1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #ifndef KVM_X86_MMU_SPTE_H 4 #define KVM_X86_MMU_SPTE_H 5 6 #include <asm/vmx.h> 7 8 #include "mmu.h" 9 #include "mmu_internal.h" 10 11 /* 12 * A MMU present SPTE is backed by actual memory and may or may not be present 13 * in hardware. E.g. MMIO SPTEs are not considered present. Use bit 11, as it 14 * is ignored by all flavors of SPTEs and checking a low bit often generates 15 * better code than for a high bit, e.g. 56+. MMU present checks are pervasive 16 * enough that the improved code generation is noticeable in KVM's footprint. 17 */ 18 #define SPTE_MMU_PRESENT_MASK BIT_ULL(11) 19 20 /* 21 * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also 22 * be restricted to using write-protection (for L2 when CPU dirty logging, i.e. 23 * PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that 24 * is must be employed for a given TDP SPTE. 25 * 26 * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE 27 * paging, including NPT PAE. This scheme works because legacy shadow paging 28 * is guaranteed to have A/D bits and write-protection is forced only for 29 * TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it 30 * must be restricted to 64-bit KVM. 31 */ 32 #define SPTE_TDP_AD_SHIFT 52 33 #define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT) 34 #define SPTE_TDP_AD_ENABLED (0ULL << SPTE_TDP_AD_SHIFT) 35 #define SPTE_TDP_AD_DISABLED (1ULL << SPTE_TDP_AD_SHIFT) 36 #define SPTE_TDP_AD_WRPROT_ONLY (2ULL << SPTE_TDP_AD_SHIFT) 37 static_assert(SPTE_TDP_AD_ENABLED == 0); 38 39 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK 40 #define SPTE_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) 41 #else 42 #define SPTE_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) 43 #endif 44 45 #define SPTE_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ 46 | shadow_x_mask | shadow_nx_mask | shadow_me_mask) 47 48 #define ACC_EXEC_MASK 1 49 #define ACC_WRITE_MASK PT_WRITABLE_MASK 50 #define ACC_USER_MASK PT_USER_MASK 51 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) 52 53 /* The mask for the R/X bits in EPT PTEs */ 54 #define SPTE_EPT_READABLE_MASK 0x1ull 55 #define SPTE_EPT_EXECUTABLE_MASK 0x4ull 56 57 #define SPTE_LEVEL_BITS 9 58 #define SPTE_LEVEL_SHIFT(level) __PT_LEVEL_SHIFT(level, SPTE_LEVEL_BITS) 59 #define SPTE_INDEX(address, level) __PT_INDEX(address, level, SPTE_LEVEL_BITS) 60 #define SPTE_ENT_PER_PAGE __PT_ENT_PER_PAGE(SPTE_LEVEL_BITS) 61 62 /* 63 * The mask/shift to use for saving the original R/X bits when marking the PTE 64 * as not-present for access tracking purposes. We do not save the W bit as the 65 * PTEs being access tracked also need to be dirty tracked, so the W bit will be 66 * restored only when a write is attempted to the page. This mask obviously 67 * must not overlap the A/D type mask. 68 */ 69 #define SHADOW_ACC_TRACK_SAVED_BITS_MASK (SPTE_EPT_READABLE_MASK | \ 70 SPTE_EPT_EXECUTABLE_MASK) 71 #define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54 72 #define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \ 73 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 74 static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK)); 75 76 /* 77 * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given 78 * SPTE is write-protected. See is_writable_pte() for details. 79 */ 80 81 /* Bits 9 and 10 are ignored by all non-EPT PTEs. */ 82 #define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9) 83 #define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10) 84 85 /* 86 * Low ignored bits are at a premium for EPT, use high ignored bits, taking care 87 * to not overlap the A/D type mask or the saved access bits of access-tracked 88 * SPTEs when A/D bits are disabled. 