xref: /linux/arch/x86/kvm/mmu/paging_tmpl.h (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 /*
19  * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables,
20  * as well as guest EPT tables, so the code in this file is compiled thrice,
21  * once per guest PTE type.  The per-type defines are #undef'd at the end.
22  */
23 
24 #if PTTYPE == 64
25 	#define pt_element_t u64
26 	#define guest_walker guest_walker64
27 	#define FNAME(name) paging##64_##name
28 	#define PT_LEVEL_BITS 9
29 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
30 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
31 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
32 	#ifdef CONFIG_X86_64
33 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
34 	#else
35 	#define PT_MAX_FULL_LEVELS 2
36 	#endif
37 #elif PTTYPE == 32
38 	#define pt_element_t u32
39 	#define guest_walker guest_walker32
40 	#define FNAME(name) paging##32_##name
41 	#define PT_LEVEL_BITS 10
42 	#define PT_MAX_FULL_LEVELS 2
43 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
44 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
45 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
46 
47 	#define PT32_DIR_PSE36_SIZE 4
48 	#define PT32_DIR_PSE36_SHIFT 13
49 	#define PT32_DIR_PSE36_MASK \
50 		(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
51 #elif PTTYPE == PTTYPE_EPT
52 	#define pt_element_t u64
53 	#define guest_walker guest_walkerEPT
54 	#define FNAME(name) ept_##name
55 	#define PT_LEVEL_BITS 9
56 	#define PT_GUEST_DIRTY_SHIFT 9
57 	#define PT_GUEST_ACCESSED_SHIFT 8
58 	#define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled)
59 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
60 #else
61 	#error Invalid PTTYPE value
62 #endif
63 
64 /* Common logic, but per-type values.  These also need to be undefined. */
65 #define PT_BASE_ADDR_MASK	((pt_element_t)__PT_BASE_ADDR_MASK)
66 #define PT_LVL_ADDR_MASK(lvl)	__PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
67 #define PT_LVL_OFFSET_MASK(lvl)	__PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
68 #define PT_INDEX(addr, lvl)	__PT_INDEX(addr, lvl, PT_LEVEL_BITS)
69 
70 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
71 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
72 
73 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
74 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
75 
76 /*
77  * The guest_walker structure emulates the behavior of the hardware page
78  * table walker.
79  */
80 struct guest_walker {
81 	int level;
82 	unsigned max_level;
83 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
84 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
85 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
86 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
87 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
88 	bool pte_writable[PT_MAX_FULL_LEVELS];
89 	unsigned int pt_access[PT_MAX_FULL_LEVELS];
90 	unsigned int pte_access;
91 	gfn_t gfn;
92 	struct x86_exception fault;
93 };
94 
95 #if PTTYPE == 32
96 static inline gfn_t pse36_gfn_delta(u32 gpte)
97 {
98 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
99 
100 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
101 }
102 #endif
103 
104 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
105 {
106 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
107 }
108 
109 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
110 					     unsigned gpte)
111 {
112 	unsigned mask;
113 
114 	/* dirty bit is not supported, so no need to track it */
115 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
116 		return;
117 
118 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
119 
120 	mask = (unsigned)~ACC_WRITE_MASK;
121 	/* Allow write access to dirty gptes */
122 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
123 		PT_WRITABLE_MASK;
124 	*access &= mask;
125 }
126 
127 static inline int FNAME(is_present_gpte)(unsigned long pte)
128 {
129 #if PTTYPE != PTTYPE_EPT
130 	return pte & PT_PRESENT_MASK;
131 #else
132 	return pte & 7;
133 #endif
134 }
135 
136 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
137 {
138 #if PTTYPE != PTTYPE_EPT
139 	return false;
140 #else
141 	return __is_bad_mt_xwr(rsvd_check, gpte);
142 #endif
143 }
144 
145 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
146 {
147 	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
148 	       FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
149 }
150 
151 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
