xref: /linux/arch/x86/kvm/mmu/spte.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * Macros and functions to access KVM PTEs (also known as SPTEs)
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17 
18 #include <asm/e820/api.h>
19 #include <asm/memtype.h>
20 #include <asm/vmx.h>
21 
22 bool __read_mostly enable_mmio_caching = true;
23 static bool __ro_after_init allow_mmio_caching;
24 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
25 EXPORT_SYMBOL_GPL(enable_mmio_caching);
26 
27 bool __read_mostly kvm_ad_enabled;
28 
29 u64 __read_mostly shadow_host_writable_mask;
30 u64 __read_mostly shadow_mmu_writable_mask;
31 u64 __read_mostly shadow_nx_mask;
32 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
33 u64 __read_mostly shadow_user_mask;
34 u64 __read_mostly shadow_accessed_mask;
35 u64 __read_mostly shadow_dirty_mask;
36 u64 __read_mostly shadow_mmio_value;
37 u64 __read_mostly shadow_mmio_mask;
38 u64 __read_mostly shadow_mmio_access_mask;
39 u64 __read_mostly shadow_present_mask;
40 u64 __read_mostly shadow_memtype_mask;
41 u64 __read_mostly shadow_me_value;
42 u64 __read_mostly shadow_me_mask;
43 u64 __read_mostly shadow_acc_track_mask;
44 
45 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
46 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
47 
48 static u8 __init kvm_get_host_maxphyaddr(void)
49 {
50 	/*
51 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
52 	 * in CPU detection code, but the processor treats those reduced bits as
53 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
54 	 * the physical address bits reported by CPUID, i.e. the raw MAXPHYADDR,
55 	 * when reasoning about CPU behavior with respect to MAXPHYADDR.
56 	 */
57 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
58 		return cpuid_eax(0x80000008) & 0xff;
59 
60 	/*
61 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
62 	 * custom CPUID.  Proceed with whatever the kernel found since these features
63 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
64 	 */
65 	return boot_cpu_data.x86_phys_bits;
66 }
67 
68 void __init kvm_mmu_spte_module_init(void)
69 {
70 	/*
71 	 * Snapshot userspace's desire to allow MMIO caching.  Whether or not
72 	 * KVM can actually enable MMIO caching depends on vendor-specific
73 	 * hardware capabilities and other module params that can't be resolved
74 	 * until the vendor module is loaded, i.e. enable_mmio_caching can and
75 	 * will change when the vendor module is (re)loaded.
76 	 */
77 	allow_mmio_caching = enable_mmio_caching;
78 
79 	kvm_host.maxphyaddr = kvm_get_host_maxphyaddr();
80 }
81 
82 static u64 generation_mmio_spte_mask(u64 gen)
83 {
84 	u64 mask;
85 
86 	WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK);
87 
88 	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
89 	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
90 	return mask;
91 }
92 
93 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
94 {
95 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
96 	u64 spte = generation_mmio_spte_mask(gen);
97 	u64 gpa = gfn << PAGE_SHIFT;
98 
99 	WARN_ON_ONCE(!vcpu->kvm->arch.shadow_mmio_value);
100 
101 	access &= shadow_mmio_access_mask;
102 	spte |= vcpu->kvm->arch.shadow_mmio_value | access;
103 	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
104 	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
105 		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
106 
107 	return spte;
108 }
109 
110 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
111 {
112 	if (pfn_valid(pfn))
113 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
114 			/*
115 			 * Some reserved pages, such as those from NVDIMM
116 			 * DAX devices, are not for MMIO, and can be mapped
117 			 * with cached memory type for better performance.
118 			 * However, the above check misconceives those pages
119 			 * as MMIO, and results in KVM mapping them with UC
120 			 * memory type, which would hurt the performance.
121 			 * Therefore, we check the host memory type in addition
122 			 * and only treat UC/UC-/WC pages as MMIO.
123 			 */
124 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
125 
126 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
127 				     pfn_to_hpa(pfn + 1) - 1,
128 				     E820_TYPE_RAM);
129 }
130 
131 /*
132  * Returns true if the SPTE has bits that may be set without holding mmu_lock.
133  * The caller is responsible for checking if the SPTE is shadow-present, and
134  * for determining whether or not the caller cares about non-leaf SPTEs.
