1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 /* 19 * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables, 20 * as well as guest EPT tables, so the code in this file is compiled thrice, 21 * once per guest PTE type. The per-type defines are #undef'd at the end. 22 */ 23 24 #if PTTYPE == 64 25 #define pt_element_t u64 26 #define guest_walker guest_walker64 27 #define FNAME(name) paging##64_##name 28 #define PT_LEVEL_BITS 9 29 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 30 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 31 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 32 #ifdef CONFIG_X86_64 33 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 34 #else 35 #define PT_MAX_FULL_LEVELS 2 36 #endif 37 #elif PTTYPE == 32 38 #define pt_element_t u32 39 #define guest_walker guest_walker32 40 #define FNAME(name) paging##32_##name 41 #define PT_LEVEL_BITS 10 42 #define PT_MAX_FULL_LEVELS 2 43 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 44 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 45 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 46 47 #define PT32_DIR_PSE36_SIZE 4 48 #define PT32_DIR_PSE36_SHIFT 13 49 #define PT32_DIR_PSE36_MASK \ 50 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) 51 #elif PTTYPE == PTTYPE_EPT 52 #define pt_element_t u64 53 #define guest_walker guest_walkerEPT 54 #define FNAME(name) ept_##name 55 #define PT_LEVEL_BITS 9 56 #define PT_GUEST_DIRTY_SHIFT 9 57 #define PT_GUEST_ACCESSED_SHIFT 8 58 #define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled) 59 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 60 #else 61 #error Invalid PTTYPE value 62 #endif 63 64 /* Common logic, but per-type values. These also need to be undefined. */ 65 #define PT_BASE_ADDR_MASK ((pt_element_t)__PT_BASE_ADDR_MASK) 66 #define PT_LVL_ADDR_MASK(lvl) __PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS) 67 #define PT_LVL_OFFSET_MASK(lvl) __PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS) 68 #define PT_INDEX(addr, lvl) __PT_INDEX(addr, lvl, PT_LEVEL_BITS) 69 70 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) 71 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) 72 73 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) 74 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K) 75 76 /* 77 * The guest_walker structure emulates the behavior of the hardware page 78 * table walker. 79 */ 80 struct guest_walker { 81 int level; 82 unsigned max_level; 83 gfn_t table_gfn[PT_MAX_FULL_LEVELS]; 84 pt_element_t ptes[PT_MAX_FULL_LEVELS]; 85 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; 86 gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; 87 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; 88 bool pte_writable[PT_MAX_FULL_LEVELS]; 89 unsigned int pt_access[PT_MAX_FULL_LEVELS]; 90 unsigned int pte_access; 91 gfn_t gfn; 92 struct x86_exception fault; 93 }; 94 95 #if PTTYPE == 32 96 static inline gfn_t pse36_gfn_delta(u32 gpte) 97 { 98 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 99 100 return (gpte & PT32_DIR_PSE36_MASK) << shift; 101 } 102 #endif 103 104 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) 105 { 106 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; 107 } 108 109 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, 110 unsigned gpte) 111 { 112 unsigned mask; 113 114 /* dirty bit is not supported, so no need to track it */ 115 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 116 return; 117 118 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); 119 120 mask = (unsigned)~ACC_WRITE_MASK; 121 /* Allow write access to dirty gptes */ 122 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & 123 PT_WRITABLE_MASK; 124 *access &= mask; 125 } 126 127 static inline int FNAME(is_present_gpte)(unsigned long pte) 128 { 129 #if PTTYPE != PTTYPE_EPT 130 return pte & PT_PRESENT_MASK; 131 #else 132 return pte & 7; 133 #endif 134 } 135 136 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte) 137 { 138 #if PTTYPE != PTTYPE_EPT 139 return false; 140 #else 141 return __is_bad_mt_xwr(rsvd_check, gpte); 142 #endif 143 } 144 145 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) 146 { 147 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) || 148 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte); 149 } 150 151 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, 152 struct kvm_mmu_page *sp, u64 *spte, 153 u64 gpte) 154 { 155 if (!FNAME(is_present_gpte)(gpte)) 156 goto no_present; 157 158 /* Prefetch only accessed entries (unless A/D bits are disabled). */ 159 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && 160 !(gpte & PT_GUEST_ACCESSED_MASK)) 161 goto no_present; 162 163 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K)) 164 goto no_present; 165 166 return false; 167 168 no_present: 169 drop_spte(vcpu->kvm, spte); 170 return true; 171 } 172 173 /* 174 * For PTTYPE_EPT, a page table can be executable but not readable 175 * on supported processors. Therefore, set_spte does not automatically 176 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK 177 * to signify readability since it isn't used in the EPT case 178 */ 179 static inline unsigned FNAME(gpte_access)(u64 gpte) 180 { 181 unsigned access; 182 #if PTTYPE == PTTYPE_EPT 183 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | 184 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | 185 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); 186 #else 187 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); 188 BUILD_BUG_ON(ACC_EXEC_MASK != 1); 189 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); 190 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ 191 access ^= (gpte >> PT64_NX_SHIFT); 192 #endif 193 194 return access; 195 } 196 197 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, 198 struct kvm_mmu *mmu, 199 struct guest_walker *walker, 200 gpa_t addr, int write_fault) 201 { 202 unsigned level, index; 203 pt_element_t pte, orig_pte; 204 pt_element_t __user *ptep_user; 205 gfn_t table_gfn; 206 int ret; 207 208 /* dirty/accessed bits are not supported, so no need to update them */ 209 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 210 return 0; 211 212 for (level = walker->max_level; level >= walker->level; --level) { 213 pte = orig_pte = walker->ptes[level - 1]; 214 table_gfn = walker->table_gfn[level - 1]; 215 ptep_user = walker->ptep_user[level - 1]; 216 index = offset_in_page(ptep_user) / sizeof(pt_element_t); 217 if (!(pte & PT_GUEST_ACCESSED_MASK)) { 218 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); 219 pte |= PT_GUEST_ACCESSED_MASK; 220 } 221 if (level == walker->level && write_fault && 222 !(pte & PT_GUEST_DIRTY_MASK)) { 223 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); 224 #if PTTYPE == PTTYPE_EPT 225 if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr)) 226 return -EINVAL; 227 #endif 228 pte |= PT_GUEST_DIRTY_MASK; 229 } 230 if (pte == orig_pte) 231 continue; 232 233 /* 234 * If the slot is read-only, simply do not process the accessed 235 * and dirty bits. This is the correct thing to do if the slot 236 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots 237 * are only supported if the accessed and dirty bits are already 238 * set in the ROM (so that MMIO writes are never needed). 