1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 /* 19 * We need the mmu code to access both 32-bit and 64-bit guest ptes, 20 * so the code in this file is compiled twice, once per pte size. 21 */ 22 23 #if PTTYPE == 64 24 #define pt_element_t u64 25 #define guest_walker guest_walker64 26 #define FNAME(name) paging##64_##name 27 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK 28 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) 29 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) 30 #define PT_INDEX(addr, level) PT64_INDEX(addr, level) 31 #define PT_LEVEL_BITS PT64_LEVEL_BITS 32 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 33 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 34 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 35 #ifdef CONFIG_X86_64 36 #define PT_MAX_FULL_LEVELS 4 37 #define CMPXCHG cmpxchg 38 #else 39 #define CMPXCHG cmpxchg64 40 #define PT_MAX_FULL_LEVELS 2 41 #endif 42 #elif PTTYPE == 32 43 #define pt_element_t u32 44 #define guest_walker guest_walker32 45 #define FNAME(name) paging##32_##name 46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK 47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) 48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) 49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level) 50 #define PT_LEVEL_BITS PT32_LEVEL_BITS 51 #define PT_MAX_FULL_LEVELS 2 52 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 53 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 54 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 55 #define CMPXCHG cmpxchg 56 #elif PTTYPE == PTTYPE_EPT 57 #define pt_element_t u64 58 #define guest_walker guest_walkerEPT 59 #define FNAME(name) ept_##name 60 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK 61 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) 62 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) 63 #define PT_INDEX(addr, level) PT64_INDEX(addr, level) 64 #define PT_LEVEL_BITS PT64_LEVEL_BITS 65 #define PT_GUEST_DIRTY_SHIFT 9 66 #define PT_GUEST_ACCESSED_SHIFT 8 67 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad) 68 #define CMPXCHG cmpxchg64 69 #define PT_MAX_FULL_LEVELS 4 70 #else 71 #error Invalid PTTYPE value 72 #endif 73 74 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) 75 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) 76 77 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) 78 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) 79 80 /* 81 * The guest_walker structure emulates the behavior of the hardware page 82 * table walker. 83 */ 84 struct guest_walker { 85 int level; 86 unsigned max_level; 87 gfn_t table_gfn[PT_MAX_FULL_LEVELS]; 88 pt_element_t ptes[PT_MAX_FULL_LEVELS]; 89 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; 90 gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; 91 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; 92 bool pte_writable[PT_MAX_FULL_LEVELS]; 93 unsigned pt_access; 94 unsigned pte_access; 95 gfn_t gfn; 96 struct x86_exception fault; 97 }; 98 99 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) 100 { 101 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; 102 } 103 104 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, 105 unsigned gpte) 106 { 107 unsigned mask; 108 109 /* dirty bit is not supported, so no need to track it */ 110 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 111 return; 112 113 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); 114 115 mask = (unsigned)~ACC_WRITE_MASK; 116 /* Allow write access to dirty gptes */ 117 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & 118 PT_WRITABLE_MASK; 119 *access &= mask; 120 } 121 122 static inline int FNAME(is_present_gpte)(unsigned long pte) 123 { 124 #if PTTYPE != PTTYPE_EPT 125 return pte & PT_PRESENT_MASK; 126 #else 127 return pte & 7; 128 #endif 129 } 130 131 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 132 pt_element_t __user *ptep_user, unsigned index, 133 pt_element_t orig_pte, pt_element_t new_pte) 134 { 135 int npages; 136 pt_element_t ret; 137 pt_element_t *table; 138 struct page *page; 139 140 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page); 141 if (likely(npages == 1)) { 142 table = kmap_atomic(page); 143 ret = CMPXCHG(&table[index], orig_pte, new_pte); 144 kunmap_atomic(table); 145 146 kvm_release_page_dirty(page); 147 } else { 148 struct vm_area_struct *vma; 149 unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK; 150 unsigned long pfn; 151 unsigned long paddr; 152 153 down_read(¤t->mm->mmap_sem); 154 vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE); 155 if (!vma || !