1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 /* 19 * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables, 20 * as well as guest EPT tables, so the code in this file is compiled thrice, 21 * once per guest PTE type. The per-type defines are #undef'd at the end. 22 */ 23 24 #if PTTYPE == 64 25 #define pt_element_t u64 26 #define guest_walker guest_walker64 27 #define FNAME(name) paging##64_##name 28 #define PT_LEVEL_BITS 9 29 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 30 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 31 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 32 #ifdef CONFIG_X86_64 33 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 34 #else 35 #define PT_MAX_FULL_LEVELS 2 36 #endif 37 #elif PTTYPE == 32 38 #define pt_element_t u32 39 #define guest_walker guest_walker32 40 #define FNAME(name) paging##32_##name 41 #define PT_LEVEL_BITS 10 42 #define PT_MAX_FULL_LEVELS 2 43 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 44 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 45 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 46 47 #define PT32_DIR_PSE36_SIZE 4 48 #define PT32_DIR_PSE36_SHIFT 13 49 #define PT32_DIR_PSE36_MASK \ 50 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) 51 #elif PTTYPE == PTTYPE_EPT 52 #define pt_element_t u64 53 #define guest_walker guest_walkerEPT 54 #define FNAME(name) ept_##name 55 #define PT_LEVEL_BITS 9 56 #define PT_GUEST_DIRTY_SHIFT 9 57 #define PT_GUEST_ACCESSED_SHIFT 8 58 #define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled) 59 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 60 #else 61 #error Invalid PTTYPE value 62 #endif 63 64 /* Common logic, but per-type values. These also need to be undefined. */ 65 #define PT_BASE_ADDR_MASK ((pt_element_t)(((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))) 66 #define PT_LVL_ADDR_MASK(lvl) __PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS) 67 #define PT_LVL_OFFSET_MASK(lvl) __PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS) 68 #define PT_INDEX(addr, lvl) __PT_INDEX(addr, lvl, PT_LEVEL_BITS) 69 70 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) 71 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) 72 73 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) 74 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K) 75 76 /* 77 * The guest_walker structure emulates the behavior of the hardware page 78 * table walker. 79 */ 80 struct guest_walker { 81 int level; 82 unsigned max_level; 83 gfn_t table_gfn[PT_MAX_FULL_LEVELS]; 84 pt_element_t ptes[PT_MAX_FULL_LEVELS]; 85 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; 86 gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; 87 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; 88 bool pte_writable[PT_MAX_FULL_LEVELS]; 89 unsigned int pt_access[PT_MAX_FULL_LEVELS]; 90 unsigned int pte_access; 91 gfn_t gfn; 92 struct x86_exception fault; 93 }; 94 95 #if PTTYPE == 32 96 static inline gfn_t pse36_gfn_delta(u32 gpte) 97 { 98 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 99 100 return (gpte & PT32_DIR_PSE36_MASK) << shift; 101 } 102 #endif 103 104 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) 105 { 106 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; 107 } 108 109 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, 110 unsigned gpte) 111 { 112 unsigned mask; 113 114 /* dirty bit is not supported, so no need to track it */ 115 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 116 return; 117 118 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); 119 120 mask = (unsigned)~ACC_WRITE_MASK; 121 /* Allow write access to dirty gptes */ 122 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & 123 PT_WRITABLE_MASK; 124 *access &= mask; 125 } 126 127 static inline int FNAME(is_present_gpte)(unsigned long pte) 128 { 129 #if PTTYPE != PTTYPE_EPT 130 return pte & PT_PRESENT_MASK; 131 #else 132 return pte & 7; 133 #endif 134 } 135 136 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte) 137 { 138 #if PTTYPE != PTTYPE_EPT 139 return false; 140 #else 141 return __is_bad_mt_xwr(rsvd_check, gpte); 142 #endif 143 } 144 145 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) 146 { 147 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) || 148 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte); 149 } 150 151 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, 152 struct kvm_mmu_page *sp, u64 *spte, 153 u64 gpte) 154 { 155 if (!FNAME(is_present_gpte)(gpte)) 156 goto no_present; 157 158 /* Prefetch only accessed entries (unless A/D bits are disabled). */ 159 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && 160 !