xref: /linux/arch/x86/kvm/mmu/paging_tmpl.h (revision 3f3a1675b731e532d479e65570f2904878fbd9f0)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 /*
19  * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables,
20  * as well as guest EPT tables, so the code in this file is compiled thrice,
21  * once per guest PTE type.  The per-type defines are #undef'd at the end.
22  */
23 
24 #if PTTYPE == 64
25 	#define pt_element_t u64
26 	#define guest_walker guest_walker64
27 	#define FNAME(name) paging##64_##name
28 	#define PT_LEVEL_BITS 9
29 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
30 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
31 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
32 	#ifdef CONFIG_X86_64
33 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
34 	#else
35 	#define PT_MAX_FULL_LEVELS 2
36 	#endif
37 #elif PTTYPE == 32
38 	#define pt_element_t u32
39 	#define guest_walker guest_walker32
40 	#define FNAME(name) paging##32_##name
41 	#define PT_LEVEL_BITS 10
42 	#define PT_MAX_FULL_LEVELS 2
43 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
44 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
45 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
46 
47 	#define PT32_DIR_PSE36_SIZE 4
48 	#define PT32_DIR_PSE36_SHIFT 13
49 	#define PT32_DIR_PSE36_MASK \
50 		(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
51 #elif PTTYPE == PTTYPE_EPT
52 	#define pt_element_t u64
53 	#define guest_walker guest_walkerEPT
54 	#define FNAME(name) ept_##name
55 	#define PT_LEVEL_BITS 9
56 	#define PT_GUEST_DIRTY_SHIFT 9
57 	#define PT_GUEST_ACCESSED_SHIFT 8
58 	#define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled)
59 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
60 #else
61 	#error Invalid PTTYPE value
62 #endif
63 
64 /* Common logic, but per-type values.  These also need to be undefined. */
65 #define PT_BASE_ADDR_MASK	((pt_element_t)(((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
66 #define PT_LVL_ADDR_MASK(lvl)	__PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
67 #define PT_LVL_OFFSET_MASK(lvl)	__PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
68 #define PT_INDEX(addr, lvl)	__PT_INDEX(addr, lvl, PT_LEVEL_BITS)
69 
70 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
71 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
72 
73 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
74 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
75 
76 /*
77  * The guest_walker structure emulates the behavior of the hardware page
78  * table walker.
79  */
80 struct guest_walker {
81 	int level;
82 	unsigned max_level;
83 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
84 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
85 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
86 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
87 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
88 	bool pte_writable[PT_MAX_FULL_LEVELS];
89 	unsigned int pt_access[PT_MAX_FULL_LEVELS];
90 	unsigned int pte_access;
91 	gfn_t gfn;
92 	struct x86_exception fault;
93 };
94 
95 #if PTTYPE == 32
96 static inline gfn_t pse36_gfn_delta(u32 gpte)
97 {
98 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
99 
100 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
101 }
102 #endif
103 
104 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
105 {
106 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
107 }
108 
109 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
110 					     unsigned gpte)
111 {
112 	unsigned mask;
113 
114 	/* dirty bit is not supported, so no need to track it */
115 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
116 		return;
117 
118 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
119 
120 	mask = (unsigned)~ACC_WRITE_MASK;
121 	/* Allow write access to dirty gptes */
122 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
123 		PT_WRITABLE_MASK;
124 	*access &= mask;
125 }
126 
127 static inline int FNAME(is_present_gpte)(unsigned long pte)
128 {
129 #if PTTYPE != PTTYPE_EPT
130 	return pte & PT_PRESENT_MASK;
131 #else
132 	return pte & 7;
133 #endif
134 }
135 
136 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
137 {
138 #if PTTYPE != PTTYPE_EPT
139 	return false;
140 #else
141 	return __is_bad_mt_xwr(rsvd_check, gpte);
142 #endif
143 }
144 
145 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
146 {
147 	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
148 	       FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
149 }
150 
