1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "cpuid.h" 29 #include "spte.h" 30 31 #include <linux/kvm_host.h> 32 #include <linux/types.h> 33 #include <linux/string.h> 34 #include <linux/mm.h> 35 #include <linux/highmem.h> 36 #include <linux/moduleparam.h> 37 #include <linux/export.h> 38 #include <linux/swap.h> 39 #include <linux/hugetlb.h> 40 #include <linux/compiler.h> 41 #include <linux/srcu.h> 42 #include <linux/slab.h> 43 #include <linux/sched/signal.h> 44 #include <linux/uaccess.h> 45 #include <linux/hash.h> 46 #include <linux/kern_levels.h> 47 #include <linux/kstrtox.h> 48 #include <linux/kthread.h> 49 50 #include <asm/page.h> 51 #include <asm/memtype.h> 52 #include <asm/cmpxchg.h> 53 #include <asm/io.h> 54 #include <asm/set_memory.h> 55 #include <asm/vmx.h> 56 #include <asm/kvm_page_track.h> 57 #include "trace.h" 58 59 extern bool itlb_multihit_kvm_mitigation; 60 61 int __read_mostly nx_huge_pages = -1; 62 static uint __read_mostly nx_huge_pages_recovery_period_ms; 63 #ifdef CONFIG_PREEMPT_RT 64 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 65 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 66 #else 67 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 68 #endif 69 70 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 71 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 72 73 static const struct kernel_param_ops nx_huge_pages_ops = { 74 .set = set_nx_huge_pages, 75 .get = param_get_bool, 76 }; 77 78 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 79 .set = set_nx_huge_pages_recovery_param, 80 .get = param_get_uint, 81 }; 82 83 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 84 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 85 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 86 &nx_huge_pages_recovery_ratio, 0644); 87 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 88 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 89 &nx_huge_pages_recovery_period_ms, 0644); 90 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 91 92 static bool __read_mostly force_flush_and_sync_on_reuse; 93 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 94 95 /* 96 * When setting this variable to true it enables Two-Dimensional-Paging 97 * where the hardware walks 2 page tables: 98 * 1. the guest-virtual to guest-physical 99 * 2. while doing 1. it walks guest-physical to host-physical 100 * If the hardware supports that we don't need to do shadow paging. 101 */ 102 bool tdp_enabled = false; 103 104 static bool __ro_after_init tdp_mmu_allowed; 105 106 #ifdef CONFIG_X86_64 107 bool __read_mostly tdp_mmu_enabled = true; 108 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 109 #endif 110 111 static int max_huge_page_level __read_mostly; 112 static int tdp_root_level __read_mostly; 113 static int max_tdp_level __read_mostly; 114 115 #ifdef MMU_DEBUG 116 bool dbg = 0; 117 module_param(dbg, bool, 0644); 118 #endif 119 120 #define PTE_PREFETCH_NUM 8 121 122 #include <trace/events/kvm.h> 123 124 /* make pte_list_desc fit well in cache lines */ 125 #define PTE_LIST_EXT 14 126 127 /* 128 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 129 * at the start; then accessing it will only use one single cacheline for 130 * either full (entries==PTE_LIST_EXT) case or entries<=6. 131 */ 132 struct pte_list_desc { 133 struct pte_list_desc *more; 134 /* 135 * Stores number of entries stored in the pte_list_desc. No need to be 136 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 137 */ 138 u64 spte_count; 139 u64 *sptes[PTE_LIST_EXT]; 140 }; 141 142 struct kvm_shadow_walk_iterator { 143 u64 addr; 144 hpa_t shadow_addr; 145 u64 *sptep; 146 int level; 147 unsigned index; 148 }; 149 150 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 151 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 152 (_root), (_addr)); \ 153 shadow_walk_okay(&(_walker)); \ 154 shadow_walk_next(&(_walker))) 155 156 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 158 shadow_walk_okay(&(_walker)); \ 159 shadow_walk_next(&(_walker))) 160 161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 163 shadow_walk_okay(&(_walker)) && \ 164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 165 __shadow_walk_next(&(_walker), spte)) 166 167 static struct kmem_cache *pte_list_desc_cache; 168 struct kmem_cache *mmu_page_header_cache; 169 static struct percpu_counter kvm_total_used_mmu_pages; 170 171 static void mmu_spte_set(u64 *sptep, u64 spte); 172 173 struct kvm_mmu_role_regs { 174 const unsigned long cr0; 175 const unsigned long cr4; 176 const u64 efer; 177 }; 178 179 #define CREATE_TRACE_POINTS 180 #include "mmutrace.h" 181 182 /* 183 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 184 * reading from the role_regs. Once the root_role is constructed, it becomes 185 * the single source of truth for the MMU's state. 186 */ 187 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 188 static inline bool __maybe_unused \ 189 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 190 { \ 191 return !!(regs->reg & flag); \ 192 } 193 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 194 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 195 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 196 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 197 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 198 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 199 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 200 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 201 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 202 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 203 204 /* 205 * The MMU itself (with a valid role) is the single source of truth for the 206 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 207 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 208 * and the vCPU may be incorrect/irrelevant. 209 */ 210 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 211 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 212 { \ 213 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 214 } 215 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 216 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 217 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 218 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 219 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 220 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 221 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 222 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 223 224 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 225 { 226 return mmu->cpu_role.base.level > 0; 227 } 228 229 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 230 { 231 return !mmu->cpu_role.base.has_4_byte_gpte; 232 } 233 234 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 235 { 236 struct kvm_mmu_role_regs regs = { 237 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 238 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 239 .efer = vcpu->arch.efer, 240 }; 241 242 return regs; 243 } 244 245 static inline bool kvm_available_flush_tlb_with_range(void) 246 { 247 return kvm_x86_ops.tlb_remote_flush_with_range; 248 } 249 250 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 251 struct kvm_tlb_range *range) 252 { 253 int ret = -ENOTSUPP; 254 255 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 256 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 257 258 if (ret) 259 kvm_flush_remote_tlbs(kvm); 260 } 261 262 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 263 u64 start_gfn, u64 pages) 264 { 265 struct kvm_tlb_range range; 266 267 range.start_gfn = start_gfn; 268 range.pages = pages; 269 270 kvm_flush_remote_tlbs_with_range(kvm, &range); 271 } 272 273 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 274 275 /* Flush the range of guest memory mapped by the given SPTE. */ 276 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 277 { 278 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 279 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 280 281 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 282 } 283 284 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 285 unsigned int access) 286 { 287 u64 spte = make_mmio_spte(vcpu, gfn, access); 288 289 trace_mark_mmio_spte(sptep, gfn, spte); 290 mmu_spte_set(sptep, spte); 291 } 292 293 static gfn_t get_mmio_spte_gfn(u64 spte) 294 { 295 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 296 297 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 298 & shadow_nonpresent_or_rsvd_mask; 299 300 return gpa >> PAGE_SHIFT; 301 } 302 303 static unsigned get_mmio_spte_access(u64 spte) 304 { 305 return spte & shadow_mmio_access_mask; 306 } 307 308 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 309 { 310 u64 kvm_gen, spte_gen, gen; 311 312 gen = kvm_vcpu_memslots(vcpu)->generation; 313 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 314 return false; 315 316 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 317 spte_gen = get_mmio_spte_generation(spte); 318 319 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 320 return likely(kvm_gen == spte_gen); 321 } 322 323 static int is_cpuid_PSE36(void) 324 { 325 return 1; 326 } 327 328 #ifdef CONFIG_X86_64 329 static void __set_spte(u64 *sptep, u64 spte) 330 { 331 WRITE_ONCE(*sptep, spte); 332 } 333 334 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 335 { 336 WRITE_ONCE(*sptep, spte); 337 } 338 339 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 340 { 341 return xchg(sptep, spte); 342 } 343 344 static u64 __get_spte_lockless(u64 *sptep) 345 { 346 return READ_ONCE(*sptep); 347 } 348 #else 349 union split_spte { 350 struct { 351 u32 spte_low; 352 u32 spte_high; 353 }; 354 u64 spte; 355 }; 356 357 static void count_spte_clear(u64 *sptep, u64 spte) 358 { 359 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 360 361 if (is_shadow_present_pte(spte)) 362 return; 363 364 /* Ensure the spte is completely set before we increase the count */ 365 smp_wmb(); 366 sp->clear_spte_count++; 367 } 368 369 static void __set_spte(u64 *sptep, u64 spte) 370 { 371 union split_spte *ssptep, sspte; 372 373 ssptep = (union split_spte *)sptep; 374 sspte = (union split_spte)spte; 375 376 ssptep->spte_high = sspte.spte_high; 377 378 /* 379 * If we map the spte from nonpresent to present, We should store 380 * the high bits firstly, then set present bit, so cpu can not 381 * fetch this spte while we are setting the spte. 382 */ 383 smp_wmb(); 384 385 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 386 } 387 388 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 389 { 390 union split_spte *ssptep, sspte; 391 392 ssptep = (union split_spte *)sptep; 393 sspte = (union split_spte)spte; 394 395 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 396 397 /* 398 * If we map the spte from present to nonpresent, we should clear 399 * present bit firstly to avoid vcpu fetch the old high bits. 400 */ 401 smp_wmb(); 402 403 ssptep->spte_high = sspte.spte_high; 404 count_spte_clear(sptep, spte); 405 } 406 407 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 408 { 409 union split_spte *ssptep, sspte, orig; 410 411 ssptep = (union split_spte *)sptep; 412 sspte = (union split_spte)spte; 413 414 /* xchg acts as a barrier before the setting of the high bits */ 415 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 416 orig.spte_high = ssptep->spte_high; 417 ssptep->spte_high = sspte.spte_high; 418 count_spte_clear(sptep, spte); 419 420 return orig.spte; 421 } 422 423 /* 424 * The idea using the light way get the spte on x86_32 guest is from 425 * gup_get_pte (mm/gup.c). 426 * 427 * An spte tlb flush may be pending, because kvm_set_pte_rmap 428 * coalesces them and we are running out of the MMU lock. Therefore 429 * we need to protect against in-progress updates of the spte. 430 * 431 * Reading the spte while an update is in progress may get the old value 432 * for the high part of the spte. The race is fine for a present->non-present 433 * change (because the high part of the spte is ignored for non-present spte), 434 * but for a present->present change we must reread the spte. 435 * 436 * All such changes are done in two steps (present->non-present and 437 * non-present->present), hence it is enough to count the number of 438 * present->non-present updates: if it changed while reading the spte, 439 * we might have hit the race. This is done using clear_spte_count. 