(gpte & PT_GUEST_ACCESSED_MASK)) 161 goto no_present; 162 163 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K)) 164 goto no_present; 165 166 return false; 167 168 no_present: 169 drop_spte(vcpu->kvm, spte); 170 return true; 171 } 172 173 /* 174 * For PTTYPE_EPT, a page table can be executable but not readable 175 * on supported processors. Therefore, set_spte does not automatically 176 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK 177 * to signify readability since it isn't used in the EPT case 178 */ 179 static inline unsigned FNAME(gpte_access)(u64 gpte) 180 { 181 unsigned access; 182 #if PTTYPE == PTTYPE_EPT 183 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | 184 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | 185 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); 186 #else 187 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); 188 BUILD_BUG_ON(ACC_EXEC_MASK != 1); 189 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); 190 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ 191 access ^= (gpte >> PT64_NX_SHIFT); 192 #endif 193 194 return access; 195 } 196 197 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, 198 struct kvm_mmu *mmu, 199 struct guest_walker *walker, 200 gpa_t addr, int write_fault) 201 { 202 unsigned level, index; 203 pt_element_t pte, orig_pte; 204 pt_element_t __user *ptep_user; 205 gfn_t table_gfn; 206 int ret; 207 208 /* dirty/accessed bits are not supported, so no need to update them */ 209 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 210 return 0; 211 212 for (level = walker->max_level; level >= walker->level; --level) { 213 pte = orig_pte = walker->ptes[level - 1]; 214 table_gfn = walker->table_gfn[level - 1]; 215 ptep_user = walker->ptep_user[level - 1]; 216 index = offset_in_page(ptep_user) / sizeof(pt_element_t); 217 if (!(pte & PT_GUEST_ACCESSED_MASK)) { 218 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); 219 pte |= PT_GUEST_ACCESSED_MASK; 220 } 221 if (level == walker->level && write_fault && 222 !(pte & PT_GUEST_DIRTY_MASK)) { 223 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); 224 #if PTTYPE == PTTYPE_EPT 225 if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr)) 226 return -EINVAL; 227 #endif 228 pte |= PT_GUEST_DIRTY_MASK; 229 } 230 if (pte == orig_pte) 231 continue; 232 233 /* 234 * If the slot is read-only, simply do not process the accessed 235 * and dirty bits. This is the correct thing to do if the slot 236 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots 237 * are only supported if the accessed and dirty bits are already 238 * set in the ROM (so that MMIO writes are never needed). 239 * 240 * Note that NPT does not allow this at all and faults, since 241 * it always wants nested page table entries for the guest 242 * page tables to be writable. And EPT works but will simply 243 * overwrite the read-only memory to set the accessed and dirty 244 * bits. 245 */ 246 if (unlikely(!walker->pte_writable[level - 1])) 247 continue; 248 249 ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault); 250 if (ret) 251 return ret; 252 253 kvm_vcpu_mark_page_dirty(vcpu, table_gfn); 254 walker->ptes[level - 1] = pte; 255 } 256 return 0; 257 } 258 259 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) 260 { 261 unsigned pkeys = 0; 262 #if PTTYPE == 64 263 pte_t pte = {.pte = gpte}; 264 265 pkeys = pte_flags_pkey(pte_flags(pte)); 266 #endif 267 return pkeys; 268 } 269 270 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu, 271 unsigned int level, unsigned int gpte) 272 { 273 /* 274 * For EPT and PAE paging (both variants), bit 7 is either reserved at 275 * all level or indicates a huge page (ignoring CR3/EPTP). In either 276 * case, bit 7 being set terminates the walk. 277 */ 278 #if PTTYPE == 32 279 /* 280 * 32-bit