152 				  struct kvm_mmu_page *sp, u64 *spte,
153 				  u64 gpte)
154 {
155 	if (!FNAME(is_present_gpte)(gpte))
156 		goto no_present;
157 
158 	/* Prefetch only accessed entries (unless A/D bits are disabled). */
159 	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
160 	    !(gpte & PT_GUEST_ACCESSED_MASK))
161 		goto no_present;
162 
163 	if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
164 		goto no_present;
165 
166 	return false;
167 
168 no_present:
169 	drop_spte(vcpu->kvm, spte);
170 	return true;
171 }
172 
173 /*
174  * For PTTYPE_EPT, a page table can be executable but not readable
175  * on supported processors. Therefore, set_spte does not automatically
176  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
177  * to signify readability since it isn't used in the EPT case
178  */
179 static inline unsigned FNAME(gpte_access)(u64 gpte)
180 {
181 	unsigned access;
182 #if PTTYPE == PTTYPE_EPT
183 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
184 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
185 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
186 #else
187 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
188 	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
189 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
190 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
191 	access ^= (gpte >> PT64_NX_SHIFT);
192 #endif
193 
194 	return access;
195 }
196 
197 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
198 					     struct kvm_mmu *mmu,
199 					     struct guest_walker *walker,
200 					     gpa_t addr, int write_fault)
201 {
202 	unsigned level, index;
203 	pt_element_t pte, orig_pte;
204 	pt_element_t __user *ptep_user;
205 	gfn_t table_gfn;
206 	int ret;
207 
208 	/* dirty/accessed bits are not supported, so no need to update them */
209 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
210 		return 0;
211 
212 	for (level = walker->max_level; level >= walker->level; --level) {
213 		pte = orig_pte = walker->ptes[level - 1];
214 		table_gfn = walker->table_gfn[level - 1];
215 		ptep_user = walker->ptep_user[level - 1];
216 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
217 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
218 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
219 			pte |= PT_GUEST_ACCESSED_MASK;
220 		}
221 		if (level == walker->level && write_fault &&
222 				!(pte & PT_GUEST_DIRTY_MASK)) {
223 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
224 #if PTTYPE == PTTYPE_EPT
225 			if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
226 				return -EINVAL;
227 #endif
228 			pte |= PT_GUEST_DIRTY_MASK;
229 		}
230 		if (pte == orig_pte)
231 			continue;
232 
233 		/*
234 		 * If the slot is read-only, simply do not process the accessed
235 		 * and dirty bits.  This is the correct thing to do if the slot
236 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
237 		 * are only supported if the accessed and dirty bits are already
238 		 * set in the ROM (so that MMIO writes are never needed).
239 		 *
240 		 * Note that NPT does not allow this at all and faults, since
241 		 * it always wants nested page table entries for the guest
242 		 * page tables to be writable.  And EPT works but will simply
243 		 * overwrite the read-only memory to set the accessed and dirty
244 		 * bits.
245 		 */
246 		if (unlikely(!walker->pte_writable[level - 1]))
247 			continue;
248 
249 		ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault);
250 		if (ret)
251 			return ret;
252 
253 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
254 		walker->ptes[level - 1] = pte;
255 	}
256 	return 0;
257 }
258 
259 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
260 {
261 	unsigned pkeys = 0;
262 #if PTTYPE == 64
263 	pte_t pte = {.pte = gpte};
264 
265 	pkeys = pte_flags_pkey(pte_flags(pte));
266 #endif
267 	return pkeys;
268 }
269 
270 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
271 				       unsigned int level, unsigned int gpte)
272 {
273 	/*
274 	 * For EPT and PAE paging (both variants), bit 7 is either reserved at
275 	 * all level or indicates a huge page (ignoring CR3/EPTP).  In either
276 	 * case, bit 7 being set terminates the walk.
277 	 */
278 #if PTTYPE == 32
279 	/*
280 	 * 32-bit paging requires special handling because bit 7 is ignored if
281 	 * CR4.PSE=0, not reserved.  Clear bit 7 in the gpte if the level is
282 	 * greater than the last level for which bit 7 is the PAGE_SIZE bit.