440 */ 441 static u64 __get_spte_lockless(u64 *sptep) 442 { 443 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 444 union split_spte spte, *orig = (union split_spte *)sptep; 445 int count; 446 447 retry: 448 count = sp->clear_spte_count; 449 smp_rmb(); 450 451 spte.spte_low = orig->spte_low; 452 smp_rmb(); 453 454 spte.spte_high = orig->spte_high; 455 smp_rmb(); 456 457 if (unlikely(spte.spte_low != orig->spte_low || 458 count != sp->clear_spte_count)) 459 goto retry; 460 461 return spte.spte; 462 } 463 #endif 464 465 /* Rules for using mmu_spte_set: 466 * Set the sptep from nonpresent to present. 467 * Note: the sptep being assigned *must* be either not present 468 * or in a state where the hardware will not attempt to update 469 * the spte. 470 */ 471 static void mmu_spte_set(u64 *sptep, u64 new_spte) 472 { 473 WARN_ON(is_shadow_present_pte(*sptep)); 474 __set_spte(sptep, new_spte); 475 } 476 477 /* 478 * Update the SPTE (excluding the PFN), but do not track changes in its 479 * accessed/dirty status. 480 */ 481 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 482 { 483 u64 old_spte = *sptep; 484 485 WARN_ON(!is_shadow_present_pte(new_spte)); 486 check_spte_writable_invariants(new_spte); 487 488 if (!is_shadow_present_pte(old_spte)) { 489 mmu_spte_set(sptep, new_spte); 490 return old_spte; 491 } 492 493 if (!spte_has_volatile_bits(old_spte)) 494 __update_clear_spte_fast(sptep, new_spte); 495 else 496 old_spte = __update_clear_spte_slow(sptep, new_spte); 497 498 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 499 500 return old_spte; 501 } 502 503 /* Rules for using mmu_spte_update: 504 * Update the state bits, it means the mapped pfn is not changed. 505 * 506 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 507 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 508 * spte, even though the writable spte might be cached on a CPU's TLB. 509 * 510 * Returns true if the TLB needs to be flushed 511 */ 512 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 513 { 514 bool flush = false; 515 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 516 517 if (!is_shadow_present_pte(old_spte)) 518 return false; 519 520 /* 521 * For the spte updated out of mmu-lock is safe, since 522 * we always atomically update it, see the comments in 523 * spte_has_volatile_bits(). 524 */ 525 if (is_mmu_writable_spte(old_spte) && 526 !is_writable_pte(new_spte)) 527 flush = true; 528 529 /* 530 * Flush TLB when accessed/dirty states are changed in the page tables, 531 * to guarantee consistency between TLB and page tables. 532 */ 533 534 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 535 flush = true; 536 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 537 } 538 539 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 540 flush = true; 541 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 542 } 543 544 return flush; 545 } 546 547 /* 548 * Rules for using mmu_spte_clear_track_bits: 549 * It sets the sptep from present to nonpresent, and track the 550 * state bits, it is used to clear the last level sptep. 551 * Returns the old PTE. 552 */ 553 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 554 { 555 kvm_pfn_t pfn; 556 u64 old_spte = *sptep; 557 int level = sptep_to_sp(sptep)->role.level; 558 struct page *page; 559 560 if (!is_shadow_present_pte(old_spte) || 561 !spte_has_volatile_bits(old_spte)) 562 __update_clear_spte_fast(sptep, 0ull); 563 else 564 old_spte = __update_clear_spte_slow(sptep, 0ull); 565 566 if (!is_shadow_present_pte(old_spte)) 567 return old_spte; 568 569 kvm_update_page_stats(kvm, level, -1); 570 571 pfn = spte_to_pfn(old_spte); 572 573 /* 574 * KVM doesn't hold a reference to any pages mapped into the guest, and 575 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 576 * before they are reclaimed. Sanity check that, if the pfn is backed 577 * by a refcounted page, the refcount is elevated. 578 */ 579 page = kvm_pfn_to_refcounted_page(pfn); 580 WARN_ON(page && !page_count(page)); 581 582 if (is_accessed_spte(old_spte)) 583 kvm_set_pfn_accessed(pfn); 584 585 if (is_dirty_spte(old_spte)) 586 kvm_set_pfn_dirty(pfn); 587 588 return old_spte; 589 } 590 591 /* 592 * Rules for using mmu_spte_clear_no_track: 593 * Directly clear spte without caring the state bits of sptep, 594 * it is used to set the upper level spte. 595 */ 596 static void mmu_spte_clear_no_track(u64 *sptep) 597 { 598 __update_clear_spte_fast(sptep, 0ull); 599 } 600 601 static u64 mmu_spte_get_lockless(u64 *sptep) 602 { 603 return __get_spte_lockless(sptep); 604 } 605 606 /* Returns the Accessed status of the PTE and resets it at the same time. */ 607 static bool mmu_spte_age(u64 *sptep) 608 { 609 u64 spte = mmu_spte_get_lockless(sptep); 610 611 if (!is_accessed_spte(spte)) 612 return false; 613 614 if (spte_ad_enabled(spte)) { 615 clear_bit((ffs(shadow_accessed_mask) - 1), 616 (unsigned long *)sptep); 617 } else { 618 /* 619 * Capture the dirty status of the page, so that it doesn't get 620 * lost when the SPTE is marked for access tracking. 621 */ 622 if (is_writable_pte(spte)) 623 kvm_set_pfn_dirty(spte_to_pfn(spte)); 624 625 spte = mark_spte_for_access_track(spte); 626 mmu_spte_update_no_track(sptep, spte); 627 } 628 629 return true; 630 } 631 632 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 633 { 634 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 635 } 636 637 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 638 { 639 if (is_tdp_mmu_active(vcpu)) { 640 kvm_tdp_mmu_walk_lockless_begin(); 641 } else { 642 /* 643 * Prevent page table teardown by making any free-er wait during 644 * kvm_flush_remote_tlbs() IPI to all active vcpus. 645 */ 646 local_irq_disable(); 647 648 /* 649 * Make sure a following spte read is not reordered ahead of the write 650 * to vcpu->mode. 651 */ 652 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 653 } 654 } 655 656 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 657 { 658 if (is_tdp_mmu_active(vcpu)) { 659 kvm_tdp_mmu_walk_lockless_end(); 660 } else { 661 /* 662 * Make sure the write to vcpu->mode is not reordered in front of 663 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 664 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 665 */ 666 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 667 local_irq_enable(); 668 } 669 } 670 671 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 672 { 673 int r; 674 675 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 676 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 677 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 678 if (r) 679 return r; 680 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 681 PT64_ROOT_MAX_LEVEL); 682 if (r) 683 return r; 684 if (maybe_indirect) { 685 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 686 PT64_ROOT_MAX_LEVEL); 687 if (r) 688 return r; 689 } 690 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 691 PT64_ROOT_MAX_LEVEL); 692 } 693 694 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 695 { 696 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 697 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 698 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 699 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 700 } 701 702 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 703 { 704 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 705 } 706 707 static bool sp_has_gptes(struct kvm_mmu_page *sp); 708 709 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 710 { 711 if (sp->role.passthrough) 712 return sp->gfn; 713 714 if (!sp->role.direct) 715 return sp->shadowed_translation[index] >> PAGE_SHIFT; 716 717 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 718 } 719 720 /* 721 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 722 * that the SPTE itself may have a more constrained access permissions that 723 * what the guest enforces. For example, a guest may create an executable 724 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 725 */ 726 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 727 { 728 if (sp_has_gptes(sp)) 729 return sp->shadowed_translation[index] & ACC_ALL; 730 731 /* 732 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 733 * KVM is not shadowing any guest page tables, so the "guest access 734 * permissions" are just ACC_ALL. 735 * 736 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 737 * is shadowing a guest huge page with small pages, the guest access 738 * permissions being shadowed are the access permissions of the huge 739 * page. 740 * 741 * In both cases, sp->role.access contains the correct access bits. 742 */ 743 return sp->role.access; 744 } 745 746 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 747 gfn_t gfn, unsigned int access) 748 { 749 if (sp_has_gptes(sp)) { 750 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 751 return; 752 } 753 754 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 755 "access mismatch under %s page %llx (expected %u, got %u)\n", 756 sp->role.passthrough ? "passthrough" : "direct", 757 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 758 759 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 760 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 761 sp->role.passthrough ? "passthrough" : "direct", 762 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 763 } 764 765 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 766 unsigned int access) 767 { 768 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 769 770 kvm_mmu_page_set_translation(sp, index, gfn, access); 771 } 772 773 /* 774 * Return the pointer to the large page information for a given gfn, 775 * handling slots that are not large page aligned. 776 */ 777 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 778 const struct kvm_memory_slot *slot, int level) 779 { 780 unsigned long idx; 781 782 idx = gfn_to_index(gfn, slot->base_gfn, level); 783 return &slot->arch.lpage_info[level - 2][idx]; 784 } 785 786 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 787 gfn_t gfn, int count) 788 { 789 struct kvm_lpage_info *linfo; 790 int i; 791 792 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 793 linfo = lpage_info_slot(gfn, slot, i); 794 linfo->disallow_lpage += count; 795 WARN_ON(linfo->disallow_lpage < 0); 796 } 797 } 798 799 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 800 { 801 update_gfn_disallow_lpage_count(slot, gfn, 1); 802 } 803 804 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 805 { 806 update_gfn_disallow_lpage_count(slot, gfn, -1); 807 } 808 809 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 810 { 811 struct kvm_memslots *slots; 812 struct kvm_memory_slot *slot; 813 gfn_t gfn; 814 815 kvm->arch.indirect_shadow_pages++; 816 gfn = sp->gfn; 817 slots = kvm_memslots_for_spte_role(kvm, sp->role); 818 slot = __gfn_to_memslot(slots, gfn); 819 820 /* the non-leaf shadow pages are keeping readonly. */ 821 if (sp->role.level > PG_LEVEL_4K) 822 return kvm_slot_page_track_add_page(kvm, slot, gfn, 823 KVM_PAGE_TRACK_WRITE); 824 825 kvm_mmu_gfn_disallow_lpage(slot, gfn); 826 827 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 828 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 829 } 830 831 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 832 { 833 /* 834 * If it's possible to replace the shadow page with an NX huge page, 835 * i.e. if the shadow page is the only thing currently preventing KVM 836 * from using a huge page, add the shadow page to the list of "to be 837 * zapped for NX recovery" pages. Note, the shadow page can already be 838 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 839 * links a shadow page at multiple points. 