239 * 240 * Note that NPT does not allow this at all and faults, since 241 * it always wants nested page table entries for the guest 242 * page tables to be writable. And EPT works but will simply 243 * overwrite the read-only memory to set the accessed and dirty 244 * bits. 245 */ 246 if (unlikely(!walker->pte_writable[level - 1])) 247 continue; 248 249 ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault); 250 if (ret) 251 return ret; 252 253 kvm_vcpu_mark_page_dirty(vcpu, table_gfn); 254 walker->ptes[level - 1] = pte; 255 } 256 return 0; 257 } 258 259 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) 260 { 261 unsigned pkeys = 0; 262 #if PTTYPE == 64 263 pte_t pte = {.pte = gpte}; 264 265 pkeys = pte_flags_pkey(pte_flags(pte)); 266 #endif 267 return pkeys; 268 } 269 270 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu, 271 unsigned int level, unsigned int gpte) 272 { 273 /* 274 * For EPT and PAE paging (both variants), bit 7 is either reserved at 275 * all level or indicates a huge page (ignoring CR3/EPTP). In either 276 * case, bit 7 being set terminates the walk. 277 */ 278 #if PTTYPE == 32 279 /* 280 * 32-bit paging requires special handling because bit 7 is ignored if 281 * CR4.PSE=0, not reserved. Clear bit 7 in the gpte if the level is 282 * greater than the last level for which bit 7 is the PAGE_SIZE bit. 283 * 284 * The RHS has bit 7 set iff level < (2 + PSE). If it is clear, bit 7 285 * is not reserved and does not indicate a large page at this level, 286 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case. 287 */ 288 gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse); 289 #endif 290 /* 291 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 292 * iff level <= PG_LEVEL_4K, which for our purpose means 293 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 294 */ 295 gpte |= level - PG_LEVEL_4K - 1; 296 297 return gpte & PT_PAGE_SIZE_MASK; 298 } 299 /* 300 * Fetch a guest pte for a guest virtual address, or for an L2's GPA. 301 */ 302 static int FNAME(walk_addr_generic)(struct guest_walker *walker, 303 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 304 gpa_t addr, u64 access) 305 { 306 int ret; 307 pt_element_t pte; 308 pt_element_t __user *ptep_user; 309 gfn_t table_gfn; 310 u64 pt_access, pte_access; 311 unsigned index, accessed_dirty, pte_pkey; 312 u64 nested_access; 313 gpa_t pte_gpa; 314 bool have_ad; 315 int offset; 316 u64 walk_nx_mask = 0; 317 const int write_fault = access & PFERR_WRITE_MASK; 318 const int user_fault = access & PFERR_USER_MASK; 319 const int fetch_fault = access & PFERR_FETCH_MASK; 320 u16 errcode = 0; 321 gpa_t real_gpa; 322 gfn_t gfn; 323 324 trace_kvm_mmu_pagetable_walk(addr, access); 325 retry_walk: 326 walker->level = mmu->cpu_role.base.level; 327 pte = kvm_mmu_get_guest_pgd(vcpu, mmu); 328 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); 329 330 #if PTTYPE == 64 331 walk_nx_mask = 1ULL << PT64_NX_SHIFT; 332 if (walker->level == PT32E_ROOT_LEVEL) { 333 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); 334 trace_kvm_mmu_paging_element(pte, walker->level); 335 if (!FNAME(is_present_gpte)(pte)) 336 goto error; 337 --walker->level; 338 } 339 #endif 340 walker->max_level = walker->level; 341 342 /* 343 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging 344 * by the MOV to CR instruction are treated as reads and do not cause the 345 * processor to set the dirty flag in any EPT paging-structure entry. 346 */ 347 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; 348 349 pte_access = ~0; 350 351 /* 352 * Queue a page fault for injection if this assertion fails, as callers 353 * assume that walker.fault contains sane info on a walk failure. I.e. 354 * avoid making the situation worse by inducing even worse badness 355 * between when the assertion fails and when KVM kicks the vCPU out to 356 * userspace (because the VM is bugged). 