135  */
136 bool spte_has_volatile_bits(u64 spte)
137 {
138 	if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
139 		return true;
140 
141 	if (is_access_track_spte(spte))
142 		return true;
143 
144 	if (spte_ad_enabled(spte)) {
145 		if (!(spte & shadow_accessed_mask) ||
146 		    (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
147 			return true;
148 	}
149 
150 	return false;
151 }
152 
153 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
154 	       const struct kvm_memory_slot *slot,
155 	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
156 	       u64 old_spte, bool prefetch, bool synchronizing,
157 	       bool host_writable, u64 *new_spte)
158 {
159 	int level = sp->role.level;
160 	u64 spte = SPTE_MMU_PRESENT_MASK;
161 	bool wrprot = false;
162 
163 	/*
164 	 * For the EPT case, shadow_present_mask has no RWX bits set if
165 	 * exec-only page table entries are supported.  In that case,
166 	 * ACC_USER_MASK and shadow_user_mask are used to represent
167 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
168 	 */
169 	WARN_ON_ONCE((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE);
170 
171 	if (sp->role.ad_disabled)
172 		spte |= SPTE_TDP_AD_DISABLED;
173 	else if (kvm_mmu_page_ad_need_write_protect(sp))
174 		spte |= SPTE_TDP_AD_WRPROT_ONLY;
175 
176 	spte |= shadow_present_mask;
177 	if (!prefetch || synchronizing)
178 		spte |= shadow_accessed_mask;
179 
180 	/*
181 	 * For simplicity, enforce the NX huge page mitigation even if not
182 	 * strictly necessary.  KVM could ignore the mitigation if paging is
183 	 * disabled in the guest, as the guest doesn't have any page tables to
184 	 * abuse.  But to safely ignore the mitigation, KVM would have to
185 	 * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG
186 	 * is toggled on, and that's a net negative for performance when TDP is
187 	 * enabled.  When TDP is disabled, KVM will always switch to a new MMU
188 	 * when CR0.PG is toggled, but leveraging that to ignore the mitigation
189 	 * would tie make_spte() further to vCPU/MMU state, and add complexity
190 	 * just to optimize a mode that is anything but performance critical.
191 	 */
192 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
193 	    is_nx_huge_page_enabled(vcpu->kvm)) {
194 		pte_access &= ~ACC_EXEC_MASK;
195 	}
196 
197 	if (pte_access & ACC_EXEC_MASK)
198 		spte |= shadow_x_mask;
199 	else
200 		spte |= shadow_nx_mask;
201 
202 	if (pte_access & ACC_USER_MASK)
203 		spte |= shadow_user_mask;
204 
205 	if (level > PG_LEVEL_4K)
206 		spte |= PT_PAGE_SIZE_MASK;
207 
208 	if (shadow_memtype_mask)
209 		spte |= kvm_x86_call(get_mt_mask)(vcpu, gfn,
210 						  kvm_is_mmio_pfn(pfn));
211 	if (host_writable)
212 		spte |= shadow_host_writable_mask;
213 	else
214 		pte_access &= ~ACC_WRITE_MASK;
215 
216 	if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
217 		spte |= shadow_me_value;
218 
219 	spte |= (u64)pfn << PAGE_SHIFT;
220 
221 	if (pte_access & ACC_WRITE_MASK) {
222 		/*
223 		 * Unsync shadow pages that are reachable by the new, writable
224 		 * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
225 		 * e.g. it's write-tracked (upper-level SPs) or has one or more
226 		 * shadow pages and unsync'ing pages is not allowed.
227 		 *
228 		 * When overwriting an existing leaf SPTE, and the old SPTE was
229 		 * writable, skip trying to unsync shadow pages as any relevant
230 		 * shadow pages must already be unsync, i.e. the hash lookup is
231 		 * unnecessary (and expensive).  Note, this relies on KVM not
232 		 * changing PFNs without first zapping the old SPTE, which is
233 		 * guaranteed by both the shadow MMU and the TDP MMU.
234 		 */
235 		if ((!is_last_spte(old_spte, level) || !is_writable_pte(old_spte)) &&
236 		    mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, synchronizing, prefetch))
237 			wrprot = true;
238 		else
239 			spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask |
240 				shadow_dirty_mask;
241 	}
242 
243 	if (prefetch && !synchronizing)
244 		spte = mark_spte_for_access_track(spte);
245 
246 	WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
247 		  "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
248 		  get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
249 
250 	/*
251 	 * Mark the memslot dirty *after* modifying it for access tracking.
252 	 * Unlike folios, memslots can be safely marked dirty out of mmu_lock,
253 	 * i.e. in the fast page fault handler.