paging requires special handling because bit 7 is ignored if 281 * CR4.PSE=0, not reserved. Clear bit 7 in the gpte if the level is 282 * greater than the last level for which bit 7 is the PAGE_SIZE bit. 283 * 284 * The RHS has bit 7 set iff level < (2 + PSE). If it is clear, bit 7 285 * is not reserved and does not indicate a large page at this level, 286 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case. 287 */ 288 gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse); 289 #endif 290 /* 291 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 292 * iff level <= PG_LEVEL_4K, which for our purpose means 293 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 294 */ 295 gpte |= level - PG_LEVEL_4K - 1; 296 297 return gpte & PT_PAGE_SIZE_MASK; 298 } 299 /* 300 * Fetch a guest pte for a guest virtual address, or for an L2's GPA. 301 */ 302 static int FNAME(walk_addr_generic)(struct guest_walker *walker, 303 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 304 gpa_t addr, u64 access) 305 { 306 int ret; 307 pt_element_t pte; 308 pt_element_t __user *ptep_user; 309 gfn_t table_gfn; 310 u64 pt_access, pte_access; 311 unsigned index, accessed_dirty, pte_pkey; 312 u64 nested_access; 313 gpa_t pte_gpa; 314 bool have_ad; 315 int offset; 316 u64 walk_nx_mask = 0; 317 const int write_fault = access & PFERR_WRITE_MASK; 318 const int user_fault = access & PFERR_USER_MASK; 319 const int fetch_fault = access & PFERR_FETCH_MASK; 320 u16 errcode = 0; 321 gpa_t real_gpa; 322 gfn_t gfn; 323 324 trace_kvm_mmu_pagetable_walk(addr, access); 325 retry_walk: 326 walker->level = mmu->cpu_role.base.level; 327 pte = mmu->get_guest_pgd(vcpu); 328 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); 329 330 #if PTTYPE == 64 331 walk_nx_mask = 1ULL << PT64_NX_SHIFT; 332 if (walker->level == PT32E_ROOT_LEVEL) { 333 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); 334 trace_kvm_mmu_paging_element(pte, walker->level); 335 if (!FNAME(is_present_gpte)(pte)) 336 goto error; 337 --walker->level; 338 } 339 #endif 340 walker->max_level = walker->level; 341 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); 342 343 /* 344 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging 345 * by the MOV to CR instruction are treated as reads and do not cause the 346 * processor to set the dirty flag in any EPT paging-structure entry. 347 */ 348 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; 349 350 pte_access = ~0; 351 ++walker->level; 352 353 do { 354 unsigned long host_addr; 355 356 pt_access = pte_access; 357 --walker->level; 358 359 index = PT_INDEX(addr, walker->level); 360 table_gfn = gpte_to_gfn(pte); 361 offset = index * sizeof(pt_element_t); 362 pte_gpa = gfn_to_gpa(table_gfn) + offset; 363 364 BUG_ON(walker->level < 1); 365 walker->table_gfn[walker->level - 1] = table_gfn; 366 walker->pte_gpa[walker->level - 1] = pte_gpa; 367 368 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn), 369 nested_access, &walker->fault); 370 371 /* 372 * FIXME: This can happen if emulation (for of an INS/OUTS 373 * instruction) triggers a nested page fault. The exit 374 * qualification / exit info field will incorrectly have 375 * "guest page access" as the nested page fault's cause, 376 * instead of "guest page structure access". To fix this, 377 * the x86_exception struct should be augmented with enough 378 * information to fix the exit_qualification or exit_info_1 379 * fields. 380 */ 381 if (unlikely(real_gpa == INVALID_GPA)) 382 return 0; 383 384 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa), 385 &walker->pte_writable[walker->level - 1]); 386 if (unlikely(kvm_is_error_hva(host_addr))) 387 goto error; 388 389 ptep_user = (pt_element_t __user *)((void *)host_addr + offset); 390 if (unlikely(__get_user(pte, ptep_user))) 391 goto error; 392 walker->ptep_user[walker->level - 1] = ptep_user; 393 394 trace_kvm_mmu_paging_element(pte, walker->level); 395 396 /* 397 * Inverting the NX it lets us AND it like other 398 * permission bits. 399 */ 400 pte_access = pt_access & (pte ^ walk_nx_mask); 401 402 if (unlikely(!FNAME(is_present_gpte)(pte))) 403 goto error; 404 405 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) { 406 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; 