1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 /* 19 * We need the mmu code to access both 32-bit and 64-bit guest ptes, 20 * so the code in this file is compiled twice, once per pte size. 21 */ 22 23 #if PTTYPE == 64 24 #define pt_element_t u64 25 #define guest_walker guest_walker64 26 #define FNAME(name) paging##64_##name 27 #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK 28 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) 29 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) 30 #define PT_INDEX(addr, level) PT64_INDEX(addr, level) 31 #define PT_LEVEL_BITS PT64_LEVEL_BITS 32 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 33 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 34 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 35 #ifdef CONFIG_X86_64 36 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 37 #define CMPXCHG cmpxchg 38 #else 39 #define CMPXCHG cmpxchg64 40 #define PT_MAX_FULL_LEVELS 2 41 #endif 42 #elif PTTYPE == 32 43 #define pt_element_t u32 44 #define guest_walker guest_walker32 45 #define FNAME(name) paging##32_##name 46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK 47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) 48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) 49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level) 50 #define PT_LEVEL_BITS PT32_LEVEL_BITS 51 #define PT_MAX_FULL_LEVELS 2 52 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 53 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 54 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 55 #define CMPXCHG cmpxchg 56 #elif PTTYPE == PTTYPE_EPT 57 #define pt_element_t u64 58 #define guest_walker guest_walkerEPT 59 #define FNAME(name) ept_##name 60 #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK 61 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) 62 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) 63 #define PT_INDEX(addr, level) PT64_INDEX(addr, level) 64 #define PT_LEVEL_BITS PT64_LEVEL_BITS 65 #define PT_GUEST_DIRTY_SHIFT 9 66 #define PT_GUEST_ACCESSED_SHIFT 8 67 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad) 68 #define CMPXCHG cmpxchg64 69 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 70 #else 71 #error Invalid PTTYPE value 72 #endif 73 74 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) 75 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) 76 77 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) 78 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K) 79 80 /* 81 * The guest_walker structure emulates the behavior of the hardware page 82 * table walker. 83 */ 84 struct guest_walker { 85 int level; 86 unsigned max_level; 87 gfn_t table_gfn[PT_MAX_FULL_LEVELS]; 88 pt_element_t ptes[PT_MAX_FULL_LEVELS]; 89 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; 90 gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; 91 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; 92 bool pte_writable[PT_MAX_FULL_LEVELS]; 93 unsigned int pt_access[PT_MAX_FULL_LEVELS]; 94 unsigned int pte_access; 95 gfn_t gfn; 96 struct x86_exception fault; 97 }; 98 99 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) 100 { 101 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; 102 } 103 104 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, 105 unsigned gpte) 106 { 107 unsigned mask; 108 109 /* dirty bit is not supported, so no need to track it */ 110 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 111 return; 112 113 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); 114 115 mask = (unsigned)~ACC_WRITE_MASK; 116 /* Allow write access to dirty gptes */ 117 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & 118 PT_WRITABLE_MASK; 119 *access &= mask; 120 } 121 122 static inline int FNAME(is_present_gpte)(unsigned long pte) 123 { 124 #if PTTYPE != PTTYPE_EPT 125 return pte & PT_PRESENT_MASK; 126 #else 127 return pte & 7; 128 #endif 129 } 130 131 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte) 132 { 133 #if PTTYPE != PTTYPE_EPT 134 return false; 135 #else 136 return __is_bad_mt_xwr(rsvd_check, gpte); 137 #endif 138 } 139 140 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) 141 { 142 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) || 143 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte); 144 } 145 146 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 147 pt_element_t __user *ptep_user, unsigned index, 148 pt_element_t orig_pte, pt_element_t new_pte) 149 { 150 int npages; 151 pt_element_t ret; 152 pt_element_t *table; 153 struct page *page; 154 155 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page); 156 if (likely(npages == 1)) { 157 table = kmap_atomic(page); 158 ret = CMPXCHG(&table[index], orig_pte, new_pte); 159 kunmap_atomic(table); 160 161 kvm_release_page_dirty(page); 162 } else { 163 struct vm_area_struct *vma; 164 unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK; 165 unsigned long pfn; 166 unsigned long paddr; 167 168 mmap_read_lock(current->mm); 169 vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE); 170 if (!vma || !(vma->vm_flags & VM_PFNMAP)) { 171 mmap_read_unlock(current->mm); 172 return -EFAULT; 173 } 174 pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 175 paddr = pfn << PAGE_SHIFT; 176 table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB); 177 if (!table) { 178 mmap_read_unlock(current->mm); 179 return -EFAULT; 180 } 181 ret = CMPXCHG(&table[index], orig_pte, new_pte); 182 memunmap(table); 183 mmap_read_unlock(current->mm); 184 } 185 186 return (ret != orig_pte); 187 } 188 189 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, 190 struct kvm_mmu_page *sp, u64 *spte, 191 u64 gpte) 192 { 193 if (!FNAME(is_present_gpte)(gpte)) 194 goto no_present; 195 196 /* if accessed bit is not supported prefetch non accessed gpte */ 197 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && 198 !(gpte & PT_GUEST_ACCESSED_MASK)) 199 goto no_present; 200 201 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K)) 202 goto no_present; 203 204 return false; 205 206 no_present: 207 drop_spte(vcpu->kvm, spte); 208 return true; 209 } 210 211 /* 212 * For PTTYPE_EPT, a page table can be executable but not readable 213 * on supported processors. Therefore, set_spte does not automatically 214 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK 215 * to signify readability since it isn't used in the EPT case 216 */ 217 static inline unsigned FNAME(gpte_access)(u64 gpte) 218 { 219 unsigned access; 220 #if PTTYPE == PTTYPE_EPT 221 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | 222 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | 223 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); 224 #else 225 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); 226 BUILD_BUG_ON(ACC_EXEC_MASK != 1); 227 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); 228 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ 229 access ^= (gpte >> PT64_NX_SHIFT); 230 #endif 231 232 return access; 233 } 234 235 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, 236 struct kvm_mmu *mmu, 237 struct guest_walker *walker, 238 gpa_t addr, int write_fault) 239 { 240 unsigned level, index; 241 pt_element_t pte, orig_pte; 242 pt_element_t __user *ptep_user; 243 gfn_t table_gfn; 244 int ret; 245 246 /* dirty/accessed bits are not supported, so no need to update them */ 247 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 248 return 0; 249 250 for (level = walker->max_level; level >= walker->level; --level) { 251 pte = orig_pte = walker->ptes[level - 1]; 252 table_gfn = walker->table_gfn[level - 1]; 253 ptep_user = walker->ptep_user[level - 1]; 254 index = offset_in_page(ptep_user) / sizeof(pt_element_t); 255 if (!(pte & PT_GUEST_ACCESSED_MASK)) { 256 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); 257 pte |= PT_GUEST_ACCESSED_MASK; 258 } 259 if (level == walker->level && write_fault && 260 !(pte & PT_GUEST_DIRTY_MASK)) { 261 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); 262 #if PTTYPE == PTTYPE_EPT 263 if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr)) 264 return -EINVAL; 265 #endif 266 pte |= PT_GUEST_DIRTY_MASK; 267 } 268 if (pte == orig_pte) 269 continue; 270 271 /* 272 * If the slot is read-only, simply do not process the accessed 273 * and dirty bits. This is the correct thing to do if the slot 274 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots 275 * are only supported if the accessed and dirty bits are already 276 * set in the ROM (so that MMIO writes are never needed). 