" 6 #include "mmutrace.h" 7 #include "tdp_iter.h" 8 #include "tdp_mmu.h" 9 #include "spte.h" 10 11 #include <asm/cmpxchg.h> 12 #include <trace/events/kvm.h> 13 14 /* Initializes the TDP MMU for the VM, if enabled. */ 15 void kvm_mmu_init_tdp_mmu(struct kvm *kvm) 16 { 17 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); 18 spin_lock_init(&kvm->arch.tdp_mmu_pages_lock); 19 } 20 21 /* Arbitrarily returns true so that this may be used in if statements. */ 22 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm, 23 bool shared) 24 { 25 if (shared) 26 lockdep_assert_held_read(&kvm->mmu_lock); 27 else 28 lockdep_assert_held_write(&kvm->mmu_lock); 29 30 return true; 31 } 32 33 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) 34 { 35 /* 36 * Invalidate all roots, which besides the obvious, schedules all roots 37 * for zapping and thus puts the TDP MMU's reference to each root, i.e. 38 * ultimately frees all roots. 39 */ 40 kvm_tdp_mmu_invalidate_all_roots(kvm); 41 kvm_tdp_mmu_zap_invalidated_roots(kvm); 42 43 WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages)); 44 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); 45 46 /* 47 * Ensure that all the outstanding RCU callbacks to free shadow pages 48 * can run before the VM is torn down. Putting the last reference to 49 * zapped roots will create new callbacks. 50 */ 51 rcu_barrier(); 52 } 53 54 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp) 55 { 56 free_page((unsigned long)sp->spt); 57 kmem_cache_free(mmu_page_header_cache, sp); 58 } 59 60 /* 61 * This is called through call_rcu in order to free TDP page table memory 62 * safely with respect to other kernel threads that may be operating on 63 * the memory. 64 * By only accessing TDP MMU page table memory in an RCU read critical 65 * section, and freeing it after a grace period, lockless access to that 66 * memory won't use it after it is freed. 67 */ 68 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head) 69 { 70 struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page, 71 rcu_head); 72 73 tdp_mmu_free_sp(sp); 74 } 75 76 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root) 77 { 78 if (!refcount_dec_and_test(&root->tdp_mmu_root_count)) 79 return; 80 81 /* 82 * The TDP MMU itself holds a reference to each root until the root is 83 * explicitly invalidated, i.e. the final reference should be never be 84 * put for a valid root. 85 */ 86 KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm); 87 88 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 89 list_del_rcu(&root->link); 90 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 91 call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback); 92 } 93 94 /* 95 * Returns the next root after @prev_root (or the first root if @prev_root is 96 * NULL). A reference to the returned root is acquired, and the reference to 97 * @prev_root is released (the caller obviously must hold a reference to 98 * @prev_root if it's non-NULL). 99 * 100 * If @only_valid is true, invalid roots are skipped. 101 * 102 * Returns NULL if the end of tdp_mmu_roots was reached. 103 */ 104 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, 105 struct kvm_mmu_page *prev_root, 106 bool only_valid) 107 { 108 struct kvm_mmu_page *next_root; 109 110 /* 111 * While the roots themselves are RCU-protected, fields such as 112 * role.invalid are protected by mmu_lock. 113 */ 114 lockdep_assert_held(&kvm->mmu_lock); 115 116 rcu_read_lock(); 117 118 if (prev_root) 119 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 120 &prev_root->link, 121 typeof(*prev_root), link); 122 else 123 next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots, 124 typeof(*next_root), link); 125 126 while (next_root) { 127 if ((!only_valid || !next_root->role.invalid) && 128 kvm_tdp_mmu_get_root(next_root)) 129 break; 130 131 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 132 &next_root->link, typeof(*next_root), link); 133 } 134 135 rcu_read_unlock(); 136 137 if (prev_root) 138 kvm_tdp_mmu_put_root(kvm, prev_root); 139 140 return next_root; 141 } 142 143 /* 144 * Note: this iterator gets and puts references to the roots it iterates over. 145 * This makes it safe to release the MMU lock and yield within the loop, but 146 * if exiting the loop early, the caller must drop the reference to the most 147 * recent root. (Unless keeping a live reference is desirable.) 148 * 149 * If shared is set, this function is operating under the MMU lock in read 150 * mode. 151 */ 152 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _only_valid) \ 153 for (_root = tdp_mmu_next_root(_kvm, NULL, _only_valid); \ 154 ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \ 155 _root = tdp_mmu_next_root(_kvm, _root, _only_valid)) \ 156 if (_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) { \ 157 } else 158 159 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id) \ 160 __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, true) 161 162 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root) \ 163 for (_root = tdp_mmu_next_root(_kvm, NULL, false); \ 164 ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \ 165 _root = tdp_mmu_next_root(_kvm, _root, false)) 166 167 /* 168 * Iterate over all TDP MMU roots. Requires that mmu_lock be held for write, 169 * the implication being that any flow that holds mmu_lock for read is 170 * inherently yield-friendly and should use the yield-safe variant above. 171 * Holding mmu_lock for write obviates the need for RCU protection as the list 172 * is guaranteed to be stable. 173 */ 174 #define __for_each_tdp_mmu_root(_kvm, _root, _as_id, _only_valid) \ 175 list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \ 176 if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \ 177 ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) || \ 178 ((_only_valid) && (_root)->role.invalid))) { \ 179 } else 180 181 #define for_each_tdp_mmu_root(_kvm, _root, _as_id) \ 182 __for_each_tdp_mmu_root(_kvm, _root, _as_id, false) 183 184 #define for_each_valid_tdp_mmu_root(_kvm, _root, _as_id) \ 185 __for_each_tdp_mmu_root(_kvm, _root, _as_id, true) 186 187 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu) 188 { 189 struct kvm_mmu_page *sp; 190 191 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 192 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 193 194 return sp; 195 } 196 197 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep, 198 gfn_t gfn, union kvm_mmu_page_role role) 199 { 200 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 201 202 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 203 204 sp->role = role; 205 sp->gfn = gfn; 206 sp->ptep = sptep; 207 sp->tdp_mmu_page = true; 208 209 trace_kvm_mmu_get_page(sp, true); 210 } 211 212 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp, 213 struct tdp_iter *iter) 214 { 215 struct kvm_mmu_page *parent_sp; 216 union kvm_mmu_page_role role; 217 218 parent_sp = sptep_to_sp(rcu_dereference(iter->sptep)); 219 220 role = parent_sp->role; 221 role.level--; 222 223 tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role); 224 } 225 226 int kvm_tdp_mmu_alloc_root(struct kvm_vcpu *vcpu) 227 { 228 struct kvm_mmu *mmu = vcpu->arch.mmu; 229 union kvm_mmu_page_role role = mmu->root_role; 230 int as_id = kvm_mmu_role_as_id(role); 231 struct kvm *kvm = vcpu->kvm; 232 struct kvm_mmu_page *root; 233 234 /* 235 * Check for an existing root before acquiring the pages lock to avoid 236 * unnecessary serialization if multiple vCPUs are loading a new root. 237 * E.g. when bringing up secondary vCPUs, KVM will already have created 238 * a valid root on behalf of the primary vCPU. 239 */ 240 read_lock(&kvm->mmu_lock); 241 242 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, as_id) { 243 if (root->role.word == role.word) 244 goto out_read_unlock; 245 } 246 247 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 248 249 /* 250 * Recheck for an existing root after acquiring the pages lock, another 251 * vCPU may have raced ahead and created a new usable root. Manually 252 * walk the list of roots as the standard macros assume that the pages 253 * lock is *not* held. WARN if grabbing a reference to a usable root 254 * fails, as the last reference to a root can only be put *after* the 255 * root has been invalidated, which requires holding mmu_lock for write. 