1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * Macros and functions to access KVM PTEs (also known as SPTEs) 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2020 Red Hat, Inc. and/or its affiliates. 9 */ 10 11 12 #include <linux/kvm_host.h> 13 #include "mmu.h" 14 #include "mmu_internal.h" 15 #include "x86.h" 16 #include "spte.h" 17 18 #include <asm/e820/api.h> 19 #include <asm/memtype.h> 20 #include <asm/vmx.h> 21 22 bool __read_mostly enable_mmio_caching = true; 23 static bool __ro_after_init allow_mmio_caching; 24 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444); 25 EXPORT_SYMBOL_GPL(enable_mmio_caching); 26 27 u64 __read_mostly shadow_host_writable_mask; 28 u64 __read_mostly shadow_mmu_writable_mask; 29 u64 __read_mostly shadow_nx_mask; 30 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 31 u64 __read_mostly shadow_user_mask; 32 u64 __read_mostly shadow_accessed_mask; 33 u64 __read_mostly shadow_dirty_mask; 34 u64 __read_mostly shadow_mmio_value; 35 u64 __read_mostly shadow_mmio_mask; 36 u64 __read_mostly shadow_mmio_access_mask; 37 u64 __read_mostly shadow_present_mask; 38 u64 __read_mostly shadow_memtype_mask; 39 u64 __read_mostly shadow_me_value; 40 u64 __read_mostly shadow_me_mask; 41 u64 __read_mostly shadow_acc_track_mask; 42 43 u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 44 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 45 46 u8 __read_mostly shadow_phys_bits; 47 48 void __init kvm_mmu_spte_module_init(void) 49 { 50 /* 51 * Snapshot userspace's desire to allow MMIO caching. Whether or not 52 * KVM can actually enable MMIO caching depends on vendor-specific 53 * hardware capabilities and other module params that can't be resolved 54 * until the vendor module is loaded, i.e. enable_mmio_caching can and 55 * will change when the vendor module is (re)loaded. 56 */ 57 allow_mmio_caching = enable_mmio_caching; 58 } 59 60 static u64 generation_mmio_spte_mask(u64 gen) 61 { 62 u64 mask; 63 64 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); 65 66 mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK; 67 mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK; 68 return mask; 69 } 70 71 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) 72 { 73 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; 74 u64 spte = generation_mmio_spte_mask(gen); 75 u64 gpa = gfn << PAGE_SHIFT; 76 77 WARN_ON_ONCE(!shadow_mmio_value); 78 79 access &= shadow_mmio_access_mask; 80 spte |= shadow_mmio_value | access; 81 spte |= gpa | shadow_nonpresent_or_rsvd_mask; 82 spte |= (gpa & shadow_nonpresent_or_rsvd_mask) 83 << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; 84 85 return spte; 86 } 87 88 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) 89 { 90 if (pfn_valid(pfn)) 91 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && 92 /* 93 * Some reserved pages, such as those from NVDIMM 94 * DAX devices, are not for MMIO, and can be mapped 95 * with cached memory type for better performance. 96 * However, the above check misconceives those pages 97 * as MMIO, and results in KVM mapping them with UC 98 * memory type, which would hurt the performance. 99 * Therefore, we check the host memory type in addition 100 * and only treat UC/UC-/WC pages as MMIO. 101 */ 102 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); 103 104 return !e820__mapped_raw_any(pfn_to_hpa(pfn), 105 pfn_to_hpa(pfn + 1) - 1, 106 E820_TYPE_RAM); 107 } 108 109 /* 110 * Returns true if the SPTE has bits that may be set without holding mmu_lock. 111 * The caller is responsible for checking if the SPTE is shadow-present, and 112 * for determining whether or not the caller cares about non-leaf SPTEs. 113 */ 114 bool spte_has_volatile_bits(u64 spte) 115 { 116 /* 117 * Always atomically update spte if it can be updated 118 * out of mmu-lock, it can ensure dirty bit is not lost, 119 * also, it can help us to get a stable is_writable_pte() 120 * to ensure tlb flush is not missed. 121 */ 122 if (!is_writable_pte(spte) && is_mmu_writable_spte(spte)) 123 return true; 124 125 if (is_access_track_spte(spte)) 126 return true; 127 128 if (spte_ad_enabled(spte)) { 129 if (!