357 */ 358 if (KVM_BUG_ON(is_long_mode(vcpu) && !is_pae(vcpu), vcpu->kvm)) 359 goto error; 360 361 ++walker->level; 362 363 do { 364 struct kvm_memory_slot *slot; 365 unsigned long host_addr; 366 367 pt_access = pte_access; 368 --walker->level; 369 370 index = PT_INDEX(addr, walker->level); 371 table_gfn = gpte_to_gfn(pte); 372 offset = index * sizeof(pt_element_t); 373 pte_gpa = gfn_to_gpa(table_gfn) + offset; 374 375 BUG_ON(walker->level < 1); 376 walker->table_gfn[walker->level - 1] = table_gfn; 377 walker->pte_gpa[walker->level - 1] = pte_gpa; 378 379 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn), 380 nested_access, &walker->fault); 381 382 /* 383 * FIXME: This can happen if emulation (for of an INS/OUTS 384 * instruction) triggers a nested page fault. The exit 385 * qualification / exit info field will incorrectly have 386 * "guest page access" as the nested page fault's cause, 387 * instead of "guest page structure access". To fix this, 388 * the x86_exception struct should be augmented with enough 389 * information to fix the exit_qualification or exit_info_1 390 * fields. 391 */ 392 if (unlikely(real_gpa == INVALID_GPA)) 393 return 0; 394 395 slot = kvm_vcpu_gfn_to_memslot(vcpu, gpa_to_gfn(real_gpa)); 396 if (!kvm_is_visible_memslot(slot)) 397 goto error; 398 399 host_addr = gfn_to_hva_memslot_prot(slot, gpa_to_gfn(real_gpa), 400 &walker->pte_writable[walker->level - 1]); 401 if (unlikely(kvm_is_error_hva(host_addr))) 402 goto error; 403 404 ptep_user = (pt_element_t __user *)((void *)host_addr + offset); 405 if (unlikely(__get_user(pte, ptep_user))) 406 goto error; 407 walker->ptep_user[walker->level - 1] = ptep_user; 408 409 trace_kvm_mmu_paging_element(pte, walker->level); 410 411 /* 412 * Inverting the NX it lets us AND it like other 413 * permission bits. 414 */ 415 pte_access = pt_access & (pte ^ walk_nx_mask); 416 417 if (unlikely(!FNAME(is_present_gpte)(pte))) 418 goto error; 419 420 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) { 421 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; 422 goto error; 423 } 424 425 walker->ptes[walker->level - 1] = pte; 426 427 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 428 walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask); 429 } while (!FNAME(is_last_gpte)(mmu, walker->level, pte)); 430 431 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); 432 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; 433 434 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 435 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); 436 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); 437 if (unlikely(errcode)) 438 goto error; 439 440 gfn = gpte_to_gfn_lvl(pte, walker->level); 441 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; 442 443 #if PTTYPE == 32 444 if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36()) 445 gfn += pse36_gfn_delta(pte); 446 #endif 447 448 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault); 449 if (real_gpa == INVALID_GPA) 450 return 0; 451 452 walker->gfn = real_gpa >> PAGE_SHIFT; 453 454 if (!write_fault) 455 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); 456 else 457 /* 458 * On a write fault, fold the dirty bit into accessed_dirty. 459 * For modes without A/D bits support accessed_dirty will be 460 * always clear. 461 */ 462 accessed_dirty &= pte >> 463 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); 464 465 if (unlikely(!accessed_dirty)) { 466 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, 467 addr, write_fault); 468 if (unlikely(ret < 0)) 469 goto error; 470 else if (ret) 471 goto retry_walk; 472 } 473 474 return 1; 475 476 error: 477 errcode |= write_fault | user_fault; 478 if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu))) 479 errcode |= PFERR_FETCH_MASK; 480 481 walker->fault.vector = PF_VECTOR; 482 walker->fault.error_code_valid = true; 483 walker->fault.error_code = errcode; 484 485 #if PTTYPE == PTTYPE_EPT 486 /* 487 * Use PFERR_RSVD_MASK in error_code to tell if EPT 488 * misconfiguration requires to be injected. The detection is 489 * done by is_rsvd_bits_set() above. 490 * 491 * We set up the value of exit_qualification to inject: 492 * [2:0] - Derive from the access bits. The exit_qualification might be 493 * out of date if it is serving an EPT misconfiguration. 