256 */ 257 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { 258 if (root->role.word == role.word && 259 !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root))) 260 goto out_spin_unlock; 261 } 262 263 root = tdp_mmu_alloc_sp(vcpu); 264 tdp_mmu_init_sp(root, NULL, 0, role); 265 266 /* 267 * TDP MMU roots are kept until they are explicitly invalidated, either 268 * by a memslot update or by the destruction of the VM. Initialize the 269 * refcount to two; one reference for the vCPU, and one reference for 270 * the TDP MMU itself, which is held until the root is invalidated and 271 * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots(). 272 */ 273 refcount_set(&root->tdp_mmu_root_count, 2); 274 list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots); 275 276 out_spin_unlock: 277 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 278 out_read_unlock: 279 read_unlock(&kvm->mmu_lock); 280 /* 281 * Note, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS will prevent entering the guest 282 * and actually consuming the root if it's invalidated after dropping 283 * mmu_lock, and the root can't be freed as this vCPU holds a reference. 284 */ 285 mmu->root.hpa = __pa(root->spt); 286 mmu->root.pgd = 0; 287 return 0; 288 } 289 290 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 291 u64 old_spte, u64 new_spte, int level, 292 bool shared); 293 294 static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 295 { 296 kvm_account_pgtable_pages((void *)sp->spt, +1); 297 atomic64_inc(&kvm->arch.tdp_mmu_pages); 298 } 299 300 static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 301 { 302 kvm_account_pgtable_pages((void *)sp->spt, -1); 303 atomic64_dec(&kvm->arch.tdp_mmu_pages); 304 } 305 306 /** 307 * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages 308 * 309 * @kvm: kvm instance 310 * @sp: the page to be removed 311 */ 312 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 313 { 314 tdp_unaccount_mmu_page(kvm, sp); 315 316 if (!sp->nx_huge_page_disallowed) 317 return; 318 319 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 320 sp->nx_huge_page_disallowed = false; 321 untrack_possible_nx_huge_page(kvm, sp); 322 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 323 } 324 325 /** 326 * handle_removed_pt() - handle a page table removed from the TDP structure 327 * 328 * @kvm: kvm instance 329 * @pt: the page removed from the paging structure 330 * @shared: This operation may not be running under the exclusive use 331 * of the MMU lock and the operation must synchronize with other 332 * threads that might be modifying SPTEs. 333 * 334 * Given a page table that has been removed from the TDP paging structure, 335 * iterates through the page table to clear SPTEs and free child page tables. 336 * 337 * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU 338 * protection. Since this thread removed it from the paging structure, 339 * this thread will be responsible for ensuring the page is freed. Hence the 340 * early rcu_dereferences in the function. 341 */ 342 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) 343 { 344 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt)); 345 int level = sp->role.level; 346 gfn_t base_gfn = sp->gfn; 347 int i; 348 349 trace_kvm_mmu_prepare_zap_page(sp); 350 351 tdp_mmu_unlink_sp(kvm, sp); 352 353 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 354 tdp_ptep_t sptep = pt + i; 355 gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level); 356 u64 old_spte; 357 358 if (shared) { 359 /* 360 * Set the SPTE to a nonpresent value that other 361 * threads will not overwrite. If the SPTE was 362 * already marked as frozen then another thread 363 * handling a page fault could overwrite it, so 364 * set the SPTE until it is set from some other 365 * value to the frozen SPTE value. 366 */ 367 for (;;) { 368 old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, FROZEN_SPTE); 369 if (!is_frozen_spte(old_spte)) 370 break; 371 cpu_relax(); 372 } 373 } else { 374 /* 375 * If the SPTE is not MMU-present, there is no backing 376 * page associated with the SPTE and so no side effects 377 * that need to be recorded, and exclusive ownership of 378 * mmu_lock ensures the SPTE can't be made present. 379 * Note, zapping MMIO SPTEs is also unnecessary as they 380 * are guarded by the memslots generation, not by being 381 * unreachable. 382 */ 383 old_spte = kvm_tdp_mmu_read_spte(sptep); 384 if (!is_shadow_present_pte(old_spte)) 385 continue; 386 387 /* 388 * Use the common helper instead of a raw WRITE_ONCE as 389 * the SPTE needs to be updated atomically if it can be 390 * modified by a different vCPU outside of mmu_lock. 391 * Even though the parent SPTE is !PRESENT, the TLB 392 * hasn't yet been flushed, and both Intel and AMD 393 * document that A/D assists can use upper-level PxE 394 * entries that are cached in the TLB, i.e. the CPU can 395 * still access the page and mark it dirty. 396 * 397 * No retry is needed in the atomic update path as the 398 * sole concern is dropping a Dirty bit, i.e. no other 399 * task can zap/remove the SPTE as mmu_lock is held for 400 * write. Marking the SPTE as a frozen SPTE is not 401 * strictly necessary for the same reason, but using 402 * the frozen SPTE value keeps the shared/exclusive 403 * paths consistent and allows the handle_changed_spte() 404 * call below to hardcode the new value to FROZEN_SPTE. 405 * 406 * Note, even though dropping a Dirty bit is the only 407 * scenario where a non-atomic update could result in a 408 * functional bug, simply checking the Dirty bit isn't 409 * sufficient as a fast page fault could read the upper 410 * level SPTE before it is zapped, and then make this 411 * target SPTE writable, resume the guest, and set the 412 * Dirty bit between reading the SPTE above and writing 413 * it here. 414 */ 415 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, 416 FROZEN_SPTE, level); 417 } 418 handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn, 419 old_spte, FROZEN_SPTE, level, shared); 420 } 421 422 call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback); 423 } 424 425 /** 426 * handle_changed_spte - handle bookkeeping associated with an SPTE change 427 * @kvm: kvm instance 428 * @as_id: the address space of the paging structure the SPTE was a part of 429 * @gfn: the base GFN that was mapped by the SPTE 430 * @old_spte: The value of the SPTE before the change 431 * @new_spte: The value of the SPTE after the change 432 * @level: the level of the PT the SPTE is part of in the paging structure 433 * @shared: This operation may not be running under the exclusive use of 434 * the MMU lock and the operation must synchronize with other 435 * threads that might be modifying SPTEs. 