89 */ 90 #define EPT_SPTE_HOST_WRITABLE BIT_ULL(57) 91 #define EPT_SPTE_MMU_WRITABLE BIT_ULL(58) 92 93 static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK)); 94 static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK)); 95 static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); 96 static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); 97 98 /* Defined only to keep the above static asserts readable. */ 99 #undef SHADOW_ACC_TRACK_SAVED_MASK 100 101 /* 102 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of 103 * the memslots generation and is derived as follows: 104 * 105 * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10 106 * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62 107 * 108 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in 109 * the MMIO generation number, as doing so would require stealing a bit from 110 * the "real" generation number and thus effectively halve the maximum number 111 * of MMIO generations that can be handled before encountering a wrap (which 112 * requires a full MMU zap). The flag is instead explicitly queried when 113 * checking for MMIO spte cache hits. 114 */ 115 116 #define MMIO_SPTE_GEN_LOW_START 3 117 #define MMIO_SPTE_GEN_LOW_END 10 118 119 #define MMIO_SPTE_GEN_HIGH_START 52 120 #define MMIO_SPTE_GEN_HIGH_END 62 121 122 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ 123 MMIO_SPTE_GEN_LOW_START) 124 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ 125 MMIO_SPTE_GEN_HIGH_START) 126 static_assert(!(SPTE_MMU_PRESENT_MASK & 127 (MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK))); 128 129 /* 130 * The SPTE MMIO mask must NOT overlap the MMIO generation bits or the 131 * MMU-present bit. The generation obviously co-exists with the magic MMIO 132 * mask/value, and MMIO SPTEs are considered !MMU-present. 133 * 134 * The SPTE MMIO mask is allowed to use hardware "present" bits (i.e. all EPT 135 * RWX bits), all physical address bits (legal PA bits are used for "fast" MMIO 136 * and so they're off-limits for generation; additional checks ensure the mask 137 * doesn't overlap legal PA bits), and bit 63 (carved out for future usage). 138 */ 139 #define SPTE_MMIO_ALLOWED_MASK (BIT_ULL(63) | GENMASK_ULL(51, 12) | GENMASK_ULL(2, 0)) 140 static_assert(!(SPTE_MMIO_ALLOWED_MASK & 141 (SPTE_MMU_PRESENT_MASK | MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK))); 142 143 #define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1) 144 #define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1) 145 146 /* remember to adjust the comment above as well if you change these */ 147 static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11); 148 149 #define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0) 150 #define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS) 151 152 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0) 153 154 /* 155 * Non-present SPTE value needs to set bit 63 for TDX, in order to suppress 156 * #VE and get EPT violations on non-present PTEs. We can use the 157 * same value also without TDX for both VMX and SVM: 158 * 159 * For SVM NPT, for non-present spte (bit 0 = 0), other bits are ignored. 160 * For VMX EPT, bit 63 is ignored if #VE is disabled. (EPT_VIOLATION_VE=0) 161 * bit 63 is #VE suppress if #VE is enabled. (EPT_VIOLATION_VE=1) 162 */ 163 #ifdef CONFIG_X86_64 164 #define SHADOW_NONPRESENT_VALUE BIT_ULL(63) 165 static_assert(!(SHADOW_NONPRESENT_VALUE & SPTE_MMU_PRESENT_MASK)); 166 #else 167 #define SHADOW_NONPRESENT_VALUE 0ULL 168 #endif 169 170 171 /* 172 * True if A/D bits are supported in hardware and are enabled by KVM. When 173 * enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can disable 174 * A/D bits in EPTP12, SP and SPTE variants are needed to handle the scenario 175 * where KVM is using A/D bits for L1, but not L2. 176 */ 177 extern bool __read_mostly kvm_ad_enabled; 178 179 extern u64 __read_mostly shadow_host_writable_mask; 180 extern u64 __read_mostly shadow_mmu_writable_mask; 181 extern u64 __read_mostly shadow_nx_mask; 182 extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 183 extern u64 __read_mostly shadow_user_mask; 184 extern u64 __read_mostly shadow_accessed_mask; 185 extern u64 __read_mostly shadow_dirty_mask; 186 extern u64 __read_mostly shadow_mmio_value; 187 extern u64 __read_mostly shadow_mmio_mask; 188 extern u64 __read_mostly shadow_mmio_access_mask; 189 extern u64 __read_mostly shadow_present_mask; 190 extern u64 __read_mostly shadow_memtype_mask; 191 extern u64 __read_mostly shadow_me_value; 192 extern u64 __read_mostly shadow_me_mask; 193 194 /* 195 * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED; 196 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed 197 * pages. 