(vma->vm_flags & VM_PFNMAP)) { 156 up_read(¤t->mm->mmap_sem); 157 return -EFAULT; 158 } 159 pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 160 paddr = pfn << PAGE_SHIFT; 161 table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB); 162 if (!table) { 163 up_read(¤t->mm->mmap_sem); 164 return -EFAULT; 165 } 166 ret = CMPXCHG(&table[index], orig_pte, new_pte); 167 memunmap(table); 168 up_read(¤t->mm->mmap_sem); 169 } 170 171 return (ret != orig_pte); 172 } 173 174 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, 175 struct kvm_mmu_page *sp, u64 *spte, 176 u64 gpte) 177 { 178 if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)) 179 goto no_present; 180 181 if (!FNAME(is_present_gpte)(gpte)) 182 goto no_present; 183 184 /* if accessed bit is not supported prefetch non accessed gpte */ 185 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && 186 !(gpte & PT_GUEST_ACCESSED_MASK)) 187 goto no_present; 188 189 return false; 190 191 no_present: 192 drop_spte(vcpu->kvm, spte); 193 return true; 194 } 195 196 /* 197 * For PTTYPE_EPT, a page table can be executable but not readable 198 * on supported processors. Therefore, set_spte does not automatically 199 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK 200 * to signify readability since it isn't used in the EPT case 201 */ 202 static inline unsigned FNAME(gpte_access)(u64 gpte) 203 { 204 unsigned access; 205 #if PTTYPE == PTTYPE_EPT 206 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | 207 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | 208 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); 209 #else 210 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); 211 BUILD_BUG_ON(ACC_EXEC_MASK != 1); 212 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); 213 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ 214 access ^= (gpte >> PT64_NX_SHIFT); 215 #endif 216 217 return access; 218 } 219 220 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, 221 struct kvm_mmu *mmu, 222 struct guest_walker *walker, 223 int write_fault) 224 { 225 unsigned level, index; 226 pt_element_t pte, orig_pte; 227 pt_element_t __user *ptep_user; 228 gfn_t table_gfn; 229 int ret; 230 231 /* dirty/accessed bits are not supported, so no need to update them */ 232 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 233 return 0; 234 235 for (level = walker->max_level; level >= walker->level; --level) { 236 pte = orig_pte = walker->ptes[level - 1]; 237 table_gfn = walker->table_gfn[level - 1]; 238 ptep_user = walker->ptep_user[level - 1]; 239 index = offset_in_page(ptep_user) / sizeof(pt_element_t); 240 if (!(pte & PT_GUEST_ACCESSED_MASK)) { 241 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); 242 pte |= PT_GUEST_ACCESSED_MASK; 243 } 244 if (level == walker->level && write_fault && 245 !(pte & PT_GUEST_DIRTY_MASK)) { 246 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); 247 #if PTTYPE == PTTYPE_EPT 248 if (kvm_arch_write_log_dirty(vcpu)) 249 return -EINVAL; 250 #endif 251 pte |= PT_GUEST_DIRTY_MASK; 252 } 253 if (pte == orig_pte) 254 continue; 255 256 /* 257 * If the slot is read-only, simply do not process the accessed 258 * and dirty bits. This is the correct thing to do if the slot 259 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots 260 * are only supported if the accessed and dirty bits are already 261 * set in the ROM (so that MMIO writes are never needed). 