436 * 437 * Handle bookkeeping that might result from the modification of a SPTE. Note, 438 * dirty logging updates are handled in common code, not here (see make_spte() 439 * and fast_pf_fix_direct_spte()). 440 */ 441 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 442 u64 old_spte, u64 new_spte, int level, 443 bool shared) 444 { 445 bool was_present = is_shadow_present_pte(old_spte); 446 bool is_present = is_shadow_present_pte(new_spte); 447 bool was_leaf = was_present && is_last_spte(old_spte, level); 448 bool is_leaf = is_present && is_last_spte(new_spte, level); 449 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); 450 451 WARN_ON_ONCE(level > PT64_ROOT_MAX_LEVEL); 452 WARN_ON_ONCE(level < PG_LEVEL_4K); 453 WARN_ON_ONCE(gfn & (KVM_PAGES_PER_HPAGE(level) - 1)); 454 455 /* 456 * If this warning were to trigger it would indicate that there was a 457 * missing MMU notifier or a race with some notifier handler. 458 * A present, leaf SPTE should never be directly replaced with another 459 * present leaf SPTE pointing to a different PFN. A notifier handler 460 * should be zapping the SPTE before the main MM's page table is 461 * changed, or the SPTE should be zeroed, and the TLBs flushed by the 462 * thread before replacement. 463 */ 464 if (was_leaf && is_leaf && pfn_changed) { 465 pr_err("Invalid SPTE change: cannot replace a present leaf\n" 466 "SPTE with another present leaf SPTE mapping a\n" 467 "different PFN!\n" 468 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 469 as_id, gfn, old_spte, new_spte, level); 470 471 /* 472 * Crash the host to prevent error propagation and guest data 473 * corruption. 474 */ 475 BUG(); 476 } 477 478 if (old_spte == new_spte) 479 return; 480 481 trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte); 482 483 if (is_leaf) 484 check_spte_writable_invariants(new_spte); 485 486 /* 487 * The only times a SPTE should be changed from a non-present to 488 * non-present state is when an MMIO entry is installed/modified/ 489 * removed. In that case, there is nothing to do here. 490 */ 491 if (!was_present && !is_present) { 492 /* 493 * If this change does not involve a MMIO SPTE or frozen SPTE, 494 * it is unexpected. Log the change, though it should not 495 * impact the guest since both the former and current SPTEs 496 * are nonpresent. 497 */ 498 if (WARN_ON_ONCE(!is_mmio_spte(kvm, old_spte) && 499 !is_mmio_spte(kvm, new_spte) && 500 !is_frozen_spte(new_spte))) 501 pr_err("Unexpected SPTE change! Nonpresent SPTEs\n" 502 "should not be replaced with another,\n" 503 "different nonpresent SPTE, unless one or both\n" 504 "are MMIO SPTEs, or the new SPTE is\n" 505 "a temporary frozen SPTE.\n" 506 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 507 as_id, gfn, old_spte, new_spte, level); 508 return; 509 } 510 511 if (is_leaf != was_leaf) 512 kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1); 513 514 if (was_leaf && is_dirty_spte(old_spte) && 515 (!is_present || !is_dirty_spte(new_spte) || pfn_changed)) 516 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 517 518 /* 519 * Recursively handle child PTs if the change removed a subtree from 520 * the paging structure. Note the WARN on the PFN changing without the 521 * SPTE being converted to a hugepage (leaf) or being zapped. Shadow 522 * pages are kernel allocations and should never be migrated. 523 */ 524 if (was_present && !was_leaf && 525 (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed))) 526 handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared); 527 528 if (was_leaf && is_accessed_spte(old_spte) && 529 (!is_present || !is_accessed_spte(new_spte) || pfn_changed)) 530 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 531 } 532 533 static inline int __must_check __tdp_mmu_set_spte_atomic(struct tdp_iter *iter, 534 u64 new_spte) 535 { 536 u64 *sptep = rcu_dereference(iter->sptep); 537 538 /* 539 * The caller is responsible for ensuring the old SPTE is not a FROZEN 540 * SPTE. KVM should never attempt to zap or manipulate a FROZEN SPTE, 541 * and pre-checking before inserting a new SPTE is advantageous as it 542 * avoids unnecessary work. 543 */ 544 WARN_ON_ONCE(iter->yielded || is_frozen_spte(iter->old_spte)); 545 546 /* 547 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and 548 * does not hold the mmu_lock. On failure, i.e. if a different logical 549 * CPU modified the SPTE, try_cmpxchg64() updates iter->old_spte with 550 * the current value, so the caller operates on fresh data, e.g. if it 551 * retries tdp_mmu_set_spte_atomic() 552 */ 553 if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte)) 554 return -EBUSY; 555 556 return 0; 557 } 558 559 /* 560 * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically 561 * and handle the associated bookkeeping. Do not mark the page dirty 562 * in KVM's dirty bitmaps. 563 * 564 * If setting the SPTE fails because it has changed, iter->old_spte will be 565 * refreshed to the current value of the spte. 566 * 567 * @kvm: kvm instance 568 * @iter: a tdp_iter instance currently on the SPTE that should be set 569 * @new_spte: The value the SPTE should be set to 570 * Return: 571 * * 0 - If the SPTE was set. 572 * * -EBUSY - If the SPTE cannot be set. In this case this function will have 573 * no side-effects other than setting iter->old_spte to the last 574 * known value of the spte. 575 */ 576 static inline int __must_check tdp_mmu_set_spte_atomic(struct kvm *kvm, 577 struct tdp_iter *iter, 578 u64 new_spte) 579 { 580 int ret; 581 582 lockdep_assert_held_read(&kvm->mmu_lock); 583 584 ret = __tdp_mmu_set_spte_atomic(iter, new_spte); 585 if (ret) 586 return ret; 587 588 handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, 589 new_spte, iter->level, true); 590 591 return 0; 592 } 593 594 static inline int __must_check tdp_mmu_zap_spte_atomic(struct kvm *kvm, 595 struct tdp_iter *iter) 596 { 597 int ret; 598 599 lockdep_assert_held_read(&kvm->mmu_lock); 600 601 /* 602 * Freeze the SPTE by setting it to a special, non-present value. This 603 * will stop other threads from immediately installing a present entry 604 * in its place before the TLBs are flushed. 605 * 606 * Delay processing of the zapped SPTE until after TLBs are flushed and 607 * the FROZEN_SPTE is replaced (see below). 608 */ 609 ret = __tdp_mmu_set_spte_atomic(iter, FROZEN_SPTE); 610 if (ret) 611 return ret; 612 613 kvm_flush_remote_tlbs_gfn(kvm, iter->gfn, iter->level); 614 615 /* 616 * No other thread can overwrite the frozen SPTE as they must either 617 * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not 618 * overwrite the special frozen SPTE value. Use the raw write helper to 619 * avoid an unnecessary check on volatile bits. 620 */ 621 __kvm_tdp_mmu_write_spte(iter->sptep, SHADOW_NONPRESENT_VALUE); 622 623 /* 624 * Process the zapped SPTE after flushing TLBs, and after replacing 625 * FROZEN_SPTE with 0. This minimizes the amount of time vCPUs are 626 * blocked by the FROZEN_SPTE and reduces contention on the child 627 * SPTEs. 