840 */ 841 if (!list_empty(&sp->possible_nx_huge_page_link)) 842 return; 843 844 ++kvm->stat.nx_lpage_splits; 845 list_add_tail(&sp->possible_nx_huge_page_link, 846 &kvm->arch.possible_nx_huge_pages); 847 } 848 849 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 850 bool nx_huge_page_possible) 851 { 852 sp->nx_huge_page_disallowed = true; 853 854 if (nx_huge_page_possible) 855 track_possible_nx_huge_page(kvm, sp); 856 } 857 858 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 859 { 860 struct kvm_memslots *slots; 861 struct kvm_memory_slot *slot; 862 gfn_t gfn; 863 864 kvm->arch.indirect_shadow_pages--; 865 gfn = sp->gfn; 866 slots = kvm_memslots_for_spte_role(kvm, sp->role); 867 slot = __gfn_to_memslot(slots, gfn); 868 if (sp->role.level > PG_LEVEL_4K) 869 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 870 KVM_PAGE_TRACK_WRITE); 871 872 kvm_mmu_gfn_allow_lpage(slot, gfn); 873 } 874 875 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 876 { 877 if (list_empty(&sp->possible_nx_huge_page_link)) 878 return; 879 880 --kvm->stat.nx_lpage_splits; 881 list_del_init(&sp->possible_nx_huge_page_link); 882 } 883 884 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 885 { 886 sp->nx_huge_page_disallowed = false; 887 888 untrack_possible_nx_huge_page(kvm, sp); 889 } 890 891 static struct kvm_memory_slot * 892 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 893 bool no_dirty_log) 894 { 895 struct kvm_memory_slot *slot; 896 897 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 898 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 899 return NULL; 900 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 901 return NULL; 902 903 return slot; 904 } 905 906 /* 907 * About rmap_head encoding: 908 * 909 * If the bit zero of rmap_head->val is clear, then it points to the only spte 910 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 911 * pte_list_desc containing more mappings. 912 */ 913 914 /* 915 * Returns the number of pointers in the rmap chain, not counting the new one. 916 */ 917 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 918 struct kvm_rmap_head *rmap_head) 919 { 920 struct pte_list_desc *desc; 921 int count = 0; 922 923 if (!rmap_head->val) { 924 rmap_printk("%p %llx 0->1\n", spte, *spte); 925 rmap_head->val = (unsigned long)spte; 926 } else if (!(rmap_head->val & 1)) { 927 rmap_printk("%p %llx 1->many\n", spte, *spte); 928 desc = kvm_mmu_memory_cache_alloc(cache); 929 desc->sptes[0] = (u64 *)rmap_head->val; 930 desc->sptes[1] = spte; 931 desc->spte_count = 2; 932 rmap_head->val = (unsigned long)desc | 1; 933 ++count; 934 } else { 935 rmap_printk("%p %llx many->many\n", spte, *spte); 936 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 937 while (desc->spte_count == PTE_LIST_EXT) { 938 count += PTE_LIST_EXT; 939 if (!desc->more) { 940 desc->more = kvm_mmu_memory_cache_alloc(cache); 941 desc = desc->more; 942 desc->spte_count = 0; 943 break; 944 } 945 desc = desc->more; 946 } 947 count += desc->spte_count; 948 desc->sptes[desc->spte_count++] = spte; 949 } 950 return count; 951 } 952 953 static void 954 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 955 struct pte_list_desc *desc, int i, 956 struct pte_list_desc *prev_desc) 957 { 958 int j = desc->spte_count - 1; 959 960 desc->sptes[i] = desc->sptes[j]; 961 desc->sptes[j] = NULL; 962 desc->spte_count--; 963 if (desc->spte_count) 964 return; 965 if (!prev_desc && !desc->more) 966 rmap_head->val = 0; 967 else 968 if (prev_desc) 969 prev_desc->more = desc->more; 970 else 971 rmap_head->val = (unsigned long)desc->more | 1; 972 mmu_free_pte_list_desc(desc); 973 } 974 975 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 976 { 977 struct pte_list_desc *desc; 978 struct pte_list_desc *prev_desc; 979 int i; 980 981 if (!rmap_head->val) { 982 pr_err("%s: %p 0->BUG\n", __func__, spte); 983 BUG(); 984 } else if (!(rmap_head->val & 1)) { 985 rmap_printk("%p 1->0\n", spte); 986 if ((u64 *)rmap_head->val != spte) { 987 pr_err("%s: %p 1->BUG\n", __func__, spte); 988 BUG(); 989 } 990 rmap_head->val = 0; 991 } else { 992 rmap_printk("%p many->many\n", spte); 993 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 994 prev_desc = NULL; 995 while (desc) { 996 for (i = 0; i < desc->spte_count; ++i) { 997 if (desc->sptes[i] == spte) { 998 pte_list_desc_remove_entry(rmap_head, 999 desc, i, prev_desc); 1000 return; 1001 } 1002 } 1003 prev_desc = desc; 1004 desc = desc->more; 1005 } 1006 pr_err("%s: %p many->many\n", __func__, spte); 1007 BUG(); 1008 } 1009 } 1010 1011 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1012 struct kvm_rmap_head *rmap_head, u64 *sptep) 1013 { 1014 mmu_spte_clear_track_bits(kvm, sptep); 1015 pte_list_remove(sptep, rmap_head); 1016 } 1017 1018 /* Return true if at least one SPTE was zapped, false otherwise */ 1019 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1020 struct kvm_rmap_head *rmap_head) 1021 { 1022 struct pte_list_desc *desc, *next; 1023 int i; 1024 1025 if (!rmap_head->val) 1026 return false; 1027 1028 if (!(rmap_head->val & 1)) { 1029 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1030 goto out; 1031 } 1032 1033 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1034 1035 for (; desc; desc = next) { 1036 for (i = 0; i < desc->spte_count; i++) 1037 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1038 next = desc->more; 1039 mmu_free_pte_list_desc(desc); 1040 } 1041 out: 1042 /* rmap_head is meaningless now, remember to reset it */ 1043 rmap_head->val = 0; 1044 return true; 1045 } 1046 1047 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1048 { 1049 struct pte_list_desc *desc; 1050 unsigned int count = 0; 1051 1052 if (!rmap_head->val) 1053 return 0; 1054 else if (!(rmap_head->val & 1)) 1055 return 1; 1056 1057 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1058 1059 while (desc) { 1060 count += desc->spte_count; 1061 desc = desc->more; 1062 } 1063 1064 return count; 1065 } 1066 1067 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1068 const struct kvm_memory_slot *slot) 1069 { 1070 unsigned long idx; 1071 1072 idx = gfn_to_index(gfn, slot->base_gfn, level); 1073 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1074 } 1075 1076 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1077 { 1078 struct kvm_mmu_memory_cache *mc; 1079 1080 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1081 return kvm_mmu_memory_cache_nr_free_objects(mc); 1082 } 1083 1084 static void rmap_remove(struct kvm *kvm, u64 *spte) 1085 { 1086 struct kvm_memslots *slots; 1087 struct kvm_memory_slot *slot; 1088 struct kvm_mmu_page *sp; 1089 gfn_t gfn; 1090 struct kvm_rmap_head *rmap_head; 1091 1092 sp = sptep_to_sp(spte); 1093 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1094 1095 /* 1096 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1097 * so we have to determine which memslots to use based on context 1098 * information in sp->role. 1099 */ 1100 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1101 1102 slot = __gfn_to_memslot(slots, gfn); 1103 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1104 1105 pte_list_remove(spte, rmap_head); 1106 } 1107 1108 /* 1109 * Used by the following functions to iterate through the sptes linked by a 1110 * rmap. All fields are private and not assumed to be used outside. 1111 */ 1112 struct rmap_iterator { 1113 /* private fields */ 1114 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1115 int pos; /* index of the sptep */ 1116 }; 1117 1118 /* 1119 * Iteration must be started by this function. This should also be used after 1120 * removing/dropping sptes from the rmap link because in such cases the 1121 * information in the iterator may not be valid. 1122 * 1123 * Returns sptep if found, NULL otherwise. 1124 */ 1125 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1126 struct rmap_iterator *iter) 1127 { 1128 u64 *sptep; 1129 1130 if (!rmap_head->val) 1131 return NULL; 1132 1133 if (!(rmap_head->val & 1)) { 1134 iter->desc = NULL; 1135 sptep = (u64 *)rmap_head->val; 1136 goto out; 1137 } 1138 1139 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1140 iter->pos = 0; 1141 sptep = iter->desc->sptes[iter->pos]; 1142 out: 1143 BUG_ON(!is_shadow_present_pte(*sptep)); 1144 return sptep; 1145 } 1146 1147 /* 1148 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1149 * 1150 * Returns sptep if found, NULL otherwise. 1151 */ 1152 static u64 *rmap_get_next(struct rmap_iterator *iter) 1153 { 1154 u64 *sptep; 1155 1156 if (iter->desc) { 1157 if (iter->pos < PTE_LIST_EXT - 1) { 1158 ++iter->pos; 1159 sptep = iter->desc->sptes[iter->pos]; 1160 if (sptep) 1161 goto out; 1162 } 1163 1164 iter->desc = iter->desc->more; 1165 1166 if (iter->desc) { 1167 iter->pos = 0; 1168 /* desc->sptes[0] cannot be NULL */ 1169 sptep = iter->desc->sptes[iter->pos]; 1170 goto out; 1171 } 1172 } 1173 1174 return NULL; 1175 out: 1176 BUG_ON(!is_shadow_present_pte(*sptep)); 1177 return sptep; 1178 } 1179 1180 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1181 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1182 _spte_; _spte_ = rmap_get_next(_iter_)) 1183 1184 static void drop_spte(struct kvm *kvm, u64 *sptep) 1185 { 1186 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1187 1188 if (is_shadow_present_pte(old_spte)) 1189 rmap_remove(kvm, sptep); 1190 } 1191 1192 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1193 { 1194 struct kvm_mmu_page *sp; 1195 1196 sp = sptep_to_sp(sptep); 1197 WARN_ON(sp->role.level == PG_LEVEL_4K); 1198 1199 drop_spte(kvm, sptep); 1200 1201 if (flush) 1202 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1203 } 1204 1205 /* 1206 * Write-protect on the specified @sptep, @pt_protect indicates whether 1207 * spte write-protection is caused by protecting shadow page table. 1208 * 1209 * Note: write protection is difference between dirty logging and spte 1210 * protection: 1211 * - for dirty logging, the spte can be set to writable at anytime if 1212 * its dirty bitmap is properly set. 1213 * - for spte protection, the spte can be writable only after unsync-ing 1214 * shadow page. 1215 * 1216 * Return true if tlb need be flushed. 1217 */ 1218 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1219 { 1220 u64 spte = *sptep; 1221 1222 if (!is_writable_pte(spte) && 1223 !(pt_protect && is_mmu_writable_spte(spte))) 1224 return false; 1225 1226 rmap_printk("spte %p %llx\n", sptep, *sptep); 1227 1228 if (pt_protect) 1229 spte &= ~shadow_mmu_writable_mask; 1230 spte = spte & ~PT_WRITABLE_MASK; 1231 1232 return mmu_spte_update(sptep, spte); 1233 } 1234 1235 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1236 bool pt_protect) 1237 { 1238 u64 *sptep; 1239 struct rmap_iterator iter; 1240 bool flush = false; 1241 1242 for_each_rmap_spte(rmap_head, &iter, sptep) 1243 flush |= spte_write_protect(sptep, pt_protect); 1244 1245 return flush; 1246 } 1247 1248 static bool spte_clear_dirty(u64 *sptep) 1249 { 1250 u64 spte = *sptep; 1251 1252 rmap_printk("spte %p %llx\n", sptep, *sptep); 1253 1254 MMU_WARN_ON(!spte_ad_enabled(spte)); 1255 spte &= ~shadow_dirty_mask; 1256 return mmu_spte_update(sptep, spte); 1257 } 1258 1259 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1260 { 1261 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1262 (unsigned long *)sptep); 1263 if (was_writable && !spte_ad_enabled(*sptep)) 1264 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1265 1266 return was_writable; 1267 } 1268 1269 /* 1270 * Gets the GFN ready for another round of dirty logging by clearing the 1271 * - D bit on ad-enabled SPTEs, and 1272 * - W bit on ad-disabled SPTEs. 1273 * Returns true iff any D or W bits were cleared. 1274 */ 1275 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1276 const struct kvm_memory_slot *slot) 1277 { 1278 u64 *sptep; 1279 struct rmap_iterator iter; 1280 bool flush = false; 1281 1282 for_each_rmap_spte(rmap_head, &iter, sptep) 1283 if (spte_ad_need_write_protect(*sptep)) 1284 flush |= spte_wrprot_for_clear_dirty(sptep); 1285 else 1286 flush |= spte_clear_dirty(sptep); 1287 1288 return flush; 1289 } 1290 1291 /** 1292 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1293 * @kvm: kvm instance 1294 * @slot: slot to protect 1295 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1296 * @mask: indicates which pages we should protect 1297 * 1298 * Used when we do not need to care about huge page mappings. 