283 	 *
284 	 * The RHS has bit 7 set iff level < (2 + PSE).  If it is clear, bit 7
285 	 * is not reserved and does not indicate a large page at this level,
286 	 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
287 	 */
288 	gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse);
289 #endif
290 	/*
291 	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
292 	 * iff level <= PG_LEVEL_4K, which for our purpose means
293 	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
294 	 */
295 	gpte |= level - PG_LEVEL_4K - 1;
296 
297 	return gpte & PT_PAGE_SIZE_MASK;
298 }
299 /*
300  * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
301  */
302 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
303 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
304 				    gpa_t addr, u64 access)
305 {
306 	int ret;
307 	pt_element_t pte;
308 	pt_element_t __user *ptep_user;
309 	gfn_t table_gfn;
310 	u64 pt_access, pte_access;
311 	unsigned index, accessed_dirty, pte_pkey;
312 	u64 nested_access;
313 	gpa_t pte_gpa;
314 	bool have_ad;
315 	int offset;
316 	u64 walk_nx_mask = 0;
317 	const int write_fault = access & PFERR_WRITE_MASK;
318 	const int user_fault  = access & PFERR_USER_MASK;
319 	const int fetch_fault = access & PFERR_FETCH_MASK;
320 	u16 errcode = 0;
321 	gpa_t real_gpa;
322 	gfn_t gfn;
323 
324 	trace_kvm_mmu_pagetable_walk(addr, access);
325 retry_walk:
326 	walker->level = mmu->cpu_role.base.level;
327 	pte           = kvm_mmu_get_guest_pgd(vcpu, mmu);
328 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
329 
330 #if PTTYPE == 64
331 	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
332 	if (walker->level == PT32E_ROOT_LEVEL) {
333 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
334 		trace_kvm_mmu_paging_element(pte, walker->level);
335 		if (!FNAME(is_present_gpte)(pte))
336 			goto error;
337 		--walker->level;
338 	}
339 #endif
340 	walker->max_level = walker->level;
341 
342 	/*
343 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
344 	 * by the MOV to CR instruction are treated as reads and do not cause the
345 	 * processor to set the dirty flag in any EPT paging-structure entry.
346 	 */
347 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
348 
349 	pte_access = ~0;
350 
351 	/*
352 	 * Queue a page fault for injection if this assertion fails, as callers
353 	 * assume that walker.fault contains sane info on a walk failure.  I.e.
354 	 * avoid making the situation worse by inducing even worse badness
355 	 * between when the assertion fails and when KVM kicks the vCPU out to
356 	 * userspace (because the VM is bugged).
357 	 */
358 	if (KVM_BUG_ON(is_long_mode(vcpu) && !is_pae(vcpu), vcpu->kvm))
359 		goto error;
360 
361 	++walker->level;
362 
363 	do {
364 		struct kvm_memory_slot *slot;
365 		unsigned long host_addr;
366 
367 		pt_access = pte_access;
368 		--walker->level;
369 
370 		index = PT_INDEX(addr, walker->level);
371 		table_gfn = gpte_to_gfn(pte);
372 		offset    = index * sizeof(pt_element_t);
373 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
374 
375 		BUG_ON(walker->level < 1);
376 		walker->table_gfn[walker->level - 1] = table_gfn;
377 		walker->pte_gpa[walker->level - 1] = pte_gpa;
378 
379 		real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
380 					     nested_access, &walker->fault);
381 
382 		/*
383 		 * FIXME: This can happen if emulation (for of an INS/OUTS
384 		 * instruction) triggers a nested page fault.  The exit
385 		 * qualification / exit info field will incorrectly have
386 		 * "guest page access" as the nested page fault's cause,
387 		 * instead of "guest page structure access".  To fix this,
388 		 * the x86_exception struct should be augmented with enough
389 		 * information to fix the exit_qualification or exit_info_1
390 		 * fields.