628 */ 629 handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, 630 SHADOW_NONPRESENT_VALUE, iter->level, true); 631 632 return 0; 633 } 634 635 636 /* 637 * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping 638 * @kvm: KVM instance 639 * @as_id: Address space ID, i.e. regular vs. SMM 640 * @sptep: Pointer to the SPTE 641 * @old_spte: The current value of the SPTE 642 * @new_spte: The new value that will be set for the SPTE 643 * @gfn: The base GFN that was (or will be) mapped by the SPTE 644 * @level: The level _containing_ the SPTE (its parent PT's level) 645 * 646 * Returns the old SPTE value, which _may_ be different than @old_spte if the 647 * SPTE had voldatile bits. 648 */ 649 static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep, 650 u64 old_spte, u64 new_spte, gfn_t gfn, int level) 651 { 652 lockdep_assert_held_write(&kvm->mmu_lock); 653 654 /* 655 * No thread should be using this function to set SPTEs to or from the 656 * temporary frozen SPTE value. 657 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic 658 * should be used. If operating under the MMU lock in write mode, the 659 * use of the frozen SPTE should not be necessary. 660 */ 661 WARN_ON_ONCE(is_frozen_spte(old_spte) || is_frozen_spte(new_spte)); 662 663 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level); 664 665 handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false); 666 return old_spte; 667 } 668 669 static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter, 670 u64 new_spte) 671 { 672 WARN_ON_ONCE(iter->yielded); 673 iter->old_spte = tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, 674 iter->old_spte, new_spte, 675 iter->gfn, iter->level); 676 } 677 678 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \ 679 for_each_tdp_pte(_iter, _root, _start, _end) 680 681 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \ 682 tdp_root_for_each_pte(_iter, _root, _start, _end) \ 683 if (!is_shadow_present_pte(_iter.old_spte) || \ 684 !is_last_spte(_iter.old_spte, _iter.level)) \ 685 continue; \ 686 else 687 688 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \ 689 for_each_tdp_pte(_iter, root_to_sp(_mmu->root.hpa), _start, _end) 690 691 /* 692 * Yield if the MMU lock is contended or this thread needs to return control 693 * to the scheduler. 694 * 695 * If this function should yield and flush is set, it will perform a remote 696 * TLB flush before yielding. 697 * 698 * If this function yields, iter->yielded is set and the caller must skip to 699 * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk 700 * over the paging structures to allow the iterator to continue its traversal 701 * from the paging structure root. 702 * 703 * Returns true if this function yielded. 704 */ 705 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm, 706 struct tdp_iter *iter, 707 bool flush, bool shared) 708 { 709 WARN_ON_ONCE(iter->yielded); 710 711 /* Ensure forward progress has been made before yielding. */ 712 if (iter->next_last_level_gfn == iter->yielded_gfn) 713 return false; 714 715 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 716 if (flush) 717 kvm_flush_remote_tlbs(kvm); 718 719 rcu_read_unlock(); 720 721 if (shared) 722 cond_resched_rwlock_read(&kvm->mmu_lock); 723 else 724 cond_resched_rwlock_write(&kvm->mmu_lock); 725 726 rcu_read_lock(); 727 728 WARN_ON_ONCE(iter->gfn > iter->next_last_level_gfn); 729 730 iter->yielded = true; 731 } 732 733 return iter->yielded; 734 } 735 736 static inline gfn_t tdp_mmu_max_gfn_exclusive(void) 737 { 738 /* 739 * Bound TDP MMU walks at host.MAXPHYADDR. KVM disallows memslots with 740 * a gpa range that would exceed the max gfn, and KVM does not create 741 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down 742 * the slow emulation path every time. 743 */ 744 return kvm_mmu_max_gfn() + 1; 745 } 746 747 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 748 bool shared, int zap_level) 749 { 750 struct tdp_iter iter; 751 752 gfn_t end = tdp_mmu_max_gfn_exclusive(); 753 gfn_t start = 0; 754 755 for_each_tdp_pte_min_level(iter, root, zap_level, start, end) { 756 retry: 757 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 758 continue; 759 760 if (!is_shadow_present_pte(iter.old_spte)) 761 continue; 762 763 if (iter.level > zap_level) 764 continue; 765 766 if (!shared) 767 tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE); 768 else if (tdp_mmu_set_spte_atomic(kvm, &iter, SHADOW_NONPRESENT_VALUE)) 769 goto retry; 770 } 771 } 772 773 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 774 bool shared) 775 { 776 777 /* 778 * The root must have an elevated refcount so that it's reachable via 779 * mmu_notifier callbacks, which allows this path to yield and drop 780 * mmu_lock. When handling an unmap/release mmu_notifier command, KVM 781 * must drop all references to relevant pages prior to completing the 782 * callback. Dropping mmu_lock with an unreachable root would result 783 * in zapping SPTEs after a relevant mmu_notifier callback completes 784 * and lead to use-after-free as zapping a SPTE triggers "writeback" of 785 * dirty accessed bits to the SPTE's associated struct page. 786 */ 787 WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count)); 788 789 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 790 791 rcu_read_lock(); 792 793 /* 794 * Zap roots in multiple passes of decreasing granularity, i.e. zap at 795 * 4KiB=>2MiB=>1GiB=>root, in order to better honor need_resched() (all 796 * preempt models) or mmu_lock contention (full or real-time models). 797 * Zapping at finer granularity marginally increases the total time of 798 * the zap, but in most cases the zap itself isn't latency sensitive. 799 * 800 * If KVM is configured to prove the MMU, skip the 4KiB and 2MiB zaps 801 * in order to mimic the page fault path, which can replace a 1GiB page 802 * table with an equivalent 1GiB hugepage, i.e. can get saddled with 803 * zapping a 1GiB region that's fully populated with 4KiB SPTEs. This 804 * allows verifying that KVM can safely zap 1GiB regions, e.g. without 805 * inducing RCU stalls, without relying on a relatively rare event 806 * (zapping roots is orders of magnitude more common). Note, because 807 * zapping a SP recurses on its children, stepping down to PG_LEVEL_4K 808 * in the iterator itself is unnecessary. 809 */ 810 if (!IS_ENABLED(CONFIG_KVM_PROVE_MMU)) { 811 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_4K); 812 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_2M); 813 } 814 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G); 815 __tdp_mmu_zap_root(kvm, root, shared, root->role.level); 816 817 rcu_read_unlock(); 818 } 819 820 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 821 { 822 u64 old_spte; 823 824 /* 825 * This helper intentionally doesn't allow zapping a root shadow page, 826 * which doesn't have a parent page table and thus no associated entry. 827 */ 828 if (WARN_ON_ONCE(!sp->ptep)) 829 return false; 830 831 old_spte = kvm_tdp_mmu_read_spte(sp->ptep); 832 if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte))) 833 return false; 834 835 tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 836 SHADOW_NONPRESENT_VALUE, sp->gfn, sp->role.level + 1); 837 838 return true; 839 } 840 841 /* 842 * If can_yield is true, will release the MMU lock and reschedule if the 843 * scheduler needs the CPU or there is contention on the MMU lock. If this 844 * function cannot yield, it will not release the MMU lock or reschedule and 845 * the caller must ensure it does not supply too large a GFN range, or the 846 * operation can cause a soft lockup. 