1299 */ 1300 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1301 struct kvm_memory_slot *slot, 1302 gfn_t gfn_offset, unsigned long mask) 1303 { 1304 struct kvm_rmap_head *rmap_head; 1305 1306 if (tdp_mmu_enabled) 1307 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1308 slot->base_gfn + gfn_offset, mask, true); 1309 1310 if (!kvm_memslots_have_rmaps(kvm)) 1311 return; 1312 1313 while (mask) { 1314 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1315 PG_LEVEL_4K, slot); 1316 rmap_write_protect(rmap_head, false); 1317 1318 /* clear the first set bit */ 1319 mask &= mask - 1; 1320 } 1321 } 1322 1323 /** 1324 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1325 * protect the page if the D-bit isn't supported. 1326 * @kvm: kvm instance 1327 * @slot: slot to clear D-bit 1328 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1329 * @mask: indicates which pages we should clear D-bit 1330 * 1331 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1332 */ 1333 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1334 struct kvm_memory_slot *slot, 1335 gfn_t gfn_offset, unsigned long mask) 1336 { 1337 struct kvm_rmap_head *rmap_head; 1338 1339 if (tdp_mmu_enabled) 1340 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1341 slot->base_gfn + gfn_offset, mask, false); 1342 1343 if (!kvm_memslots_have_rmaps(kvm)) 1344 return; 1345 1346 while (mask) { 1347 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1348 PG_LEVEL_4K, slot); 1349 __rmap_clear_dirty(kvm, rmap_head, slot); 1350 1351 /* clear the first set bit */ 1352 mask &= mask - 1; 1353 } 1354 } 1355 1356 /** 1357 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1358 * PT level pages. 1359 * 1360 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1361 * enable dirty logging for them. 1362 * 1363 * We need to care about huge page mappings: e.g. during dirty logging we may 1364 * have such mappings. 1365 */ 1366 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1367 struct kvm_memory_slot *slot, 1368 gfn_t gfn_offset, unsigned long mask) 1369 { 1370 /* 1371 * Huge pages are NOT write protected when we start dirty logging in 1372 * initially-all-set mode; must write protect them here so that they 1373 * are split to 4K on the first write. 1374 * 1375 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1376 * of memslot has no such restriction, so the range can cross two large 1377 * pages. 1378 */ 1379 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1380 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1381 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1382 1383 if (READ_ONCE(eager_page_split)) 1384 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1385 1386 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1387 1388 /* Cross two large pages? */ 1389 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1390 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1391 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1392 PG_LEVEL_2M); 1393 } 1394 1395 /* Now handle 4K PTEs. */ 1396 if (kvm_x86_ops.cpu_dirty_log_size) 1397 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1398 else 1399 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1400 } 1401 1402 int kvm_cpu_dirty_log_size(void) 1403 { 1404 return kvm_x86_ops.cpu_dirty_log_size; 1405 } 1406 1407 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1408 struct kvm_memory_slot *slot, u64 gfn, 1409 int min_level) 1410 { 1411 struct kvm_rmap_head *rmap_head; 1412 int i; 1413 bool write_protected = false; 1414 1415 if (kvm_memslots_have_rmaps(kvm)) { 1416 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1417 rmap_head = gfn_to_rmap(gfn, i, slot); 1418 write_protected |= rmap_write_protect(rmap_head, true); 1419 } 1420 } 1421 1422 if (tdp_mmu_enabled) 1423 write_protected |= 1424 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1425 1426 return write_protected; 1427 } 1428 1429 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1430 { 1431 struct kvm_memory_slot *slot; 1432 1433 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1434 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1435 } 1436 1437 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1438 const struct kvm_memory_slot *slot) 1439 { 1440 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1441 } 1442 1443 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1444 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1445 pte_t unused) 1446 { 1447 return __kvm_zap_rmap(kvm, rmap_head, slot); 1448 } 1449 1450 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1451 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1452 pte_t pte) 1453 { 1454 u64 *sptep; 1455 struct rmap_iterator iter; 1456 bool need_flush = false; 1457 u64 new_spte; 1458 kvm_pfn_t new_pfn; 1459 1460 WARN_ON(pte_huge(pte)); 1461 new_pfn = pte_pfn(pte); 1462 1463 restart: 1464 for_each_rmap_spte(rmap_head, &iter, sptep) { 1465 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1466 sptep, *sptep, gfn, level); 1467 1468 need_flush = true; 1469 1470 if (pte_write(pte)) { 1471 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 1472 goto restart; 1473 } else { 1474 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1475 *sptep, new_pfn); 1476 1477 mmu_spte_clear_track_bits(kvm, sptep); 1478 mmu_spte_set(sptep, new_spte); 1479 } 1480 } 1481 1482 if (need_flush && kvm_available_flush_tlb_with_range()) { 1483 kvm_flush_remote_tlbs_gfn(kvm, gfn, level); 1484 return false; 1485 } 1486 1487 return need_flush; 1488 } 1489 1490 struct slot_rmap_walk_iterator { 1491 /* input fields. */ 1492 const struct kvm_memory_slot *slot; 1493 gfn_t start_gfn; 1494 gfn_t end_gfn; 1495 int start_level; 1496 int end_level; 1497 1498 /* output fields. */ 1499 gfn_t gfn; 1500 struct kvm_rmap_head *rmap; 1501 int level; 1502 1503 /* private field. */ 1504 struct kvm_rmap_head *end_rmap; 1505 }; 1506 1507 static void 1508 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1509 { 1510 iterator->level = level; 1511 iterator->gfn = iterator->start_gfn; 1512 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1513 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1514 } 1515 1516 static void 1517 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1518 const struct kvm_memory_slot *slot, int start_level, 1519 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1520 { 1521 iterator->slot = slot; 1522 iterator->start_level = start_level; 1523 iterator->end_level = end_level; 1524 iterator->start_gfn = start_gfn; 1525 iterator->end_gfn = end_gfn; 1526 1527 rmap_walk_init_level(iterator, iterator->start_level); 1528 } 1529 1530 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1531 { 1532 return !!iterator->rmap; 1533 } 1534 1535 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1536 { 1537 while (++iterator->rmap <= iterator->end_rmap) { 1538 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1539 1540 if (iterator->rmap->val) 1541 return; 1542 } 1543 1544 if (++iterator->level > iterator->end_level) { 1545 iterator->rmap = NULL; 1546 return; 1547 } 1548 1549 rmap_walk_init_level(iterator, iterator->level); 1550 } 1551 1552 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1553 _start_gfn, _end_gfn, _iter_) \ 1554 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1555 _end_level_, _start_gfn, _end_gfn); \ 1556 slot_rmap_walk_okay(_iter_); \ 1557 slot_rmap_walk_next(_iter_)) 1558 1559 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1560 struct kvm_memory_slot *slot, gfn_t gfn, 1561 int level, pte_t pte); 1562 1563 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1564 struct kvm_gfn_range *range, 1565 rmap_handler_t handler) 1566 { 1567 struct slot_rmap_walk_iterator iterator; 1568 bool ret = false; 1569 1570 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1571 range->start, range->end - 1, &iterator) 1572 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1573 iterator.level, range->pte); 1574 1575 return ret; 1576 } 1577 1578 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1579 { 1580 bool flush = false; 1581 1582 if (kvm_memslots_have_rmaps(kvm)) 1583 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1584 1585 if (tdp_mmu_enabled) 1586 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1587 1588 return flush; 1589 } 1590 1591 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1592 { 1593 bool flush = false; 1594 1595 if (kvm_memslots_have_rmaps(kvm)) 1596 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); 1597 1598 if (tdp_mmu_enabled) 1599 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1600 1601 return flush; 1602 } 1603 1604 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1605 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1606 pte_t unused) 1607 { 1608 u64 *sptep; 1609 struct rmap_iterator iter; 1610 int young = 0; 1611 1612 for_each_rmap_spte(rmap_head, &iter, sptep) 1613 young |= mmu_spte_age(sptep); 1614 1615 return young; 1616 } 1617 1618 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1619 struct kvm_memory_slot *slot, gfn_t gfn, 1620 int level, pte_t unused) 1621 { 1622 u64 *sptep; 1623 struct rmap_iterator iter; 1624 1625 for_each_rmap_spte(rmap_head, &iter, sptep) 1626 if (is_accessed_spte(*sptep)) 1627 return true; 1628 return false; 1629 } 1630 1631 #define RMAP_RECYCLE_THRESHOLD 1000 1632 1633 static void __rmap_add(struct kvm *kvm, 1634 struct kvm_mmu_memory_cache *cache, 1635 const struct kvm_memory_slot *slot, 1636 u64 *spte, gfn_t gfn, unsigned int access) 1637 { 1638 struct kvm_mmu_page *sp; 1639 struct kvm_rmap_head *rmap_head; 1640 int rmap_count; 1641 1642 sp = sptep_to_sp(spte); 1643 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1644 kvm_update_page_stats(kvm, sp->role.level, 1); 1645 1646 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1647 rmap_count = pte_list_add(cache, spte, rmap_head); 1648 1649 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1650 kvm->stat.max_mmu_rmap_size = rmap_count; 1651 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1652 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1653 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1654 } 1655 } 1656 1657 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1658 u64 *spte, gfn_t gfn, unsigned int access) 1659 { 1660 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1661 1662 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1663 } 1664 1665 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1666 { 1667 bool young = false; 1668 1669 if (kvm_memslots_have_rmaps(kvm)) 1670 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1671 1672 if (tdp_mmu_enabled) 1673 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1674 1675 return young; 1676 } 1677 1678 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1679 { 1680 bool young = false; 1681 1682 if (kvm_memslots_have_rmaps(kvm)) 1683 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1684 1685 if (tdp_mmu_enabled) 1686 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1687 1688 return young; 1689 } 1690 1691 #ifdef MMU_DEBUG 1692 static int is_empty_shadow_page(u64 *spt) 1693 { 1694 u64 *pos; 1695 u64 *end; 1696 1697 for (pos = spt, end = pos + SPTE_ENT_PER_PAGE; pos != end; pos++) 1698 if (is_shadow_present_pte(*pos)) { 1699 printk(KERN_ERR "%s: %p %llx\n", __func__, 1700 pos, *pos); 1701 return 0; 1702 } 1703 return 1; 1704 } 1705 #endif 1706 1707 /* 1708 * This value is the sum of all of the kvm instances's 1709 * kvm->arch.n_used_mmu_pages values. We need a global, 1710 * aggregate version in order to make the slab shrinker 1711 * faster 1712 */ 1713 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1714 { 1715 kvm->arch.n_used_mmu_pages += nr; 1716 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1717 } 1718 1719 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1720 { 1721 kvm_mod_used_mmu_pages(kvm, +1); 1722 kvm_account_pgtable_pages((void *)sp->spt, +1); 1723 } 1724 1725 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1726 { 1727 kvm_mod_used_mmu_pages(kvm, -1); 1728 kvm_account_pgtable_pages((void *)sp->spt, -1); 1729 } 1730 1731 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1732 { 1733 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1734 hlist_del(&sp->hash_link); 1735 list_del(&sp->link); 1736 free_page((unsigned long)sp->spt); 1737 if (!sp->role.direct) 1738 free_page((unsigned long)sp->shadowed_translation); 1739 kmem_cache_free(mmu_page_header_cache, sp); 1740 } 1741 1742 