(spte & shadow_accessed_mask) || 130 (is_writable_pte(spte) && !(spte & shadow_dirty_mask))) 131 return true; 132 } 133 134 return false; 135 } 136 137 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 138 const struct kvm_memory_slot *slot, 139 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, 140 u64 old_spte, bool prefetch, bool can_unsync, 141 bool host_writable, u64 *new_spte) 142 { 143 int level = sp->role.level; 144 u64 spte = SPTE_MMU_PRESENT_MASK; 145 bool wrprot = false; 146 147 WARN_ON_ONCE(!pte_access && !shadow_present_mask); 148 149 if (sp->role.ad_disabled) 150 spte |= SPTE_TDP_AD_DISABLED_MASK; 151 else if (kvm_mmu_page_ad_need_write_protect(sp)) 152 spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK; 153 154 /* 155 * For the EPT case, shadow_present_mask is 0 if hardware 156 * supports exec-only page table entries. In that case, 157 * ACC_USER_MASK and shadow_user_mask are used to represent 158 * read access. See FNAME(gpte_access) in paging_tmpl.h. 159 */ 160 spte |= shadow_present_mask; 161 if (!prefetch) 162 spte |= spte_shadow_accessed_mask(spte); 163 164 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && 165 is_nx_huge_page_enabled(vcpu->kvm)) { 166 pte_access &= ~ACC_EXEC_MASK; 167 } 168 169 if (pte_access & ACC_EXEC_MASK) 170 spte |= shadow_x_mask; 171 else 172 spte |= shadow_nx_mask; 173 174 if (pte_access & ACC_USER_MASK) 175 spte |= shadow_user_mask; 176 177 if (level > PG_LEVEL_4K) 178 spte |= PT_PAGE_SIZE_MASK; 179 180 if (shadow_memtype_mask) 181 spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn, 182 kvm_is_mmio_pfn(pfn)); 183 if (host_writable) 184 spte |= shadow_host_writable_mask; 185 else 186 pte_access &= ~ACC_WRITE_MASK; 187 188 if (shadow_me_value && !kvm_is_mmio_pfn(pfn)) 189 spte |= shadow_me_value; 190 191 spte |= (u64)pfn << PAGE_SHIFT; 192 193 if (pte_access & ACC_WRITE_MASK) { 194 spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask; 195 196 /* 197 * Optimization: for pte sync, if spte was writable the hash 198 * lookup is unnecessary (and expensive). Write protection 199 * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots. 200 * Same reasoning can be applied to dirty page accounting. 201 */ 202 if (is_writable_pte(old_spte)) 203 goto out; 204 205 /* 206 * Unsync shadow pages that are reachable by the new, writable 207 * SPTE. Write-protect the SPTE if the page can't be unsync'd, 208 * e.g. it's write-tracked (upper-level SPs) or has one or more 209 * shadow pages and unsync'ing pages is not allowed. 210 */ 211 if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) { 212 pgprintk("%s: found shadow page for %llx, marking ro\n", 213 __func__, gfn); 214 wrprot = true; 215 pte_access &= ~ACC_WRITE_MASK; 216 spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); 217 } 218 } 219 220 if (pte_access & ACC_WRITE_MASK) 221 spte |= spte_shadow_dirty_mask(spte); 222 223 out: 224 if (prefetch) 225 spte = mark_spte_for_access_track(spte); 226 227 WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level), 228 "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level, 229 get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level)); 230 231 if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) { 232 /* Enforced by kvm_mmu_hugepage_adjust. */ 233 WARN_ON(level > PG_LEVEL_4K); 234 mark_page_dirty_in_slot(vcpu->kvm, slot, gfn); 235 } 236 237 *new_spte = spte; 238 return wrprot; 239 } 240 241 static u64 make_spte_executable(u64 spte) 242 { 243 bool is_access_track = is_access_track_spte(spte); 244 245 if (is_access_track) 246 spte = restore_acc_track_spte(spte); 247 248 spte &= ~shadow_nx_mask; 249 spte |= shadow_x_mask; 250 251 if (is_access_track) 252 spte = mark_spte_for_access_track(spte); 253 254 return spte; 255 } 256 257 /* 258 * Construct an SPTE that maps a sub-page of the given huge page SPTE where 259 * `index` identifies which sub-page. 260 * 261 * This is used during huge page splitting to build the SPTEs that make up the 262 * new page table. 