xref: /linux/arch/x86/kvm/mmu/spte.c (revision c79c3c34f75d72a066e292b10aa50fc758c97c89)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * Macros and functions to access KVM PTEs (also known as SPTEs)
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9  */
10 
11 
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17 
18 #include <asm/e820/api.h>
19 
20 u64 __read_mostly shadow_nx_mask;
21 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
22 u64 __read_mostly shadow_user_mask;
23 u64 __read_mostly shadow_accessed_mask;
24 u64 __read_mostly shadow_dirty_mask;
25 u64 __read_mostly shadow_mmio_value;
26 u64 __read_mostly shadow_mmio_access_mask;
27 u64 __read_mostly shadow_present_mask;
28 u64 __read_mostly shadow_me_mask;
29 u64 __read_mostly shadow_acc_track_mask;
30 
31 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
32 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
33 
34 u8 __read_mostly shadow_phys_bits;
35 
36 static u64 generation_mmio_spte_mask(u64 gen)
37 {
38 	u64 mask;
39 
40 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
41 	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
42 
43 	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
44 	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
45 	return mask;
46 }
47 
48 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
49 {
50 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
51 	u64 mask = generation_mmio_spte_mask(gen);
52 	u64 gpa = gfn << PAGE_SHIFT;
53 
54 	access &= shadow_mmio_access_mask;
55 	mask |= shadow_mmio_value | access;
56 	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
57 	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
58 		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
59 
60 	return mask;
61 }
62 
63 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
64 {
65 	if (pfn_valid(pfn))
66 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
67 			/*
68 			 * Some reserved pages, such as those from NVDIMM
69 			 * DAX devices, are not for MMIO, and can be mapped
70 			 * with cached memory type for better performance.
71 			 * However, the above check misconceives those pages
72 			 * as MMIO, and results in KVM mapping them with UC
73 			 * memory type, which would hurt the performance.
74 			 * Therefore, we check the host memory type in addition
75 			 * and only treat UC/UC-/WC pages as MMIO.
76 			 */
77 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
78 
79 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
80 				     pfn_to_hpa(pfn + 1) - 1,
81 				     E820_TYPE_RAM);
82 }
83 
84 int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level,
85 		     gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative,
86 		     bool can_unsync, bool host_writable, bool ad_disabled,
87 		     u64 *new_spte)
88 {
89 	u64 spte = 0;
90 	int ret = 0;
91 
92 	if (ad_disabled)
93 		spte |= SPTE_AD_DISABLED_MASK;
94 	else if (kvm_vcpu_ad_need_write_protect(vcpu))
95 		spte |= SPTE_AD_WRPROT_ONLY_MASK;
96 
97 	/*
98 	 * For the EPT case, shadow_present_mask is 0 if hardware
99 	 * supports exec-only page table entries.  In that case,
100 	 * ACC_USER_MASK and shadow_user_mask are used to represent
101 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
102 	 */
103 	spte |= shadow_present_mask;
104 	if (!speculative)
105 		spte |= spte_shadow_accessed_mask(spte);
106 
107 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
108 	    is_nx_huge_page_enabled()) {
109 		pte_access &= ~ACC_EXEC_MASK;
110 	}
111 
112 	if (pte_access & ACC_EXEC_MASK)
113 		spte |= shadow_x_mask;
114 	else
115 		spte |= shadow_nx_mask;
116 
117 	if (pte_access & ACC_USER_MASK)
118 		spte |= shadow_user_mask;
119 
120 	if (level > PG_LEVEL_4K)
121 		spte |= PT_PAGE_SIZE_MASK;
122 	if (tdp_enabled)
123 		spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
124 			kvm_is_mmio_pfn(pfn));
125 
126 	if (host_writable)
127 		spte |= SPTE_HOST_WRITEABLE;
128 	else
129 		pte_access &= ~ACC_WRITE_MASK;
130 
131 	if (!kvm_is_mmio_pfn(pfn))
132 		spte |= shadow_me_mask;
133 
134 	spte |= (u64)pfn << PAGE_SHIFT;
135 
136 	if (pte_access & ACC_WRITE_MASK) {
137 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
138 
139 		/*
140 		 * Optimization: for pte sync, if spte was writable the hash
141 		 * lookup is unnecessary (and expensive). Write protection
142 		 * is responsibility of mmu_get_page / kvm_sync_page.
143 		 * Same reasoning can be applied to dirty page accounting.