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1743 { 1744 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1745 } 1746 1747 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1748 struct kvm_mmu_page *sp, u64 *parent_pte) 1749 { 1750 if (!parent_pte) 1751 return; 1752 1753 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1754 } 1755 1756 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1757 u64 *parent_pte) 1758 { 1759 pte_list_remove(parent_pte, &sp->parent_ptes); 1760 } 1761 1762 static void drop_parent_pte(struct kvm_mmu_page *sp, 1763 u64 *parent_pte) 1764 { 1765 mmu_page_remove_parent_pte(sp, parent_pte); 1766 mmu_spte_clear_no_track(parent_pte); 1767 } 1768 1769 static void mark_unsync(u64 *spte); 1770 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1771 { 1772 u64 *sptep; 1773 struct rmap_iterator iter; 1774 1775 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1776 mark_unsync(sptep); 1777 } 1778 } 1779 1780 static void mark_unsync(u64 *spte) 1781 { 1782 struct kvm_mmu_page *sp; 1783 1784 sp = sptep_to_sp(spte); 1785 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1786 return; 1787 if (sp->unsync_children++) 1788 return; 1789 kvm_mmu_mark_parents_unsync(sp); 1790 } 1791 1792 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1793 struct kvm_mmu_page *sp) 1794 { 1795 return -1; 1796 } 1797 1798 #define KVM_PAGE_ARRAY_NR 16 1799 1800 struct kvm_mmu_pages { 1801 struct mmu_page_and_offset { 1802 struct kvm_mmu_page *sp; 1803 unsigned int idx; 1804 } page[KVM_PAGE_ARRAY_NR]; 1805 unsigned int nr; 1806 }; 1807 1808 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1809 int idx) 1810 { 1811 int i; 1812 1813 if (sp->unsync) 1814 for (i=0; i < pvec->nr; i++) 1815 if (pvec->page[i].sp == sp) 1816 return 0; 1817 1818 pvec->page[pvec->nr].sp = sp; 1819 pvec->page[pvec->nr].idx = idx; 1820 pvec->nr++; 1821 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1822 } 1823 1824 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1825 { 1826 --sp->unsync_children; 1827 WARN_ON((int)sp->unsync_children < 0); 1828 __clear_bit(idx, sp->unsync_child_bitmap); 1829 } 1830 1831 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1832 struct kvm_mmu_pages *pvec) 1833 { 1834 int i, ret, nr_unsync_leaf = 0; 1835 1836 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1837 struct kvm_mmu_page *child; 1838 u64 ent = sp->spt[i]; 1839 1840 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1841 clear_unsync_child_bit(sp, i); 1842 continue; 1843 } 1844 1845 child = spte_to_child_sp(ent); 1846 1847 if (child->unsync_children) { 1848 if (mmu_pages_add(pvec, child, i)) 1849 return -ENOSPC; 1850 1851 ret = __mmu_unsync_walk(child, pvec); 1852 if (!ret) { 1853 clear_unsync_child_bit(sp, i); 1854 continue; 1855 } else if (ret > 0) { 1856 nr_unsync_leaf += ret; 1857 } else 1858 return ret; 1859 } else if (child->unsync) { 1860 nr_unsync_leaf++; 1861 if (mmu_pages_add(pvec, child, i)) 1862 return -ENOSPC; 1863 } else 1864 clear_unsync_child_bit(sp, i); 1865 } 1866 1867 return nr_unsync_leaf; 1868 } 1869 1870 #define INVALID_INDEX (-1) 1871 1872 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1873 struct kvm_mmu_pages *pvec) 1874 { 1875 pvec->nr = 0; 1876 if (!sp->unsync_children) 1877 return 0; 1878 1879 mmu_pages_add(pvec, sp, INVALID_INDEX); 1880 return __mmu_unsync_walk(sp, pvec); 1881 } 1882 1883 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1884 { 1885 WARN_ON(!sp->unsync); 1886 trace_kvm_mmu_sync_page(sp); 1887 sp->unsync = 0; 1888 --kvm->stat.mmu_unsync; 1889 } 1890 1891 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1892 struct list_head *invalid_list); 1893 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1894 struct list_head *invalid_list); 1895 1896 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1897 { 1898 if (sp->role.direct) 1899 return false; 1900 1901 if (sp->role.passthrough) 1902 return false; 1903 1904 return true; 1905 } 1906 1907 #define for_each_valid_sp(_kvm, _sp, _list) \ 1908 hlist_for_each_entry(_sp, _list, hash_link) \ 1909 if (is_obsolete_sp((_kvm), (_sp))) { \ 1910 } else 1911 1912 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1913 for_each_valid_sp(_kvm, _sp, \ 1914 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1915 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1916 1917 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1918 struct list_head *invalid_list) 1919 { 1920 int ret = vcpu->arch.mmu->sync_page(vcpu, sp); 1921 1922 if (ret < 0) 1923 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1924 return ret; 1925 } 1926 1927 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1928 struct list_head *invalid_list, 1929 bool remote_flush) 1930 { 1931 if (!remote_flush && list_empty(invalid_list)) 1932 return false; 1933 1934 if (!list_empty(invalid_list)) 1935 kvm_mmu_commit_zap_page(kvm, invalid_list); 1936 else 1937 kvm_flush_remote_tlbs(kvm); 1938 return true; 1939 } 1940 1941 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1942 { 1943 if (sp->role.invalid) 1944 return true; 1945 1946 /* TDP MMU pages do not use the MMU generation. */ 1947 return !is_tdp_mmu_page(sp) && 1948 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1949 } 1950 1951 struct mmu_page_path { 1952 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1953 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1954 }; 1955 1956 #define for_each_sp(pvec, sp, parents, i) \ 1957 for (i = mmu_pages_first(&pvec, &parents); \ 1958 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1959 i = mmu_pages_next(&pvec, &parents, i)) 1960 1961 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1962 struct mmu_page_path *parents, 1963 int i) 1964 { 1965 int n; 1966 1967 for (n = i+1; n < pvec->nr; n++) { 1968 struct kvm_mmu_page *sp = pvec->page[n].sp; 1969 unsigned idx = pvec->page[n].idx; 1970 int level = sp->role.level; 1971 1972 parents->idx[level-1] = idx; 1973 if (level == PG_LEVEL_4K) 1974 break; 1975 1976 parents->parent[level-2] = sp; 1977 } 1978 1979 return n; 1980 } 1981 1982 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1983 struct mmu_page_path *parents) 1984 { 1985 struct kvm_mmu_page *sp; 1986 int level; 1987 1988 if (pvec->nr == 0) 1989 return 0; 1990 1991 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1992 1993 sp = pvec->page[0].sp; 1994 level = sp->role.level; 1995 WARN_ON(level == PG_LEVEL_4K); 1996 1997 parents->parent[level-2] = sp; 1998 1999 /* Also set up a sentinel. Further entries in pvec are all 2000 * children of sp, so this element is never overwritten. 2001 */ 2002 parents->parent[level-1] = NULL; 2003 return mmu_pages_next(pvec, parents, 0); 2004 } 2005 2006 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2007 { 2008 struct kvm_mmu_page *sp; 2009 unsigned int level = 0; 2010 2011 do { 2012 unsigned int idx = parents->idx[level]; 2013 sp = parents->parent[level]; 2014 if (!sp) 2015 return; 2016 2017 WARN_ON(idx == INVALID_INDEX); 2018 clear_unsync_child_bit(sp, idx); 2019 level++; 2020 } while (!sp->unsync_children); 2021 } 2022 2023 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2024 struct kvm_mmu_page *parent, bool can_yield) 2025 { 2026 int i; 2027 struct kvm_mmu_page *sp; 2028 struct mmu_page_path parents; 2029 struct kvm_mmu_pages pages; 2030 LIST_HEAD(invalid_list); 2031 bool flush = false; 2032 2033 while (mmu_unsync_walk(parent, &pages)) { 2034 bool protected = false; 2035 2036 for_each_sp(pages, sp, parents, i) 2037 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2038 2039 if (protected) { 2040 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2041 flush = false; 2042 } 2043 2044 for_each_sp(pages, sp, parents, i) { 2045 kvm_unlink_unsync_page(vcpu->kvm, sp); 2046 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2047 mmu_pages_clear_parents(&parents); 2048 } 2049 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2050 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2051 if (!can_yield) { 2052 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2053 return -EINTR; 2054 } 2055 2056 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2057 flush = false; 2058 } 2059 } 2060 2061 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2062 return 0; 2063 } 2064 2065 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2066 { 2067 atomic_set(&sp->write_flooding_count, 0); 2068 } 2069 2070 static void clear_sp_write_flooding_count(u64 *spte) 2071 { 2072 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2073 } 2074 2075 /* 2076 * The vCPU is required when finding indirect shadow pages; the shadow 2077 * page may already exist and syncing it needs the vCPU pointer in 2078 * order to read guest page tables. Direct shadow pages are never 2079 * unsync, thus @vcpu can be NULL if @role.direct is true. 2080 */ 2081 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2082 struct kvm_vcpu *vcpu, 2083 gfn_t gfn, 2084 struct hlist_head *sp_list, 2085 union kvm_mmu_page_role role) 2086 { 2087 struct kvm_mmu_page *sp; 2088 int ret; 2089 int collisions = 0; 2090 LIST_HEAD(invalid_list); 2091 2092 for_each_valid_sp(kvm, sp, sp_list) { 2093 if (sp->gfn != gfn) { 2094 collisions++; 2095 continue; 2096 } 2097 2098 if (sp->role.word != role.word) { 2099 /* 2100 * If the guest is creating an upper-level page, zap 2101 * unsync pages for the same gfn. While it's possible 2102 * the guest is using recursive page tables, in all 2103 * likelihood the guest has stopped using the unsync 2104 * page and is installing a completely unrelated page. 2105 * Unsync pages must not be left as is, because the new 2106 * upper-level page will be write-protected. 2107 */ 2108 if (role.level > PG_LEVEL_4K && sp->unsync) 2109 kvm_mmu_prepare_zap_page(kvm, sp, 2110 &invalid_list); 2111 continue; 2112 } 2113 2114 /* unsync and write-flooding only apply to indirect SPs. */ 2115 if (sp->role.direct) 2116 goto out; 2117 2118 if (sp->unsync) { 2119 if (KVM_BUG_ON(!vcpu, kvm)) 2120 break; 2121 2122 /* 2123 * The page is good, but is stale. kvm_sync_page does 2124 * get the latest guest state, but (unlike mmu_unsync_children) 2125 * it doesn't write-protect the page or mark it synchronized! 2126 * This way the validity of the mapping is ensured, but the 2127 * overhead of write protection is not incurred until the 2128 * guest invalidates the TLB mapping. This allows multiple 2129 * SPs for a single gfn to be unsync. 2130 * 2131 * If the sync fails, the page is zapped. If so, break 2132 * in order to rebuild it. 2133 */ 2134 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2135 if (ret < 0) 2136 break; 2137 2138 WARN_ON(!list_empty(&invalid_list)); 2139 if (ret > 0) 2140 kvm_flush_remote_tlbs(kvm); 2141 } 2142 2143 __clear_sp_write_flooding_count(sp); 2144 2145 goto out; 2146 } 2147 2148 sp = NULL; 2149 ++kvm->stat.mmu_cache_miss; 2150 2151 out: 2152 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2153 2154 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2155 kvm->stat.max_mmu_page_hash_collisions = collisions; 2156 return sp; 2157 } 2158 2159 /* Caches used when allocating a new shadow page. */ 2160 struct shadow_page_caches { 2161 struct kvm_mmu_memory_cache *page_header_cache; 2162 struct kvm_mmu_memory_cache *shadow_page_cache; 2163 struct kvm_mmu_memory_cache *shadowed_info_cache; 2164 }; 2165 2166 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2167 struct shadow_page_caches *caches, 2168 gfn_t gfn, 2169 struct hlist_head *sp_list, 2170 union kvm_mmu_page_role role) 2171 { 2172 struct kvm_mmu_page *sp; 2173 2174 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2175 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2176 if (!role.direct) 2177 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2178 2179 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2180 2181 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2182 2183 /* 2184 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2185 * depends on valid pages being added to the head of the list. See 2186 * comments in kvm_zap_obsolete_pages(). 