1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * Macros and functions to access KVM PTEs (also known as SPTEs) 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2020 Red Hat, Inc. and/or its affiliates. 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kvm_host.h> 13 #include "mmu.h" 14 #include "mmu_internal.h" 15 #include "x86.h" 16 #include "spte.h" 17 18 #include <asm/e820/api.h> 19 #include <asm/memtype.h> 20 #include <asm/vmx.h> 21 22 bool __read_mostly enable_mmio_caching = true; 23 static bool __ro_after_init allow_mmio_caching; 24 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444); 25 EXPORT_SYMBOL_GPL(enable_mmio_caching); 26 27 bool __read_mostly kvm_ad_enabled; 28 29 u64 __read_mostly shadow_host_writable_mask; 30 u64 __read_mostly shadow_mmu_writable_mask; 31 u64 __read_mostly shadow_nx_mask; 32 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 33 u64 __read_mostly shadow_user_mask; 34 u64 __read_mostly shadow_accessed_mask; 35 u64 __read_mostly shadow_dirty_mask; 36 u64 __read_mostly shadow_mmio_value; 37 u64 __read_mostly shadow_mmio_mask; 38 u64 __read_mostly shadow_mmio_access_mask; 39 u64 __read_mostly shadow_present_mask; 40 u64 __read_mostly shadow_me_value; 41 u64 __read_mostly shadow_me_mask; 42 u64 __read_mostly shadow_acc_track_mask; 43 44 u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 45 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 46 47 static u8 __init kvm_get_host_maxphyaddr(void) 48 { 49 /* 50 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected 51 * in CPU detection code, but the processor treats those reduced bits as 52 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at 53 * the physical address bits reported by CPUID, i.e. the raw MAXPHYADDR, 54 * when reasoning about CPU behavior with respect to MAXPHYADDR. 55 */ 56 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) 57 return cpuid_eax(0x80000008) & 0xff; 58 59 /* 60 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with 61 * custom CPUID. Proceed with whatever the kernel found since these features 62 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). 63 */ 64 return boot_cpu_data.x86_phys_bits; 65 } 66 67 void __init kvm_mmu_spte_module_init(void) 68 { 69 /* 70 * Snapshot userspace's desire to allow MMIO caching. Whether or not 71 * KVM can actually enable MMIO caching depends on vendor-specific 72 * hardware capabilities and other module params that can't be resolved 73 * until the vendor module is loaded, i.e. enable_mmio_caching can and 74 * will change when the vendor module is (re)loaded. 75 */ 76 allow_mmio_caching = enable_mmio_caching; 77 78 kvm_host.maxphyaddr = kvm_get_host_maxphyaddr(); 79 } 80 81 static u64 generation_mmio_spte_mask(u64 gen) 82 { 83 u64 mask; 84 85 WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK); 86 87 mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK; 88 mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK; 89 return mask; 90 } 91 92 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) 93 { 94 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; 95 u64 spte = generation_mmio_spte_mask(gen); 96 u64 gpa = gfn << PAGE_SHIFT; 97 98 access &= shadow_mmio_access_mask; 99 spte |= vcpu->kvm->arch.shadow_mmio_value | access; 100 spte |= gpa | shadow_nonpresent_or_rsvd_mask; 101 spte |= (gpa & shadow_nonpresent_or_rsvd_mask) 102 << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; 103 104 return spte; 105 } 106 107 static bool __kvm_is_mmio_pfn(kvm_pfn_t pfn) 108 { 109 if (pfn_valid(pfn)) 110 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && 111 /* 112 * Some reserved pages, such as those from NVDIMM 113 * DAX devices, are not for MMIO, and can be mapped 114 * with cached memory type for better performance. 115 * However, the above check misconceives those pages 116 * as MMIO, and results in KVM mapping them with UC 117 * memory type, which would hurt the performance. 