277 * 278 * Note that NPT does not allow this at all and faults, since 279 * it always wants nested page table entries for the guest 280 * page tables to be writable. And EPT works but will simply 281 * overwrite the read-only memory to set the accessed and dirty 282 * bits. 283 */ 284 if (unlikely(!walker->pte_writable[level - 1])) 285 continue; 286 287 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); 288 if (ret) 289 return ret; 290 291 kvm_vcpu_mark_page_dirty(vcpu, table_gfn); 292 walker->ptes[level - 1] = pte; 293 } 294 return 0; 295 } 296 297 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) 298 { 299 unsigned pkeys = 0; 300 #if PTTYPE == 64 301 pte_t pte = {.pte = gpte}; 302 303 pkeys = pte_flags_pkey(pte_flags(pte)); 304 #endif 305 return pkeys; 306 } 307 308 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu, 309 unsigned int level, unsigned int gpte) 310 { 311 /* 312 * For EPT and PAE paging (both variants), bit 7 is either reserved at 313 * all level or indicates a huge page (ignoring CR3/EPTP). In either 314 * case, bit 7 being set terminates the walk. 315 */ 316 #if PTTYPE == 32 317 /* 318 * 32-bit paging requires special handling because bit 7 is ignored if 319 * CR4.PSE=0, not reserved. Clear bit 7 in the gpte if the level is 320 * greater than the last level for which bit 7 is the PAGE_SIZE bit. 321 * 322 * The RHS has bit 7 set iff level < (2 + PSE). If it is clear, bit 7 323 * is not reserved and does not indicate a large page at this level, 324 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case. 325 */ 326 gpte &= level - (PT32_ROOT_LEVEL + mmu->mmu_role.ext.cr4_pse); 327 #endif 328 /* 329 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 330 * iff level <= PG_LEVEL_4K, which for our purpose means 331 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 332 */ 333 gpte |= level - PG_LEVEL_4K - 1; 334 335 return gpte & PT_PAGE_SIZE_MASK; 336 } 337 /* 338 * Fetch a guest pte for a guest virtual address, or for an L2's GPA. 339 */ 340 static int FNAME(walk_addr_generic)(struct guest_walker *walker, 341 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 342 gpa_t addr, u32 access) 343 { 344 int ret; 345 pt_element_t pte; 346 pt_element_t __user *ptep_user; 347 gfn_t table_gfn; 348 u64 pt_access, pte_access; 349 unsigned index, accessed_dirty, pte_pkey; 350 unsigned nested_access; 351 gpa_t pte_gpa; 352 bool have_ad; 353 int offset; 354 u64 walk_nx_mask = 0; 355 const int write_fault = access & PFERR_WRITE_MASK; 356 const int user_fault = access & PFERR_USER_MASK; 357 const int fetch_fault = access & PFERR_FETCH_MASK; 358 u16 errcode = 0; 359 gpa_t real_gpa; 360 gfn_t gfn; 361 362 trace_kvm_mmu_pagetable_walk(addr, access); 363 retry_walk: 364 walker->level = mmu->root_level; 365 pte = mmu->get_guest_pgd(vcpu); 366 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); 367 368 #if PTTYPE == 64 369 walk_nx_mask = 1ULL << PT64_NX_SHIFT; 370 if (walker->level == PT32E_ROOT_LEVEL) { 371 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); 372 trace_kvm_mmu_paging_element(pte, walker->level); 373 if (!FNAME(is_present_gpte)(pte)) 374 goto error; 375 --walker->level; 376 } 377 #endif 378 walker->max_level = walker->level; 379 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); 380 381 /* 382 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging 383 * by the MOV to CR instruction are treated as reads and do not cause the 384 * processor to set the dirty flag in any EPT paging-structure entry. 385 */ 386 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; 387 388 pte_access = ~0; 389 ++walker->level; 390 391 do { 392 unsigned long host_addr; 393 394 pt_access = pte_access; 395 --walker->level; 396 397 index = PT_INDEX(addr, walker->level); 398 table_gfn = gpte_to_gfn(pte); 399 offset = index * sizeof(pt_element_t); 400 pte_gpa = gfn_to_gpa(table_gfn) + offset; 401 402 BUG_ON(walker->level < 1); 403 walker->table_gfn[walker->level - 1] = table_gfn; 404 walker->pte_gpa[walker->level - 1] = pte_gpa; 405 406 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), 407 nested_access, 408 &walker->fault); 409 410 /* 411 * FIXME: This can happen if emulation (for of an INS/OUTS 412 * instruction) triggers a nested page fault. The exit 413 * qualification / exit info field will incorrectly have 414 * "guest page access" as the nested page fault's cause, 415 * instead of "guest page structure access". To fix this, 416 * the x86_exception struct should be augmented with enough 417 * information to fix the exit_qualification or exit_info_1 418 * fields. 