494 * [5:3] - Calculated by the page walk of the guest EPT page tables 495 * [7:8] - Derived from [7:8] of real exit_qualification 496 * 497 * The other bits are set to 0. 498 */ 499 if (!(errcode & PFERR_RSVD_MASK)) { 500 walker->fault.exit_qualification = 0; 501 502 if (write_fault) 503 walker->fault.exit_qualification |= EPT_VIOLATION_ACC_WRITE; 504 if (user_fault) 505 walker->fault.exit_qualification |= EPT_VIOLATION_ACC_READ; 506 if (fetch_fault) 507 walker->fault.exit_qualification |= EPT_VIOLATION_ACC_INSTR; 508 509 /* 510 * Note, pte_access holds the raw RWX bits from the EPTE, not 511 * ACC_*_MASK flags! 512 */ 513 walker->fault.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) << 514 EPT_VIOLATION_RWX_SHIFT; 515 } 516 #endif 517 walker->fault.address = addr; 518 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; 519 walker->fault.async_page_fault = false; 520 521 trace_kvm_mmu_walker_error(walker->fault.error_code); 522 return 0; 523 } 524 525 static int FNAME(walk_addr)(struct guest_walker *walker, 526 struct kvm_vcpu *vcpu, gpa_t addr, u64 access) 527 { 528 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, 529 access); 530 } 531 532 static bool 533 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 534 u64 *spte, pt_element_t gpte) 535 { 536 unsigned pte_access; 537 gfn_t gfn; 538 539 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) 540 return false; 541 542 gfn = gpte_to_gfn(gpte); 543 pte_access = sp->role.access & FNAME(gpte_access)(gpte); 544 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 545 546 return kvm_mmu_prefetch_sptes(vcpu, gfn, spte, 1, pte_access); 547 } 548 549 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, 550 struct guest_walker *gw, int level) 551 { 552 pt_element_t curr_pte; 553 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; 554 u64 mask; 555 int r, index; 556 557 if (level == PG_LEVEL_4K) { 558 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; 559 base_gpa = pte_gpa & ~mask; 560 index = (pte_gpa - base_gpa) / sizeof(pt_element_t); 561 562 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, 563 gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); 564 curr_pte = gw->prefetch_ptes[index]; 565 } else 566 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, 567 &curr_pte, sizeof(curr_pte)); 568 569 return r || curr_pte != gw->ptes[level - 1]; 570 } 571 572 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, 573 u64 *sptep) 574 { 575 struct kvm_mmu_page *sp; 576 pt_element_t *gptep = gw->prefetch_ptes; 577 u64 *spte; 578 int i; 579 580 sp = sptep_to_sp(sptep); 581 582 if (sp->role.level > PG_LEVEL_4K) 583 return; 584 585 /* 586 * If addresses are being invalidated, skip prefetching to avoid 587 * accidentally prefetching those addresses. 588 */ 589 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 590 return; 591 592 if (sp->role.direct) 593 return __direct_pte_prefetch(vcpu, sp, sptep); 594 595 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 596 spte = sp->spt + i; 597 598 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 599 if (spte == sptep) 600 continue; 601 602 if (is_shadow_present_pte(*spte)) 603 continue; 604 605 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i])) 606 break; 607 } 608 } 609 610 /* 611 * Fetch a shadow pte for a specific level in the paging hierarchy. 