198 */ 199 extern u64 __read_mostly shadow_acc_track_mask; 200 201 /* 202 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order 203 * to guard against L1TF attacks. 204 */ 205 extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 206 207 /* 208 * The number of high-order 1 bits to use in the mask above. 209 */ 210 #define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5 211 212 /* 213 * If a thread running without exclusive control of the MMU lock must perform a 214 * multi-part operation on an SPTE, it can set the SPTE to FROZEN_SPTE as a 215 * non-present intermediate value. Other threads which encounter this value 216 * should not modify the SPTE. 217 * 218 * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on 219 * both AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF 220 * vulnerability. 221 * 222 * Only used by the TDP MMU. 223 */ 224 #define FROZEN_SPTE (SHADOW_NONPRESENT_VALUE | 0x5a0ULL) 225 226 /* Frozen SPTEs must not be misconstrued as shadow present PTEs. */ 227 static_assert(!(FROZEN_SPTE & SPTE_MMU_PRESENT_MASK)); 228 229 static inline bool is_frozen_spte(u64 spte) 230 { 231 return spte == FROZEN_SPTE; 232 } 233 234 /* Get an SPTE's index into its parent's page table (and the spt array). */ 235 static inline int spte_index(u64 *sptep) 236 { 237 return ((unsigned long)sptep / sizeof(*sptep)) & (SPTE_ENT_PER_PAGE - 1); 238 } 239 240 /* 241 * In some cases, we need to preserve the GFN of a non-present or reserved 242 * SPTE when we usurp the upper five bits of the physical address space to 243 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll 244 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask 245 * left into the reserved bits, i.e. the GFN in the SPTE will be split into 246 * high and low parts. This mask covers the lower bits of the GFN. 247 */ 248 extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 249 250 static inline struct kvm_mmu_page *to_shadow_page(hpa_t shadow_page) 251 { 252 struct page *page = pfn_to_page((shadow_page) >> PAGE_SHIFT); 253 254 return (struct kvm_mmu_page *)page_private(page); 255 } 256 257 static inline struct kvm_mmu_page *spte_to_child_sp(u64 spte) 258 { 259 return to_shadow_page(spte & SPTE_BASE_ADDR_MASK); 260 } 261 262 static inline struct kvm_mmu_page *sptep_to_sp(u64 *sptep) 263 { 264 return to_shadow_page(__pa(sptep)); 265 } 266 267 static inline struct kvm_mmu_page *root_to_sp(hpa_t root) 268 { 269 if (kvm_mmu_is_dummy_root(root)) 270 return NULL; 271 272 /* 273 * The "root" may be a special root, e.g. a PAE entry, treat it as a 274 * SPTE to ensure any non-PA bits are dropped. 275 */ 276 return spte_to_child_sp(root); 277 } 278 279 static inline bool is_mmio_spte(struct kvm *kvm, u64 spte) 280 { 281 return (spte & shadow_mmio_mask) == kvm->arch.shadow_mmio_value && 282 likely(enable_mmio_caching); 283 } 284 285 static inline bool is_shadow_present_pte(u64 pte) 286 { 287 return !!(pte & SPTE_MMU_PRESENT_MASK); 288 } 289 290 static inline bool is_ept_ve_possible(u64 spte) 291 { 292 return (shadow_present_mask & VMX_EPT_SUPPRESS_VE_BIT) && 293 !(spte & VMX_EPT_SUPPRESS_VE_BIT) && 294 (spte & VMX_EPT_RWX_MASK) != VMX_EPT_MISCONFIG_WX_VALUE; 295 } 296 297 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) 298 { 299 return sp->role.ad_disabled; 300 } 301 302 static inline bool spte_ad_enabled(u64 spte) 303 { 304 KVM_MMU_WARN_ON(!is_shadow_present_pte(spte)); 305 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED; 306 } 307 308 static inline bool spte_ad_need_write_protect(u64 spte) 309 { 310 KVM_MMU_WARN_ON(!is_shadow_present_pte(spte)); 311 /* 312 * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED is '0', 313 * and non-TDP SPTEs will never set these bits. Optimize for 64-bit 314 * TDP and do the A/D type check unconditionally. 