419 */ 420 if (unlikely(real_gpa == UNMAPPED_GVA)) 421 return 0; 422 423 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa), 424 &walker->pte_writable[walker->level - 1]); 425 if (unlikely(kvm_is_error_hva(host_addr))) 426 goto error; 427 428 ptep_user = (pt_element_t __user *)((void *)host_addr + offset); 429 if (unlikely(__get_user(pte, ptep_user))) 430 goto error; 431 walker->ptep_user[walker->level - 1] = ptep_user; 432 433 trace_kvm_mmu_paging_element(pte, walker->level); 434 435 /* 436 * Inverting the NX it lets us AND it like other 437 * permission bits. 438 */ 439 pte_access = pt_access & (pte ^ walk_nx_mask); 440 441 if (unlikely(!FNAME(is_present_gpte)(pte))) 442 goto error; 443 444 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) { 445 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; 446 goto error; 447 } 448 449 walker->ptes[walker->level - 1] = pte; 450 451 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 452 walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask); 453 } while (!FNAME(is_last_gpte)(mmu, walker->level, pte)); 454 455 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); 456 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; 457 458 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 459 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); 460 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); 461 if (unlikely(errcode)) 462 goto error; 463 464 gfn = gpte_to_gfn_lvl(pte, walker->level); 465 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; 466 467 if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36()) 468 gfn += pse36_gfn_delta(pte); 469 470 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault); 471 if (real_gpa == UNMAPPED_GVA) 472 return 0; 473 474 walker->gfn = real_gpa >> PAGE_SHIFT; 475 476 if (!write_fault) 477 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); 478 else 479 /* 480 * On a write fault, fold the dirty bit into accessed_dirty. 481 * For modes without A/D bits support accessed_dirty will be 482 * always clear. 483 */ 484 accessed_dirty &= pte >> 485 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); 486 487 if (unlikely(!accessed_dirty)) { 488 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, 489 addr, write_fault); 490 if (unlikely(ret < 0)) 491 goto error; 492 else if (ret) 493 goto retry_walk; 494 } 495 496 pgprintk("%s: pte %llx pte_access %x pt_access %x\n", 497 __func__, (u64)pte, walker->pte_access, 498 walker->pt_access[walker->level - 1]); 499 return 1; 500 501 error: 502 errcode |= write_fault | user_fault; 503 if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu))) 504 errcode |= PFERR_FETCH_MASK; 505 506 walker->fault.vector = PF_VECTOR; 507 walker->fault.error_code_valid = true; 508 walker->fault.error_code = errcode; 509 510 #if PTTYPE == PTTYPE_EPT 511 /* 512 * Use PFERR_RSVD_MASK in error_code to to tell if EPT 513 * misconfiguration requires to be injected. The detection is 514 * done by is_rsvd_bits_set() above. 515 * 516 * We set up the value of exit_qualification to inject: 517 * [2:0] - Derive from the access bits. The exit_qualification might be 518 * out of date if it is serving an EPT misconfiguration. 519 * [5:3] - Calculated by the page walk of the guest EPT page tables 520 * [7:8] - Derived from [7:8] of real exit_qualification 521 * 522 * The other bits are set to 0. 523 */ 524 if (!(errcode & PFERR_RSVD_MASK)) { 525 vcpu->arch.exit_qualification &= 0x180; 526 if (write_fault) 527 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; 528 if (user_fault) 529 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; 530 if (fetch_fault) 531 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; 532 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3; 533 } 534 #endif 535 walker->fault.address = addr; 536 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; 537 walker->fault.async_page_fault = false; 538 539 trace_kvm_mmu_walker_error(walker->fault.error_code); 540 return 0; 541 } 542 543 static int FNAME(walk_addr)(struct guest_walker *walker, 544 struct kvm_vcpu *vcpu, gpa_t addr, u32 access) 545 { 546 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, 547 access); 548 } 549 550 #if PTTYPE != PTTYPE_EPT 551 static int FNAME(walk_addr_nested)(struct guest_walker *walker, 552 struct kvm_vcpu *vcpu, gva_t addr, 553 u32 access) 554 { 555 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, 556 addr, access); 557 } 558 #endif 559 560 static bool 561 