391 		 */
392 		if (unlikely(real_gpa == INVALID_GPA))
393 			return 0;
394 
395 		slot = kvm_vcpu_gfn_to_memslot(vcpu, gpa_to_gfn(real_gpa));
396 		if (!kvm_is_visible_memslot(slot))
397 			goto error;
398 
399 		host_addr = gfn_to_hva_memslot_prot(slot, gpa_to_gfn(real_gpa),
400 					    &walker->pte_writable[walker->level - 1]);
401 		if (unlikely(kvm_is_error_hva(host_addr)))
402 			goto error;
403 
404 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
405 		if (unlikely(__get_user(pte, ptep_user)))
406 			goto error;
407 		walker->ptep_user[walker->level - 1] = ptep_user;
408 
409 		trace_kvm_mmu_paging_element(pte, walker->level);
410 
411 		/*
412 		 * Inverting the NX it lets us AND it like other
413 		 * permission bits.
414 		 */
415 		pte_access = pt_access & (pte ^ walk_nx_mask);
416 
417 		if (unlikely(!FNAME(is_present_gpte)(pte)))
418 			goto error;
419 
420 		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
421 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
422 			goto error;
423 		}
424 
425 		walker->ptes[walker->level - 1] = pte;
426 
427 		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
428 		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
429 	} while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
430 
431 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
432 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
433 
434 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
435 	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
436 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
437 	if (unlikely(errcode))
438 		goto error;
439 
440 	gfn = gpte_to_gfn_lvl(pte, walker->level);
441 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
442 
443 #if PTTYPE == 32
444 	if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
445 		gfn += pse36_gfn_delta(pte);
446 #endif
447 
448 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
449 	if (real_gpa == INVALID_GPA)
450 		return 0;
451 
452 	walker->gfn = real_gpa >> PAGE_SHIFT;
453 
454 	if (!write_fault)
455 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
456 	else
457 		/*
458 		 * On a write fault, fold the dirty bit into accessed_dirty.
459 		 * For modes without A/D bits support accessed_dirty will be
460 		 * always clear.
461 		 */
462 		accessed_dirty &= pte >>
463 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
464 
465 	if (unlikely(!accessed_dirty)) {
466 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
467 							addr, write_fault);
468 		if (unlikely(ret < 0))
469 			goto error;
470 		else if (ret)
471 			goto retry_walk;
472 	}
473 
474 	return 1;
475 
476 error:
477 	errcode |= write_fault | user_fault;
478 	if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
479 		errcode |= PFERR_FETCH_MASK;
480 
481 	walker->fault.vector = PF_VECTOR;
482 	walker->fault.error_code_valid = true;
483 	walker->fault.error_code = errcode;
484 
485 #if PTTYPE == PTTYPE_EPT
486 	/*
487 	 * Use PFERR_RSVD_MASK in error_code to tell if EPT
488 	 * misconfiguration requires to be injected. The detection is
489 	 * done by is_rsvd_bits_set() above.
490 	 *
491 	 * We set up the value of exit_qualification to inject:
492 	 * [2:0] - Derive from the access bits. The exit_qualification might be
493 	 *         out of date if it is serving an EPT misconfiguration.
494 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
495 	 * [7:8] - Derived from [7:8] of real exit_qualification
496 	 *
497 	 * The other bits are set to 0.
498 	 */
499 	if (!(errcode & PFERR_RSVD_MASK)) {
500 		walker->fault.exit_qualification = 0;
501 
502 		if (write_fault)
503 			walker->fault.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
504 		if (user_fault)
505 			walker->fault.exit_qualification |= EPT_VIOLATION_ACC_READ;
506 		if (fetch_fault)
507 			walker->fault.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
508 
509 		/*
510 		 * Note, pte_access holds the raw RWX bits from the EPTE, not
511 		 * ACC_*_MASK flags!