612 * If the guest tries to write a write-protected page, we need to 613 * emulate this operation, return 1 to indicate this case. 614 */ 615 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 616 struct guest_walker *gw) 617 { 618 struct kvm_mmu_page *sp = NULL; 619 struct kvm_shadow_walk_iterator it; 620 unsigned int direct_access, access; 621 int top_level, ret; 622 gfn_t base_gfn = fault->gfn; 623 624 WARN_ON_ONCE(gw->gfn != base_gfn); 625 direct_access = gw->pte_access; 626 627 top_level = vcpu->arch.mmu->cpu_role.base.level; 628 if (top_level == PT32E_ROOT_LEVEL) 629 top_level = PT32_ROOT_LEVEL; 630 /* 631 * Verify that the top-level gpte is still there. Since the page 632 * is a root page, it is either write protected (and cannot be 633 * changed from now on) or it is invalid (in which case, we don't 634 * really care if it changes underneath us after this point). 635 */ 636 if (FNAME(gpte_changed)(vcpu, gw, top_level)) 637 return RET_PF_RETRY; 638 639 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 640 return RET_PF_RETRY; 641 642 /* 643 * Load a new root and retry the faulting instruction in the extremely 644 * unlikely scenario that the guest root gfn became visible between 645 * loading a dummy root and handling the resulting page fault, e.g. if 646 * userspace create a memslot in the interim. 647 */ 648 if (unlikely(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) { 649 kvm_make_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu); 650 return RET_PF_RETRY; 651 } 652 653 for_each_shadow_entry(vcpu, fault->addr, it) { 654 gfn_t table_gfn; 655 656 clear_sp_write_flooding_count(it.sptep); 657 if (it.level == gw->level) 658 break; 659 660 table_gfn = gw->table_gfn[it.level - 2]; 661 access = gw->pt_access[it.level - 2]; 662 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn, 663 false, access); 664 665 /* 666 * Synchronize the new page before linking it, as the CPU (KVM) 667 * is architecturally disallowed from inserting non-present 668 * entries into the TLB, i.e. the guest isn't required to flush 669 * the TLB when changing the gPTE from non-present to present. 670 * 671 * For PG_LEVEL_4K, kvm_mmu_find_shadow_page() has already 672 * synchronized the page via kvm_sync_page(). 673 * 674 * For higher level pages, which cannot be unsync themselves 675 * but can have unsync children, synchronize via the slower 676 * mmu_sync_children(). If KVM needs to drop mmu_lock due to 677 * contention or to reschedule, instruct the caller to retry 678 * the #PF (mmu_sync_children() ensures forward progress will 679 * be made). 680 */ 681 if (sp != ERR_PTR(-EEXIST) && sp->unsync_children && 682 mmu_sync_children(vcpu, sp, false)) 683 return RET_PF_RETRY; 684 685 /* 686 * Verify that the gpte in the page, which is now either 687 * write-protected or unsync, wasn't modified between the fault 688 * and acquiring mmu_lock. This needs to be done even when 689 * reusing an existing shadow page to ensure the information 690 * gathered by the walker matches the information stored in the 691 * shadow page (which could have been modified by a different 692 * vCPU even if the page was already linked). Holding mmu_lock 693 * prevents the shadow page from changing after this point. 694 */ 695 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) 696 return RET_PF_RETRY; 697 698 if (sp != ERR_PTR(-EEXIST)) 699 link_shadow_page(vcpu, it.sptep, sp); 700 701 if (fault->write && table_gfn == fault->gfn) 702 fault->write_fault_to_shadow_pgtable = true; 703 } 704 705 /* 706 * Adjust the hugepage size _after_ resolving indirect shadow pages. 707 * KVM doesn't support mapping hugepages into the guest for gfns that 708 * are being shadowed by KVM, i.e. allocating a new shadow page may 709 * affect the allowed hugepage size. 710 */ 711 kvm_mmu_hugepage_adjust(vcpu, fault); 712 713 trace_kvm_mmu_spte_requested(fault); 714 715 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { 716 /* 717 * We cannot overwrite existing page tables with an NX 718 * large page, as the leaf could be executable. 