151 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
152 				  struct kvm_mmu_page *sp, u64 *spte,
153 				  u64 gpte)
154 {
155 	if (!FNAME(is_present_gpte)(gpte))
156 		goto no_present;
157 
158 	/* Prefetch only accessed entries (unless A/D bits are disabled). */
159 	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
160 	    !(gpte & PT_GUEST_ACCESSED_MASK))
161 		goto no_present;
162 
163 	if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
164 		goto no_present;
165 
166 	return false;
167 
168 no_present:
169 	drop_spte(vcpu->kvm, spte);
170 	return true;
171 }
172 
173 /*
174  * For PTTYPE_EPT, a page table can be executable but not readable
175  * on supported processors. Therefore, set_spte does not automatically
176  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
177  * to signify readability since it isn't used in the EPT case
178  */
179 static inline unsigned FNAME(gpte_access)(u64 gpte)
180 {
181 	unsigned access;
182 #if PTTYPE == PTTYPE_EPT
183 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
184 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
185 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
186 #else
187 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
188 	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
189 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
190 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
191 	access ^= (gpte >> PT64_NX_SHIFT);
192 #endif
193 
194 	return access;
195 }
196 
197 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
198 					     struct kvm_mmu *mmu,
199 					     struct guest_walker *walker,
200 					     gpa_t addr, int write_fault)
201 {
202 	unsigned level, index;
203 	pt_element_t pte, orig_pte;
204 	pt_element_t __user *ptep_user;
205 	gfn_t table_gfn;
206 	int ret;
207 
208 	/* dirty/accessed bits are not supported, so no need to update them */
209 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
210 		return 0;
211 
212 	for (level = walker->max_level; level >= walker->level; --level) {
213 		pte = orig_pte = walker->ptes[level - 1];
214 		table_gfn = walker->table_gfn[level - 1];
215 		ptep_user = walker->ptep_user[level - 1];
216 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
217 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
218 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
219 			pte |= PT_GUEST_ACCESSED_MASK;
220 		}
221 		if (level == walker->level && write_fault &&
222 				!(pte & PT_GUEST_DIRTY_MASK)) {
223 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
224 #if PTTYPE == PTTYPE_EPT
225 			if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
226 				return -EINVAL;
227 #endif
228 			pte |= PT_GUEST_DIRTY_MASK;
229 		}
230 		if (pte == orig_pte)
231 			continue;
232 
233 		/*
234 		 * If the slot is read-only, simply do not process the accessed
235 		 * and dirty bits.  This is the correct thing to do if the slot
236 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
237 		 * are only supported if the accessed and dirty bits are already
238 		 * set in the ROM (so that MMIO writes are never needed).
239 		 *
240 		 * Note that NPT does not allow this at all and faults, since
241 		 * it always wants nested page table entries for the guest
242 		 * page tables to be writable.  And EPT works but will simply
243 		 * overwrite the read-only memory to set the accessed and dirty
244 		 * bits.
245 		 */
246 		if (unlikely(!walker->pte_writable[level - 1]))
247 			continue;
248 
249 		ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault);
250 		if (ret)
251 			return ret;
252 
253 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
254 		walker->ptes[level - 1] = pte;
255 	}
256 	return 0;
257 }
258 
259 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
260 {
261 	unsigned pkeys = 0;
262 #if PTTYPE == 64
263 	pte_t pte = {.pte = gpte};
264 
265 	pkeys = pte_flags_pkey(pte_flags(pte));
266 #endif
267 	return pkeys;
268 }
269 
270 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
271 				       unsigned int level, unsigned int gpte)
272 {
273 	/*
274 	 * For EPT and PAE paging (both variants), bit 7 is either reserved at
275 	 * all level or indicates a huge page (ignoring CR3/EPTP).  In either
276 	 * case, bit 7 being set terminates the walk.
277 	 */
278 #if PTTYPE == 32
279 	/*
280 	 * 32-bit paging requires special handling because bit 7 is ignored if
281 	 * CR4.PSE=0, not reserved.  Clear bit 7 in the gpte if the level is
282 	 * greater than the last level for which bit 7 is the PAGE_SIZE bit.