118 * Therefore, we check the host memory type in addition 119 * and only treat UC/UC-/WC pages as MMIO. 120 */ 121 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); 122 123 return !e820__mapped_raw_any(pfn_to_hpa(pfn), 124 pfn_to_hpa(pfn + 1) - 1, 125 E820_TYPE_RAM); 126 } 127 128 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn, int *is_host_mmio) 129 { 130 /* 131 * Determining if a PFN is host MMIO is relative expensive. Cache the 132 * result locally (in the sole caller) to avoid doing the full query 133 * multiple times when creating a single SPTE. 134 */ 135 if (*is_host_mmio < 0) 136 *is_host_mmio = __kvm_is_mmio_pfn(pfn); 137 138 return *is_host_mmio; 139 } 140 141 static void kvm_track_host_mmio_mapping(struct kvm_vcpu *vcpu) 142 { 143 struct kvm_mmu_page *root = root_to_sp(vcpu->arch.mmu->root.hpa); 144 145 if (root) 146 WRITE_ONCE(root->has_mapped_host_mmio, true); 147 else 148 WRITE_ONCE(vcpu->kvm->arch.has_mapped_host_mmio, true); 149 150 /* 151 * Force vCPUs to exit and flush CPU buffers if the vCPU is using the 152 * affected root(s). 153 */ 154 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_OUTSIDE_GUEST_MODE); 155 } 156 157 /* 158 * Returns true if the SPTE needs to be updated atomically due to having bits 159 * that may be changed without holding mmu_lock, and for which KVM must not 160 * lose information. E.g. KVM must not drop Dirty bit information. The caller 161 * is responsible for checking if the SPTE is shadow-present, and for 162 * determining whether or not the caller cares about non-leaf SPTEs. 163 */ 164 bool spte_needs_atomic_update(u64 spte) 165 { 166 /* SPTEs can be made Writable bit by KVM's fast page fault handler. */ 167 if (!is_writable_pte(spte) && is_mmu_writable_spte(spte)) 168 return true; 169 170 /* 171 * A/D-disabled SPTEs can be access-tracked by aging, and access-tracked 172 * SPTEs can be restored by KVM's fast page fault handler. 173 */ 174 if (!spte_ad_enabled(spte)) 175 return true; 176 177 /* 178 * Dirty and Accessed bits can be set by the CPU. Ignore the Accessed 179 * bit, as KVM tolerates false negatives/positives, e.g. KVM doesn't 180 * invalidate TLBs when aging SPTEs, and so it's safe to clobber the 181 * Accessed bit (and rare in practice). 182 */ 183 return is_writable_pte(spte) && !(spte & shadow_dirty_mask); 184 } 185 186 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 187 const struct kvm_memory_slot *slot, 188 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, 189 u64 old_spte, bool prefetch, bool synchronizing, 190 bool host_writable, u64 *new_spte) 191 { 192 int level = sp->role.level; 193 u64 spte = SPTE_MMU_PRESENT_MASK; 194 int is_host_mmio = -1; 195 bool wrprot = false; 196 197 /* 198 * For the EPT case, shadow_present_mask has no RWX bits set if 199 * exec-only page table entries are supported. In that case, 200 * ACC_USER_MASK and shadow_user_mask are used to represent 201 * read access. See FNAME(gpte_access) in paging_tmpl.h. 202 */ 203 WARN_ON_ONCE((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE); 204 205 if (sp->role.ad_disabled) 206 spte |= SPTE_TDP_AD_DISABLED; 207 else if (kvm_mmu_page_ad_need_write_protect(vcpu->kvm, sp)) 208 spte |= SPTE_TDP_AD_WRPROT_ONLY; 209 210 spte |= shadow_present_mask; 211 if (!prefetch || synchronizing) 212 spte |= shadow_accessed_mask; 213 214 /* 215 * For simplicity, enforce the NX huge page mitigation even if not 216 * strictly necessary. KVM could ignore the mitigation if paging is 217 * disabled in the guest, as the guest doesn't have any page tables to 218 * abuse. But to safely ignore the mitigation, KVM would have to 219 * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG 220 * is toggled on, and that's a net negative for performance when TDP is 221 * enabled. When TDP is disabled, KVM will always switch to a new MMU 222 * when CR0.PG is toggled, but leveraging that to ignore the mitigation 223 * would tie make_spte() further to vCPU/MMU state, and add complexity 224 * just to optimize a mode that is anything but performance critical. 