263 */ 264 u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role, 265 int index) 266 { 267 u64 child_spte; 268 269 if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte))) 270 return 0; 271 272 if (WARN_ON_ONCE(!is_large_pte(huge_spte))) 273 return 0; 274 275 child_spte = huge_spte; 276 277 /* 278 * The child_spte already has the base address of the huge page being 279 * split. So we just have to OR in the offset to the page at the next 280 * lower level for the given index. 281 */ 282 child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT; 283 284 if (role.level == PG_LEVEL_4K) { 285 child_spte &= ~PT_PAGE_SIZE_MASK; 286 287 /* 288 * When splitting to a 4K page where execution is allowed, mark 289 * the page executable as the NX hugepage mitigation no longer 290 * applies. 291 */ 292 if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm)) 293 child_spte = make_spte_executable(child_spte); 294 } 295 296 return child_spte; 297 } 298 299 300 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) 301 { 302 u64 spte = SPTE_MMU_PRESENT_MASK; 303 304 spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | 305 shadow_user_mask | shadow_x_mask | shadow_me_value; 306 307 if (ad_disabled) 308 spte |= SPTE_TDP_AD_DISABLED_MASK; 309 else 310 spte |= shadow_accessed_mask; 311 312 return spte; 313 } 314 315 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn) 316 { 317 u64 new_spte; 318 319 new_spte = old_spte & ~SPTE_BASE_ADDR_MASK; 320 new_spte |= (u64)new_pfn << PAGE_SHIFT; 321 322 new_spte &= ~PT_WRITABLE_MASK; 323 new_spte &= ~shadow_host_writable_mask; 324 new_spte &= ~shadow_mmu_writable_mask; 325 326 new_spte = mark_spte_for_access_track(new_spte); 327 328 return new_spte; 329 } 330 331 u64 mark_spte_for_access_track(u64 spte) 332 { 333 if (spte_ad_enabled(spte)) 334 return spte & ~shadow_accessed_mask; 335 336 if (is_access_track_spte(spte)) 337 return spte; 338 339 check_spte_writable_invariants(spte); 340 341 WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK << 342 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT), 343 "kvm: Access Tracking saved bit locations are not zero\n"); 344 345 spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) << 346 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT; 347 spte &= ~shadow_acc_track_mask; 348 349 return spte; 350 } 351 352 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask) 353 { 354 BUG_ON((u64)(unsigned)access_mask != access_mask); 355 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); 356 357 /* 358 * Reset to the original module param value to honor userspace's desire 359 * to (dis)allow MMIO caching. Update the param itself so that 360 * userspace can see whether or not KVM is actually using MMIO caching. 361 */ 362 enable_mmio_caching = allow_mmio_caching; 363 if (!enable_mmio_caching) 364 mmio_value = 0; 365 366 /* 367 * The mask must contain only bits that are carved out specifically for 368 * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO 369 * generation. 370 */ 371 if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK)) 372 mmio_value = 0; 373 374 /* 375 * Disable MMIO caching if the MMIO value collides with the bits that 376 * are used to hold the relocated GFN when the L1TF mitigation is 377 * enabled. This should never fire as there is no known hardware that 378 * can trigger this condition, e.g. SME/SEV CPUs that require a custom 379 * MMIO value are not susceptible to L1TF. 380 */ 381 if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << 382 SHADOW_NONPRESENT_OR_RSVD_MASK_LEN))) 383 mmio_value = 0; 384 385 /* 386 * The masked MMIO value must obviously match itself and a removed SPTE 387 * must not get a false positive. Removed SPTEs and MMIO SPTEs should 388 * never collide as MMIO must set some RWX bits, and removed SPTEs must 389 * not set any RWX bits. 390 */ 391 if (WARN_ON((mmio_value & mmio_mask) != mmio_value) || 392 WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value)) 393 mmio_value = 0; 394 395 if (!mmio_value) 396 enable_mmio_caching = false; 397 398 shadow_mmio_value = mmio_value; 399 shadow_mmio_mask = mmio_mask; 400 