315 */ 316 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED; 317 } 318 319 static inline bool is_access_track_spte(u64 spte) 320 { 321 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; 322 } 323 324 static inline bool is_large_pte(u64 pte) 325 { 326 return pte & PT_PAGE_SIZE_MASK; 327 } 328 329 static inline bool is_last_spte(u64 pte, int level) 330 { 331 return (level == PG_LEVEL_4K) || is_large_pte(pte); 332 } 333 334 static inline bool is_executable_pte(u64 spte) 335 { 336 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; 337 } 338 339 static inline kvm_pfn_t spte_to_pfn(u64 pte) 340 { 341 return (pte & SPTE_BASE_ADDR_MASK) >> PAGE_SHIFT; 342 } 343 344 static inline bool is_accessed_spte(u64 spte) 345 { 346 return spte & shadow_accessed_mask; 347 } 348 349 static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte, 350 int level) 351 { 352 int bit7 = (pte >> 7) & 1; 353 354 return rsvd_check->rsvd_bits_mask[bit7][level-1]; 355 } 356 357 static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, 358 u64 pte, int level) 359 { 360 return pte & get_rsvd_bits(rsvd_check, pte, level); 361 } 362 363 static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, 364 u64 pte) 365 { 366 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); 367 } 368 369 static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check, 370 u64 spte, int level) 371 { 372 return __is_bad_mt_xwr(rsvd_check, spte) || 373 __is_rsvd_bits_set(rsvd_check, spte, level); 374 } 375 376 /* 377 * A shadow-present leaf SPTE may be non-writable for 4 possible reasons: 378 * 379 * 1. To intercept writes for dirty logging. KVM write-protects huge pages 380 * so that they can be split down into the dirty logging 381 * granularity (4KiB) whenever the guest writes to them. KVM also 382 * write-protects 4KiB pages so that writes can be recorded in the dirty log 383 * (e.g. if not using PML). SPTEs are write-protected for dirty logging 384 * during the VM-iotcls that enable dirty logging. 385 * 386 * 2. To intercept writes to guest page tables that KVM is shadowing. When a 387 * guest writes to its page table the corresponding shadow page table will 388 * be marked "unsync". That way KVM knows which shadow page tables need to 389 * be updated on the next TLB flush, INVLPG, etc. and which do not. 390 * 391 * 3. To prevent guest writes to read-only memory, such as for memory in a 392 * read-only memslot or guest memory backed by a read-only VMA. Writes to 393 * such pages are disallowed entirely. 394 * 395 * 4. To emulate the Accessed bit for SPTEs without A/D bits. Note, in this 396 * case, the SPTE is access-protected, not just write-protected! 397 * 398 * For cases #1 and #4, KVM can safely make such SPTEs writable without taking 399 * mmu_lock as capturing the Accessed/Dirty state doesn't require taking it. 400 * To differentiate #1 and #4 from #2 and #3, KVM uses two software-only bits 401 * in the SPTE: 402 * 403 * shadow_mmu_writable_mask, aka MMU-writable - 404 * Cleared on SPTEs that KVM is currently write-protecting for shadow paging 405 * purposes (case 2 above). 406 * 407 * shadow_host_writable_mask, aka Host-writable - 408 * Cleared on SPTEs that are not host-writable (case 3 above) 409 * 410 * Note, not all possible combinations of PT_WRITABLE_MASK, 411 * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given 412 * SPTE can be in only one of the following states, which map to the 413 * aforementioned 3 cases: 414 * 415 * shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK 416 * ------------------------- | ------------------------ | ---------------- 417 * 1 | 1 | 1 (writable) 418 * 1 | 1 | 0 (case 1) 419 * 1 | 0 | 0 (case 2) 420 * 0 | 0 | 0 (case 3) 421 * 422 * The valid combinations of these bits are checked by 423 * check_spte_writable_invariants() whenever an SPTE is modified. 424 * 425 * Clearing the MMU-writable bit is always done under the MMU lock and always 426 * accompanied by a TLB flush before dropping the lock to avoid corrupting the 427 * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging 428 * (which does not clear the MMU-writable bit), does not flush TLBs before 429 * dropping the lock, as it only needs to synchronize guest writes with the 430 * dirty bitmap. Similarly, making the SPTE inaccessible (and non-writable) for 431 * access-tracking via the clear_young() MMU notifier also does not flush TLBs. 432 * 433 * So, there is the problem: clearing the MMU-writable bit can encounter a 434 * write-protected SPTE while CPUs still have writable mappings for that SPTE 435 * cached in their TLB. To address this, KVM always flushes TLBs when 436 * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE. 437 * 438 * The Host-writable bit is not modified on present SPTEs, it is only set or 439 * cleared when an SPTE is first faulted in from non-present and then remains 440 * immutable. 