225 */ 226 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && 227 is_nx_huge_page_enabled(vcpu->kvm)) { 228 pte_access &= ~ACC_EXEC_MASK; 229 } 230 231 if (pte_access & ACC_EXEC_MASK) 232 spte |= shadow_x_mask; 233 else 234 spte |= shadow_nx_mask; 235 236 if (pte_access & ACC_USER_MASK) 237 spte |= shadow_user_mask; 238 239 if (level > PG_LEVEL_4K) 240 spte |= PT_PAGE_SIZE_MASK; 241 242 if (kvm_x86_ops.get_mt_mask) 243 spte |= kvm_x86_call(get_mt_mask)(vcpu, gfn, 244 kvm_is_mmio_pfn(pfn, &is_host_mmio)); 245 if (host_writable) 246 spte |= shadow_host_writable_mask; 247 else 248 pte_access &= ~ACC_WRITE_MASK; 249 250 if (shadow_me_value && !kvm_is_mmio_pfn(pfn, &is_host_mmio)) 251 spte |= shadow_me_value; 252 253 spte |= (u64)pfn << PAGE_SHIFT; 254 255 if (pte_access & ACC_WRITE_MASK) { 256 /* 257 * Unsync shadow pages that are reachable by the new, writable 258 * SPTE. Write-protect the SPTE if the page can't be unsync'd, 259 * e.g. it's write-tracked (upper-level SPs) or has one or more 260 * shadow pages and unsync'ing pages is not allowed. 261 * 262 * When overwriting an existing leaf SPTE, and the old SPTE was 263 * writable, skip trying to unsync shadow pages as any relevant 264 * shadow pages must already be unsync, i.e. the hash lookup is 265 * unnecessary (and expensive). Note, this relies on KVM not 266 * changing PFNs without first zapping the old SPTE, which is 267 * guaranteed by both the shadow MMU and the TDP MMU. 268 */ 269 if ((!is_last_spte(old_spte, level) || !is_writable_pte(old_spte)) && 270 mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, synchronizing, prefetch)) 271 wrprot = true; 272 else 273 spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask | 274 shadow_dirty_mask; 275 } 276 277 if (prefetch && !synchronizing) 278 spte = mark_spte_for_access_track(spte); 279 280 WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level), 281 "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level, 282 get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level)); 283 284 /* 285 * Mark the memslot dirty *after* modifying it for access tracking. 286 * Unlike folios, memslots can be safely marked dirty out of mmu_lock, 287 * i.e. in the fast page fault handler. 288 */ 289 if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) { 290 /* Enforced by kvm_mmu_hugepage_adjust. */ 291 WARN_ON_ONCE(level > PG_LEVEL_4K); 292 mark_page_dirty_in_slot(vcpu->kvm, slot, gfn); 293 } 294 295 if (static_branch_unlikely(&cpu_buf_vm_clear) && 296 !kvm_vcpu_can_access_host_mmio(vcpu) && 297 kvm_is_mmio_pfn(pfn, &is_host_mmio)) 298 kvm_track_host_mmio_mapping(vcpu); 299 300 *new_spte = spte; 301 return wrprot; 302 } 303 304 static u64 modify_spte_protections(u64 spte, u64 set, u64 clear) 305 { 306 bool is_access_track = is_access_track_spte(spte); 307 308 if (is_access_track) 309 spte = restore_acc_track_spte(spte); 310 311 KVM_MMU_WARN_ON(set & clear); 312 spte = (spte | set) & ~clear; 313 314 if (is_access_track) 315 spte = mark_spte_for_access_track(spte); 316 317 return spte; 318 } 319 320 static u64 make_spte_executable(u64 spte) 321 { 322 return modify_spte_protections(spte, shadow_x_mask, shadow_nx_mask); 323 } 324 325 static u64 make_spte_nonexecutable(u64 spte) 326 { 327 return modify_spte_protections(spte, shadow_nx_mask, shadow_x_mask); 328 } 329 330 /* 331 * Construct an SPTE that maps a sub-page of the given huge page SPTE where 332 * `index` identifies which sub-page. 333 * 334 * This is used during huge page splitting to build the SPTEs that make up the 335 * new page table. 