262 * 263 * Note that NPT does not allow this at all and faults, since 264 * it always wants nested page table entries for the guest 265 * page tables to be writable. And EPT works but will simply 266 * overwrite the read-only memory to set the accessed and dirty 267 * bits. 268 */ 269 if (unlikely(!walker->pte_writable[level - 1])) 270 continue; 271 272 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); 273 if (ret) 274 return ret; 275 276 kvm_vcpu_mark_page_dirty(vcpu, table_gfn); 277 walker->ptes[level - 1] = pte; 278 } 279 return 0; 280 } 281 282 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) 283 { 284 unsigned pkeys = 0; 285 #if PTTYPE == 64 286 pte_t pte = {.pte = gpte}; 287 288 pkeys = pte_flags_pkey(pte_flags(pte)); 289 #endif 290 return pkeys; 291 } 292 293 /* 294 * Fetch a guest pte for a guest virtual address 295 */ 296 static int FNAME(walk_addr_generic)(struct guest_walker *walker, 297 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 298 gva_t addr, u32 access) 299 { 300 int ret; 301 pt_element_t pte; 302 pt_element_t __user *uninitialized_var(ptep_user); 303 gfn_t table_gfn; 304 u64 pt_access, pte_access; 305 unsigned index, accessed_dirty, pte_pkey; 306 unsigned nested_access; 307 gpa_t pte_gpa; 308 bool have_ad; 309 int offset; 310 u64 walk_nx_mask = 0; 311 const int write_fault = access & PFERR_WRITE_MASK; 312 const int user_fault = access & PFERR_USER_MASK; 313 const int fetch_fault = access & PFERR_FETCH_MASK; 314 u16 errcode = 0; 315 gpa_t real_gpa; 316 gfn_t gfn; 317 318 trace_kvm_mmu_pagetable_walk(addr, access); 319 retry_walk: 320 walker->level = mmu->root_level; 321 pte = mmu->get_cr3(vcpu); 322 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); 323 324 #if PTTYPE == 64 325 walk_nx_mask = 1ULL << PT64_NX_SHIFT; 326 if (walker->level == PT32E_ROOT_LEVEL) { 327 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); 328 trace_kvm_mmu_paging_element(pte, walker->level); 329 if (!FNAME(is_present_gpte)(pte)) 330 goto error; 331 --walker->level; 332 } 333 #endif 334 walker->max_level = walker->level; 335 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); 336 337 /* 338 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging 339 * by the MOV to CR instruction are treated as reads and do not cause the 340 * processor to set the dirty flag in any EPT paging-structure entry. 341 */ 342 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; 343 344 pte_access = ~0; 345 ++walker->level; 346 347 do { 348 gfn_t real_gfn; 349 unsigned long host_addr; 350 351 pt_access = pte_access; 352 --walker->level; 353 354 index = PT_INDEX(addr, walker->level); 355 table_gfn = gpte_to_gfn(pte); 356 offset = index * sizeof(pt_element_t); 357 pte_gpa = gfn_to_gpa(table_gfn) + offset; 358 359 BUG_ON(walker->level < 1); 360 walker->table_gfn[walker->level - 1] = table_gfn; 361 walker->pte_gpa[walker->level - 1] = pte_gpa; 362 363 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), 364 nested_access, 365 &walker->fault); 366 367 /* 368 * FIXME: This can happen if emulation (for of an INS/OUTS 369 * instruction) triggers a nested page fault. The exit 370 * qualification / exit info field will incorrectly have 371 * "guest page access" as the nested page fault's cause, 372 * instead of "guest page structure access". To fix this, 373 * the x86_exception struct should be augmented with enough 374 * information to fix the exit_qualification or exit_info_1 375 * fields. 376 */ 377 if (unlikely(real_gfn == UNMAPPED_GVA)) 378 return 0; 379 380 real_gfn = gpa_to_gfn(real_gfn); 381 382 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn, 383 &walker->pte_writable[walker->level - 1]); 384 if (unlikely(kvm_is_error_hva(host_addr))) 385 goto error; 386 387 ptep_user = (pt_element_t __user *)((void *)host_addr + offset); 388 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) 389 goto error; 390 walker->ptep_user[walker->level - 1] = ptep_user; 391 392 trace_kvm_mmu_paging_element(pte, walker->level); 393 394 /* 395 * Inverting the NX it lets us AND it like other 396 * permission bits. 397 */ 398 pte_access = pt_access & (pte ^ walk_nx_mask); 399 400 if (unlikely(!FNAME(is_present_gpte)(pte))) 401 goto error; 402 403 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) { 