719 */ 720 if (fault->nx_huge_page_workaround_enabled) 721 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 722 723 base_gfn = gfn_round_for_level(fault->gfn, it.level); 724 if (it.level == fault->goal_level) 725 break; 726 727 validate_direct_spte(vcpu, it.sptep, direct_access); 728 729 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, 730 true, direct_access); 731 if (sp == ERR_PTR(-EEXIST)) 732 continue; 733 734 link_shadow_page(vcpu, it.sptep, sp); 735 if (fault->huge_page_disallowed) 736 account_nx_huge_page(vcpu->kvm, sp, 737 fault->req_level >= it.level); 738 } 739 740 if (WARN_ON_ONCE(it.level != fault->goal_level)) 741 return -EFAULT; 742 743 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access, 744 base_gfn, fault->pfn, fault); 745 if (ret == RET_PF_SPURIOUS) 746 return ret; 747 748 FNAME(pte_prefetch)(vcpu, gw, it.sptep); 749 return ret; 750 } 751 752 /* 753 * Page fault handler. There are several causes for a page fault: 754 * - there is no shadow pte for the guest pte 755 * - write access through a shadow pte marked read only so that we can set 756 * the dirty bit 757 * - write access to a shadow pte marked read only so we can update the page 758 * dirty bitmap, when userspace requests it 759 * - mmio access; in this case we will never install a present shadow pte 760 * - normal guest page fault due to the guest pte marked not present, not 761 * writable, or not executable 762 * 763 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or 764 * a negative value on error. 765 */ 766 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 767 { 768 struct guest_walker walker; 769 int r; 770 771 WARN_ON_ONCE(fault->is_tdp); 772 773 /* 774 * Look up the guest pte for the faulting address. 775 * If PFEC.RSVD is set, this is a shadow page fault. 776 * The bit needs to be cleared before walking guest page tables. 777 */ 778 r = FNAME(walk_addr)(&walker, vcpu, fault->addr, 779 fault->error_code & ~PFERR_RSVD_MASK); 780 781 /* 782 * The page is not mapped by the guest. Let the guest handle it. 783 */ 784 if (!r) { 785 if (!fault->prefetch) 786 kvm_inject_emulated_page_fault(vcpu, &walker.fault); 787 788 return RET_PF_RETRY; 789 } 790 791 fault->gfn = walker.gfn; 792 fault->max_level = walker.level; 793 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 794 795 if (page_fault_handle_page_track(vcpu, fault)) { 796 shadow_page_table_clear_flood(vcpu, fault->addr); 797 return RET_PF_WRITE_PROTECTED; 798 } 799 800 r = mmu_topup_memory_caches(vcpu, true); 801 if (r) 802 return r; 803 804 r = kvm_mmu_faultin_pfn(vcpu, fault, walker.pte_access); 805 if (r != RET_PF_CONTINUE) 806 return r; 807 808 /* 809 * Do not change pte_access if the pfn is a mmio page, otherwise 810 * we will cache the incorrect access into mmio spte. 811 */ 812 if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) && 813 !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) { 814 walker.pte_access |= ACC_WRITE_MASK; 815 walker.pte_access &= ~ACC_USER_MASK; 816 817 /* 818 * If we converted a user page to a kernel page, 819 * so that the kernel can write to it when cr0.wp=0, 820 * then we should prevent the kernel from executing it 821 * if SMEP is enabled. 822 */ 823 if (is_cr4_smep(vcpu->arch.mmu)) 824 walker.pte_access &= ~ACC_EXEC_MASK; 825 } 826 827 r = RET_PF_RETRY; 828 write_lock(&vcpu->kvm->mmu_lock); 829 830 if (is_page_fault_stale(vcpu, fault)) 831 goto out_unlock; 832 833 r = make_mmu_pages_available(vcpu); 834 if (r) 835 goto out_unlock; 836 r = FNAME(fetch)(vcpu, fault, &walker); 837 838 out_unlock: 839 kvm_mmu_finish_page_fault(vcpu, fault, r); 840 write_unlock(&vcpu->kvm->mmu_lock); 841 return r; 842 } 843 844 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) 845 { 846 int offset = 0; 847 848 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 849 850 if (PTTYPE == 32) 851 offset = sp->role.quadrant << SPTE_LEVEL_BITS; 852 853 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); 854 } 855 856 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ 857 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 858 gpa_t