254 	 */
255 	if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
256 		/* Enforced by kvm_mmu_hugepage_adjust. */
257 		WARN_ON_ONCE(level > PG_LEVEL_4K);
258 		mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
259 	}
260 
261 	*new_spte = spte;
262 	return wrprot;
263 }
264 
265 static u64 modify_spte_protections(u64 spte, u64 set, u64 clear)
266 {
267 	bool is_access_track = is_access_track_spte(spte);
268 
269 	if (is_access_track)
270 		spte = restore_acc_track_spte(spte);
271 
272 	KVM_MMU_WARN_ON(set & clear);
273 	spte = (spte | set) & ~clear;
274 
275 	if (is_access_track)
276 		spte = mark_spte_for_access_track(spte);
277 
278 	return spte;
279 }
280 
281 static u64 make_spte_executable(u64 spte)
282 {
283 	return modify_spte_protections(spte, shadow_x_mask, shadow_nx_mask);
284 }
285 
286 static u64 make_spte_nonexecutable(u64 spte)
287 {
288 	return modify_spte_protections(spte, shadow_nx_mask, shadow_x_mask);
289 }
290 
291 /*
292  * Construct an SPTE that maps a sub-page of the given huge page SPTE where
293  * `index` identifies which sub-page.
294  *
295  * This is used during huge page splitting to build the SPTEs that make up the
296  * new page table.
297  */
298 u64 make_small_spte(struct kvm *kvm, u64 huge_spte,
299 		    union kvm_mmu_page_role role, int index)
300 {
301 	u64 child_spte = huge_spte;
302 
303 	KVM_BUG_ON(!is_shadow_present_pte(huge_spte) || !is_large_pte(huge_spte), kvm);
304 
305 	/*
306 	 * The child_spte already has the base address of the huge page being
307 	 * split. So we just have to OR in the offset to the page at the next
308 	 * lower level for the given index.
309 	 */
310 	child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
311 
312 	if (role.level == PG_LEVEL_4K) {
313 		child_spte &= ~PT_PAGE_SIZE_MASK;
314 
315 		/*
316 		 * When splitting to a 4K page where execution is allowed, mark
317 		 * the page executable as the NX hugepage mitigation no longer
318 		 * applies.
319 		 */
320 		if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
321 			child_spte = make_spte_executable(child_spte);
322 	}
323 
324 	return child_spte;
325 }
326 
327 u64 make_huge_spte(struct kvm *kvm, u64 small_spte, int level)
328 {
329 	u64 huge_spte;
330 
331 	KVM_BUG_ON(!is_shadow_present_pte(small_spte) || level == PG_LEVEL_4K, kvm);
332 
333 	huge_spte = small_spte | PT_PAGE_SIZE_MASK;
334 
335 	/*
336 	 * huge_spte already has the address of the sub-page being collapsed
337 	 * from small_spte, so just clear the lower address bits to create the
338 	 * huge page address.
339 	 */
340 	huge_spte &= KVM_HPAGE_MASK(level) | ~PAGE_MASK;
341 
342 	if (is_nx_huge_page_enabled(kvm))
343 		huge_spte = make_spte_nonexecutable(huge_spte);
344 
345 	return huge_spte;
346 }
347 
348 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
349 {
350 	u64 spte = SPTE_MMU_PRESENT_MASK;
351 
352 	spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
353 		shadow_user_mask | shadow_x_mask | shadow_me_value;
354 
355 	if (ad_disabled)
356 		spte |= SPTE_TDP_AD_DISABLED;
357 	else
358 		spte |= shadow_accessed_mask;
359 
360 	return spte;
361 }
362 
363 u64 mark_spte_for_access_track(u64 spte)
364 {
365 	if (spte_ad_enabled(spte))
366 		return spte & ~shadow_accessed_mask;
367 
368 	if (is_access_track_spte(spte))
369 		return spte;
370 
371 	check_spte_writable_invariants(spte);
372 
373 	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
374 			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
375 		  "Access Tracking saved bit locations are not zero\n");
376 
377 	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
378 		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
379 	spte &= ~(shadow_acc_track_mask | shadow_accessed_mask);
380 
381 	return spte;
382 }
383 
384 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
385 {
386 	BUG_ON((u64)(unsigned)access_mask != access_mask);
387 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
388 
389 	/*
390 	 * Reset to the original module param value to honor userspace's desire
391 	 * to (dis)allow MMIO caching.  Update the param itself so that
392 	 * userspace can see whether or not KVM is actually using MMIO caching.
393 	 */
394 	enable_mmio_caching = allow_mmio_caching;
395 	if (!enable_mmio_caching)
396 		mmio_value = 0;
397 
398 	/*
399 	 * The mask must contain only bits that are carved out specifically for
400 	 * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
401 	 * generation.
402 	 */
403 	if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
404 		mmio_value = 0;
405 
406 	/*
407 	 * Disable MMIO caching if the MMIO value collides with the bits that
408 	 * are used to hold the relocated GFN when the L1TF mitigation is
409 	 * enabled.  This should never fire as there is no known hardware that
410 	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
411 	 * MMIO value are not susceptible to L1TF.