2187 */ 2188 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2189 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2190 kvm_account_mmu_page(kvm, sp); 2191 2192 sp->gfn = gfn; 2193 sp->role = role; 2194 hlist_add_head(&sp->hash_link, sp_list); 2195 if (sp_has_gptes(sp)) 2196 account_shadowed(kvm, sp); 2197 2198 return sp; 2199 } 2200 2201 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2202 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2203 struct kvm_vcpu *vcpu, 2204 struct shadow_page_caches *caches, 2205 gfn_t gfn, 2206 union kvm_mmu_page_role role) 2207 { 2208 struct hlist_head *sp_list; 2209 struct kvm_mmu_page *sp; 2210 bool created = false; 2211 2212 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2213 2214 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2215 if (!sp) { 2216 created = true; 2217 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2218 } 2219 2220 trace_kvm_mmu_get_page(sp, created); 2221 return sp; 2222 } 2223 2224 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2225 gfn_t gfn, 2226 union kvm_mmu_page_role role) 2227 { 2228 struct shadow_page_caches caches = { 2229 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2230 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2231 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2232 }; 2233 2234 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2235 } 2236 2237 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2238 unsigned int access) 2239 { 2240 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2241 union kvm_mmu_page_role role; 2242 2243 role = parent_sp->role; 2244 role.level--; 2245 role.access = access; 2246 role.direct = direct; 2247 role.passthrough = 0; 2248 2249 /* 2250 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2251 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2252 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2253 * shadow each guest page table with multiple shadow page tables, which 2254 * requires extra bookkeeping in the role. 2255 * 2256 * Specifically, to shadow the guest's page directory (which covers a 2257 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2258 * 1GiB of the address space. @role.quadrant encodes which quarter of 2259 * the address space each maps. 2260 * 2261 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2262 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2263 * @role.quadrant encodes which half of the region they map. 2264 * 2265 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2266 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2267 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2268 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2269 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2270 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2271 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2272 * covers bit 21 (see above), thus the quadrant is calculated from the 2273 * _least_ significant bit of the PDE index. 2274 */ 2275 if (role.has_4_byte_gpte) { 2276 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2277 role.quadrant = spte_index(sptep) & 1; 2278 } 2279 2280 return role; 2281 } 2282 2283 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2284 u64 *sptep, gfn_t gfn, 2285 bool direct, unsigned int access) 2286 { 2287 union kvm_mmu_page_role role; 2288 2289 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2290 return ERR_PTR(-EEXIST); 2291 2292 role = kvm_mmu_child_role(sptep, direct, access); 2293 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2294 } 2295 2296 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2297 struct kvm_vcpu *vcpu, hpa_t root, 2298 u64 addr) 2299 { 2300 iterator->addr = addr; 2301 iterator->shadow_addr = root; 2302 iterator->level = vcpu->arch.mmu->root_role.level; 2303 2304 if (iterator->level >= PT64_ROOT_4LEVEL && 2305 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2306 !vcpu->arch.mmu->root_role.direct) 2307 iterator->level = PT32E_ROOT_LEVEL; 2308 2309 if (iterator->level == PT32E_ROOT_LEVEL) { 2310 /* 2311 * prev_root is currently only used for 64-bit hosts. So only 2312 * the active root_hpa is valid here. 2313 */ 2314 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2315 2316 iterator->shadow_addr 2317 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2318 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2319 --iterator->level; 2320 if (!iterator->shadow_addr) 2321 iterator->level = 0; 2322 } 2323 } 2324 2325 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2326 struct kvm_vcpu *vcpu, u64 addr) 2327 { 2328 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2329 addr); 2330 } 2331 2332 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2333 { 2334 if (iterator->level < PG_LEVEL_4K) 2335 return false; 2336 2337 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2338 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2339 return true; 2340 } 2341 2342 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2343 u64 spte) 2344 { 2345 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2346 iterator->level = 0; 2347 return; 2348 } 2349 2350 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2351 --iterator->level; 2352 } 2353 2354 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2355 { 2356 __shadow_walk_next(iterator, *iterator->sptep); 2357 } 2358 2359 static void __link_shadow_page(struct kvm *kvm, 2360 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2361 struct kvm_mmu_page *sp, bool flush) 2362 { 2363 u64 spte; 2364 2365 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2366 2367 /* 2368 * If an SPTE is present already, it must be a leaf and therefore 2369 * a large one. Drop it, and flush the TLB if needed, before 2370 * installing sp. 2371 */ 2372 if (is_shadow_present_pte(*sptep)) 2373 drop_large_spte(kvm, sptep, flush); 2374 2375 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2376 2377 mmu_spte_set(sptep, spte); 2378 2379 mmu_page_add_parent_pte(cache, sp, sptep); 2380 2381 /* 2382 * The non-direct sub-pagetable must be updated before linking. For 2383 * L1 sp, the pagetable is updated via kvm_sync_page() in 2384 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2385 * so sp->unsync can be true or false. For higher level non-direct 2386 * sp, the pagetable is updated/synced via mmu_sync_children() in 2387 * FNAME(fetch)(), so sp->unsync_children can only be false. 2388 * WARN_ON_ONCE() if anything happens unexpectedly. 2389 */ 2390 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2391 mark_unsync(sptep); 2392 } 2393 2394 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2395 struct kvm_mmu_page *sp) 2396 { 2397 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2398 } 2399 2400 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2401 unsigned direct_access) 2402 { 2403 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2404 struct kvm_mmu_page *child; 2405 2406 /* 2407 * For the direct sp, if the guest pte's dirty bit 2408 * changed form clean to dirty, it will corrupt the 2409 * sp's access: allow writable in the read-only sp, 2410 * so we should update the spte at this point to get 2411 * a new sp with the correct access. 2412 */ 2413 child = spte_to_child_sp(*sptep); 2414 if (child->role.access == direct_access) 2415 return; 2416 2417 drop_parent_pte(child, sptep); 2418 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2419 } 2420 } 2421 2422 /* Returns the number of zapped non-leaf child shadow pages. */ 2423 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2424 u64 *spte, struct list_head *invalid_list) 2425 { 2426 u64 pte; 2427 struct kvm_mmu_page *child; 2428 2429 pte = *spte; 2430 if (is_shadow_present_pte(pte)) { 2431 if (is_last_spte(pte, sp->role.level)) { 2432 drop_spte(kvm, spte); 2433 } else { 2434 child = spte_to_child_sp(pte); 2435 drop_parent_pte(child, spte); 2436 2437 /* 2438 * Recursively zap nested TDP SPs, parentless SPs are 2439 * unlikely to be used again in the near future. This 2440 * avoids retaining a large number of stale nested SPs. 2441 */ 2442 if (tdp_enabled && invalid_list && 2443 child->role.guest_mode && !child->parent_ptes.val) 2444 return kvm_mmu_prepare_zap_page(kvm, child, 2445 invalid_list); 2446 } 2447 } else if (is_mmio_spte(pte)) { 2448 mmu_spte_clear_no_track(spte); 2449 } 2450 return 0; 2451 } 2452 2453 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2454 struct kvm_mmu_page *sp, 2455 struct list_head *invalid_list) 2456 { 2457 int zapped = 0; 2458 unsigned i; 2459 2460 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2461 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2462 2463 return zapped; 2464 } 2465 2466 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) 2467 { 2468 u64 *sptep; 2469 struct rmap_iterator iter; 2470 2471 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2472 drop_parent_pte(sp, sptep); 2473 } 2474 2475 static int mmu_zap_unsync_children(struct kvm *kvm, 2476 struct kvm_mmu_page *parent, 2477 struct list_head *invalid_list) 2478 { 2479 int i, zapped = 0; 2480 struct mmu_page_path parents; 2481 struct kvm_mmu_pages pages; 2482 2483 if (parent->role.level == PG_LEVEL_4K) 2484 return 0; 2485 2486 while (mmu_unsync_walk(parent, &pages)) { 2487 struct kvm_mmu_page *sp; 2488 2489 for_each_sp(pages, sp, parents, i) { 2490 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2491 mmu_pages_clear_parents(&parents); 2492 zapped++; 2493 } 2494 } 2495 2496 return zapped; 2497 } 2498 2499 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2500 struct kvm_mmu_page *sp, 2501 struct list_head *invalid_list, 2502 int *nr_zapped) 2503 { 2504 bool list_unstable, zapped_root = false; 2505 2506 lockdep_assert_held_write(&kvm->mmu_lock); 2507 trace_kvm_mmu_prepare_zap_page(sp); 2508 ++kvm->stat.mmu_shadow_zapped; 2509 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2510 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2511 kvm_mmu_unlink_parents(sp); 2512 2513 /* Zapping children means active_mmu_pages has become unstable. */ 2514 list_unstable = *nr_zapped; 2515 2516 if (!sp->role.invalid && sp_has_gptes(sp)) 2517 unaccount_shadowed(kvm, sp); 2518 2519 if (sp->unsync) 2520 kvm_unlink_unsync_page(kvm, sp); 2521 if (!sp->root_count) { 2522 /* Count self */ 2523 (*nr_zapped)++; 2524 2525 /* 2526 * Already invalid pages (previously active roots) are not on 2527 * the active page list. See list_del() in the "else" case of 2528 * !sp->root_count. 2529 */ 2530 if (sp->role.invalid) 2531 list_add(&sp->link, invalid_list); 2532 else 2533 list_move(&sp->link, invalid_list); 2534 kvm_unaccount_mmu_page(kvm, sp); 2535 } else { 2536 /* 2537 * Remove the active root from the active page list, the root 2538 * will be explicitly freed when the root_count hits zero. 2539 */ 2540 list_del(&sp->link); 2541 2542 /* 2543 * Obsolete pages cannot be used on any vCPUs, see the comment 2544 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2545 * treats invalid shadow pages as being obsolete. 2546 */ 2547 zapped_root = !is_obsolete_sp(kvm, sp); 2548 } 2549 2550 if (sp->nx_huge_page_disallowed) 2551 unaccount_nx_huge_page(kvm, sp); 2552 2553 sp->role.invalid = 1; 2554 2555 /* 2556 * Make the request to free obsolete roots after marking the root 2557 * invalid, otherwise other vCPUs may not see it as invalid. 2558 */ 2559 if (zapped_root) 2560 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2561 return list_unstable; 2562 } 2563 2564 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2565 struct list_head *invalid_list) 2566 { 2567 int nr_zapped; 2568 2569 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2570 return nr_zapped; 2571 } 2572 2573 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2574 struct list_head *invalid_list) 2575 { 2576 struct kvm_mmu_page *sp, *nsp; 2577 2578 if (list_empty(invalid_list)) 2579 return; 2580 2581 /* 2582 * We need to make sure everyone sees our modifications to 2583 * the page tables and see changes to vcpu->mode here. The barrier 2584 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2585 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2586 * 2587 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2588 * guest mode and/or lockless shadow page table walks. 