847 */ 848 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root, 849 gfn_t start, gfn_t end, bool can_yield, bool flush) 850 { 851 struct tdp_iter iter; 852 853 end = min(end, tdp_mmu_max_gfn_exclusive()); 854 855 lockdep_assert_held_write(&kvm->mmu_lock); 856 857 rcu_read_lock(); 858 859 for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) { 860 if (can_yield && 861 tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) { 862 flush = false; 863 continue; 864 } 865 866 if (!is_shadow_present_pte(iter.old_spte) || 867 !is_last_spte(iter.old_spte, iter.level)) 868 continue; 869 870 tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE); 871 872 /* 873 * Zappings SPTEs in invalid roots doesn't require a TLB flush, 874 * see kvm_tdp_mmu_zap_invalidated_roots() for details. 875 */ 876 if (!root->role.invalid) 877 flush = true; 878 } 879 880 rcu_read_unlock(); 881 882 /* 883 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need 884 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed. 885 */ 886 return flush; 887 } 888 889 /* 890 * Zap leaf SPTEs for the range of gfns, [start, end), for all *VALID** roots. 891 * Returns true if a TLB flush is needed before releasing the MMU lock, i.e. if 892 * one or more SPTEs were zapped since the MMU lock was last acquired. 893 */ 894 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush) 895 { 896 struct kvm_mmu_page *root; 897 898 lockdep_assert_held_write(&kvm->mmu_lock); 899 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, -1) 900 flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush); 901 902 return flush; 903 } 904 905 void kvm_tdp_mmu_zap_all(struct kvm *kvm) 906 { 907 struct kvm_mmu_page *root; 908 909 /* 910 * Zap all roots, including invalid roots, as all SPTEs must be dropped 911 * before returning to the caller. Zap directly even if the root is 912 * also being zapped by a worker. Walking zapped top-level SPTEs isn't 913 * all that expensive and mmu_lock is already held, which means the 914 * worker has yielded, i.e. flushing the work instead of zapping here 915 * isn't guaranteed to be any faster. 916 * 917 * A TLB flush is unnecessary, KVM zaps everything if and only the VM 918 * is being destroyed or the userspace VMM has exited. In both cases, 919 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request. 920 */ 921 lockdep_assert_held_write(&kvm->mmu_lock); 922 for_each_tdp_mmu_root_yield_safe(kvm, root) 923 tdp_mmu_zap_root(kvm, root, false); 924 } 925 926 /* 927 * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast 928 * zap" completes. 929 */ 930 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm) 931 { 932 struct kvm_mmu_page *root; 933 934 read_lock(&kvm->mmu_lock); 935 936 for_each_tdp_mmu_root_yield_safe(kvm, root) { 937 if (!root->tdp_mmu_scheduled_root_to_zap) 938 continue; 939 940 root->tdp_mmu_scheduled_root_to_zap = false; 941 KVM_BUG_ON(!root->role.invalid, kvm); 942 943 /* 944 * A TLB flush is not necessary as KVM performs a local TLB 945 * flush when allocating a new root (see kvm_mmu_load()), and 946 * when migrating a vCPU to a different pCPU. Note, the local 947 * TLB flush on reuse also invalidates paging-structure-cache 948 * entries, i.e. TLB entries for intermediate paging structures, 949 * that may be zapped, as such entries are associated with the 950 * ASID on both VMX and SVM. 951 */ 952 tdp_mmu_zap_root(kvm, root, true); 953 954 /* 955 * The referenced needs to be put *after* zapping the root, as 956 * the root must be reachable by mmu_notifiers while it's being 957 * zapped 958 */ 959 kvm_tdp_mmu_put_root(kvm, root); 960 } 961 962 read_unlock(&kvm->mmu_lock); 963 } 964 965 /* 966 * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that 967 * is about to be zapped, e.g. in response to a memslots update. The actual 968 * zapping is done separately so that it happens with mmu_lock with read, 969 * whereas invalidating roots must be done with mmu_lock held for write (unless 970 * the VM is being destroyed). 971 * 972 * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference. 973 * See kvm_tdp_mmu_alloc_root(). 974 */ 975 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm) 976 { 977 struct kvm_mmu_page *root; 978 979 /* 980 * mmu_lock must be held for write to ensure that a root doesn't become 981 * invalid while there are active readers (invalidating a root while 982 * there are active readers may or may not be problematic in practice, 983 * but it's uncharted territory and not supported). 984 * 985 * Waive the assertion if there are no users of @kvm, i.e. the VM is 986 * being destroyed after all references have been put, or if no vCPUs 987 * have been created (which means there are no roots), i.e. the VM is 988 * being destroyed in an error path of KVM_CREATE_VM. 989 */ 990 if (IS_ENABLED(CONFIG_PROVE_LOCKING) && 991 refcount_read(&kvm->users_count) && kvm->created_vcpus) 992 lockdep_assert_held_write(&kvm->mmu_lock); 993 994 /* 995 * As above, mmu_lock isn't held when destroying the VM! There can't 996 * be other references to @kvm, i.e. nothing else can invalidate roots 997 * or get/put references to roots. 998 */ 999 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { 1000 /* 1001 * Note, invalid roots can outlive a memslot update! Invalid 1002 * roots must be *zapped* before the memslot update completes, 1003 * but a different task can acquire a reference and keep the 1004 * root alive after its been zapped. 1005 */ 1006 if (!root->role.invalid) { 1007 root->tdp_mmu_scheduled_root_to_zap = true; 1008 root->role.invalid = true; 1009 } 1010 } 1011 } 1012 1013 /* 1014 * Installs a last-level SPTE to handle a TDP page fault. 1015 * (NPT/EPT violation/misconfiguration) 1016 */ 1017 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, 1018 struct kvm_page_fault *fault, 1019 struct tdp_iter *iter) 1020 { 1021 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep)); 1022 u64 new_spte; 1023 int ret = RET_PF_FIXED; 1024 bool wrprot = false; 1025 1026 if (WARN_ON_ONCE(sp->role.level != fault->goal_level)) 1027 return RET_PF_RETRY; 1028 1029 if (unlikely(!fault->slot)) 1030 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); 1031 else 1032 wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn, 1033 fault->pfn, iter->old_spte, fault->prefetch, true, 1034 fault->map_writable, &new_spte); 1035 1036 if (new_spte == iter->old_spte) 1037 ret = RET_PF_SPURIOUS; 1038 else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte)) 1039 return RET_PF_RETRY; 1040 else if (is_shadow_present_pte(iter->old_spte) && 1041 !is_last_spte(iter->old_spte, iter->level)) 1042 kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level); 1043 1044 /* 1045 * If the page fault was caused by a write but the page is write 1046 * protected, emulation is needed. If the emulation was skipped, 1047 * the vCPU would have the same fault again. 