addr, u64 access, 859 struct x86_exception *exception) 860 { 861 struct guest_walker walker; 862 gpa_t gpa = INVALID_GPA; 863 int r; 864 865 #ifndef CONFIG_X86_64 866 /* A 64-bit GVA should be impossible on 32-bit KVM. */ 867 WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu); 868 #endif 869 870 r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access); 871 872 if (r) { 873 gpa = gfn_to_gpa(walker.gfn); 874 gpa |= addr & ~PAGE_MASK; 875 } else if (exception) 876 *exception = walker.fault; 877 878 return gpa; 879 } 880 881 /* 882 * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is 883 * safe because SPTEs are protected by mmu_notifiers and memslot generations, so 884 * the pfn for a given gfn can't change unless all SPTEs pointing to the gfn are 885 * nuked first. 886 * 887 * Returns 888 * < 0: failed to sync spte 889 * 0: the spte is synced and no tlb flushing is required 890 * > 0: the spte is synced and tlb flushing is required 891 */ 892 static int FNAME(sync_spte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 893 { 894 bool host_writable; 895 gpa_t first_pte_gpa; 896 u64 *sptep, spte; 897 struct kvm_memory_slot *slot; 898 unsigned pte_access; 899 pt_element_t gpte; 900 gpa_t pte_gpa; 901 gfn_t gfn; 902 903 if (WARN_ON_ONCE(sp->spt[i] == SHADOW_NONPRESENT_VALUE || 904 !sp->shadowed_translation)) 905 return 0; 906 907 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); 908 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); 909 910 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 911 sizeof(pt_element_t))) 912 return -1; 913 914 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) 915 return 1; 916 917 gfn = gpte_to_gfn(gpte); 918 pte_access = sp->role.access; 919 pte_access &= FNAME(gpte_access)(gpte); 920 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 921 922 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access)) 923 return 0; 924 925 /* 926 * Drop the SPTE if the new protections result in no effective 927 * "present" bit or if the gfn is changing. The former case 928 * only affects EPT with execute-only support with pte_access==0; 929 * all other paging modes will create a read-only SPTE if 930 * pte_access is zero. 931 */ 932 if ((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE || 933 gfn != kvm_mmu_page_get_gfn(sp, i)) { 934 drop_spte(vcpu->kvm, &sp->spt[i]); 935 return 1; 936 } 937 /* 938 * Do nothing if the permissions are unchanged. The existing SPTE is 939 * still, and prefetch_invalid_gpte() has verified that the A/D bits 940 * are set in the "new" gPTE, i.e. there is no danger of missing an A/D 941 * update due to A/D bits being set in the SPTE but not the gPTE. 942 */ 943 if (kvm_mmu_page_get_access(sp, i) == pte_access) 944 return 0; 945 946 /* Update the shadowed access bits in case they changed. */ 947 kvm_mmu_page_set_access(sp, i, pte_access); 948 949 sptep = &sp->spt[i]; 950 spte = *sptep; 951 host_writable = spte & shadow_host_writable_mask; 952 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 953 make_spte(vcpu, sp, slot, pte_access, gfn, 954 spte_to_pfn(spte), spte, true, true, 955 host_writable, &spte); 956 957 /* 958 * There is no need to mark the pfn dirty, as the new protections must 959 * be a subset of the old protections, i.e. synchronizing a SPTE cannot 960 * change the SPTE from read-only to writable. 961 */ 962 return mmu_spte_update(sptep, spte); 963 } 964 965 #undef pt_element_t 966 #undef guest_walker 967 #undef FNAME 968 #undef PT_BASE_ADDR_MASK 969 #undef PT_INDEX 970 #undef PT_LVL_ADDR_MASK 971 #undef PT_LVL_OFFSET_MASK 972 #undef PT_LEVEL_BITS 973 #undef PT_MAX_FULL_LEVELS 974 #undef gpte_to_gfn 975 #undef gpte_to_gfn_lvl 976 #undef PT_GUEST_ACCESSED_MASK 977 #undef PT_GUEST_DIRTY_MASK 978 #undef PT_GUEST_DIRTY_SHIFT 979 #undef PT_GUEST_ACCESSED_SHIFT 980 #undef PT_HAVE_ACCESSED_DIRTY 981