512 		 */
513 		walker->fault.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) <<
514 						     EPT_VIOLATION_RWX_SHIFT;
515 	}
516 #endif
517 	walker->fault.address = addr;
518 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
519 	walker->fault.async_page_fault = false;
520 
521 	trace_kvm_mmu_walker_error(walker->fault.error_code);
522 	return 0;
523 }
524 
525 static int FNAME(walk_addr)(struct guest_walker *walker,
526 			    struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
527 {
528 	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
529 					access);
530 }
531 
532 static bool
533 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
534 		     u64 *spte, pt_element_t gpte)
535 {
536 	unsigned pte_access;
537 	gfn_t gfn;
538 
539 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
540 		return false;
541 
542 	gfn = gpte_to_gfn(gpte);
543 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
544 	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
545 
546 	return kvm_mmu_prefetch_sptes(vcpu, gfn, spte, 1, pte_access);
547 }
548 
549 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
550 				struct guest_walker *gw, int level)
551 {
552 	pt_element_t curr_pte;
553 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
554 	u64 mask;
555 	int r, index;
556 
557 	if (level == PG_LEVEL_4K) {
558 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
559 		base_gpa = pte_gpa & ~mask;
560 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
561 
562 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
563 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
564 		curr_pte = gw->prefetch_ptes[index];
565 	} else
566 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
567 				  &curr_pte, sizeof(curr_pte));
568 
569 	return r || curr_pte != gw->ptes[level - 1];
570 }
571 
572 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
573 				u64 *sptep)
574 {
575 	struct kvm_mmu_page *sp;
576 	pt_element_t *gptep = gw->prefetch_ptes;
577 	u64 *spte;
578 	int i;
579 
580 	sp = sptep_to_sp(sptep);
581 
582 	if (sp->role.level > PG_LEVEL_4K)
583 		return;
584 
585 	/*
586 	 * If addresses are being invalidated, skip prefetching to avoid
587 	 * accidentally prefetching those addresses.
588 	 */
589 	if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
590 		return;
591 
592 	if (sp->role.direct)
593 		return __direct_pte_prefetch(vcpu, sp, sptep);
594 
595 	i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
596 	spte = sp->spt + i;
597 
598 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
599 		if (spte == sptep)
600 			continue;
601 
602 		if (is_shadow_present_pte(*spte))
603 			continue;
604 
605 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i]))
606 			break;
607 	}
608 }
609 
610 /*
611  * Fetch a shadow pte for a specific level in the paging hierarchy.
612  * If the guest tries to write a write-protected page, we need to
613  * emulate this operation, return 1 to indicate this case.
614  */
615 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
616 			 struct guest_walker *gw)
617 {
618 	struct kvm_mmu_page *sp = NULL;
619 	struct kvm_shadow_walk_iterator it;
620 	unsigned int direct_access, access;
621 	int top_level, ret;
622 	gfn_t base_gfn = fault->gfn;
623 
624 	WARN_ON_ONCE(gw->gfn != base_gfn);
625 	direct_access = gw->pte_access;
626 
627 	top_level = vcpu->arch.mmu->cpu_role.base.level;
628 	if (top_level == PT32E_ROOT_LEVEL)
629 		top_level = PT32_ROOT_LEVEL;
630 	/*
631 	 * Verify that the top-level gpte is still there.  Since the page
632 	 * is a root page, it is either write protected (and cannot be
633 	 * changed from now on) or it is invalid (in which case, we don't
634 	 * really care if it changes underneath us after this point).
635 	 */
636 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
637 		return RET_PF_RETRY;
638 
639 	if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
640 		return RET_PF_RETRY;
641 
642 	/*
643 	 * Load a new root and retry the faulting instruction in the extremely
644 	 * unlikely scenario that the guest root gfn became visible between
645 	 * loading a dummy root and handling the resulting page fault, e.g. if
646 	 * userspace create a memslot in the interim.