283 	 *
284 	 * The RHS has bit 7 set iff level < (2 + PSE).  If it is clear, bit 7
285 	 * is not reserved and does not indicate a large page at this level,
286 	 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
287 	 */
288 	gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse);
289 #endif
290 	/*
291 	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
292 	 * iff level <= PG_LEVEL_4K, which for our purpose means
293 	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
294 	 */
295 	gpte |= level - PG_LEVEL_4K - 1;
296 
297 	return gpte & PT_PAGE_SIZE_MASK;
298 }
299 /*
300  * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
301  */
302 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
303 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
304 				    gpa_t addr, u64 access)
305 {
306 	int ret;
307 	pt_element_t pte;
308 	pt_element_t __user *ptep_user;
309 	gfn_t table_gfn;
310 	u64 pt_access, pte_access;
311 	unsigned index, accessed_dirty, pte_pkey;
312 	u64 nested_access;
313 	gpa_t pte_gpa;
314 	bool have_ad;
315 	int offset;
316 	u64 walk_nx_mask = 0;
317 	const int write_fault = access & PFERR_WRITE_MASK;
318 	const int user_fault  = access & PFERR_USER_MASK;
319 	const int fetch_fault = access & PFERR_FETCH_MASK;
320 	u16 errcode = 0;
321 	gpa_t real_gpa;
322 	gfn_t gfn;
323 
324 	trace_kvm_mmu_pagetable_walk(addr, access);
325 retry_walk:
326 	walker->level = mmu->cpu_role.base.level;
327 	pte           = mmu->get_guest_pgd(vcpu);
328 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
329 
330 #if PTTYPE == 64
331 	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
332 	if (walker->level == PT32E_ROOT_LEVEL) {
333 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
334 		trace_kvm_mmu_paging_element(pte, walker->level);
335 		if (!FNAME(is_present_gpte)(pte))
336 			goto error;
337 		--walker->level;
338 	}
339 #endif
340 	walker->max_level = walker->level;
341 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
342 
343 	/*
344 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
345 	 * by the MOV to CR instruction are treated as reads and do not cause the
346 	 * processor to set the dirty flag in any EPT paging-structure entry.
347 	 */
348 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
349 
350 	pte_access = ~0;
351 	++walker->level;
352 
353 	do {
354 		unsigned long host_addr;
355 
356 		pt_access = pte_access;
357 		--walker->level;
358 
359 		index = PT_INDEX(addr, walker->level);
360 		table_gfn = gpte_to_gfn(pte);
361 		offset    = index * sizeof(pt_element_t);
362 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
363 
364 		BUG_ON(walker->level < 1);
365 		walker->table_gfn[walker->level - 1] = table_gfn;
366 		walker->pte_gpa[walker->level - 1] = pte_gpa;
367 
368 		real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
369 					     nested_access, &walker->fault);
370 
371 		/*
372 		 * FIXME: This can happen if emulation (for of an INS/OUTS
373 		 * instruction) triggers a nested page fault.  The exit
374 		 * qualification / exit info field will incorrectly have
375 		 * "guest page access" as the nested page fault's cause,
376 		 * instead of "guest page structure access".  To fix this,
377 		 * the x86_exception struct should be augmented with enough
378 		 * information to fix the exit_qualification or exit_info_1
379 		 * fields.
380 		 */
381 		if (unlikely(real_gpa == INVALID_GPA))
382 			return 0;
383 
384 		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
385 					    &walker->pte_writable[walker->level - 1]);
386 		if (unlikely(kvm_is_error_hva(host_addr)))
387 			goto error;
388 
389 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
390 		if (unlikely(__get_user(pte, ptep_user)))
391 			goto error;
392 		walker->ptep_user[walker->level - 1] = ptep_user;
393 
394 		trace_kvm_mmu_paging_element(pte, walker->level);
395 
396 		/*
397 		 * Inverting the NX it lets us AND it like other
398 		 * permission bits.
399 		 */
400 		pte_access = pt_access & (pte ^ walk_nx_mask);
401 
402 		if (unlikely(!FNAME(is_present_gpte)(pte)))
403 			goto error;
404 
405 		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
406 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
407 			goto error;
408 		}
409 
410 		walker->ptes[walker->level - 1] = pte;
411 
412 		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
413 		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
414 	} while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
415 
416 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
417 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
418 
419 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
420 	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
421 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
422 	if (unlikely(errcode))
423 		goto error;
424 
425 	gfn = gpte_to_gfn_lvl(pte, walker->level);
426 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
427 
428 #if PTTYPE == 32
429 	if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
430 		gfn += pse36_gfn_delta(pte);
431 #endif
432 
433 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
434 	if (real_gpa == INVALID_GPA)
435 		return 0;
436 
437 	walker->gfn = real_gpa >> PAGE_SHIFT;
438 
439 	if (!write_fault)
440 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
441 	else
442 		/*
443 		 * On a write fault, fold the dirty bit into accessed_dirty.