2589 */ 2590 kvm_flush_remote_tlbs(kvm); 2591 2592 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2593 WARN_ON(!sp->role.invalid || sp->root_count); 2594 kvm_mmu_free_shadow_page(sp); 2595 } 2596 } 2597 2598 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2599 unsigned long nr_to_zap) 2600 { 2601 unsigned long total_zapped = 0; 2602 struct kvm_mmu_page *sp, *tmp; 2603 LIST_HEAD(invalid_list); 2604 bool unstable; 2605 int nr_zapped; 2606 2607 if (list_empty(&kvm->arch.active_mmu_pages)) 2608 return 0; 2609 2610 restart: 2611 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2612 /* 2613 * Don't zap active root pages, the page itself can't be freed 2614 * and zapping it will just force vCPUs to realloc and reload. 2615 */ 2616 if (sp->root_count) 2617 continue; 2618 2619 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2620 &nr_zapped); 2621 total_zapped += nr_zapped; 2622 if (total_zapped >= nr_to_zap) 2623 break; 2624 2625 if (unstable) 2626 goto restart; 2627 } 2628 2629 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2630 2631 kvm->stat.mmu_recycled += total_zapped; 2632 return total_zapped; 2633 } 2634 2635 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2636 { 2637 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2638 return kvm->arch.n_max_mmu_pages - 2639 kvm->arch.n_used_mmu_pages; 2640 2641 return 0; 2642 } 2643 2644 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2645 { 2646 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2647 2648 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2649 return 0; 2650 2651 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2652 2653 /* 2654 * Note, this check is intentionally soft, it only guarantees that one 2655 * page is available, while the caller may end up allocating as many as 2656 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2657 * exceeding the (arbitrary by default) limit will not harm the host, 2658 * being too aggressive may unnecessarily kill the guest, and getting an 2659 * exact count is far more trouble than it's worth, especially in the 2660 * page fault paths. 2661 */ 2662 if (!kvm_mmu_available_pages(vcpu->kvm)) 2663 return -ENOSPC; 2664 return 0; 2665 } 2666 2667 /* 2668 * Changing the number of mmu pages allocated to the vm 2669 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2670 */ 2671 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2672 { 2673 write_lock(&kvm->mmu_lock); 2674 2675 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2676 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2677 goal_nr_mmu_pages); 2678 2679 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2680 } 2681 2682 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2683 2684 write_unlock(&kvm->mmu_lock); 2685 } 2686 2687 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2688 { 2689 struct kvm_mmu_page *sp; 2690 LIST_HEAD(invalid_list); 2691 int r; 2692 2693 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2694 r = 0; 2695 write_lock(&kvm->mmu_lock); 2696 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2697 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2698 sp->role.word); 2699 r = 1; 2700 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2701 } 2702 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2703 write_unlock(&kvm->mmu_lock); 2704 2705 return r; 2706 } 2707 2708 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2709 { 2710 gpa_t gpa; 2711 int r; 2712 2713 if (vcpu->arch.mmu->root_role.direct) 2714 return 0; 2715 2716 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2717 2718 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2719 2720 return r; 2721 } 2722 2723 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2724 { 2725 trace_kvm_mmu_unsync_page(sp); 2726 ++kvm->stat.mmu_unsync; 2727 sp->unsync = 1; 2728 2729 kvm_mmu_mark_parents_unsync(sp); 2730 } 2731 2732 /* 2733 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2734 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2735 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2736 * be write-protected. 2737 */ 2738 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2739 gfn_t gfn, bool can_unsync, bool prefetch) 2740 { 2741 struct kvm_mmu_page *sp; 2742 bool locked = false; 2743 2744 /* 2745 * Force write-protection if the page is being tracked. Note, the page 2746 * track machinery is used to write-protect upper-level shadow pages, 2747 * i.e. this guards the role.level == 4K assertion below! 2748 */ 2749 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2750 return -EPERM; 2751 2752 /* 2753 * The page is not write-tracked, mark existing shadow pages unsync 2754 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2755 * that case, KVM must complete emulation of the guest TLB flush before 2756 * allowing shadow pages to become unsync (writable by the guest). 2757 */ 2758 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2759 if (!can_unsync) 2760 return -EPERM; 2761 2762 if (sp->unsync) 2763 continue; 2764 2765 if (prefetch) 2766 return -EEXIST; 2767 2768 /* 2769 * TDP MMU page faults require an additional spinlock as they 2770 * run with mmu_lock held for read, not write, and the unsync 2771 * logic is not thread safe. Take the spinklock regardless of 2772 * the MMU type to avoid extra conditionals/parameters, there's 2773 * no meaningful penalty if mmu_lock is held for write. 2774 */ 2775 if (!locked) { 2776 locked = true; 2777 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2778 2779 /* 2780 * Recheck after taking the spinlock, a different vCPU 2781 * may have since marked the page unsync. A false 2782 * positive on the unprotected check above is not 2783 * possible as clearing sp->unsync _must_ hold mmu_lock 2784 * for write, i.e. unsync cannot transition from 0->1 2785 * while this CPU holds mmu_lock for read (or write). 2786 */ 2787 if (READ_ONCE(sp->unsync)) 2788 continue; 2789 } 2790 2791 WARN_ON(sp->role.level != PG_LEVEL_4K); 2792 kvm_unsync_page(kvm, sp); 2793 } 2794 if (locked) 2795 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2796 2797 /* 2798 * We need to ensure that the marking of unsync pages is visible 2799 * before the SPTE is updated to allow writes because 2800 * kvm_mmu_sync_roots() checks the unsync flags without holding 2801 * the MMU lock and so can race with this. If the SPTE was updated 2802 * before the page had been marked as unsync-ed, something like the 2803 * following could happen: 2804 * 2805 * CPU 1 CPU 2 2806 * --------------------------------------------------------------------- 2807 * 1.2 Host updates SPTE 2808 * to be writable 2809 * 2.1 Guest writes a GPTE for GVA X. 2810 * (GPTE being in the guest page table shadowed 2811 * by the SP from CPU 1.) 2812 * This reads SPTE during the page table walk. 2813 * Since SPTE.W is read as 1, there is no 2814 * fault. 2815 * 2816 * 2.2 Guest issues TLB flush. 2817 * That causes a VM Exit. 2818 * 2819 * 2.3 Walking of unsync pages sees sp->unsync is 2820 * false and skips the page. 2821 * 2822 * 2.4 Guest accesses GVA X. 2823 * Since the mapping in the SP was not updated, 2824 * so the old mapping for GVA X incorrectly 2825 * gets used. 2826 * 1.1 Host marks SP 2827 * as unsync 2828 * (sp->unsync = true) 2829 * 2830 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2831 * the situation in 2.4 does not arise. It pairs with the read barrier 2832 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2833 */ 2834 smp_wmb(); 2835 2836 return 0; 2837 } 2838 2839 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2840 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2841 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2842 { 2843 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2844 int level = sp->role.level; 2845 int was_rmapped = 0; 2846 int ret = RET_PF_FIXED; 2847 bool flush = false; 2848 bool wrprot; 2849 u64 spte; 2850 2851 /* Prefetching always gets a writable pfn. */ 2852 bool host_writable = !fault || fault->map_writable; 2853 bool prefetch = !fault || fault->prefetch; 2854 bool write_fault = fault && fault->write; 2855 2856 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2857 *sptep, write_fault, gfn); 2858 2859 if (unlikely(is_noslot_pfn(pfn))) { 2860 vcpu->stat.pf_mmio_spte_created++; 2861 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2862 return RET_PF_EMULATE; 2863 } 2864 2865 if (is_shadow_present_pte(*sptep)) { 2866 /* 2867 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2868 * the parent of the now unreachable PTE. 2869 */ 2870 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2871 struct kvm_mmu_page *child; 2872 u64 pte = *sptep; 2873 2874 child = spte_to_child_sp(pte); 2875 drop_parent_pte(child, sptep); 2876 flush = true; 2877 } else if (pfn != spte_to_pfn(*sptep)) { 2878 pgprintk("hfn old %llx new %llx\n", 2879 spte_to_pfn(*sptep), pfn); 2880 drop_spte(vcpu->kvm, sptep); 2881 flush = true; 2882 } else 2883 was_rmapped = 1; 2884 } 2885 2886 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2887 true, host_writable, &spte); 2888 2889 if (*sptep == spte) { 2890 ret = RET_PF_SPURIOUS; 2891 } else { 2892 flush |= mmu_spte_update(sptep, spte); 2893 trace_kvm_mmu_set_spte(level, gfn, sptep); 2894 } 2895 2896 if (wrprot) { 2897 if (write_fault) 2898 ret = RET_PF_EMULATE; 2899 } 2900 2901 if (flush) 2902 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2903 2904 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2905 2906 if (!was_rmapped) { 2907 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2908 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2909 } else { 2910 /* Already rmapped but the pte_access bits may have changed. */ 2911 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2912 } 2913 2914 return ret; 2915 } 2916 2917 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2918 struct kvm_mmu_page *sp, 2919 u64 *start, u64 *end) 2920 { 2921 struct page *pages[PTE_PREFETCH_NUM]; 2922 struct kvm_memory_slot *slot; 2923 unsigned int access = sp->role.access; 2924 int i, ret; 2925 gfn_t gfn; 2926 2927 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2928 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2929 if (!slot) 2930 return -1; 2931 2932 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2933 if (ret <= 0) 2934 return -1; 2935 2936 for (i = 0; i < ret; i++, gfn++, start++) { 2937 mmu_set_spte(vcpu, slot, start, access, gfn, 2938 page_to_pfn(pages[i]), NULL); 2939 put_page(pages[i]); 2940 } 2941 2942 return 0; 2943 } 2944 2945 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2946 struct kvm_mmu_page *sp, u64 *sptep) 2947 { 2948 u64 *spte, *start = NULL; 2949 int i; 2950 2951 WARN_ON(!sp->role.direct); 2952 2953 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 2954 spte = sp->spt + i; 2955 2956 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2957 if (is_shadow_present_pte(*spte) || spte == sptep) { 2958 if (!start) 2959 continue; 2960 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2961 return; 2962 start = NULL; 2963 } else if (!start) 2964 start = spte; 2965 } 2966 if (start) 2967 direct_pte_prefetch_many(vcpu, sp, start, spte); 2968 } 2969 2970 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2971 { 2972 struct kvm_mmu_page *sp; 2973 2974 sp = sptep_to_sp(sptep); 2975 2976 /* 2977 * Without accessed bits, there's no way to distinguish between 2978 * actually accessed translations and prefetched, so disable pte 2979 * prefetch if accessed bits aren't available. 2980 */ 2981 if (sp_ad_disabled(sp)) 2982 return; 2983 2984 if (sp->role.level > PG_LEVEL_4K) 2985 return; 2986 2987 /* 2988 * If addresses are being invalidated, skip prefetching to avoid 2989 * accidentally prefetching those addresses. 2990 */ 2991 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 2992 return; 2993 2994 __direct_pte_prefetch(vcpu, sp, sptep); 2995 } 2996 2997 /* 2998 * Lookup the mapping level for @gfn in the current mm. 2999 * 3000 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3001 * consumer to be tied into KVM's handlers for MMU notifier events! 3002 * 3003 * There are several ways to safely use this helper: 3004 * 3005 * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before 3006 * consuming it. In this case, mmu_lock doesn't need to be held during the 3007 * lookup, but it does need to be held while checking the MMU notifier. 