407 goto error; 408 } 409 410 walker->ptes[walker->level - 1] = pte; 411 412 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 413 walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask); 414 } while (!FNAME(is_last_gpte)(mmu, walker->level, pte)); 415 416 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); 417 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; 418 419 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 420 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); 421 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); 422 if (unlikely(errcode)) 423 goto error; 424 425 gfn = gpte_to_gfn_lvl(pte, walker->level); 426 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; 427 428 #if PTTYPE == 32 429 if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36()) 430 gfn += pse36_gfn_delta(pte); 431 #endif 432 433 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault); 434 if (real_gpa == INVALID_GPA) 435 return 0; 436 437 walker->gfn = real_gpa >> PAGE_SHIFT; 438 439 if (!write_fault) 440 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); 441 else 442 /* 443 * On a write fault, fold the dirty bit into accessed_dirty. 444 * For modes without A/D bits support accessed_dirty will be 445 * always clear. 446 */ 447 accessed_dirty &= pte >> 448 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); 449 450 if (unlikely(!accessed_dirty)) { 451 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, 452 addr, write_fault); 453 if (unlikely(ret < 0)) 454 goto error; 455 else if (ret) 456 goto retry_walk; 457 } 458 459 pgprintk("%s: pte %llx pte_access %x pt_access %x\n", 460 __func__, (u64)pte, walker->pte_access, 461 walker->pt_access[walker->level - 1]); 462 return 1; 463 464 error: 465 errcode |= write_fault | user_fault; 466 if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu))) 467 errcode |= PFERR_FETCH_MASK; 468 469 walker->fault.vector = PF_VECTOR; 470 walker->fault.error_code_valid = true; 471 walker->fault.error_code = errcode; 472 473 #if PTTYPE == PTTYPE_EPT 474 /* 475 * Use PFERR_RSVD_MASK in error_code to tell if EPT 476 * misconfiguration requires to be injected. The detection is 477 * done by is_rsvd_bits_set() above. 478 * 479 * We set up the value of exit_qualification to inject: 480 * [2:0] - Derive from the access bits. The exit_qualification might be 481 * out of date if it is serving an EPT misconfiguration. 482 * [5:3] - Calculated by the page walk of the guest EPT page tables 483 * [7:8] - Derived from [7:8] of real exit_qualification 484 * 485 * The other bits are set to 0. 486 */ 487 if (!(errcode & PFERR_RSVD_MASK)) { 488 vcpu->arch.exit_qualification &= (EPT_VIOLATION_GVA_IS_VALID | 489 EPT_VIOLATION_GVA_TRANSLATED); 490 if (write_fault) 491 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; 492 if (user_fault) 493 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; 494 if (fetch_fault) 495 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; 496 497 /* 498 * Note, pte_access holds the raw RWX bits from the EPTE, not 499 * ACC_*_MASK flags! 500 */ 501 vcpu->arch.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) << 502 EPT_VIOLATION_RWX_SHIFT; 503 } 504 #endif 505 walker->fault.address = addr; 506 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; 507 walker->fault.async_page_fault = false; 508 509 trace_kvm_mmu_walker_error(walker->fault.error_code); 510 return 0; 511 } 512 513 static int FNAME(walk_addr)(struct guest_walker *walker, 514 struct kvm_vcpu *vcpu, gpa_t addr, u64 access) 515 { 516 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, 517 access); 518 } 519 520 static bool 521 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 522 u64 *spte, pt_element_t gpte, bool no_dirty_log) 523 { 524 struct kvm_memory_slot *slot; 525 unsigned pte_access; 526 gfn_t gfn; 527 kvm_pfn_t pfn; 528 529 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) 530 return false; 531 532 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); 533 534 gfn = gpte_to_gfn(gpte); 535 pte_access = sp->role.access & FNAME(gpte_access)(gpte); 536 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 537 538 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, 539 no_dirty_log && (pte_access & ACC_WRITE_MASK)); 540 if (!slot) 541 return false; 542 543 pfn = gfn_to_pfn_memslot_atomic(slot, gfn); 544 if (is_error_pfn(pfn)) 545 return false; 546 547 mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL); 548 kvm_release_pfn_clean(pfn); 549 return true; 550 } 551 552 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, 553 struct guest_walker *gw, int level) 554 { 555 pt_element_t curr_pte; 556 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; 557 u64 mask; 558 int r, index; 559 560 if (level == PG_LEVEL_4K) { 561 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; 562 base_gpa = pte_gpa & ~mask; 563 index = (pte_gpa - base_gpa) / sizeof(pt_element_t); 564 565 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, 566 gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); 567 curr_pte = gw->prefetch_ptes[index]; 568 } else 569 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, 570 &curr_pte, sizeof(curr_pte)); 571 572 return r || curr_pte != gw->ptes[level - 1]; 573 } 574 575 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, 576 u64 *sptep) 577 { 578 struct kvm_mmu_page *sp; 579 pt_element_t *gptep = gw->prefetch_ptes; 580 u64 *spte; 581 int i; 582 583 sp = sptep_to_sp(sptep); 584 585 if (sp->role.level > PG_LEVEL_4K) 586 return; 587 588 /* 589 * If addresses are being invalidated, skip prefetching to avoid 590 * accidentally prefetching those addresses. 591 */ 592 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 593 return; 594 595 if (sp->role.direct) 596 return __direct_pte_prefetch(vcpu, sp, sptep); 597 598 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 599 spte = sp->spt + i; 600 601 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 602 if (spte == sptep) 603 continue; 604 605 if (is_shadow_present_pte(*spte)) 606 continue; 607 608 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) 609 break; 610 } 611 } 612 613 /* 614 * Fetch a shadow pte for a specific level in the paging hierarchy. 615 * If the guest tries to write a write-protected page, we need to 616 * emulate this operation, return 1 to indicate this case. 617 */ 618 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 619 struct guest_walker *gw) 620 { 621 struct kvm_mmu_page *sp = NULL; 622 struct kvm_shadow_walk_iterator it; 623 unsigned int direct_access, access; 624 int top_level, ret; 625 gfn_t base_gfn = fault->gfn; 626 627 WARN_ON_ONCE(gw->gfn != base_gfn); 628 direct_access = gw->pte_access; 629 630 top_level = vcpu->arch.mmu->cpu_role.base.level; 631 if (top_level == PT32E_ROOT_LEVEL) 632 top_level = PT32_ROOT_LEVEL; 633 /* 634 * Verify that the top-level gpte is still there. Since the page 635 * is a root page, it is either write protected (and cannot be 636 * changed from now on) or it is invalid (in which case, we don't 637 * really care if it changes underneath us after this point). 638 */ 639 if (FNAME(gpte_changed)(vcpu, gw, top_level)) 640 goto out_gpte_changed; 641 642 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 643 goto out_gpte_changed; 644 645 for_each_shadow_entry(vcpu, fault->addr, it) { 646 gfn_t table_gfn; 647 648 clear_sp_write_flooding_count(it.sptep); 649 if (it.level == gw->level) 650 break; 651 652 table_gfn = gw->table_gfn[it.level - 2]; 653 access = gw->pt_access[it.level - 2]; 654 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn, 655 false, access); 656 657 if (sp != ERR_PTR(-EEXIST)) { 658 /* 659 * We must synchronize the pagetable before linking it 660 * because the guest doesn't need to flush tlb when 661 * the gpte is changed from non-present to present. 662 * Otherwise, the guest may use the wrong mapping. 663 * 664 * For PG_LEVEL_4K, kvm_mmu_get_page() has already 665 * synchronized it transiently via kvm_sync_page(). 666 * 667 * For higher level pagetable, we synchronize it via 668 * the slower mmu_sync_children(). If it needs to 669 * break, some progress has been made; return 670 * RET_PF_RETRY and retry on the next #PF. 671 * KVM_REQ_MMU_SYNC is not necessary but it 672 * expedites the process. 673 */ 674 if (sp->unsync_children && 675 mmu_sync_children(vcpu, sp, false)) 676 return RET_PF_RETRY; 677 } 678 679 /* 680 * Verify that the gpte in the page we've just write 681 * protected is still there. 