444 		 * For modes without A/D bits support accessed_dirty will be
445 		 * always clear.
446 		 */
447 		accessed_dirty &= pte >>
448 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
449 
450 	if (unlikely(!accessed_dirty)) {
451 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
452 							addr, write_fault);
453 		if (unlikely(ret < 0))
454 			goto error;
455 		else if (ret)
456 			goto retry_walk;
457 	}
458 
459 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
460 		 __func__, (u64)pte, walker->pte_access,
461 		 walker->pt_access[walker->level - 1]);
462 	return 1;
463 
464 error:
465 	errcode |= write_fault | user_fault;
466 	if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
467 		errcode |= PFERR_FETCH_MASK;
468 
469 	walker->fault.vector = PF_VECTOR;
470 	walker->fault.error_code_valid = true;
471 	walker->fault.error_code = errcode;
472 
473 #if PTTYPE == PTTYPE_EPT
474 	/*
475 	 * Use PFERR_RSVD_MASK in error_code to tell if EPT
476 	 * misconfiguration requires to be injected. The detection is
477 	 * done by is_rsvd_bits_set() above.
478 	 *
479 	 * We set up the value of exit_qualification to inject:
480 	 * [2:0] - Derive from the access bits. The exit_qualification might be
481 	 *         out of date if it is serving an EPT misconfiguration.
482 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
483 	 * [7:8] - Derived from [7:8] of real exit_qualification
484 	 *
485 	 * The other bits are set to 0.
486 	 */
487 	if (!(errcode & PFERR_RSVD_MASK)) {
488 		vcpu->arch.exit_qualification &= (EPT_VIOLATION_GVA_IS_VALID |
489 						  EPT_VIOLATION_GVA_TRANSLATED);
490 		if (write_fault)
491 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
492 		if (user_fault)
493 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
494 		if (fetch_fault)
495 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
496 
497 		/*
498 		 * Note, pte_access holds the raw RWX bits from the EPTE, not
499 		 * ACC_*_MASK flags!
500 		 */
501 		vcpu->arch.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) <<
502 						 EPT_VIOLATION_RWX_SHIFT;
503 	}
504 #endif
505 	walker->fault.address = addr;
506 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
507 	walker->fault.async_page_fault = false;
508 
509 	trace_kvm_mmu_walker_error(walker->fault.error_code);
510 	return 0;
511 }
512 
513 static int FNAME(walk_addr)(struct guest_walker *walker,
514 			    struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
515 {
516 	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
517 					access);
518 }
519 
520 static bool
521 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
522 		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
523 {
524 	struct kvm_memory_slot *slot;
525 	unsigned pte_access;
526 	gfn_t gfn;
527 	kvm_pfn_t pfn;
528 
529 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
530 		return false;
531 
532 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
533 
534 	gfn = gpte_to_gfn(gpte);
535 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
536 	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
537 
538 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn,
539 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
540 	if (!slot)
541 		return false;
542 
543 	pfn = gfn_to_pfn_memslot_atomic(slot, gfn);
544 	if (is_error_pfn(pfn))
545 		return false;
546 
547 	mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL);
548 	kvm_release_pfn_clean(pfn);
549 	return true;
550 }
551 
552 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
553 				struct guest_walker *gw, int level)
554 {
555 	pt_element_t curr_pte;
556 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
557 	u64 mask;
558 	int r, index;
559 
560 	if (level == PG_LEVEL_4K) {
561 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
562 		base_gpa = pte_gpa & ~mask;
563 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
564 
565 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
566 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
567 		curr_pte = gw->prefetch_ptes[index];
568 	} else
569 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
570 				  &curr_pte, sizeof(curr_pte));
571 
572 	return r || curr_pte != gw->ptes[level - 1];
573 }
574 
575 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
576 				u64 *sptep)
577 {
578 	struct kvm_mmu_page *sp;
579 	pt_element_t *gptep = gw->prefetch_ptes;
580 	u64 *spte;
581 	int i;
582 
583 	sp = sptep_to_sp(sptep);
584 
585 	if (sp->role.level > PG_LEVEL_4K)
586 		return;
587 
588 	/*
589 	 * If addresses are being invalidated, skip prefetching to avoid
590 	 * accidentally prefetching those addresses.