404 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; 405 goto error; 406 } 407 408 walker->ptes[walker->level - 1] = pte; 409 } while (!is_last_gpte(mmu, walker->level, pte)); 410 411 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); 412 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; 413 414 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 415 walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask); 416 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); 417 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); 418 if (unlikely(errcode)) 419 goto error; 420 421 gfn = gpte_to_gfn_lvl(pte, walker->level); 422 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; 423 424 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36()) 425 gfn += pse36_gfn_delta(pte); 426 427 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault); 428 if (real_gpa == UNMAPPED_GVA) 429 return 0; 430 431 walker->gfn = real_gpa >> PAGE_SHIFT; 432 433 if (!write_fault) 434 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); 435 else 436 /* 437 * On a write fault, fold the dirty bit into accessed_dirty. 438 * For modes without A/D bits support accessed_dirty will be 439 * always clear. 440 */ 441 accessed_dirty &= pte >> 442 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); 443 444 if (unlikely(!accessed_dirty)) { 445 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault); 446 if (unlikely(ret < 0)) 447 goto error; 448 else if (ret) 449 goto retry_walk; 450 } 451 452 pgprintk("%s: pte %llx pte_access %x pt_access %x\n", 453 __func__, (u64)pte, walker->pte_access, walker->pt_access); 454 return 1; 455 456 error: 457 errcode |= write_fault | user_fault; 458 if (fetch_fault && (mmu->nx || 459 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))) 460 errcode |= PFERR_FETCH_MASK; 461 462 walker->fault.vector = PF_VECTOR; 463 walker->fault.error_code_valid = true; 464 walker->fault.error_code = errcode; 465 466 #if PTTYPE == PTTYPE_EPT 467 /* 468 * Use PFERR_RSVD_MASK in error_code to to tell if EPT 469 * misconfiguration requires to be injected. The detection is 470 * done by is_rsvd_bits_set() above. 471 * 472 * We set up the value of exit_qualification to inject: 473 * [2:0] - Derive from the access bits. The exit_qualification might be 474 * out of date if it is serving an EPT misconfiguration. 475 * [5:3] - Calculated by the page walk of the guest EPT page tables 476 * [7:8] - Derived from [7:8] of real exit_qualification 477 * 478 * The other bits are set to 0. 479 */ 480 if (!(errcode & PFERR_RSVD_MASK)) { 481 vcpu->arch.exit_qualification &= 0x180; 482 if (write_fault) 483 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; 484 if (user_fault) 485 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; 486 if (fetch_fault) 487 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; 488 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3; 489 } 490 #endif 491 walker->fault.address = addr; 492 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; 493 494 trace_kvm_mmu_walker_error(walker->fault.error_code); 495 return 0; 496 } 497 498 static int FNAME(walk_addr)(struct guest_walker *walker, 499 struct kvm_vcpu *vcpu, gva_t addr, u32 access) 500 { 501 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, 502 access); 503 } 504 505 #if PTTYPE != PTTYPE_EPT 506 static int FNAME(walk_addr_nested)(struct guest_walker *walker, 507 struct kvm_vcpu *vcpu, gva_t addr, 508 u32 access) 509 { 510 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, 511 addr, access); 512 } 513 #endif 514 515 static bool 516 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 517 u64 *spte, pt_element_t gpte, bool no_dirty_log) 518 { 519 unsigned pte_access; 520 gfn_t gfn; 521 kvm_pfn_t pfn; 522 523 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) 524 return false; 525 526 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); 527 528 gfn = gpte_to_gfn(gpte); 529 pte_access = sp->role.access & FNAME(gpte_access)(gpte); 530 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 531 