682 */ 683 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) 684 goto out_gpte_changed; 685 686 if (sp != ERR_PTR(-EEXIST)) 687 link_shadow_page(vcpu, it.sptep, sp); 688 } 689 690 kvm_mmu_hugepage_adjust(vcpu, fault); 691 692 trace_kvm_mmu_spte_requested(fault); 693 694 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { 695 /* 696 * We cannot overwrite existing page tables with an NX 697 * large page, as the leaf could be executable. 698 */ 699 if (fault->nx_huge_page_workaround_enabled) 700 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 701 702 base_gfn = gfn_round_for_level(fault->gfn, it.level); 703 if (it.level == fault->goal_level) 704 break; 705 706 validate_direct_spte(vcpu, it.sptep, direct_access); 707 708 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, 709 true, direct_access); 710 if (sp == ERR_PTR(-EEXIST)) 711 continue; 712 713 link_shadow_page(vcpu, it.sptep, sp); 714 if (fault->huge_page_disallowed) 715 account_nx_huge_page(vcpu->kvm, sp, 716 fault->req_level >= it.level); 717 } 718 719 if (WARN_ON_ONCE(it.level != fault->goal_level)) 720 return -EFAULT; 721 722 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access, 723 base_gfn, fault->pfn, fault); 724 if (ret == RET_PF_SPURIOUS) 725 return ret; 726 727 FNAME(pte_prefetch)(vcpu, gw, it.sptep); 728 return ret; 729 730 out_gpte_changed: 731 return RET_PF_RETRY; 732 } 733 734 /* 735 * To see whether the mapped gfn can write its page table in the current 736 * mapping. 737 * 738 * It is the helper function of FNAME(page_fault). When guest uses large page 739 * size to map the writable gfn which is used as current page table, we should 740 * force kvm to use small page size to map it because new shadow page will be 741 * created when kvm establishes shadow page table that stop kvm using large 742 * page size. Do it early can avoid unnecessary #PF and emulation. 743 * 744 * @write_fault_to_shadow_pgtable will return true if the fault gfn is 745 * currently used as its page table. 746 * 747 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok 748 * since the PDPT is always shadowed, that means, we can not use large page 749 * size to map the gfn which is used as PDPT. 750 */ 751 static bool 752 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, 753 struct guest_walker *walker, bool user_fault, 754 bool *write_fault_to_shadow_pgtable) 755 { 756 int level; 757 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); 758 bool self_changed = false; 759 760 if (!(walker->pte_access & ACC_WRITE_MASK || 761 (!is_cr0_wp(vcpu->arch.mmu) && !user_fault))) 762 return false; 763 764 for (level = walker->level; level <= walker->max_level; level++) { 765 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; 766 767 self_changed |= !(gfn & mask); 768 *write_fault_to_shadow_pgtable |= !gfn; 769 } 770 771 return self_changed; 772 } 773 774 /* 775 * Page fault handler. There are several causes for a page fault: 776 * - there is no shadow pte for the guest pte 777 * - write access through a shadow pte marked read only so that we can set 778 * the dirty bit 779 * - write access to a shadow pte marked read only so we can update the page 780 * dirty bitmap, when userspace requests it 781 * - mmio access; in this case we will never install a present shadow pte 782 * - normal guest page fault due to the guest pte marked not present, not 783 * writable, or not executable 784 * 785 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or 786 * a negative value on error. 787 */ 788 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 789 { 790 struct guest_walker walker; 791 int r; 792 bool is_self_change_mapping; 793 794 pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code); 795 WARN_ON_ONCE(fault->is_tdp); 796 797 /* 798 * Look up the guest pte for the faulting address. 799 * If PFEC.RSVD is set, this is a shadow page fault. 800 * The bit needs to be cleared before walking guest page tables. 