591 	 */
592 	if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
593 		return;
594 
595 	if (sp->role.direct)
596 		return __direct_pte_prefetch(vcpu, sp, sptep);
597 
598 	i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
599 	spte = sp->spt + i;
600 
601 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
602 		if (spte == sptep)
603 			continue;
604 
605 		if (is_shadow_present_pte(*spte))
606 			continue;
607 
608 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
609 			break;
610 	}
611 }
612 
613 /*
614  * Fetch a shadow pte for a specific level in the paging hierarchy.
615  * If the guest tries to write a write-protected page, we need to
616  * emulate this operation, return 1 to indicate this case.
617  */
618 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
619 			 struct guest_walker *gw)
620 {
621 	struct kvm_mmu_page *sp = NULL;
622 	struct kvm_shadow_walk_iterator it;
623 	unsigned int direct_access, access;
624 	int top_level, ret;
625 	gfn_t base_gfn = fault->gfn;
626 
627 	WARN_ON_ONCE(gw->gfn != base_gfn);
628 	direct_access = gw->pte_access;
629 
630 	top_level = vcpu->arch.mmu->cpu_role.base.level;
631 	if (top_level == PT32E_ROOT_LEVEL)
632 		top_level = PT32_ROOT_LEVEL;
633 	/*
634 	 * Verify that the top-level gpte is still there.  Since the page
635 	 * is a root page, it is either write protected (and cannot be
636 	 * changed from now on) or it is invalid (in which case, we don't
637 	 * really care if it changes underneath us after this point).
638 	 */
639 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
640 		goto out_gpte_changed;
641 
642 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
643 		goto out_gpte_changed;
644 
645 	for_each_shadow_entry(vcpu, fault->addr, it) {
646 		gfn_t table_gfn;
647 
648 		clear_sp_write_flooding_count(it.sptep);
649 		if (it.level == gw->level)
650 			break;
651 
652 		table_gfn = gw->table_gfn[it.level - 2];
653 		access = gw->pt_access[it.level - 2];
654 		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn,
655 					  false, access);
656 
657 		if (sp != ERR_PTR(-EEXIST)) {
658 			/*
659 			 * We must synchronize the pagetable before linking it
660 			 * because the guest doesn't need to flush tlb when
661 			 * the gpte is changed from non-present to present.
662 			 * Otherwise, the guest may use the wrong mapping.
663 			 *
664 			 * For PG_LEVEL_4K, kvm_mmu_get_page() has already
665 			 * synchronized it transiently via kvm_sync_page().
666 			 *
667 			 * For higher level pagetable, we synchronize it via
668 			 * the slower mmu_sync_children().  If it needs to
669 			 * break, some progress has been made; return
670 			 * RET_PF_RETRY and retry on the next #PF.
671 			 * KVM_REQ_MMU_SYNC is not necessary but it
672 			 * expedites the process.
673 			 */
674 			if (sp->unsync_children &&
675 			    mmu_sync_children(vcpu, sp, false))
676 				return RET_PF_RETRY;
677 		}
678 
679 		/*
680 		 * Verify that the gpte in the page we've just write
681 		 * protected is still there.
682 		 */
683 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
684 			goto out_gpte_changed;
685 
686 		if (sp != ERR_PTR(-EEXIST))
687 			link_shadow_page(vcpu, it.sptep, sp);
688 	}
689 
690 	kvm_mmu_hugepage_adjust(vcpu, fault);
691 
692 	trace_kvm_mmu_spte_requested(fault);
693 
694 	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
695 		/*
696 		 * We cannot overwrite existing page tables with an NX
697 		 * large page, as the leaf could be executable.