1048 */ 1049 if (wrprot && fault->write) 1050 ret = RET_PF_WRITE_PROTECTED; 1051 1052 /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ 1053 if (unlikely(is_mmio_spte(vcpu->kvm, new_spte))) { 1054 vcpu->stat.pf_mmio_spte_created++; 1055 trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn, 1056 new_spte); 1057 ret = RET_PF_EMULATE; 1058 } else { 1059 trace_kvm_mmu_set_spte(iter->level, iter->gfn, 1060 rcu_dereference(iter->sptep)); 1061 } 1062 1063 return ret; 1064 } 1065 1066 /* 1067 * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the 1068 * provided page table. 1069 * 1070 * @kvm: kvm instance 1071 * @iter: a tdp_iter instance currently on the SPTE that should be set 1072 * @sp: The new TDP page table to install. 1073 * @shared: This operation is running under the MMU lock in read mode. 1074 * 1075 * Returns: 0 if the new page table was installed. Non-0 if the page table 1076 * could not be installed (e.g. the atomic compare-exchange failed). 1077 */ 1078 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter, 1079 struct kvm_mmu_page *sp, bool shared) 1080 { 1081 u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled()); 1082 int ret = 0; 1083 1084 if (shared) { 1085 ret = tdp_mmu_set_spte_atomic(kvm, iter, spte); 1086 if (ret) 1087 return ret; 1088 } else { 1089 tdp_mmu_iter_set_spte(kvm, iter, spte); 1090 } 1091 1092 tdp_account_mmu_page(kvm, sp); 1093 1094 return 0; 1095 } 1096 1097 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, 1098 struct kvm_mmu_page *sp, bool shared); 1099 1100 /* 1101 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing 1102 * page tables and SPTEs to translate the faulting guest physical address. 1103 */ 1104 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 1105 { 1106 struct kvm_mmu *mmu = vcpu->arch.mmu; 1107 struct kvm *kvm = vcpu->kvm; 1108 struct tdp_iter iter; 1109 struct kvm_mmu_page *sp; 1110 int ret = RET_PF_RETRY; 1111 1112 kvm_mmu_hugepage_adjust(vcpu, fault); 1113 1114 trace_kvm_mmu_spte_requested(fault); 1115 1116 rcu_read_lock(); 1117 1118 tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) { 1119 int r; 1120 1121 if (fault->nx_huge_page_workaround_enabled) 1122 disallowed_hugepage_adjust(fault, iter.old_spte, iter.level); 1123 1124 /* 1125 * If SPTE has been frozen by another thread, just give up and 1126 * retry, avoiding unnecessary page table allocation and free. 1127 */ 1128 if (is_frozen_spte(iter.old_spte)) 1129 goto retry; 1130 1131 if (iter.level == fault->goal_level) 1132 goto map_target_level; 1133 1134 /* Step down into the lower level page table if it exists. */ 1135 if (is_shadow_present_pte(iter.old_spte) && 1136 !is_large_pte(iter.old_spte)) 1137 continue; 1138 1139 /* 1140 * The SPTE is either non-present or points to a huge page that 1141 * needs to be split. 1142 */ 1143 sp = tdp_mmu_alloc_sp(vcpu); 1144 tdp_mmu_init_child_sp(sp, &iter); 1145 1146 sp->nx_huge_page_disallowed = fault->huge_page_disallowed; 1147 1148 if (is_shadow_present_pte(iter.old_spte)) 1149 r = tdp_mmu_split_huge_page(kvm, &iter, sp, true); 1150 else 1151 r = tdp_mmu_link_sp(kvm, &iter, sp, true); 1152 1153 /* 1154 * Force the guest to retry if installing an upper level SPTE 1155 * failed, e.g. because a different task modified the SPTE. 1156 */ 1157 if (r) { 1158 tdp_mmu_free_sp(sp); 1159 goto retry; 1160 } 1161 1162 if (fault->huge_page_disallowed && 1163 fault->req_level >= iter.level) { 1164 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 1165 if (sp->nx_huge_page_disallowed) 1166 track_possible_nx_huge_page(kvm, sp); 1167 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 1168 } 1169 } 1170 1171 /* 1172 * The walk aborted before reaching the target level, e.g. because the 1173 * iterator detected an upper level SPTE was frozen during traversal. 1174 */ 1175 WARN_ON_ONCE(iter.level == fault->goal_level); 1176 goto retry; 1177 1178 map_target_level: 1179 ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter); 1180 1181 retry: 1182 rcu_read_unlock(); 1183 return ret; 1184 } 1185 1186 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, 1187 bool flush) 1188 { 1189 struct kvm_mmu_page *root; 1190 1191 __for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, false) 1192 flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end, 1193 range->may_block, flush); 1194 1195 return flush; 1196 } 1197 1198 typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter, 1199 struct kvm_gfn_range *range); 1200 1201 static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm, 1202 struct kvm_gfn_range *range, 1203 tdp_handler_t handler) 1204 { 1205 struct kvm_mmu_page *root; 1206 struct tdp_iter iter; 1207 bool ret = false; 1208 1209 /* 1210 * Don't support rescheduling, none of the MMU notifiers that funnel 1211 * into this helper allow blocking; it'd be dead, wasteful code. 1212 */ 1213 for_each_tdp_mmu_root(kvm, root, range->slot->as_id) { 1214 rcu_read_lock(); 1215 1216 tdp_root_for_each_leaf_pte(iter, root, range->start, range->end) 1217 ret |= handler(kvm, &iter, range); 1218 1219 rcu_read_unlock(); 1220 } 1221 1222 return ret; 1223 } 1224 1225 /* 1226 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero 1227 * if any of the GFNs in the range have been accessed. 1228 * 1229 * No need to mark the corresponding PFN as accessed as this call is coming 1230 * from the clear_young() or clear_flush_young() notifier, which uses the 1231 * return value to determine if the page has been accessed. 1232 */ 1233 static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter, 1234 struct kvm_gfn_range *range) 1235 { 1236 u64 new_spte; 1237 1238 /* If we have a non-accessed entry we don't need to change the pte. */ 1239 if (!is_accessed_spte(iter->old_spte)) 1240 return false; 1241 1242 if (spte_ad_enabled(iter->old_spte)) { 1243 iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep, 1244 iter->old_spte, 1245 shadow_accessed_mask, 1246 iter->level); 1247 new_spte = iter->old_spte & ~shadow_accessed_mask; 1248 } else { 1249 /* 1250 * Capture the dirty status of the page, so that it doesn't get 1251 * lost when the SPTE is marked for access tracking. 1252 */ 1253 if (is_writable_pte(iter->old_spte)) 1254 kvm_set_pfn_dirty(spte_to_pfn(iter->old_spte)); 1255 1256 new_spte = mark_spte_for_access_track(iter->old_spte); 1257 iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep, 1258 iter->old_spte, new_spte, 1259 iter->level); 1260 } 1261 1262 trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level, 1263 iter->old_spte, new_spte); 1264 return true; 1265 } 1266 1267 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1268 { 1269 return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range); 1270 } 1271 1272 static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter, 1273 struct kvm_gfn_range *range) 1274 { 1275 return is_accessed_spte(iter->old_spte); 1276 } 1277 1278 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1279 { 1280 return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn); 1281 } 1282 1283 /* 1284 * Remove write access from all SPTEs at or above min_level that map GFNs 1285 * [start, end). Returns true if an SPTE has been changed and the TLBs need to 1286 * be flushed. 1287 */ 1288 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1289 gfn_t start, gfn_t end, int min_level) 1290 { 1291 struct tdp_iter iter; 1292 u64 new_spte; 1293 bool spte_set = false; 1294 1295 rcu_read_lock(); 1296 1297 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1298 1299 for_each_tdp_pte_min_level(iter, root, min_level, start, end) { 1300 retry: 1301 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1302 continue; 1303 1304 if (!is_shadow_present_pte(iter.old_spte) || 1305 !is_last_spte(iter.old_spte, iter.level) || 1306 !