801 */ 802 r = FNAME(walk_addr)(&walker, vcpu, fault->addr, 803 fault->error_code & ~PFERR_RSVD_MASK); 804 805 /* 806 * The page is not mapped by the guest. Let the guest handle it. 807 */ 808 if (!r) { 809 pgprintk("%s: guest page fault\n", __func__); 810 if (!fault->prefetch) 811 kvm_inject_emulated_page_fault(vcpu, &walker.fault); 812 813 return RET_PF_RETRY; 814 } 815 816 fault->gfn = walker.gfn; 817 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 818 819 if (page_fault_handle_page_track(vcpu, fault)) { 820 shadow_page_table_clear_flood(vcpu, fault->addr); 821 return RET_PF_EMULATE; 822 } 823 824 r = mmu_topup_memory_caches(vcpu, true); 825 if (r) 826 return r; 827 828 vcpu->arch.write_fault_to_shadow_pgtable = false; 829 830 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, 831 &walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable); 832 833 if (is_self_change_mapping) 834 fault->max_level = PG_LEVEL_4K; 835 else 836 fault->max_level = walker.level; 837 838 r = kvm_faultin_pfn(vcpu, fault, walker.pte_access); 839 if (r != RET_PF_CONTINUE) 840 return r; 841 842 /* 843 * Do not change pte_access if the pfn is a mmio page, otherwise 844 * we will cache the incorrect access into mmio spte. 845 */ 846 if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) && 847 !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) { 848 walker.pte_access |= ACC_WRITE_MASK; 849 walker.pte_access &= ~ACC_USER_MASK; 850 851 /* 852 * If we converted a user page to a kernel page, 853 * so that the kernel can write to it when cr0.wp=0, 854 * then we should prevent the kernel from executing it 855 * if SMEP is enabled. 856 */ 857 if (is_cr4_smep(vcpu->arch.mmu)) 858 walker.pte_access &= ~ACC_EXEC_MASK; 859 } 860 861 r = RET_PF_RETRY; 862 write_lock(&vcpu->kvm->mmu_lock); 863 864 if (is_page_fault_stale(vcpu, fault)) 865 goto out_unlock; 866 867 r = make_mmu_pages_available(vcpu); 868 if (r) 869 goto out_unlock; 870 r = FNAME(fetch)(vcpu, fault, &walker); 871 872 out_unlock: 873 write_unlock(&vcpu->kvm->mmu_lock); 874 kvm_release_pfn_clean(fault->pfn); 875 return r; 876 } 877 878 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) 879 { 880 int offset = 0; 881 882 WARN_ON(sp->role.level != PG_LEVEL_4K); 883 884 if (PTTYPE == 32) 885 offset = sp->role.quadrant << SPTE_LEVEL_BITS; 886 887 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); 888 } 889 890 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) 891 { 892 struct kvm_shadow_walk_iterator iterator; 893 struct kvm_mmu_page *sp; 894 u64 old_spte; 895 int level; 896 u64 *sptep; 897 898 vcpu_clear_mmio_info(vcpu, gva); 899 900 /* 901 * No need to check return value here, rmap_can_add() can 902 * help us to skip pte prefetch later. 903 */ 904 mmu_topup_memory_caches(vcpu, true); 905 906 if (!VALID_PAGE(root_hpa)) { 907 WARN_ON(1); 908 return; 909 } 910 911 write_lock(&vcpu->kvm->mmu_lock); 912 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) { 913 level = iterator.level; 914 sptep = iterator.sptep; 915 916 sp = sptep_to_sp(sptep); 917 old_spte = *sptep; 918 if (is_last_spte(old_spte, level)) { 919 pt_element_t gpte; 920 gpa_t pte_gpa; 921 922 if (!sp->unsync) 923 break; 924 925 pte_gpa = FNAME(get_level1_sp_gpa)(sp); 926 pte_gpa += spte_index(sptep) * sizeof(pt_element_t); 927 928 mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL); 929 if (is_shadow_present_pte(old_spte)) 930 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 931 932 if (!rmap_can_add(vcpu)) 933 break; 934 935 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 936 sizeof(pt_element_t))) 937 break; 938 939 FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false); 940 } 941 942 if (!sp->unsync_children) 943 break; 944 } 945 write_unlock(&vcpu->kvm->mmu_lock); 946 } 947 948 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ 949 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 950 gpa_t addr, u64 access, 951 struct x86_exception *exception) 952 { 953 struct guest_walker walker; 954 gpa_t gpa = INVALID_GPA; 955 int r; 956 957 #ifndef CONFIG_X86_64 958 /* A 64-bit GVA should be impossible on 32-bit KVM. */ 959 WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu); 960 #endif 961 962 r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access); 963 964 if (r) { 965 gpa = gfn_to_gpa(walker.gfn); 966 gpa |= addr & ~PAGE_MASK; 967 } else if (exception) 968 *exception = walker.fault; 969 970 return gpa; 971 } 972 973 /* 974 * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is 975 * safe because: 976 * - The spte has a reference to the struct page, so the pfn for a given gfn 977 * can't change unless all sptes pointing to it are nuked first. 