698 		 */
699 		if (fault->nx_huge_page_workaround_enabled)
700 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
701 
702 		base_gfn = gfn_round_for_level(fault->gfn, it.level);
703 		if (it.level == fault->goal_level)
704 			break;
705 
706 		validate_direct_spte(vcpu, it.sptep, direct_access);
707 
708 		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn,
709 					  true, direct_access);
710 		if (sp == ERR_PTR(-EEXIST))
711 			continue;
712 
713 		link_shadow_page(vcpu, it.sptep, sp);
714 		if (fault->huge_page_disallowed)
715 			account_nx_huge_page(vcpu->kvm, sp,
716 					     fault->req_level >= it.level);
717 	}
718 
719 	if (WARN_ON_ONCE(it.level != fault->goal_level))
720 		return -EFAULT;
721 
722 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
723 			   base_gfn, fault->pfn, fault);
724 	if (ret == RET_PF_SPURIOUS)
725 		return ret;
726 
727 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
728 	return ret;
729 
730 out_gpte_changed:
731 	return RET_PF_RETRY;
732 }
733 
734  /*
735  * To see whether the mapped gfn can write its page table in the current
736  * mapping.
737  *
738  * It is the helper function of FNAME(page_fault). When guest uses large page
739  * size to map the writable gfn which is used as current page table, we should
740  * force kvm to use small page size to map it because new shadow page will be
741  * created when kvm establishes shadow page table that stop kvm using large
742  * page size. Do it early can avoid unnecessary #PF and emulation.
743  *
744  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
745  * currently used as its page table.
746  *
747  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
748  * since the PDPT is always shadowed, that means, we can not use large page
749  * size to map the gfn which is used as PDPT.
750  */
751 static bool
752 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
753 			      struct guest_walker *walker, bool user_fault,
754 			      bool *write_fault_to_shadow_pgtable)
755 {
756 	int level;
757 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
758 	bool self_changed = false;
759 
760 	if (!(walker->pte_access & ACC_WRITE_MASK ||
761 	    (!is_cr0_wp(vcpu->arch.mmu) && !user_fault)))
762 		return false;
763 
764 	for (level = walker->level; level <= walker->max_level; level++) {
765 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
766 
767 		self_changed |= !(gfn & mask);
768 		*write_fault_to_shadow_pgtable |= !gfn;
769 	}
770 
771 	return self_changed;
772 }
773 
774 /*
775  * Page fault handler.  There are several causes for a page fault:
776  *   - there is no shadow pte for the guest pte
777  *   - write access through a shadow pte marked read only so that we can set
778  *     the dirty bit
779  *   - write access to a shadow pte marked read only so we can update the page
780  *     dirty bitmap, when userspace requests it
781  *   - mmio access; in this case we will never install a present shadow pte
782  *   - normal guest page fault due to the guest pte marked not present, not
783  *     writable, or not executable
784  *
785  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
786  *           a negative value on error.
787  */
788 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
789 {
790 	struct guest_walker walker;
791 	int r;
792 	bool is_self_change_mapping;
793 
794 	pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code);
795 	WARN_ON_ONCE(fault->is_tdp);
796 
797 	/*
798 	 * Look up the guest pte for the faulting address.
799 	 * If PFEC.RSVD is set, this is a shadow page fault.
800 	 * The bit needs to be cleared before walking guest page tables.
801 	 */
802 	r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
803 			     fault->error_code & ~PFERR_RSVD_MASK);
804 
805 	/*
806 	 * The page is not mapped by the guest.  Let the guest handle it.
807 	 */
808 	if (!r) {
809 		pgprintk("%s: guest page fault\n", __func__);
810 		if (!fault->prefetch)
811 			kvm_inject_emulated_page_fault(vcpu, &walker.fault);
812 
813 		return RET_PF_RETRY;
814 	}
815 
816 	fault->gfn = walker.gfn;
817 	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
818 
819 	if (page_fault_handle_page_track(vcpu, fault)) {
820 		shadow_page_table_clear_flood(vcpu, fault->addr);
821 		return RET_PF_EMULATE;
822 	}
823 
824 	r = mmu_topup_memory_caches(vcpu, true);
825 	if (r)
826 		return r;
827 
828 	vcpu->arch.write_fault_to_shadow_pgtable = false;
829 
830 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
831 	      &walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable);
832 
833 	if (is_self_change_mapping)
834 		fault->max_level = PG_LEVEL_4K;
835 	else
836 		fault->max_level = walker.level;
837 
838 	r = kvm_faultin_pfn(vcpu, fault, walker.pte_access);
839 	if (r != RET_PF_CONTINUE)
840 		return r;
841 
842 	/*
843 	 * Do not change pte_access if the pfn is a mmio page, otherwise
844 	 * we will cache the incorrect access into mmio spte.