647 	 */
648 	if (unlikely(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) {
649 		kvm_make_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu);
650 		return RET_PF_RETRY;
651 	}
652 
653 	for_each_shadow_entry(vcpu, fault->addr, it) {
654 		gfn_t table_gfn;
655 
656 		clear_sp_write_flooding_count(it.sptep);
657 		if (it.level == gw->level)
658 			break;
659 
660 		table_gfn = gw->table_gfn[it.level - 2];
661 		access = gw->pt_access[it.level - 2];
662 		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn,
663 					  false, access);
664 
665 		/*
666 		 * Synchronize the new page before linking it, as the CPU (KVM)
667 		 * is architecturally disallowed from inserting non-present
668 		 * entries into the TLB, i.e. the guest isn't required to flush
669 		 * the TLB when changing the gPTE from non-present to present.
670 		 *
671 		 * For PG_LEVEL_4K, kvm_mmu_find_shadow_page() has already
672 		 * synchronized the page via kvm_sync_page().
673 		 *
674 		 * For higher level pages, which cannot be unsync themselves
675 		 * but can have unsync children, synchronize via the slower
676 		 * mmu_sync_children().  If KVM needs to drop mmu_lock due to
677 		 * contention or to reschedule, instruct the caller to retry
678 		 * the #PF (mmu_sync_children() ensures forward progress will
679 		 * be made).
680 		 */
681 		if (sp != ERR_PTR(-EEXIST) && sp->unsync_children &&
682 		    mmu_sync_children(vcpu, sp, false))
683 			return RET_PF_RETRY;
684 
685 		/*
686 		 * Verify that the gpte in the page, which is now either
687 		 * write-protected or unsync, wasn't modified between the fault
688 		 * and acquiring mmu_lock.  This needs to be done even when
689 		 * reusing an existing shadow page to ensure the information
690 		 * gathered by the walker matches the information stored in the
691 		 * shadow page (which could have been modified by a different
692 		 * vCPU even if the page was already linked).  Holding mmu_lock
693 		 * prevents the shadow page from changing after this point.
694 		 */
695 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
696 			return RET_PF_RETRY;
697 
698 		if (sp != ERR_PTR(-EEXIST))
699 			link_shadow_page(vcpu, it.sptep, sp);
700 
701 		if (fault->write && table_gfn == fault->gfn)
702 			fault->write_fault_to_shadow_pgtable = true;
703 	}
704 
705 	/*
706 	 * Adjust the hugepage size _after_ resolving indirect shadow pages.
707 	 * KVM doesn't support mapping hugepages into the guest for gfns that
708 	 * are being shadowed by KVM, i.e. allocating a new shadow page may
709 	 * affect the allowed hugepage size.
710 	 */
711 	kvm_mmu_hugepage_adjust(vcpu, fault);
712 
713 	trace_kvm_mmu_spte_requested(fault);
714 
715 	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
716 		/*
717 		 * We cannot overwrite existing page tables with an NX
718 		 * large page, as the leaf could be executable.
719 		 */
720 		if (fault->nx_huge_page_workaround_enabled)
721 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
722 
723 		base_gfn = gfn_round_for_level(fault->gfn, it.level);
724 		if (it.level == fault->goal_level)
725 			break;
726 
727 		validate_direct_spte(vcpu, it.sptep, direct_access);
728 
729 		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn,
730 					  true, direct_access);
731 		if (sp == ERR_PTR(-EEXIST))
732 			continue;
733 
734 		link_shadow_page(vcpu, it.sptep, sp);
735 		if (fault->huge_page_disallowed)
736 			account_nx_huge_page(vcpu->kvm, sp,
737 					     fault->req_level >= it.level);
738 	}
739 
740 	if (WARN_ON_ONCE(it.level != fault->goal_level))
741 		return -EFAULT;
742 
743 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
744 			   base_gfn, fault->pfn, fault);
745 	if (ret == RET_PF_SPURIOUS)
746 		return ret;
747 
748 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
749 	return ret;
750 }
751 
752 /*
753  * Page fault handler.  There are several causes for a page fault:
754  *   - there is no shadow pte for the guest pte
755  *   - write access through a shadow pte marked read only so that we can set
756  *     the dirty bit
757  *   - write access to a shadow pte marked read only so we can update the page
758  *     dirty bitmap, when userspace requests it
759  *   - mmio access; in this case we will never install a present shadow pte
760  *   - normal guest page fault due to the guest pte marked not present, not
761  *     writable, or not executable
762  *
763  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
764  *           a negative value on error.