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 562 u64 *spte, pt_element_t gpte, bool no_dirty_log) 563 { 564 struct kvm_memory_slot *slot; 565 unsigned pte_access; 566 gfn_t gfn; 567 kvm_pfn_t pfn; 568 569 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) 570 return false; 571 572 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); 573 574 gfn = gpte_to_gfn(gpte); 575 pte_access = sp->role.access & FNAME(gpte_access)(gpte); 576 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 577 578 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, 579 no_dirty_log && (pte_access & ACC_WRITE_MASK)); 580 if (!slot) 581 return false; 582 583 pfn = gfn_to_pfn_memslot_atomic(slot, gfn); 584 if (is_error_pfn(pfn)) 585 return false; 586 587 mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL); 588 kvm_release_pfn_clean(pfn); 589 return true; 590 } 591 592 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, 593 struct guest_walker *gw, int level) 594 { 595 pt_element_t curr_pte; 596 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; 597 u64 mask; 598 int r, index; 599 600 if (level == PG_LEVEL_4K) { 601 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; 602 base_gpa = pte_gpa & ~mask; 603 index = (pte_gpa - base_gpa) / sizeof(pt_element_t); 604 605 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, 606 gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); 607 curr_pte = gw->prefetch_ptes[index]; 608 } else 609 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, 610 &curr_pte, sizeof(curr_pte)); 611 612 return r || curr_pte != gw->ptes[level - 1]; 613 } 614 615 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, 616 u64 *sptep) 617 { 618 struct kvm_mmu_page *sp; 619 pt_element_t *gptep = gw->prefetch_ptes; 620 u64 *spte; 621 int i; 622 623 sp = sptep_to_sp(sptep); 624 625 if (sp->role.level > PG_LEVEL_4K) 626 return; 627 628 /* 629 * If addresses are being invalidated, skip prefetching to avoid 630 * accidentally prefetching those addresses. 631 */ 632 if (unlikely(vcpu->kvm->mmu_notifier_count)) 633 return; 634 635 if (sp->role.direct) 636 return __direct_pte_prefetch(vcpu, sp, sptep); 637 638 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 639 spte = sp->spt + i; 640 641 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 642 if (spte == sptep) 643 continue; 644 645 if (is_shadow_present_pte(*spte)) 646 continue; 647 648 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) 649 break; 650 } 651 } 652 653 /* 654 * Fetch a shadow pte for a specific level in the paging hierarchy. 655 * If the guest tries to write a write-protected page, we need to 656 * emulate this operation, return 1 to indicate this case. 657 */ 658 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 659 struct guest_walker *gw) 660 { 661 struct kvm_mmu_page *sp = NULL; 662 struct kvm_shadow_walk_iterator it; 663 unsigned int direct_access, access; 664 int top_level, ret; 665 gfn_t base_gfn = fault->gfn; 666 667 WARN_ON_ONCE(gw->gfn != base_gfn); 668 direct_access = gw->pte_access; 669 670 top_level = vcpu->arch.mmu->root_level; 671 if (top_level == PT32E_ROOT_LEVEL) 672 top_level = PT32_ROOT_LEVEL; 673 /* 674 * Verify that the top-level gpte is still there. Since the page 675 * is a root page, it is either write protected (and cannot be 676 * changed from now on) or it is invalid (in which case, we don't 677 * really care if it changes underneath us after this point). 678 */ 679 if (FNAME(gpte_changed)(vcpu, gw, top_level)) 680 goto out_gpte_changed; 681 682 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 683 goto out_gpte_changed; 684 685 for (shadow_walk_init(&it, vcpu, fault->addr); 686 shadow_walk_okay(&it) && it.level > gw->level; 687 shadow_walk_next(&it)) { 688 gfn_t table_gfn; 689 690 clear_sp_write_flooding_count(it.sptep); 691 drop_large_spte(vcpu, it.sptep); 692 693 sp = NULL; 694 if (!is_shadow_present_pte(*it.sptep)) { 695 table_gfn = gw->table_gfn[it.level - 2]; 696 access = gw->pt_access[it.level - 2]; 697 sp = kvm_mmu_get_page(vcpu, table_gfn, fault->addr, 698 it.level-1, false, access); 699 /* 700 * We must synchronize the pagetable before linking it 701 * because the guest doesn't need to flush tlb when 702 * the gpte is changed from non-present to present. 703 * Otherwise, the guest may use the wrong mapping. 704 * 705 * For PG_LEVEL_4K, kvm_mmu_get_page() has already 706 * synchronized it transiently via kvm_sync_page(). 