845 	 */
846 	if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
847 	    !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
848 		walker.pte_access |= ACC_WRITE_MASK;
849 		walker.pte_access &= ~ACC_USER_MASK;
850 
851 		/*
852 		 * If we converted a user page to a kernel page,
853 		 * so that the kernel can write to it when cr0.wp=0,
854 		 * then we should prevent the kernel from executing it
855 		 * if SMEP is enabled.
856 		 */
857 		if (is_cr4_smep(vcpu->arch.mmu))
858 			walker.pte_access &= ~ACC_EXEC_MASK;
859 	}
860 
861 	r = RET_PF_RETRY;
862 	write_lock(&vcpu->kvm->mmu_lock);
863 
864 	if (is_page_fault_stale(vcpu, fault))
865 		goto out_unlock;
866 
867 	r = make_mmu_pages_available(vcpu);
868 	if (r)
869 		goto out_unlock;
870 	r = FNAME(fetch)(vcpu, fault, &walker);
871 
872 out_unlock:
873 	write_unlock(&vcpu->kvm->mmu_lock);
874 	kvm_release_pfn_clean(fault->pfn);
875 	return r;
876 }
877 
878 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
879 {
880 	int offset = 0;
881 
882 	WARN_ON(sp->role.level != PG_LEVEL_4K);
883 
884 	if (PTTYPE == 32)
885 		offset = sp->role.quadrant << SPTE_LEVEL_BITS;
886 
887 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
888 }
889 
890 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
891 {
892 	struct kvm_shadow_walk_iterator iterator;
893 	struct kvm_mmu_page *sp;
894 	u64 old_spte;
895 	int level;
896 	u64 *sptep;
897 
898 	vcpu_clear_mmio_info(vcpu, gva);
899 
900 	/*
901 	 * No need to check return value here, rmap_can_add() can
902 	 * help us to skip pte prefetch later.
903 	 */
904 	mmu_topup_memory_caches(vcpu, true);
905 
906 	if (!VALID_PAGE(root_hpa)) {
907 		WARN_ON(1);
908 		return;
909 	}
910 
911 	write_lock(&vcpu->kvm->mmu_lock);
912 	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
913 		level = iterator.level;
914 		sptep = iterator.sptep;
915 
916 		sp = sptep_to_sp(sptep);
917 		old_spte = *sptep;
918 		if (is_last_spte(old_spte, level)) {
919 			pt_element_t gpte;
920 			gpa_t pte_gpa;
921 
922 			if (!sp->unsync)
923 				break;
924 
925 			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
926 			pte_gpa += spte_index(sptep) * sizeof(pt_element_t);
927 
928 			mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
929 			if (is_shadow_present_pte(old_spte))
930 				kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
931 
932 			if (!rmap_can_add(vcpu))
933 				break;
934 
935 			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
936 						       sizeof(pt_element_t)))
937 				break;
938 
939 			FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false);
940 		}
941 
942 		if (!sp->unsync_children)
943 			break;
944 	}
945 	write_unlock(&vcpu->kvm->mmu_lock);
946 }
947 
948 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
949 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
950 			       gpa_t addr, u64 access,
951 			       struct x86_exception *exception)
952 {
953 	struct guest_walker walker;
954 	gpa_t gpa = INVALID_GPA;
955 	int r;
956 
957 #ifndef CONFIG_X86_64
958 	/* A 64-bit GVA should be impossible on 32-bit KVM. */
959 	WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
960 #endif
961 
962 	r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
963 
964 	if (r) {
965 		gpa = gfn_to_gpa(walker.gfn);
966 		gpa |= addr & ~PAGE_MASK;
967 	} else if (exception)
968 		*exception = walker.fault;
969 
970 	return gpa;
971 }
972 
973 /*
974  * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is
975  * safe because:
976  * - The spte has a reference to the struct page, so the pfn for a given gfn
977  *   can't change unless all sptes pointing to it are nuked first.
978  *
979  * Returns
980  * < 0: the sp should be zapped
981  *   0: the sp is synced and no tlb flushing is required
982  * > 0: the sp is synced and tlb flushing is required
983  */
984 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
985 {
986 	union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
987 	int i;
988 	bool host_writable;
989 	gpa_t first_pte_gpa;
990 	bool flush = false;
991 
992 	/*
993 	 * Ignore various flags when verifying that it's safe to sync a shadow
994 	 * page using the current MMU context.