765  */
766 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
767 {
768 	struct guest_walker walker;
769 	int r;
770 
771 	WARN_ON_ONCE(fault->is_tdp);
772 
773 	/*
774 	 * Look up the guest pte for the faulting address.
775 	 * If PFEC.RSVD is set, this is a shadow page fault.
776 	 * The bit needs to be cleared before walking guest page tables.
777 	 */
778 	r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
779 			     fault->error_code & ~PFERR_RSVD_MASK);
780 
781 	/*
782 	 * The page is not mapped by the guest.  Let the guest handle it.
783 	 */
784 	if (!r) {
785 		if (!fault->prefetch)
786 			kvm_inject_emulated_page_fault(vcpu, &walker.fault);
787 
788 		return RET_PF_RETRY;
789 	}
790 
791 	fault->gfn = walker.gfn;
792 	fault->max_level = walker.level;
793 	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
794 
795 	if (page_fault_handle_page_track(vcpu, fault)) {
796 		shadow_page_table_clear_flood(vcpu, fault->addr);
797 		return RET_PF_WRITE_PROTECTED;
798 	}
799 
800 	r = mmu_topup_memory_caches(vcpu, true);
801 	if (r)
802 		return r;
803 
804 	r = kvm_mmu_faultin_pfn(vcpu, fault, walker.pte_access);
805 	if (r != RET_PF_CONTINUE)
806 		return r;
807 
808 	/*
809 	 * Do not change pte_access if the pfn is a mmio page, otherwise
810 	 * we will cache the incorrect access into mmio spte.
811 	 */
812 	if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
813 	    !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
814 		walker.pte_access |= ACC_WRITE_MASK;
815 		walker.pte_access &= ~ACC_USER_MASK;
816 
817 		/*
818 		 * If we converted a user page to a kernel page,
819 		 * so that the kernel can write to it when cr0.wp=0,
820 		 * then we should prevent the kernel from executing it
821 		 * if SMEP is enabled.
822 		 */
823 		if (is_cr4_smep(vcpu->arch.mmu))
824 			walker.pte_access &= ~ACC_EXEC_MASK;
825 	}
826 
827 	r = RET_PF_RETRY;
828 	write_lock(&vcpu->kvm->mmu_lock);
829 
830 	if (is_page_fault_stale(vcpu, fault))
831 		goto out_unlock;
832 
833 	r = make_mmu_pages_available(vcpu);
834 	if (r)
835 		goto out_unlock;
836 	r = FNAME(fetch)(vcpu, fault, &walker);
837 
838 out_unlock:
839 	kvm_mmu_finish_page_fault(vcpu, fault, r);
840 	write_unlock(&vcpu->kvm->mmu_lock);
841 	return r;
842 }
843 
844 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
845 {
846 	int offset = 0;
847 
848 	WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
849 
850 	if (PTTYPE == 32)
851 		offset = sp->role.quadrant << SPTE_LEVEL_BITS;
852 
853 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
854 }
855 
856 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
857 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
858 			       gpa_t addr, u64 access,
859 			       struct x86_exception *exception)
860 {
861 	struct guest_walker walker;
862 	gpa_t gpa = INVALID_GPA;
863 	int r;
864 
865 #ifndef CONFIG_X86_64
866 	/* A 64-bit GVA should be impossible on 32-bit KVM. */
867 	WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
868 #endif
869 
870 	r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
871 
872 	if (r) {
873 		gpa = gfn_to_gpa(walker.gfn);
874 		gpa |= addr & ~PAGE_MASK;
875 	} else if (exception)
876 		*exception = walker.fault;
877 
878 	return gpa;
879 }
880 
881 /*
882  * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is
883  * safe because SPTEs are protected by mmu_notifiers and memslot generations, so
884  * the pfn for a given gfn can't change unless all SPTEs pointing to the gfn are
885  * nuked first.