(iter.old_spte & PT_WRITABLE_MASK)) 1307 continue; 1308 1309 new_spte = iter.old_spte & ~PT_WRITABLE_MASK; 1310 1311 if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) 1312 goto retry; 1313 1314 spte_set = true; 1315 } 1316 1317 rcu_read_unlock(); 1318 return spte_set; 1319 } 1320 1321 /* 1322 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will 1323 * only affect leaf SPTEs down to min_level. 1324 * Returns true if an SPTE has been changed and the TLBs need to be flushed. 1325 */ 1326 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, 1327 const struct kvm_memory_slot *slot, int min_level) 1328 { 1329 struct kvm_mmu_page *root; 1330 bool spte_set = false; 1331 1332 lockdep_assert_held_read(&kvm->mmu_lock); 1333 1334 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1335 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, 1336 slot->base_gfn + slot->npages, min_level); 1337 1338 return spte_set; 1339 } 1340 1341 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(void) 1342 { 1343 struct kvm_mmu_page *sp; 1344 1345 sp = kmem_cache_zalloc(mmu_page_header_cache, GFP_KERNEL_ACCOUNT); 1346 if (!sp) 1347 return NULL; 1348 1349 sp->spt = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 1350 if (!sp->spt) { 1351 kmem_cache_free(mmu_page_header_cache, sp); 1352 return NULL; 1353 } 1354 1355 return sp; 1356 } 1357 1358 /* Note, the caller is responsible for initializing @sp. */ 1359 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, 1360 struct kvm_mmu_page *sp, bool shared) 1361 { 1362 const u64 huge_spte = iter->old_spte; 1363 const int level = iter->level; 1364 int ret, i; 1365 1366 /* 1367 * No need for atomics when writing to sp->spt since the page table has 1368 * not been linked in yet and thus is not reachable from any other CPU. 1369 */ 1370 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) 1371 sp->spt[i] = make_huge_page_split_spte(kvm, huge_spte, sp->role, i); 1372 1373 /* 1374 * Replace the huge spte with a pointer to the populated lower level 1375 * page table. Since we are making this change without a TLB flush vCPUs 1376 * will see a mix of the split mappings and the original huge mapping, 1377 * depending on what's currently in their TLB. This is fine from a 1378 * correctness standpoint since the translation will be the same either 1379 * way. 1380 */ 1381 ret = tdp_mmu_link_sp(kvm, iter, sp, shared); 1382 if (ret) 1383 goto out; 1384 1385 /* 1386 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we 1387 * are overwriting from the page stats. But we have to manually update 1388 * the page stats with the new present child pages. 1389 */ 1390 kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE); 1391 1392 out: 1393 trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret); 1394 return ret; 1395 } 1396 1397 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm, 1398 struct kvm_mmu_page *root, 1399 gfn_t start, gfn_t end, 1400 int target_level, bool shared) 1401 { 1402 struct kvm_mmu_page *sp = NULL; 1403 struct tdp_iter iter; 1404 1405 rcu_read_lock(); 1406 1407 /* 1408 * Traverse the page table splitting all huge pages above the target 1409 * level into one lower level. For example, if we encounter a 1GB page 1410 * we split it into 512 2MB pages. 1411 * 1412 * Since the TDP iterator uses a pre-order traversal, we are guaranteed 1413 * to visit an SPTE before ever visiting its children, which means we 1414 * will correctly recursively split huge pages that are more than one 1415 * level above the target level (e.g. splitting a 1GB to 512 2MB pages, 1416 * and then splitting each of those to 512 4KB pages). 1417 */ 1418 for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) { 1419 retry: 1420 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 1421 continue; 1422 1423 if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte)) 1424 continue; 1425 1426 if (!sp) { 1427 rcu_read_unlock(); 1428 1429 if (shared) 1430 read_unlock(&kvm->mmu_lock); 1431 else 1432 write_unlock(&kvm->mmu_lock); 1433 1434 sp = tdp_mmu_alloc_sp_for_split(); 1435 1436 if (shared) 1437 read_lock(&kvm->mmu_lock); 1438 else 1439 write_lock(&kvm->mmu_lock); 1440 1441 if (!sp) { 1442 trace_kvm_mmu_split_huge_page(iter.gfn, 1443 iter.old_spte, 1444 iter.level, -ENOMEM); 1445 return -ENOMEM; 1446 } 1447 1448 rcu_read_lock(); 1449 1450 iter.yielded = true; 1451 continue; 1452 } 1453 1454 tdp_mmu_init_child_sp(sp, &iter); 1455 1456 if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared)) 1457 goto retry; 1458 1459 sp = NULL; 1460 } 1461 1462 rcu_read_unlock(); 1463 1464 /* 1465 * It's possible to exit the loop having never used the last sp if, for 1466 * example, a vCPU doing HugePage NX splitting wins the race and 1467 * installs its own sp in place of the last sp we tried to split. 1468 */ 1469 if (sp) 1470 tdp_mmu_free_sp(sp); 1471 1472 return 0; 1473 } 1474 1475 1476 /* 1477 * Try to split all huge pages mapped by the TDP MMU down to the target level. 1478 */ 1479 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, 1480 const struct kvm_memory_slot *slot, 1481 gfn_t start, gfn_t end, 1482 int target_level, bool shared) 1483 { 1484 struct kvm_mmu_page *root; 1485 int r = 0; 1486 1487 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 1488 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) { 1489 r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared); 1490 if (r) { 1491 kvm_tdp_mmu_put_root(kvm, root); 1492 break; 1493 } 1494 } 1495 } 1496 1497 static bool tdp_mmu_need_write_protect(struct kvm_mmu_page *sp) 1498 { 1499 /* 1500 * All TDP MMU shadow pages share the same role as their root, aside 1501 * from level, so it is valid to key off any shadow page to determine if 1502 * write protection is needed for an entire tree. 1503 */ 1504 return kvm_mmu_page_ad_need_write_protect(sp) || !kvm_ad_enabled(); 1505 } 1506 1507 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1508 gfn_t start, gfn_t end) 1509 { 1510 const u64 dbit = tdp_mmu_need_write_protect(root) ? PT_WRITABLE_MASK : 1511 shadow_dirty_mask; 1512 struct tdp_iter iter; 1513 bool spte_set = false; 1514 1515 rcu_read_lock(); 1516 1517 tdp_root_for_each_pte(iter, root, start, end) { 1518 retry: 1519 if (!is_shadow_present_pte(iter.old_spte) || 1520 !is_last_spte(iter.old_spte, iter.level)) 1521 continue; 1522 1523 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1524 continue; 1525 1526 KVM_MMU_WARN_ON(dbit == shadow_dirty_mask && 1527 spte_ad_need_write_protect(iter.old_spte)); 1528 1529 if (!(iter.old_spte & dbit)) 1530 continue; 1531 1532 if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit)) 1533 goto retry; 1534 1535 spte_set = true; 1536 } 1537 1538 rcu_read_unlock(); 1539 return spte_set; 1540 } 1541 1542 /* 1543 * Clear the dirty status (D-bit or W-bit) of all the SPTEs mapping GFNs in the 1544 * memslot. Returns true if an SPTE has been changed and the TLBs need to be 1545 * flushed. 