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, 532 no_dirty_log && (pte_access & ACC_WRITE_MASK)); 533 if (is_error_pfn(pfn)) 534 return false; 535 536 /* 537 * we call mmu_set_spte() with host_writable = true because 538 * pte_prefetch_gfn_to_pfn always gets a writable pfn. 539 */ 540 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn, 541 true, true); 542 543 kvm_release_pfn_clean(pfn); 544 return true; 545 } 546 547 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 548 u64 *spte, const void *pte) 549 { 550 pt_element_t gpte = *(const pt_element_t *)pte; 551 552 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false); 553 } 554 555 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, 556 struct guest_walker *gw, int level) 557 { 558 pt_element_t curr_pte; 559 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; 560 u64 mask; 561 int r, index; 562 563 if (level == PT_PAGE_TABLE_LEVEL) { 564 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; 565 base_gpa = pte_gpa & ~mask; 566 index = (pte_gpa - base_gpa) / sizeof(pt_element_t); 567 568 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, 569 gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); 570 curr_pte = gw->prefetch_ptes[index]; 571 } else 572 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, 573 &curr_pte, sizeof(curr_pte)); 574 575 return r || curr_pte != gw->ptes[level - 1]; 576 } 577 578 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, 579 u64 *sptep) 580 { 581 struct kvm_mmu_page *sp; 582 pt_element_t *gptep = gw->prefetch_ptes; 583 u64 *spte; 584 int i; 585 586 sp = page_header(__pa(sptep)); 587 588 if (sp->role.level > PT_PAGE_TABLE_LEVEL) 589 return; 590 591 if (sp->role.direct) 592 return __direct_pte_prefetch(vcpu, sp, sptep); 593 594 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 595 spte = sp->spt + i; 596 597 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 598 if (spte == sptep) 599 continue; 600 601 if (is_shadow_present_pte(*spte)) 602 continue; 603 604 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) 605 break; 606 } 607 } 608 609 /* 610 * Fetch a shadow pte for a specific level in the paging hierarchy. 611 * If the guest tries to write a write-protected page, we need to 612 * emulate this operation, return 1 to indicate this case. 613 */ 614 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, 615 struct guest_walker *gw, 616 int write_fault, int hlevel, 617 kvm_pfn_t pfn, bool map_writable, bool prefault, 618 bool lpage_disallowed) 619 { 620 struct kvm_mmu_page *sp = NULL; 621 struct kvm_shadow_walk_iterator it; 622 unsigned direct_access, access = gw->pt_access; 623 int top_level, ret; 624 gfn_t gfn, base_gfn; 625 626 direct_access = gw->pte_access; 627 628 top_level = vcpu->arch.mmu->root_level; 629 if (top_level == PT32E_ROOT_LEVEL) 630 top_level = PT32_ROOT_LEVEL; 631 /* 632 * Verify that the top-level gpte is still there. Since the page 633 * is a root page, it is either write protected (and cannot be 634 * changed from now on) or it is invalid (in which case, we don't 635 * really care if it changes underneath us after this point). 636 */ 637 if (FNAME(gpte_changed)(vcpu, gw, top_level)) 638 goto out_gpte_changed; 639 640 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 641 goto out_gpte_changed; 642 643 for (shadow_walk_init(&it, vcpu, addr); 644 shadow_walk_okay(&it) && it.level > gw->level; 645 shadow_walk_next(&it)) { 646 gfn_t table_gfn; 647 648 clear_sp_write_flooding_count(it.sptep); 649 drop_large_spte(vcpu, it.sptep); 650 651 sp = NULL; 652 if (!is_shadow_present_pte(*it.sptep)) { 653 table_gfn = gw->table_gfn[it.level - 2]; 654 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, 655 false, access); 656 } 657 658 /* 659 * Verify that the gpte in the page we've just write 660 * protected is still there. 661 */ 662 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) 663 goto out_gpte_changed; 664 665 if (sp) 666 link_shadow_page(vcpu, it.sptep, sp); 667 } 668 669 /* 670 * FNAME(page_fault) might have clobbered the bottom bits of 671 * gw->gfn, restore them from the virtual address. 