978 * 979 * Returns 980 * < 0: the sp should be zapped 981 * 0: the sp is synced and no tlb flushing is required 982 * > 0: the sp is synced and tlb flushing is required 983 */ 984 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 985 { 986 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 987 int i; 988 bool host_writable; 989 gpa_t first_pte_gpa; 990 bool flush = false; 991 992 /* 993 * Ignore various flags when verifying that it's safe to sync a shadow 994 * page using the current MMU context. 995 * 996 * - level: not part of the overall MMU role and will never match as the MMU's 997 * level tracks the root level 998 * - access: updated based on the new guest PTE 999 * - quadrant: not part of the overall MMU role (similar to level) 1000 */ 1001 const union kvm_mmu_page_role sync_role_ign = { 1002 .level = 0xf, 1003 .access = 0x7, 1004 .quadrant = 0x3, 1005 .passthrough = 0x1, 1006 }; 1007 1008 /* 1009 * Direct pages can never be unsync, and KVM should never attempt to 1010 * sync a shadow page for a different MMU context, e.g. if the role 1011 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1012 * reserved bits checks will be wrong, etc... 1013 */ 1014 if (WARN_ON_ONCE(sp->role.direct || 1015 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1016 return -1; 1017 1018 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); 1019 1020 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1021 u64 *sptep, spte; 1022 struct kvm_memory_slot *slot; 1023 unsigned pte_access; 1024 pt_element_t gpte; 1025 gpa_t pte_gpa; 1026 gfn_t gfn; 1027 1028 if (!sp->spt[i]) 1029 continue; 1030 1031 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); 1032 1033 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 1034 sizeof(pt_element_t))) 1035 return -1; 1036 1037 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { 1038 flush = true; 1039 continue; 1040 } 1041 1042 gfn = gpte_to_gfn(gpte); 1043 pte_access = sp->role.access; 1044 pte_access &= FNAME(gpte_access)(gpte); 1045 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 1046 1047 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access)) 1048 continue; 1049 1050 /* 1051 * Drop the SPTE if the new protections would result in a RWX=0 1052 * SPTE or if the gfn is changing. The RWX=0 case only affects 1053 * EPT with execute-only support, i.e. EPT without an effective 1054 * "present" bit, as all other paging modes will create a 1055 * read-only SPTE if pte_access is zero. 1056 */ 1057 if ((!pte_access && !shadow_present_mask) || 1058 gfn != kvm_mmu_page_get_gfn(sp, i)) { 1059 drop_spte(vcpu->kvm, &sp->spt[i]); 1060 flush = true; 1061 continue; 1062 } 1063 1064 /* Update the shadowed access bits in case they changed. */ 1065 kvm_mmu_page_set_access(sp, i, pte_access); 1066 1067 sptep = &sp->spt[i]; 1068 spte = *sptep; 1069 host_writable = spte & shadow_host_writable_mask; 1070 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1071 make_spte(vcpu, sp, slot, pte_access, gfn, 1072 spte_to_pfn(spte), spte, true, false, 1073 host_writable, &spte); 1074 1075 flush |= mmu_spte_update(sptep, spte); 1076 } 1077 1078 /* 1079 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1080 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1081 * unmap or dirty logging event doesn't fail to flush. The guest is 1082 * responsible for flushing the TLB to ensure any changes in protection 1083 * bits are recognized, i.e. until the guest flushes or page faults on 1084 * a relevant address, KVM is architecturally allowed to let vCPUs use 1085 * cached translations with the old protection bits. 1086 */ 1087 return flush; 1088 } 1089 1090 #undef pt_element_t 1091 #undef guest_walker 1092 #undef FNAME 1093 #undef PT_BASE_ADDR_MASK 1094 #undef PT_INDEX 1095 #undef PT_LVL_ADDR_MASK 1096 #undef PT_LVL_OFFSET_MASK 1097 #undef PT_LEVEL_BITS 1098 #undef PT_MAX_FULL_LEVELS 1099 #undef gpte_to_gfn 1100 #undef gpte_to_gfn_lvl 1101 #undef PT_GUEST_ACCESSED_MASK 1102 #undef PT_GUEST_DIRTY_MASK 1103 #undef PT_GUEST_DIRTY_SHIFT 1104 #undef PT_GUEST_ACCESSED_SHIFT 1105 #undef PT_HAVE_ACCESSED_DIRTY 1106