412 	 */
413 	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
414 				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
415 		mmio_value = 0;
416 
417 	/*
418 	 * The masked MMIO value must obviously match itself and a frozen SPTE
419 	 * must not get a false positive.  Frozen SPTEs and MMIO SPTEs should
420 	 * never collide as MMIO must set some RWX bits, and frozen SPTEs must
421 	 * not set any RWX bits.
422 	 */
423 	if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
424 	    WARN_ON(mmio_value && (FROZEN_SPTE & mmio_mask) == mmio_value))
425 		mmio_value = 0;
426 
427 	if (!mmio_value)
428 		enable_mmio_caching = false;
429 
430 	shadow_mmio_value = mmio_value;
431 	shadow_mmio_mask  = mmio_mask;
432 	shadow_mmio_access_mask = access_mask;
433 }
434 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
435 
436 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
437 {
438 	/* shadow_me_value must be a subset of shadow_me_mask */
439 	if (WARN_ON(me_value & ~me_mask))
440 		me_value = me_mask = 0;
441 
442 	shadow_me_value = me_value;
443 	shadow_me_mask = me_mask;
444 }
445 EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
446 
447 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
448 {
449 	kvm_ad_enabled		= has_ad_bits;
450 
451 	shadow_user_mask	= VMX_EPT_READABLE_MASK;
452 	shadow_accessed_mask	= VMX_EPT_ACCESS_BIT;
453 	shadow_dirty_mask	= VMX_EPT_DIRTY_BIT;
454 	shadow_nx_mask		= 0ull;
455 	shadow_x_mask		= VMX_EPT_EXECUTABLE_MASK;
456 	/* VMX_EPT_SUPPRESS_VE_BIT is needed for W or X violation. */
457 	shadow_present_mask	=
458 		(has_exec_only ? 0ull : VMX_EPT_READABLE_MASK) | VMX_EPT_SUPPRESS_VE_BIT;
459 	/*
460 	 * EPT overrides the host MTRRs, and so KVM must program the desired
461 	 * memtype directly into the SPTEs.  Note, this mask is just the mask
462 	 * of all bits that factor into the memtype, the actual memtype must be
463 	 * dynamically calculated, e.g. to ensure host MMIO is mapped UC.
464 	 */
465 	shadow_memtype_mask	= VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
466 	shadow_acc_track_mask	= VMX_EPT_RWX_MASK;
467 	shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
468 	shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
469 
470 	/*
471 	 * EPT Misconfigurations are generated if the value of bits 2:0
472 	 * of an EPT paging-structure entry is 110b (write/execute).
473 	 */
474 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
475 				   VMX_EPT_RWX_MASK | VMX_EPT_SUPPRESS_VE_BIT, 0);
476 }
477 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
478 
479 void kvm_mmu_reset_all_pte_masks(void)
480 {
481 	u8 low_phys_bits;
482 	u64 mask;
483 
484 	kvm_ad_enabled = true;
485 
486 	/*
487 	 * If the CPU has 46 or less physical address bits, then set an
488 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
489 	 * assumed that the CPU is not vulnerable to L1TF.
490 	 *
491 	 * Some Intel CPUs address the L1 cache using more PA bits than are
492 	 * reported by CPUID. Use the PA width of the L1 cache when possible
493 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
494 	 * the most significant bits of legal physical address space.
495 	 */
496 	shadow_nonpresent_or_rsvd_mask = 0;
497 	low_phys_bits = boot_cpu_data.x86_phys_bits;
498 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
499 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
500 			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
501 		low_phys_bits = boot_cpu_data.x86_cache_bits
502 			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
503 		shadow_nonpresent_or_rsvd_mask =
504 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
505 	}
506 
507 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
508 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
509 
510 	shadow_user_mask	= PT_USER_MASK;
511 	shadow_accessed_mask	= PT_ACCESSED_MASK;
512 	shadow_dirty_mask	= PT_DIRTY_MASK;
513 	shadow_nx_mask		= PT64_NX_MASK;
514 	shadow_x_mask		= 0;
515 	shadow_present_mask	= PT_PRESENT_MASK;
516 
517 	/*
518 	 * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
519 	 * memtype in the SPTEs, i.e. relies on host MTRRs to provide the
520 	 * correct memtype (WB is the "weakest" memtype).
521 	 */
522 	shadow_memtype_mask	= 0;
523 	shadow_acc_track_mask	= 0;
524 	shadow_me_mask		= 0;
525 	shadow_me_value		= 0;
526 
527 	shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
528 	shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITABLE;
529 
530 	/*
531 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
532 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
533 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
534 	 * 52-bit physical addresses then there are no reserved PA bits in the
535 	 * PTEs and so the reserved PA approach must be disabled.
536 	 */
537 	if (kvm_host.maxphyaddr < 52)
538 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
539 	else
540 		mask = 0;
541 
542 	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
543 }
544