672 */ 673 gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT); 674 base_gfn = gfn; 675 676 trace_kvm_mmu_spte_requested(addr, gw->level, pfn); 677 678 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { 679 clear_sp_write_flooding_count(it.sptep); 680 681 /* 682 * We cannot overwrite existing page tables with an NX 683 * large page, as the leaf could be executable. 684 */ 685 disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel); 686 687 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 688 if (it.level == hlevel) 689 break; 690 691 validate_direct_spte(vcpu, it.sptep, direct_access); 692 693 drop_large_spte(vcpu, it.sptep); 694 695 if (!is_shadow_present_pte(*it.sptep)) { 696 sp = kvm_mmu_get_page(vcpu, base_gfn, addr, 697 it.level - 1, true, direct_access); 698 link_shadow_page(vcpu, it.sptep, sp); 699 if (lpage_disallowed) 700 account_huge_nx_page(vcpu->kvm, sp); 701 } 702 } 703 704 ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, 705 it.level, base_gfn, pfn, prefault, map_writable); 706 FNAME(pte_prefetch)(vcpu, gw, it.sptep); 707 ++vcpu->stat.pf_fixed; 708 return ret; 709 710 out_gpte_changed: 711 return RET_PF_RETRY; 712 } 713 714 /* 715 * To see whether the mapped gfn can write its page table in the current 716 * mapping. 717 * 718 * It is the helper function of FNAME(page_fault). When guest uses large page 719 * size to map the writable gfn which is used as current page table, we should 720 * force kvm to use small page size to map it because new shadow page will be 721 * created when kvm establishes shadow page table that stop kvm using large 722 * page size. Do it early can avoid unnecessary #PF and emulation. 723 * 724 * @write_fault_to_shadow_pgtable will return true if the fault gfn is 725 * currently used as its page table. 726 * 727 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok 728 * since the PDPT is always shadowed, that means, we can not use large page 729 * size to map the gfn which is used as PDPT. 730 */ 731 static bool 732 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, 733 struct guest_walker *walker, int user_fault, 734 bool *write_fault_to_shadow_pgtable) 735 { 736 int level; 737 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); 738 bool self_changed = false; 739 740 if (!(walker->pte_access & ACC_WRITE_MASK || 741 (!is_write_protection(vcpu) && !user_fault))) 742 return false; 743 744 for (level = walker->level; level <= walker->max_level; level++) { 745 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; 746 747 self_changed |= !(gfn & mask); 748 *write_fault_to_shadow_pgtable |= !gfn; 749 } 750 751 return self_changed; 752 } 753 754 /* 755 * Page fault handler. There are several causes for a page fault: 756 * - there is no shadow pte for the guest pte 757 * - write access through a shadow pte marked read only so that we can set 758 * the dirty bit 759 * - write access to a shadow pte marked read only so we can update the page 760 * dirty bitmap, when userspace requests it 761 * - mmio access; in this case we will never install a present shadow pte 762 * - normal guest page fault due to the guest pte marked not present, not 763 * writable, or not executable 764 * 765 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or 766 * a negative value on error. 767 */ 768 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code, 769 bool prefault) 770 { 771 int write_fault = error_code & PFERR_WRITE_MASK; 772 int user_fault = error_code & PFERR_USER_MASK; 773 struct guest_walker walker; 774 int r; 775 kvm_pfn_t pfn; 776 int level = PT_PAGE_TABLE_LEVEL; 777 unsigned long mmu_seq; 778 bool map_writable, is_self_change_mapping; 779 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) && 780 is_nx_huge_page_enabled(); 781 bool force_pt_level = lpage_disallowed; 782 783 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); 784 785 r = mmu_topup_memory_caches(vcpu); 786 if (r) 787 return r; 788 789 /* 790 * If PFEC.RSVD is set, this is a shadow page fault. 791 * The bit needs to be cleared before walking guest page tables. 