shadow_mmio_access_mask = access_mask; 401 } 402 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); 403 404 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask) 405 { 406 /* shadow_me_value must be a subset of shadow_me_mask */ 407 if (WARN_ON(me_value & ~me_mask)) 408 me_value = me_mask = 0; 409 410 shadow_me_value = me_value; 411 shadow_me_mask = me_mask; 412 } 413 EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask); 414 415 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only) 416 { 417 shadow_user_mask = VMX_EPT_READABLE_MASK; 418 shadow_accessed_mask = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull; 419 shadow_dirty_mask = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull; 420 shadow_nx_mask = 0ull; 421 shadow_x_mask = VMX_EPT_EXECUTABLE_MASK; 422 shadow_present_mask = has_exec_only ? 0ull : VMX_EPT_READABLE_MASK; 423 /* 424 * EPT overrides the host MTRRs, and so KVM must program the desired 425 * memtype directly into the SPTEs. Note, this mask is just the mask 426 * of all bits that factor into the memtype, the actual memtype must be 427 * dynamically calculated, e.g. to ensure host MMIO is mapped UC. 428 */ 429 shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT; 430 shadow_acc_track_mask = VMX_EPT_RWX_MASK; 431 shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE; 432 shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE; 433 434 /* 435 * EPT Misconfigurations are generated if the value of bits 2:0 436 * of an EPT paging-structure entry is 110b (write/execute). 437 */ 438 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 439 VMX_EPT_RWX_MASK, 0); 440 } 441 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks); 442 443 void kvm_mmu_reset_all_pte_masks(void) 444 { 445 u8 low_phys_bits; 446 u64 mask; 447 448 shadow_phys_bits = kvm_get_shadow_phys_bits(); 449 450 /* 451 * If the CPU has 46 or less physical address bits, then set an 452 * appropriate mask to guard against L1TF attacks. Otherwise, it is 453 * assumed that the CPU is not vulnerable to L1TF. 454 * 455 * Some Intel CPUs address the L1 cache using more PA bits than are 456 * reported by CPUID. Use the PA width of the L1 cache when possible 457 * to achieve more effective mitigation, e.g. if system RAM overlaps 458 * the most significant bits of legal physical address space. 459 */ 460 shadow_nonpresent_or_rsvd_mask = 0; 461 low_phys_bits = boot_cpu_data.x86_phys_bits; 462 if (boot_cpu_has_bug(X86_BUG_L1TF) && 463 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= 464 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) { 465 low_phys_bits = boot_cpu_data.x86_cache_bits 466 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; 467 shadow_nonpresent_or_rsvd_mask = 468 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); 469 } 470 471 shadow_nonpresent_or_rsvd_lower_gfn_mask = 472 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); 473 474 shadow_user_mask = PT_USER_MASK; 475 shadow_accessed_mask = PT_ACCESSED_MASK; 476 shadow_dirty_mask = PT_DIRTY_MASK; 477 shadow_nx_mask = PT64_NX_MASK; 478 shadow_x_mask = 0; 479 shadow_present_mask = PT_PRESENT_MASK; 480 481 /* 482 * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB 483 * memtype in the SPTEs, i.e. relies on host MTRRs to provide the 484 * correct memtype (WB is the "weakest" memtype). 485 */ 486 shadow_memtype_mask = 0; 487 shadow_acc_track_mask = 0; 488 shadow_me_mask = 0; 489 shadow_me_value = 0; 490 491 shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE; 492 shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE; 493 494 /* 495 * Set a reserved PA bit in MMIO SPTEs to generate page faults with 496 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT 497 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports 498 * 52-bit physical addresses then there are no reserved PA bits in the 499 * PTEs and so the reserved PA approach must be disabled. 500 */ 501 if (shadow_phys_bits < 52) 502 mask = BIT_ULL(51) | PT_PRESENT_MASK; 503 else 504 mask = 0; 505 506 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK); 507 } 508