336 */ 337 u64 make_small_spte(struct kvm *kvm, u64 huge_spte, 338 union kvm_mmu_page_role role, int index) 339 { 340 u64 child_spte = huge_spte; 341 342 KVM_BUG_ON(!is_shadow_present_pte(huge_spte) || !is_large_pte(huge_spte), kvm); 343 344 /* 345 * The child_spte already has the base address of the huge page being 346 * split. So we just have to OR in the offset to the page at the next 347 * lower level for the given index. 348 */ 349 child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT; 350 351 if (role.level == PG_LEVEL_4K) { 352 child_spte &= ~PT_PAGE_SIZE_MASK; 353 354 /* 355 * When splitting to a 4K page where execution is allowed, mark 356 * the page executable as the NX hugepage mitigation no longer 357 * applies. 358 */ 359 if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm)) 360 child_spte = make_spte_executable(child_spte); 361 } 362 363 return child_spte; 364 } 365 366 u64 make_huge_spte(struct kvm *kvm, u64 small_spte, int level) 367 { 368 u64 huge_spte; 369 370 KVM_BUG_ON(!is_shadow_present_pte(small_spte) || level == PG_LEVEL_4K, kvm); 371 372 huge_spte = small_spte | PT_PAGE_SIZE_MASK; 373 374 /* 375 * huge_spte already has the address of the sub-page being collapsed 376 * from small_spte, so just clear the lower address bits to create the 377 * huge page address. 378 */ 379 huge_spte &= KVM_HPAGE_MASK(level) | ~PAGE_MASK; 380 381 if (is_nx_huge_page_enabled(kvm)) 382 huge_spte = make_spte_nonexecutable(huge_spte); 383 384 return huge_spte; 385 } 386 387 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) 388 { 389 u64 spte = SPTE_MMU_PRESENT_MASK; 390 391 spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | 392 shadow_user_mask | shadow_x_mask | shadow_me_value; 393 394 if (ad_disabled) 395 spte |= SPTE_TDP_AD_DISABLED; 396 else 397 spte |= shadow_accessed_mask; 398 399 return spte; 400 } 401 402 u64 mark_spte_for_access_track(u64 spte) 403 { 404 if (spte_ad_enabled(spte)) 405 return spte & ~shadow_accessed_mask; 406 407 if (is_access_track_spte(spte)) 408 return spte; 409 410 check_spte_writable_invariants(spte); 411 412 WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK << 413 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT), 414 "Access Tracking saved bit locations are not zero\n"); 415 416 spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) << 417 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT; 418 spte &= ~(shadow_acc_track_mask | shadow_accessed_mask); 419 420 return spte; 421 } 422 423 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask) 424 { 425 BUG_ON((u64)(unsigned)access_mask != access_mask); 426 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); 427 428 /* 429 * Reset to the original module param value to honor userspace's desire 430 * to (dis)allow MMIO caching. Update the param itself so that 431 * userspace can see whether or not KVM is actually using MMIO caching. 432 */ 433 enable_mmio_caching = allow_mmio_caching; 434 if (!enable_mmio_caching) 435 mmio_value = 0; 436 437 /* 438 * The mask must contain only bits that are carved out specifically for 439 * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO 440 * generation. 441 */ 442 if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK)) 443 mmio_value = 0; 444 445 /* 446 * Disable MMIO caching if the MMIO value collides with the bits that 447 * are used to hold the relocated GFN when the L1TF mitigation is 448 * enabled. This should never fire as there is no known hardware that 449 * can trigger this condition, e.g. SME/SEV CPUs that require a custom 450 * MMIO value are not susceptible to L1TF. 451 */ 452 if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << 453 SHADOW_NONPRESENT_OR_RSVD_MASK_LEN))) 454 mmio_value = 0; 455 456 /* 457 * The masked MMIO value must obviously match itself and a frozen SPTE 458 * must not get a false positive. Frozen SPTEs and MMIO SPTEs should 459 * never collide as MMIO must set some RWX bits, and frozen SPTEs must 460 * not set any RWX bits. 461 */ 462 if (WARN_ON((mmio_value & mmio_mask) != mmio_value) || 463 WARN_ON(mmio_value && (FROZEN_SPTE & mmio_mask) == mmio_value)) 464 