441 */ 442 static inline bool is_writable_pte(unsigned long pte) 443 { 444 return pte & PT_WRITABLE_MASK; 445 } 446 447 /* Note: spte must be a shadow-present leaf SPTE. */ 448 static inline void check_spte_writable_invariants(u64 spte) 449 { 450 if (spte & shadow_mmu_writable_mask) 451 WARN_ONCE(!(spte & shadow_host_writable_mask), 452 KBUILD_MODNAME ": MMU-writable SPTE is not Host-writable: %llx", 453 spte); 454 else 455 WARN_ONCE(is_writable_pte(spte), 456 KBUILD_MODNAME ": Writable SPTE is not MMU-writable: %llx", spte); 457 } 458 459 static inline bool is_mmu_writable_spte(u64 spte) 460 { 461 return spte & shadow_mmu_writable_mask; 462 } 463 464 /* 465 * Returns true if the access indicated by @fault is allowed by the existing 466 * SPTE protections. Note, the caller is responsible for checking that the 467 * SPTE is a shadow-present, leaf SPTE (either before or after). 468 */ 469 static inline bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 470 { 471 if (fault->exec) 472 return is_executable_pte(spte); 473 474 if (fault->write) 475 return is_writable_pte(spte); 476 477 /* Fault was on Read access */ 478 return spte & PT_PRESENT_MASK; 479 } 480 481 /* 482 * If the MMU-writable flag is cleared, i.e. the SPTE is write-protected for 483 * write-tracking, remote TLBs must be flushed, even if the SPTE was read-only, 484 * as KVM allows stale Writable TLB entries to exist. When dirty logging, KVM 485 * flushes TLBs based on whether or not dirty bitmap/ring entries were reaped, 486 * not whether or not SPTEs were modified, i.e. only the write-tracking case 487 * needs to flush at the time the SPTEs is modified, before dropping mmu_lock. 488 * 489 * Don't flush if the Accessed bit is cleared, as access tracking tolerates 490 * false negatives, e.g. KVM x86 omits TLB flushes even when aging SPTEs for a 491 * mmu_notifier.clear_flush_young() event. 492 * 493 * Lastly, don't flush if the Dirty bit is cleared, as KVM unconditionally 494 * flushes when enabling dirty logging (see kvm_mmu_slot_apply_flags()), and 495 * when clearing dirty logs, KVM flushes based on whether or not dirty entries 496 * were reaped from the bitmap/ring, not whether or not dirty SPTEs were found. 497 * 498 * Note, this logic only applies to shadow-present leaf SPTEs. The caller is 499 * responsible for checking that the old SPTE is shadow-present, and is also 500 * responsible for determining whether or not a TLB flush is required when 501 * modifying a shadow-present non-leaf SPTE. 502 */ 503 static inline bool leaf_spte_change_needs_tlb_flush(u64 old_spte, u64 new_spte) 504 { 505 return is_mmu_writable_spte(old_spte) && !is_mmu_writable_spte(new_spte); 506 } 507 508 static inline u64 get_mmio_spte_generation(u64 spte) 509 { 510 u64 gen; 511 512 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT; 513 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT; 514 return gen; 515 } 516 517 bool spte_has_volatile_bits(u64 spte); 518 519 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 520 const struct kvm_memory_slot *slot, 521 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, 522 u64 old_spte, bool prefetch, bool synchronizing, 523 bool host_writable, u64 *new_spte); 524 u64 make_small_spte(struct kvm *kvm, u64 huge_spte, 525 union kvm_mmu_page_role role, int index); 526 u64 make_huge_spte(struct kvm *kvm, u64 small_spte, int level); 527 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled); 528 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access); 529 u64 mark_spte_for_access_track(u64 spte); 530 531 /* Restore an acc-track PTE back to a regular PTE */ 532 static inline u64 restore_acc_track_spte(u64 spte) 533 { 534 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 535 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 536 537 spte &= ~shadow_acc_track_mask; 538 spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 539 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 540 spte |= saved_bits; 541 542 return spte; 543 } 544 545 void __init kvm_mmu_spte_module_init(void); 546 void kvm_mmu_reset_all_pte_masks(void); 547 548 #endif 549