792 */ 793 error_code &= ~PFERR_RSVD_MASK; 794 795 /* 796 * Look up the guest pte for the faulting address. 797 */ 798 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); 799 800 /* 801 * The page is not mapped by the guest. Let the guest handle it. 802 */ 803 if (!r) { 804 pgprintk("%s: guest page fault\n", __func__); 805 if (!prefault) 806 inject_page_fault(vcpu, &walker.fault); 807 808 return RET_PF_RETRY; 809 } 810 811 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) { 812 shadow_page_table_clear_flood(vcpu, addr); 813 return RET_PF_EMULATE; 814 } 815 816 vcpu->arch.write_fault_to_shadow_pgtable = false; 817 818 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, 819 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable); 820 821 if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) { 822 level = mapping_level(vcpu, walker.gfn, &force_pt_level); 823 if (likely(!force_pt_level)) { 824 level = min(walker.level, level); 825 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1); 826 } 827 } else 828 force_pt_level = true; 829 830 mmu_seq = vcpu->kvm->mmu_notifier_seq; 831 smp_rmb(); 832 833 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault, 834 &map_writable)) 835 return RET_PF_RETRY; 836 837 if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r)) 838 return r; 839 840 /* 841 * Do not change pte_access if the pfn is a mmio page, otherwise 842 * we will cache the incorrect access into mmio spte. 843 */ 844 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) && 845 !is_write_protection(vcpu) && !user_fault && 846 !is_noslot_pfn(pfn)) { 847 walker.pte_access |= ACC_WRITE_MASK; 848 walker.pte_access &= ~ACC_USER_MASK; 849 850 /* 851 * If we converted a user page to a kernel page, 852 * so that the kernel can write to it when cr0.wp=0, 853 * then we should prevent the kernel from executing it 854 * if SMEP is enabled. 855 */ 856 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) 857 walker.pte_access &= ~ACC_EXEC_MASK; 858 } 859 860 r = RET_PF_RETRY; 861 spin_lock(&vcpu->kvm->mmu_lock); 862 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) 863 goto out_unlock; 864 865 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); 866 if (make_mmu_pages_available(vcpu) < 0) 867 goto out_unlock; 868 if (!force_pt_level) 869 transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level); 870 r = FNAME(fetch)(vcpu, addr, &walker, write_fault, 871 level, pfn, map_writable, prefault, lpage_disallowed); 872 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); 873 874 out_unlock: 875 spin_unlock(&vcpu->kvm->mmu_lock); 876 kvm_release_pfn_clean(pfn); 877 return r; 878 } 879 880 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) 881 { 882 int offset = 0; 883 884 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); 885 886 if (PTTYPE == 32) 887 offset = sp->role.quadrant << PT64_LEVEL_BITS; 888 889 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); 890 } 891 892 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) 893 { 894 struct kvm_shadow_walk_iterator iterator; 895 struct kvm_mmu_page *sp; 896 int level; 897 u64 *sptep; 898 899 vcpu_clear_mmio_info(vcpu, gva); 900 901 /* 902 * No need to check return value here, rmap_can_add() can 903 * help us to skip pte prefetch later. 904 */ 905 mmu_topup_memory_caches(vcpu); 906 907 if (!VALID_PAGE(root_hpa)) { 908 WARN_ON(1); 909 return; 910 } 911 912 spin_lock(&vcpu->kvm->mmu_lock); 913 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) { 914 level = iterator.level; 915 sptep = iterator.sptep; 916 917 sp = page_header(__pa(sptep)); 918 if (is_last_spte(*sptep, level)) { 919 pt_element_t gpte; 920 gpa_t pte_gpa; 921 922 if (!sp->unsync) 923 break; 924 925 pte_gpa = FNAME(get_level1_sp_gpa)(sp); 926 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); 927 928 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) 929 kvm_flush_remote_tlbs_with_address(vcpu->kvm, 930 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 931 932 if (!rmap_can_add(vcpu)) 933 break; 934 935 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 