707 * 708 * For higher level pagetable, we synchronize it via 709 * the slower mmu_sync_children(). If it needs to 710 * break, some progress has been made; return 711 * RET_PF_RETRY and retry on the next #PF. 712 * KVM_REQ_MMU_SYNC is not necessary but it 713 * expedites the process. 714 */ 715 if (sp->unsync_children && 716 mmu_sync_children(vcpu, sp, false)) 717 return RET_PF_RETRY; 718 } 719 720 /* 721 * Verify that the gpte in the page we've just write 722 * protected is still there. 723 */ 724 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) 725 goto out_gpte_changed; 726 727 if (sp) 728 link_shadow_page(vcpu, it.sptep, sp); 729 } 730 731 kvm_mmu_hugepage_adjust(vcpu, fault); 732 733 trace_kvm_mmu_spte_requested(fault); 734 735 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { 736 clear_sp_write_flooding_count(it.sptep); 737 738 /* 739 * We cannot overwrite existing page tables with an NX 740 * large page, as the leaf could be executable. 741 */ 742 if (fault->nx_huge_page_workaround_enabled) 743 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 744 745 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 746 if (it.level == fault->goal_level) 747 break; 748 749 validate_direct_spte(vcpu, it.sptep, direct_access); 750 751 drop_large_spte(vcpu, it.sptep); 752 753 if (!is_shadow_present_pte(*it.sptep)) { 754 sp = kvm_mmu_get_page(vcpu, base_gfn, fault->addr, 755 it.level - 1, true, direct_access); 756 link_shadow_page(vcpu, it.sptep, sp); 757 if (fault->huge_page_disallowed && 758 fault->req_level >= it.level) 759 account_huge_nx_page(vcpu->kvm, sp); 760 } 761 } 762 763 if (WARN_ON_ONCE(it.level != fault->goal_level)) 764 return -EFAULT; 765 766 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access, 767 base_gfn, fault->pfn, fault); 768 if (ret == RET_PF_SPURIOUS) 769 return ret; 770 771 FNAME(pte_prefetch)(vcpu, gw, it.sptep); 772 ++vcpu->stat.pf_fixed; 773 return ret; 774 775 out_gpte_changed: 776 return RET_PF_RETRY; 777 } 778 779 /* 780 * To see whether the mapped gfn can write its page table in the current 781 * mapping. 782 * 783 * It is the helper function of FNAME(page_fault). When guest uses large page 784 * size to map the writable gfn which is used as current page table, we should 785 * force kvm to use small page size to map it because new shadow page will be 786 * created when kvm establishes shadow page table that stop kvm using large 787 * page size. Do it early can avoid unnecessary #PF and emulation. 788 * 789 * @write_fault_to_shadow_pgtable will return true if the fault gfn is 790 * currently used as its page table. 791 * 792 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok 793 * since the PDPT is always shadowed, that means, we can not use large page 794 * size to map the gfn which is used as PDPT. 795 */ 796 static bool 797 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, 798 struct guest_walker *walker, bool user_fault, 799 bool *write_fault_to_shadow_pgtable) 800 { 801 int level; 802 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); 803 bool self_changed = false; 804 805 if (!(walker->pte_access & ACC_WRITE_MASK || 806 (!is_cr0_wp(vcpu->arch.mmu) && !user_fault))) 807 return false; 808 809 for (level = walker->level; level <= walker->max_level; level++) { 810 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; 811 812 self_changed |= !(gfn & mask); 813 *write_fault_to_shadow_pgtable |= !gfn; 814 } 815 816 return self_changed; 817 } 818 819 /* 820 * Page fault handler. There are several causes for a page fault: 821 * - there is no shadow pte for the guest pte 822 * - write access through a shadow pte marked read only so that we can set 823 * the dirty bit 824 * - write access to a shadow pte marked read only so we can update the page 825 * dirty bitmap, when userspace requests it 826 * - mmio access; in this case we will never install a present shadow pte 827 * - normal guest page fault due to the guest pte marked not present, not 828 * writable, or not executable 829 * 830 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or 831 * a negative value on error. 832 */ 833 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 834 { 835 struct guest_walker walker; 836 int r; 837 unsigned long mmu_seq; 838 bool is_self_change_mapping; 839 840 pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code); 841 WARN_ON_ONCE(fault->is_tdp); 842 843 /* 844 * Look up the guest pte for the faulting address. 