995 	 *
996 	 *  - level: not part of the overall MMU role and will never match as the MMU's
997 	 *           level tracks the root level
998 	 *  - access: updated based on the new guest PTE
999 	 *  - quadrant: not part of the overall MMU role (similar to level)
1000 	 */
1001 	const union kvm_mmu_page_role sync_role_ign = {
1002 		.level = 0xf,
1003 		.access = 0x7,
1004 		.quadrant = 0x3,
1005 		.passthrough = 0x1,
1006 	};
1007 
1008 	/*
1009 	 * Direct pages can never be unsync, and KVM should never attempt to
1010 	 * sync a shadow page for a different MMU context, e.g. if the role
1011 	 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1012 	 * reserved bits checks will be wrong, etc...
1013 	 */
1014 	if (WARN_ON_ONCE(sp->role.direct ||
1015 			 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1016 		return -1;
1017 
1018 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1019 
1020 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1021 		u64 *sptep, spte;
1022 		struct kvm_memory_slot *slot;
1023 		unsigned pte_access;
1024 		pt_element_t gpte;
1025 		gpa_t pte_gpa;
1026 		gfn_t gfn;
1027 
1028 		if (!sp->spt[i])
1029 			continue;
1030 
1031 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1032 
1033 		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1034 					       sizeof(pt_element_t)))
1035 			return -1;
1036 
1037 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1038 			flush = true;
1039 			continue;
1040 		}
1041 
1042 		gfn = gpte_to_gfn(gpte);
1043 		pte_access = sp->role.access;
1044 		pte_access &= FNAME(gpte_access)(gpte);
1045 		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1046 
1047 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
1048 			continue;
1049 
1050 		/*
1051 		 * Drop the SPTE if the new protections would result in a RWX=0
1052 		 * SPTE or if the gfn is changing.  The RWX=0 case only affects
1053 		 * EPT with execute-only support, i.e. EPT without an effective
1054 		 * "present" bit, as all other paging modes will create a
1055 		 * read-only SPTE if pte_access is zero.
1056 		 */
1057 		if ((!pte_access && !shadow_present_mask) ||
1058 		    gfn != kvm_mmu_page_get_gfn(sp, i)) {
1059 			drop_spte(vcpu->kvm, &sp->spt[i]);
1060 			flush = true;
1061 			continue;
1062 		}
1063 
1064 		/* Update the shadowed access bits in case they changed. */
1065 		kvm_mmu_page_set_access(sp, i, pte_access);
1066 
1067 		sptep = &sp->spt[i];
1068 		spte = *sptep;
1069 		host_writable = spte & shadow_host_writable_mask;
1070 		slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1071 		make_spte(vcpu, sp, slot, pte_access, gfn,
1072 			  spte_to_pfn(spte), spte, true, false,
1073 			  host_writable, &spte);
1074 
1075 		flush |= mmu_spte_update(sptep, spte);
1076 	}
1077 
1078 	/*
1079 	 * Note, any flush is purely for KVM's correctness, e.g. when dropping
1080 	 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
1081 	 * unmap or dirty logging event doesn't fail to flush.  The guest is
1082 	 * responsible for flushing the TLB to ensure any changes in protection
1083 	 * bits are recognized, i.e. until the guest flushes or page faults on
1084 	 * a relevant address, KVM is architecturally allowed to let vCPUs use
1085 	 * cached translations with the old protection bits.
1086 	 */
1087 	return flush;
1088 }
1089 
1090 #undef pt_element_t
1091 #undef guest_walker
1092 #undef FNAME
1093 #undef PT_BASE_ADDR_MASK
1094 #undef PT_INDEX
1095 #undef PT_LVL_ADDR_MASK
1096 #undef PT_LVL_OFFSET_MASK
1097 #undef PT_LEVEL_BITS
1098 #undef PT_MAX_FULL_LEVELS
1099 #undef gpte_to_gfn
1100 #undef gpte_to_gfn_lvl
1101 #undef PT_GUEST_ACCESSED_MASK
1102 #undef PT_GUEST_DIRTY_MASK
1103 #undef PT_GUEST_DIRTY_SHIFT
1104 #undef PT_GUEST_ACCESSED_SHIFT
1105 #undef PT_HAVE_ACCESSED_DIRTY
1106