886  *
887  * Returns
888  * < 0: failed to sync spte
889  *   0: the spte is synced and no tlb flushing is required
890  * > 0: the spte is synced and tlb flushing is required
891  */
892 static int FNAME(sync_spte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
893 {
894 	bool host_writable;
895 	gpa_t first_pte_gpa;
896 	u64 *sptep, spte;
897 	struct kvm_memory_slot *slot;
898 	unsigned pte_access;
899 	pt_element_t gpte;
900 	gpa_t pte_gpa;
901 	gfn_t gfn;
902 
903 	if (WARN_ON_ONCE(sp->spt[i] == SHADOW_NONPRESENT_VALUE ||
904 			 !sp->shadowed_translation))
905 		return 0;
906 
907 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
908 	pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
909 
910 	if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
911 				       sizeof(pt_element_t)))
912 		return -1;
913 
914 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte))
915 		return 1;
916 
917 	gfn = gpte_to_gfn(gpte);
918 	pte_access = sp->role.access;
919 	pte_access &= FNAME(gpte_access)(gpte);
920 	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
921 
922 	if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
923 		return 0;
924 
925 	/*
926 	 * Drop the SPTE if the new protections result in no effective
927 	 * "present" bit or if the gfn is changing.  The former case
928 	 * only affects EPT with execute-only support with pte_access==0;
929 	 * all other paging modes will create a read-only SPTE if
930 	 * pte_access is zero.
931 	 */
932 	if ((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE ||
933 	    gfn != kvm_mmu_page_get_gfn(sp, i)) {
934 		drop_spte(vcpu->kvm, &sp->spt[i]);
935 		return 1;
936 	}
937 	/*
938 	 * Do nothing if the permissions are unchanged.  The existing SPTE is
939 	 * still, and prefetch_invalid_gpte() has verified that the A/D bits
940 	 * are set in the "new" gPTE, i.e. there is no danger of missing an A/D
941 	 * update due to A/D bits being set in the SPTE but not the gPTE.
942 	 */
943 	if (kvm_mmu_page_get_access(sp, i) == pte_access)
944 		return 0;
945 
946 	/* Update the shadowed access bits in case they changed. */
947 	kvm_mmu_page_set_access(sp, i, pte_access);
948 
949 	sptep = &sp->spt[i];
950 	spte = *sptep;
951 	host_writable = spte & shadow_host_writable_mask;
952 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
953 	make_spte(vcpu, sp, slot, pte_access, gfn,
954 		  spte_to_pfn(spte), spte, true, true,
955 		  host_writable, &spte);
956 
957 	/*
958 	 * There is no need to mark the pfn dirty, as the new protections must
959 	 * be a subset of the old protections, i.e. synchronizing a SPTE cannot
960 	 * change the SPTE from read-only to writable.
961 	 */
962 	return mmu_spte_update(sptep, spte);
963 }
964 
965 #undef pt_element_t
966 #undef guest_walker
967 #undef FNAME
968 #undef PT_BASE_ADDR_MASK
969 #undef PT_INDEX
970 #undef PT_LVL_ADDR_MASK
971 #undef PT_LVL_OFFSET_MASK
972 #undef PT_LEVEL_BITS
973 #undef PT_MAX_FULL_LEVELS
974 #undef gpte_to_gfn
975 #undef gpte_to_gfn_lvl
976 #undef PT_GUEST_ACCESSED_MASK
977 #undef PT_GUEST_DIRTY_MASK
978 #undef PT_GUEST_DIRTY_SHIFT
979 #undef PT_GUEST_ACCESSED_SHIFT
980 #undef PT_HAVE_ACCESSED_DIRTY
981