845 * If PFEC.RSVD is set, this is a shadow page fault. 846 * The bit needs to be cleared before walking guest page tables. 847 */ 848 r = FNAME(walk_addr)(&walker, vcpu, fault->addr, 849 fault->error_code & ~PFERR_RSVD_MASK); 850 851 /* 852 * The page is not mapped by the guest. Let the guest handle it. 853 */ 854 if (!r) { 855 pgprintk("%s: guest page fault\n", __func__); 856 if (!fault->prefetch) 857 kvm_inject_emulated_page_fault(vcpu, &walker.fault); 858 859 return RET_PF_RETRY; 860 } 861 862 fault->gfn = walker.gfn; 863 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 864 865 if (page_fault_handle_page_track(vcpu, fault)) { 866 shadow_page_table_clear_flood(vcpu, fault->addr); 867 return RET_PF_EMULATE; 868 } 869 870 r = mmu_topup_memory_caches(vcpu, true); 871 if (r) 872 return r; 873 874 vcpu->arch.write_fault_to_shadow_pgtable = false; 875 876 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, 877 &walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable); 878 879 if (is_self_change_mapping) 880 fault->max_level = PG_LEVEL_4K; 881 else 882 fault->max_level = walker.level; 883 884 mmu_seq = vcpu->kvm->mmu_notifier_seq; 885 smp_rmb(); 886 887 if (kvm_faultin_pfn(vcpu, fault, &r)) 888 return r; 889 890 if (handle_abnormal_pfn(vcpu, fault, walker.pte_access, &r)) 891 return r; 892 893 /* 894 * Do not change pte_access if the pfn is a mmio page, otherwise 895 * we will cache the incorrect access into mmio spte. 896 */ 897 if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) && 898 !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) { 899 walker.pte_access |= ACC_WRITE_MASK; 900 walker.pte_access &= ~ACC_USER_MASK; 901 902 /* 903 * If we converted a user page to a kernel page, 904 * so that the kernel can write to it when cr0.wp=0, 905 * then we should prevent the kernel from executing it 906 * if SMEP is enabled. 907 */ 908 if (is_cr4_smep(vcpu->arch.mmu)) 909 walker.pte_access &= ~ACC_EXEC_MASK; 910 } 911 912 r = RET_PF_RETRY; 913 write_lock(&vcpu->kvm->mmu_lock); 914 915 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 916 goto out_unlock; 917 918 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); 919 r = make_mmu_pages_available(vcpu); 920 if (r) 921 goto out_unlock; 922 r = FNAME(fetch)(vcpu, fault, &walker); 923 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); 924 925 out_unlock: 926 write_unlock(&vcpu->kvm->mmu_lock); 927 kvm_release_pfn_clean(fault->pfn); 928 return r; 929 } 930 931 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) 932 { 933 int offset = 0; 934 935 WARN_ON(sp->role.level != PG_LEVEL_4K); 936 937 if (PTTYPE == 32) 938 offset = sp->role.quadrant << PT64_LEVEL_BITS; 939 940 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); 941 } 942 943 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) 944 { 945 struct kvm_shadow_walk_iterator iterator; 946 struct kvm_mmu_page *sp; 947 u64 old_spte; 948 int level; 949 u64 *sptep; 950 951 vcpu_clear_mmio_info(vcpu, gva); 952 953 /* 954 * No need to check return value here, rmap_can_add() can 955 * help us to skip pte prefetch later. 956 */ 957 mmu_topup_memory_caches(vcpu, true); 958 959 if (!VALID_PAGE(root_hpa)) { 960 WARN_ON(1); 961 return; 962 } 963 964 write_lock(&vcpu->kvm->mmu_lock); 965 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) { 966 level = iterator.level; 967 sptep = iterator.sptep; 968 969 sp = sptep_to_sp(sptep); 970 old_spte = *sptep; 971 if (is_last_spte(old_spte, level)) { 972 pt_element_t gpte; 973 gpa_t pte_gpa; 974 975 if (!sp->unsync) 976 break; 977 978 pte_gpa = FNAME(get_level1_sp_gpa)(sp); 979 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); 980 981 mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL); 982 if (is_shadow_present_pte(old_spte)) 983 kvm_flush_remote_tlbs_with_address(vcpu->kvm, 984 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 985 986 if (!rmap_can_add(vcpu)) 987 break; 988 989 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 990 sizeof(pt_element_t))) 991 break; 992 993 FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false); 994 } 995 996 if (!sp->unsync_children) 997 break; 998 } 999 write_unlock(&vcpu->kvm->mmu_lock); 1000 } 1001 1002 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ 1003 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access, 