144 		 */
145 		if (!can_unsync && is_writable_pte(old_spte))
146 			goto out;
147 
148 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
149 			pgprintk("%s: found shadow page for %llx, marking ro\n",
150 				 __func__, gfn);
151 			ret |= SET_SPTE_WRITE_PROTECTED_PT;
152 			pte_access &= ~ACC_WRITE_MASK;
153 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
154 		}
155 	}
156 
157 	if (pte_access & ACC_WRITE_MASK)
158 		spte |= spte_shadow_dirty_mask(spte);
159 
160 	if (speculative)
161 		spte = mark_spte_for_access_track(spte);
162 
163 out:
164 	*new_spte = spte;
165 	return ret;
166 }
167 
168 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
169 {
170 	u64 spte;
171 
172 	spte = __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
173 	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
174 
175 	if (ad_disabled)
176 		spte |= SPTE_AD_DISABLED_MASK;
177 	else
178 		spte |= shadow_accessed_mask;
179 
180 	return spte;
181 }
182 
183 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
184 {
185 	u64 new_spte;
186 
187 	new_spte = old_spte & ~PT64_BASE_ADDR_MASK;
188 	new_spte |= (u64)new_pfn << PAGE_SHIFT;
189 
190 	new_spte &= ~PT_WRITABLE_MASK;
191 	new_spte &= ~SPTE_HOST_WRITEABLE;
192 
193 	new_spte = mark_spte_for_access_track(new_spte);
194 
195 	return new_spte;
196 }
197 
198 static u8 kvm_get_shadow_phys_bits(void)
199 {
200 	/*
201 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
202 	 * in CPU detection code, but the processor treats those reduced bits as
203 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
204 	 * the physical address bits reported by CPUID.
205 	 */
206 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
207 		return cpuid_eax(0x80000008) & 0xff;
208 
209 	/*
210 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
211 	 * custom CPUID.  Proceed with whatever the kernel found since these features
212 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
213 	 */
214 	return boot_cpu_data.x86_phys_bits;
215 }
216 
217 u64 mark_spte_for_access_track(u64 spte)
218 {
219 	if (spte_ad_enabled(spte))
220 		return spte & ~shadow_accessed_mask;
221 
222 	if (is_access_track_spte(spte))
223 		return spte;
224 
225 	/*
226 	 * Making an Access Tracking PTE will result in removal of write access
227 	 * from the PTE. So, verify that we will be able to restore the write
228 	 * access in the fast page fault path later on.
229 	 */
230 	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
231 		  !spte_can_locklessly_be_made_writable(spte),
232 		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
233 
234 	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
235 			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
236 		  "kvm: Access Tracking saved bit locations are not zero\n");
237 
238 	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
239 		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
240 	spte &= ~shadow_acc_track_mask;
241 
242 	return spte;
243 }
244 
245 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
246 {
247 	BUG_ON((u64)(unsigned)access_mask != access_mask);
248 	WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN));
249 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
250 	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
251 	shadow_mmio_access_mask = access_mask;
252 }
253 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
254 
255 /*
256  * Sets the shadow PTE masks used by the MMU.
257  *
258  * Assumptions:
259  *  - Setting either @accessed_mask or @dirty_mask requires setting both
260  *  - At least one of @accessed_mask or @acc_track_mask must be set
261  */
262 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
263 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
264 		u64 acc_track_mask, u64 me_mask)
265 {
266 	BUG_ON(!dirty_mask != !accessed_mask);
267 	BUG_ON(!accessed_mask && !acc_track_mask);
268 	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
269 
270 	shadow_user_mask = user_mask;
271 	shadow_accessed_mask = accessed_mask;
272 	shadow_dirty_mask = dirty_mask;
273 	shadow_nx_mask = nx_mask;
274 	shadow_x_mask = x_mask;
275 	shadow_present_mask = p_mask;
276 	shadow_acc_track_mask = acc_track_mask;
277 	shadow_me_mask = me_mask;
278 }
279 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
280 
281 void kvm_mmu_reset_all_pte_masks(void)
282 {
283 	u8 low_phys_bits;
284 
285 	shadow_user_mask = 0;
286 	shadow_accessed_mask = 0;
287 	shadow_dirty_mask = 0;
288 	shadow_nx_mask = 0;
289 	shadow_x_mask = 0;
290 	shadow_present_mask = 0;
291 	shadow_acc_track_mask = 0;
292 
293 	shadow_phys_bits = kvm_get_shadow_phys_bits();
294 
295 	/*
296 	 * If the CPU has 46 or less physical address bits, then set an
297 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
298 	 * assumed that the CPU is not vulnerable to L1TF.
299 	 *
300 	 * Some Intel CPUs address the L1 cache using more PA bits than are
301 	 * reported by CPUID. Use the PA width of the L1 cache when possible
302 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
303 	 * the most significant bits of legal physical address space.
304 	 */
305 	shadow_nonpresent_or_rsvd_mask = 0;
306 	low_phys_bits = boot_cpu_data.x86_phys_bits;
307 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
308 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
309 			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
310 		low_phys_bits = boot_cpu_data.x86_cache_bits
311 			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
312 		shadow_nonpresent_or_rsvd_mask =
313 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
314 	}
315 
316 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
317 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
318 }
319