mmio_value = 0; 465 466 if (!mmio_value) 467 enable_mmio_caching = false; 468 469 shadow_mmio_value = mmio_value; 470 shadow_mmio_mask = mmio_mask; 471 shadow_mmio_access_mask = access_mask; 472 } 473 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); 474 475 void kvm_mmu_set_mmio_spte_value(struct kvm *kvm, u64 mmio_value) 476 { 477 kvm->arch.shadow_mmio_value = mmio_value; 478 } 479 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_value); 480 481 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask) 482 { 483 /* shadow_me_value must be a subset of shadow_me_mask */ 484 if (WARN_ON(me_value & ~me_mask)) 485 me_value = me_mask = 0; 486 487 shadow_me_value = me_value; 488 shadow_me_mask = me_mask; 489 } 490 EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask); 491 492 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only) 493 { 494 kvm_ad_enabled = has_ad_bits; 495 496 shadow_user_mask = VMX_EPT_READABLE_MASK; 497 shadow_accessed_mask = VMX_EPT_ACCESS_BIT; 498 shadow_dirty_mask = VMX_EPT_DIRTY_BIT; 499 shadow_nx_mask = 0ull; 500 shadow_x_mask = VMX_EPT_EXECUTABLE_MASK; 501 /* VMX_EPT_SUPPRESS_VE_BIT is needed for W or X violation. */ 502 shadow_present_mask = 503 (has_exec_only ? 0ull : VMX_EPT_READABLE_MASK) | VMX_EPT_SUPPRESS_VE_BIT; 504 505 shadow_acc_track_mask = VMX_EPT_RWX_MASK; 506 shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE; 507 shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE; 508 509 /* 510 * EPT Misconfigurations are generated if the value of bits 2:0 511 * of an EPT paging-structure entry is 110b (write/execute). 512 */ 513 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 514 VMX_EPT_RWX_MASK | VMX_EPT_SUPPRESS_VE_BIT, 0); 515 } 516 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks); 517 518 void kvm_mmu_reset_all_pte_masks(void) 519 { 520 u8 low_phys_bits; 521 u64 mask; 522 523 kvm_ad_enabled = true; 524 525 /* 526 * If the CPU has 46 or less physical address bits, then set an 527 * appropriate mask to guard against L1TF attacks. Otherwise, it is 528 * assumed that the CPU is not vulnerable to L1TF. 529 * 530 * Some Intel CPUs address the L1 cache using more PA bits than are 531 * reported by CPUID. Use the PA width of the L1 cache when possible 532 * to achieve more effective mitigation, e.g. if system RAM overlaps 533 * the most significant bits of legal physical address space. 534 */ 535 shadow_nonpresent_or_rsvd_mask = 0; 536 low_phys_bits = boot_cpu_data.x86_phys_bits; 537 if (boot_cpu_has_bug(X86_BUG_L1TF) && 538 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= 539 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) { 540 low_phys_bits = boot_cpu_data.x86_cache_bits 541 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; 542 shadow_nonpresent_or_rsvd_mask = 543 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); 544 } 545 546 shadow_nonpresent_or_rsvd_lower_gfn_mask = 547 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); 548 549 shadow_user_mask = PT_USER_MASK; 550 shadow_accessed_mask = PT_ACCESSED_MASK; 551 shadow_dirty_mask = PT_DIRTY_MASK; 552 shadow_nx_mask = PT64_NX_MASK; 553 shadow_x_mask = 0; 554 shadow_present_mask = PT_PRESENT_MASK; 555 556 shadow_acc_track_mask = 0; 557 shadow_me_mask = 0; 558 shadow_me_value = 0; 559 560 shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE; 561 shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE; 562 563 /* 564 * Set a reserved PA bit in MMIO SPTEs to generate page faults with 565 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT 566 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports 567 * 52-bit physical addresses then there are no reserved PA bits in the 568 * PTEs and so the reserved PA approach must be disabled. 569 */ 570 if (kvm_host.maxphyaddr < 52) 571 mask = BIT_ULL(51) | PT_PRESENT_MASK; 572 else 573 mask = 0; 574 575 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK); 576 } 577