1546 */ 1547 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, 1548 const struct kvm_memory_slot *slot) 1549 { 1550 struct kvm_mmu_page *root; 1551 bool spte_set = false; 1552 1553 lockdep_assert_held_read(&kvm->mmu_lock); 1554 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1555 spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn, 1556 slot->base_gfn + slot->npages); 1557 1558 return spte_set; 1559 } 1560 1561 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, 1562 gfn_t gfn, unsigned long mask, bool wrprot) 1563 { 1564 const u64 dbit = (wrprot || tdp_mmu_need_write_protect(root)) ? PT_WRITABLE_MASK : 1565 shadow_dirty_mask; 1566 struct tdp_iter iter; 1567 1568 lockdep_assert_held_write(&kvm->mmu_lock); 1569 1570 rcu_read_lock(); 1571 1572 tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask), 1573 gfn + BITS_PER_LONG) { 1574 if (!mask) 1575 break; 1576 1577 KVM_MMU_WARN_ON(dbit == shadow_dirty_mask && 1578 spte_ad_need_write_protect(iter.old_spte)); 1579 1580 if (iter.level > PG_LEVEL_4K || 1581 !(mask & (1UL << (iter.gfn - gfn)))) 1582 continue; 1583 1584 mask &= ~(1UL << (iter.gfn - gfn)); 1585 1586 if (!(iter.old_spte & dbit)) 1587 continue; 1588 1589 iter.old_spte = tdp_mmu_clear_spte_bits(iter.sptep, 1590 iter.old_spte, dbit, 1591 iter.level); 1592 1593 trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level, 1594 iter.old_spte, 1595 iter.old_spte & ~dbit); 1596 kvm_set_pfn_dirty(spte_to_pfn(iter.old_spte)); 1597 } 1598 1599 rcu_read_unlock(); 1600 } 1601 1602 /* 1603 * Clear the dirty status (D-bit or W-bit) of all the 4k SPTEs mapping GFNs for 1604 * which a bit is set in mask, starting at gfn. The given memslot is expected to 1605 * contain all the GFNs represented by set bits in the mask. 1606 */ 1607 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1608 struct kvm_memory_slot *slot, 1609 gfn_t gfn, unsigned long mask, 1610 bool wrprot) 1611 { 1612 struct kvm_mmu_page *root; 1613 1614 for_each_valid_tdp_mmu_root(kvm, root, slot->as_id) 1615 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); 1616 } 1617 1618 static void zap_collapsible_spte_range(struct kvm *kvm, 1619 struct kvm_mmu_page *root, 1620 const struct kvm_memory_slot *slot) 1621 { 1622 gfn_t start = slot->base_gfn; 1623 gfn_t end = start + slot->npages; 1624 struct tdp_iter iter; 1625 int max_mapping_level; 1626 1627 rcu_read_lock(); 1628 1629 for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) { 1630 retry: 1631 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1632 continue; 1633 1634 if (iter.level > KVM_MAX_HUGEPAGE_LEVEL || 1635 !is_shadow_present_pte(iter.old_spte)) 1636 continue; 1637 1638 /* 1639 * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with 1640 * a large page size, then its parent would have been zapped 1641 * instead of stepping down. 1642 */ 1643 if (is_last_spte(iter.old_spte, iter.level)) 1644 continue; 1645 1646 /* 1647 * If iter.gfn resides outside of the slot, i.e. the page for 1648 * the current level overlaps but is not contained by the slot, 1649 * then the SPTE can't be made huge. More importantly, trying 1650 * to query that info from slot->arch.lpage_info will cause an 1651 * out-of-bounds access. 1652 */ 1653 if (iter.gfn < start || iter.gfn >= end) 1654 continue; 1655 1656 max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot, 1657 iter.gfn, PG_LEVEL_NUM); 1658 if (max_mapping_level < iter.level) 1659 continue; 1660 1661 /* Note, a successful atomic zap also does a remote TLB flush. */ 1662 if (tdp_mmu_zap_spte_atomic(kvm, &iter)) 1663 goto retry; 1664 } 1665 1666 rcu_read_unlock(); 1667 } 1668 1669 /* 1670 * Zap non-leaf SPTEs (and free their associated page tables) which could 1671 * be replaced by huge pages, for GFNs within the slot. 1672 */ 1673 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, 1674 const struct kvm_memory_slot *slot) 1675 { 1676 struct kvm_mmu_page *root; 1677 1678 lockdep_assert_held_read(&kvm->mmu_lock); 1679 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) 1680 zap_collapsible_spte_range(kvm, root, slot); 1681 } 1682 1683 /* 1684 * Removes write access on the last level SPTE mapping this GFN and unsets the 1685 * MMU-writable bit to ensure future writes continue to be intercepted. 1686 * Returns true if an SPTE was set and a TLB flush is needed. 1687 */ 1688 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root, 1689 gfn_t gfn, int min_level) 1690 { 1691 struct tdp_iter iter; 1692 u64 new_spte; 1693 bool spte_set = false; 1694 1695 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1696 1697 rcu_read_lock(); 1698 1699 for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) { 1700 if (!is_shadow_present_pte(iter.old_spte) || 1701 !is_last_spte(iter.old_spte, iter.level)) 1702 continue; 1703 1704 new_spte = iter.old_spte & 1705 ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); 1706 1707 if (new_spte == iter.old_spte) 1708 break; 1709 1710 tdp_mmu_iter_set_spte(kvm, &iter, new_spte); 1711 spte_set = true; 1712 } 1713 1714 rcu_read_unlock(); 1715 1716 return spte_set; 1717 } 1718 1719 /* 1720 * Removes write access on the last level SPTE mapping this GFN and unsets the 1721 * MMU-writable bit to ensure future writes continue to be intercepted. 1722 * Returns true if an SPTE was set and a TLB flush is needed. 1723 */ 1724 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, 1725 struct kvm_memory_slot *slot, gfn_t gfn, 1726 int min_level) 1727 { 1728 struct kvm_mmu_page *root; 1729 bool spte_set = false; 1730 1731 lockdep_assert_held_write(&kvm->mmu_lock); 1732 for_each_valid_tdp_mmu_root(kvm, root, slot->as_id) 1733 spte_set |= write_protect_gfn(kvm, root, gfn, min_level); 1734 1735 return spte_set; 1736 } 1737 1738 /* 1739 * Return the level of the lowest level SPTE added to sptes. 1740 * That SPTE may be non-present. 1741 * 1742 * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1743 */ 1744 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 1745 int *root_level) 1746 { 1747 struct tdp_iter iter; 1748 struct kvm_mmu *mmu = vcpu->arch.mmu; 1749 gfn_t gfn = addr >> PAGE_SHIFT; 1750 int leaf = -1; 1751 1752 *root_level = vcpu->arch.mmu->root_role.level; 1753 1754 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { 1755 leaf = iter.level; 1756 sptes[leaf] = iter.old_spte; 1757 } 1758 1759 return leaf; 1760 } 1761 1762 /* 1763 * Returns the last level spte pointer of the shadow page walk for the given 1764 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 1765 * walk could be performed, returns NULL and *spte does not contain valid data. 1766 * 1767 * Contract: 1768 * - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1769 * - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end. 1770 * 1771 * WARNING: This function is only intended to be called during fast_page_fault. 1772 */ 1773 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gfn_t gfn, 1774 u64 *spte) 1775 { 1776 struct tdp_iter iter; 1777 struct kvm_mmu *mmu = vcpu->arch.mmu; 1778 tdp_ptep_t sptep = NULL; 1779 1780 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { 1781 *spte = iter.old_spte; 1782 sptep = iter.sptep; 1783 } 1784 1785 /* 1786 * Perform the rcu_dereference to get the raw spte pointer value since 1787 * we are passing it up to fast_page_fault, which is shared with the 1788 * legacy MMU and thus does not retain the TDP MMU-specific __rcu 1789 * annotation. 1790 * 1791 * This is safe since fast_page_fault obeys the contracts of this 1792 * function as well as all TDP MMU contracts around modifying SPTEs 1793 * outside of mmu_lock. 1794 */ 1795 return rcu_dereference(sptep); 1796 } 1797