936 sizeof(pt_element_t))) 937 break; 938 939 FNAME(update_pte)(vcpu, sp, sptep, &gpte); 940 } 941 942 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) 943 break; 944 } 945 spin_unlock(&vcpu->kvm->mmu_lock); 946 } 947 948 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, 949 struct x86_exception *exception) 950 { 951 struct guest_walker walker; 952 gpa_t gpa = UNMAPPED_GVA; 953 int r; 954 955 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access); 956 957 if (r) { 958 gpa = gfn_to_gpa(walker.gfn); 959 gpa |= vaddr & ~PAGE_MASK; 960 } else if (exception) 961 *exception = walker.fault; 962 963 return gpa; 964 } 965 966 #if PTTYPE != PTTYPE_EPT 967 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr, 968 u32 access, 969 struct x86_exception *exception) 970 { 971 struct guest_walker walker; 972 gpa_t gpa = UNMAPPED_GVA; 973 int r; 974 975 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); 976 977 if (r) { 978 gpa = gfn_to_gpa(walker.gfn); 979 gpa |= vaddr & ~PAGE_MASK; 980 } else if (exception) 981 *exception = walker.fault; 982 983 return gpa; 984 } 985 #endif 986 987 /* 988 * Using the cached information from sp->gfns is safe because: 989 * - The spte has a reference to the struct page, so the pfn for a given gfn 990 * can't change unless all sptes pointing to it are nuked first. 991 * 992 * Note: 993 * We should flush all tlbs if spte is dropped even though guest is 994 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page 995 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't 996 * used by guest then tlbs are not flushed, so guest is allowed to access the 997 * freed pages. 998 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case. 999 */ 1000 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1001 { 1002 int i, nr_present = 0; 1003 bool host_writable; 1004 gpa_t first_pte_gpa; 1005 int set_spte_ret = 0; 1006 1007 /* direct kvm_mmu_page can not be unsync. */ 1008 BUG_ON(sp->role.direct); 1009 1010 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); 1011 1012 for (i = 0; i < PT64_ENT_PER_PAGE; i++) { 1013 unsigned pte_access; 1014 pt_element_t gpte; 1015 gpa_t pte_gpa; 1016 gfn_t gfn; 1017 1018 if (!sp->spt[i]) 1019 continue; 1020 1021 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); 1022 1023 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 1024 sizeof(pt_element_t))) 1025 return 0; 1026 1027 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { 1028 /* 1029 * Update spte before increasing tlbs_dirty to make 1030 * sure no tlb flush is lost after spte is zapped; see 1031 * the comments in kvm_flush_remote_tlbs(). 1032 */ 1033 smp_wmb(); 1034 vcpu->kvm->tlbs_dirty++; 1035 continue; 1036 } 1037 1038 gfn = gpte_to_gfn(gpte); 1039 pte_access = sp->role.access; 1040 pte_access &= FNAME(gpte_access)(gpte); 1041 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 1042 1043 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access, 1044 &nr_present)) 1045 continue; 1046 1047 if (gfn != sp->gfns[i]) { 1048 drop_spte(vcpu->kvm, &sp->spt[i]); 1049 /* 1050 * The same as above where we are doing 1051 * prefetch_invalid_gpte(). 1052 */ 1053 smp_wmb(); 1054 vcpu->kvm->tlbs_dirty++; 1055 continue; 1056 } 1057 1058 nr_present++; 1059 1060 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE; 1061 1062 set_spte_ret |= set_spte(vcpu, &sp->spt[i], 1063 pte_access, PT_PAGE_TABLE_LEVEL, 1064 gfn, spte_to_pfn(sp->spt[i]), 1065 true, false, host_writable); 1066 } 1067 1068 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH) 1069 kvm_flush_remote_tlbs(vcpu->kvm); 1070 1071 return nr_present; 1072 } 1073 1074 #undef pt_element_t 1075 #undef guest_walker 1076 #undef FNAME 1077 #undef PT_BASE_ADDR_MASK 1078 #undef PT_INDEX 1079 #undef PT_LVL_ADDR_MASK 1080 #undef PT_LVL_OFFSET_MASK 1081 #undef PT_LEVEL_BITS 1082 #undef PT_MAX_FULL_LEVELS 1083 #undef gpte_to_gfn 1084 #undef gpte_to_gfn_lvl 1085 #undef CMPXCHG 1086 #undef PT_GUEST_ACCESSED_MASK 1087 #undef PT_GUEST_DIRTY_MASK 1088 #undef PT_GUEST_DIRTY_SHIFT 1089 #undef PT_GUEST_ACCESSED_SHIFT 1090 #undef PT_HAVE_ACCESSED_DIRTY 1091