1004 struct x86_exception *exception) 1005 { 1006 struct guest_walker walker; 1007 gpa_t gpa = UNMAPPED_GVA; 1008 int r; 1009 1010 r = FNAME(walk_addr)(&walker, vcpu, addr, access); 1011 1012 if (r) { 1013 gpa = gfn_to_gpa(walker.gfn); 1014 gpa |= addr & ~PAGE_MASK; 1015 } else if (exception) 1016 *exception = walker.fault; 1017 1018 return gpa; 1019 } 1020 1021 #if PTTYPE != PTTYPE_EPT 1022 /* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */ 1023 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr, 1024 u32 access, 1025 struct x86_exception *exception) 1026 { 1027 struct guest_walker walker; 1028 gpa_t gpa = UNMAPPED_GVA; 1029 int r; 1030 1031 #ifndef CONFIG_X86_64 1032 /* A 64-bit GVA should be impossible on 32-bit KVM. */ 1033 WARN_ON_ONCE(vaddr >> 32); 1034 #endif 1035 1036 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); 1037 1038 if (r) { 1039 gpa = gfn_to_gpa(walker.gfn); 1040 gpa |= vaddr & ~PAGE_MASK; 1041 } else if (exception) 1042 *exception = walker.fault; 1043 1044 return gpa; 1045 } 1046 #endif 1047 1048 /* 1049 * Using the cached information from sp->gfns is safe because: 1050 * - The spte has a reference to the struct page, so the pfn for a given gfn 1051 * can't change unless all sptes pointing to it are nuked first. 1052 * 1053 * Returns 1054 * < 0: the sp should be zapped 1055 * 0: the sp is synced and no tlb flushing is required 1056 * > 0: the sp is synced and tlb flushing is required 1057 */ 1058 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1059 { 1060 union kvm_mmu_page_role mmu_role = vcpu->arch.mmu->mmu_role.base; 1061 int i; 1062 bool host_writable; 1063 gpa_t first_pte_gpa; 1064 bool flush = false; 1065 1066 /* 1067 * Ignore various flags when verifying that it's safe to sync a shadow 1068 * page using the current MMU context. 1069 * 1070 * - level: not part of the overall MMU role and will never match as the MMU's 1071 * level tracks the root level 1072 * - access: updated based on the new guest PTE 1073 * - quadrant: not part of the overall MMU role (similar to level) 1074 */ 1075 const union kvm_mmu_page_role sync_role_ign = { 1076 .level = 0xf, 1077 .access = 0x7, 1078 .quadrant = 0x3, 1079 }; 1080 1081 /* 1082 * Direct pages can never be unsync, and KVM should never attempt to 1083 * sync a shadow page for a different MMU context, e.g. if the role 1084 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1085 * reserved bits checks will be wrong, etc... 1086 */ 1087 if (WARN_ON_ONCE(sp->role.direct || 1088 (sp->role.word ^ mmu_role.word) & ~sync_role_ign.word)) 1089 return -1; 1090 1091 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); 1092 1093 for (i = 0; i < PT64_ENT_PER_PAGE; i++) { 1094 u64 *sptep, spte; 1095 struct kvm_memory_slot *slot; 1096 unsigned pte_access; 1097 pt_element_t gpte; 1098 gpa_t pte_gpa; 1099 gfn_t gfn; 1100 1101 if (!sp->spt[i]) 1102 continue; 1103 1104 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); 1105 1106 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 1107 sizeof(pt_element_t))) 1108 return -1; 1109 1110 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { 1111 flush = true; 1112 continue; 1113 } 1114 1115 gfn = gpte_to_gfn(gpte); 1116 pte_access = sp->role.access; 1117 pte_access &= FNAME(gpte_access)(gpte); 1118 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 1119 1120 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access)) 1121 continue; 1122 1123 if (gfn != sp->gfns[i]) { 1124 drop_spte(vcpu->kvm, &sp->spt[i]); 1125 flush = true; 1126 continue; 1127 } 1128 1129 sptep = &sp->spt[i]; 1130 spte = *sptep; 1131 host_writable = spte & shadow_host_writable_mask; 1132 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1133 make_spte(vcpu, sp, slot, pte_access, gfn, 1134 spte_to_pfn(spte), spte, true, false, 1135 host_writable, &spte); 1136 1137 flush |= mmu_spte_update(sptep, spte); 1138 } 1139 1140 return flush; 1141 } 1142 1143 #undef pt_element_t 1144 #undef guest_walker 1145 #undef FNAME 1146 #undef PT_BASE_ADDR_MASK 1147 #undef PT_INDEX 1148 #undef PT_LVL_ADDR_MASK 1149 #undef PT_LVL_OFFSET_MASK 1150 #undef PT_LEVEL_BITS 1151 #undef PT_MAX_FULL_LEVELS 1152 #undef gpte_to_gfn 1153 #undef gpte_to_gfn_lvl 1154 #undef CMPXCHG 1155 #undef PT_GUEST_ACCESSED_MASK 1156 #undef PT_GUEST_DIRTY_MASK 1157 #undef PT_GUEST_DIRTY_SHIFT 1158 #undef PT_GUEST_ACCESSED_SHIFT 1159 #undef PT_HAVE_ACCESSED_DIRTY 1160