3008 * 3009 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3010 * event for the hva. This can be done by explicit checking the MMU notifier 3011 * or by ensuring that KVM already has a valid mapping that covers the hva. 3012 * 3013 * - Do not use the result to install new mappings, e.g. use the host mapping 3014 * level only to decide whether or not to zap an entry. In this case, it's 3015 * not required to hold mmu_lock (though it's highly likely the caller will 3016 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3017 * 3018 * Note! The lookup can still race with modifications to host page tables, but 3019 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3020 * race with the primary MMU occurs. 3021 */ 3022 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3023 const struct kvm_memory_slot *slot) 3024 { 3025 int level = PG_LEVEL_4K; 3026 unsigned long hva; 3027 unsigned long flags; 3028 pgd_t pgd; 3029 p4d_t p4d; 3030 pud_t pud; 3031 pmd_t pmd; 3032 3033 /* 3034 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3035 * is not solely for performance, it's also necessary to avoid the 3036 * "writable" check in __gfn_to_hva_many(), which will always fail on 3037 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3038 * page fault steps have already verified the guest isn't writing a 3039 * read-only memslot. 3040 */ 3041 hva = __gfn_to_hva_memslot(slot, gfn); 3042 3043 /* 3044 * Disable IRQs to prevent concurrent tear down of host page tables, 3045 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3046 * the original page table. 3047 */ 3048 local_irq_save(flags); 3049 3050 /* 3051 * Read each entry once. As above, a non-leaf entry can be promoted to 3052 * a huge page _during_ this walk. Re-reading the entry could send the 3053 * walk into the weeks, e.g. p*d_large() returns false (sees the old 3054 * value) and then p*d_offset() walks into the target huge page instead 3055 * of the old page table (sees the new value). 3056 */ 3057 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3058 if (pgd_none(pgd)) 3059 goto out; 3060 3061 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3062 if (p4d_none(p4d) || !p4d_present(p4d)) 3063 goto out; 3064 3065 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3066 if (pud_none(pud) || !pud_present(pud)) 3067 goto out; 3068 3069 if (pud_large(pud)) { 3070 level = PG_LEVEL_1G; 3071 goto out; 3072 } 3073 3074 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3075 if (pmd_none(pmd) || !pmd_present(pmd)) 3076 goto out; 3077 3078 if (pmd_large(pmd)) 3079 level = PG_LEVEL_2M; 3080 3081 out: 3082 local_irq_restore(flags); 3083 return level; 3084 } 3085 3086 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3087 const struct kvm_memory_slot *slot, gfn_t gfn, 3088 int max_level) 3089 { 3090 struct kvm_lpage_info *linfo; 3091 int host_level; 3092 3093 max_level = min(max_level, max_huge_page_level); 3094 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3095 linfo = lpage_info_slot(gfn, slot, max_level); 3096 if (!linfo->disallow_lpage) 3097 break; 3098 } 3099 3100 if (max_level == PG_LEVEL_4K) 3101 return PG_LEVEL_4K; 3102 3103 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3104 return min(host_level, max_level); 3105 } 3106 3107 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3108 { 3109 struct kvm_memory_slot *slot = fault->slot; 3110 kvm_pfn_t mask; 3111 3112 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3113 3114 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3115 return; 3116 3117 if (is_error_noslot_pfn(fault->pfn)) 3118 return; 3119 3120 if (kvm_slot_dirty_track_enabled(slot)) 3121 return; 3122 3123 /* 3124 * Enforce the iTLB multihit workaround after capturing the requested 3125 * level, which will be used to do precise, accurate accounting. 3126 */ 3127 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3128 fault->gfn, fault->max_level); 3129 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3130 return; 3131 3132 /* 3133 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3134 * the pmd can't be split from under us. 3135 */ 3136 fault->goal_level = fault->req_level; 3137 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3138 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3139 fault->pfn &= ~mask; 3140 } 3141 3142 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3143 { 3144 if (cur_level > PG_LEVEL_4K && 3145 cur_level == fault->goal_level && 3146 is_shadow_present_pte(spte) && 3147 !is_large_pte(spte) && 3148 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3149 /* 3150 * A small SPTE exists for this pfn, but FNAME(fetch), 3151 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3152 * large PTE instead: just force them to go down another level, 3153 * patching back for them into pfn the next 9 bits of the 3154 * address. 3155 */ 3156 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3157 KVM_PAGES_PER_HPAGE(cur_level - 1); 3158 fault->pfn |= fault->gfn & page_mask; 3159 fault->goal_level--; 3160 } 3161 } 3162 3163 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3164 { 3165 struct kvm_shadow_walk_iterator it; 3166 struct kvm_mmu_page *sp; 3167 int ret; 3168 gfn_t base_gfn = fault->gfn; 3169 3170 kvm_mmu_hugepage_adjust(vcpu, fault); 3171 3172 trace_kvm_mmu_spte_requested(fault); 3173 for_each_shadow_entry(vcpu, fault->addr, it) { 3174 /* 3175 * We cannot overwrite existing page tables with an NX 3176 * large page, as the leaf could be executable. 3177 */ 3178 if (fault->nx_huge_page_workaround_enabled) 3179 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3180 3181 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3182 if (it.level == fault->goal_level) 3183 break; 3184 3185 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3186 if (sp == ERR_PTR(-EEXIST)) 3187 continue; 3188 3189 link_shadow_page(vcpu, it.sptep, sp); 3190 if (fault->huge_page_disallowed) 3191 account_nx_huge_page(vcpu->kvm, sp, 3192 fault->req_level >= it.level); 3193 } 3194 3195 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3196 return -EFAULT; 3197 3198 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3199 base_gfn, fault->pfn, fault); 3200 if (ret == RET_PF_SPURIOUS) 3201 return ret; 3202 3203 direct_pte_prefetch(vcpu, it.sptep); 3204 return ret; 3205 } 3206 3207 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3208 { 3209 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3210 3211 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3212 } 3213 3214 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3215 { 3216 if (is_sigpending_pfn(fault->pfn)) { 3217 kvm_handle_signal_exit(vcpu); 3218 return -EINTR; 3219 } 3220 3221 /* 3222 * Do not cache the mmio info caused by writing the readonly gfn 3223 * into the spte otherwise read access on readonly gfn also can 3224 * caused mmio page fault and treat it as mmio access. 3225 */ 3226 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3227 return RET_PF_EMULATE; 3228 3229 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3230 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3231 return RET_PF_RETRY; 3232 } 3233 3234 return -EFAULT; 3235 } 3236 3237 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3238 struct kvm_page_fault *fault, 3239 unsigned int access) 3240 { 3241 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3242 3243 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3244 access & shadow_mmio_access_mask); 3245 3246 /* 3247 * If MMIO caching is disabled, emulate immediately without 3248 * touching the shadow page tables as attempting to install an 3249 * MMIO SPTE will just be an expensive nop. 3250 */ 3251 if (unlikely(!enable_mmio_caching)) 3252 return RET_PF_EMULATE; 3253 3254 /* 3255 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3256 * any guest that generates such gfns is running nested and is being 3257 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3258 * only if L1's MAXPHYADDR is inaccurate with respect to the 3259 * hardware's). 3260 */ 3261 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3262 return RET_PF_EMULATE; 3263 3264 return RET_PF_CONTINUE; 3265 } 3266 3267 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3268 { 3269 /* 3270 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3271 * reach the common page fault handler if the SPTE has an invalid MMIO 3272 * generation number. Refreshing the MMIO generation needs to go down 3273 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3274 */ 3275 if (fault->rsvd) 3276 return false; 3277 3278 /* 3279 * #PF can be fast if: 3280 * 3281 * 1. The shadow page table entry is not present and A/D bits are 3282 * disabled _by KVM_, which could mean that the fault is potentially 3283 * caused by access tracking (if enabled). If A/D bits are enabled 3284 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3285 * bits for L2 and employ access tracking, but the fast page fault 3286 * mechanism only supports direct MMUs. 3287 * 2. The shadow page table entry is present, the access is a write, 3288 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3289 * the fault was caused by a write-protection violation. If the 3290 * SPTE is MMU-writable (determined later), the fault can be fixed 3291 * by setting the Writable bit, which can be done out of mmu_lock. 3292 */ 3293 if (!fault->present) 3294 return !kvm_ad_enabled(); 3295 3296 /* 3297 * Note, instruction fetches and writes are mutually exclusive, ignore 3298 * the "exec" flag. 3299 */ 3300 return fault->write; 3301 } 3302 3303 /* 3304 * Returns true if the SPTE was fixed successfully. Otherwise, 3305 * someone else modified the SPTE from its original value. 3306 */ 3307 static bool 3308 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3309 u64 *sptep, u64 old_spte, u64 new_spte) 3310 { 3311 /* 3312 * Theoretically we could also set dirty bit (and flush TLB) here in 3313 * order to eliminate unnecessary PML logging. See comments in 3314 * set_spte. But fast_page_fault is very unlikely to happen with PML 3315 * enabled, so we do not do this. This might result in the same GPA 3316 * to be logged in PML buffer again when the write really happens, and 3317 * eventually to be called by mark_page_dirty twice. But it's also no 3318 * harm. This also avoids the TLB flush needed after setting dirty bit 3319 * so non-PML cases won't be impacted. 3320 * 3321 * Compare with set_spte where instead shadow_dirty_mask is set. 3322 */ 3323 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3324 return false; 3325 3326 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3327 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3328 3329 return true; 3330 } 3331 3332 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3333 { 3334 if (fault->exec) 3335 return is_executable_pte(spte); 3336 3337 if (fault->write) 3338 return is_writable_pte(spte); 3339 3340 /* Fault was on Read access */ 3341 return spte & PT_PRESENT_MASK; 3342 } 3343 3344 /* 3345 * Returns the last level spte pointer of the shadow page walk for the given 3346 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3347 * walk could be performed, returns NULL and *spte does not contain valid data. 3348 * 3349 * Contract: 3350 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3351 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3352 */ 3353 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3354 { 3355 struct kvm_shadow_walk_iterator iterator; 3356 u64 old_spte; 3357 u64 *sptep = NULL; 3358 3359 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3360 sptep = iterator.sptep; 3361 *spte = old_spte; 3362 } 3363 3364 return sptep; 3365 } 3366 3367 /* 3368 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3369 */ 3370 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3371 { 3372 struct kvm_mmu_page *sp; 3373 int ret = RET_PF_INVALID; 3374 u64 spte = 0ull; 3375 u64 *sptep = NULL; 3376 uint retry_count = 0; 3377 3378 if (!page_fault_can_be_fast(fault)) 3379 return ret; 3380 3381 walk_shadow_page_lockless_begin(vcpu); 3382 3383 do { 3384 u64 new_spte; 3385 3386 if (tdp_mmu_enabled) 3387 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3388 else 3389 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3390 3391 if (!is_shadow_present_pte(spte)) 3392 break; 3393 3394 sp = sptep_to_sp(sptep); 3395 if (!is_last_spte(spte, sp->role.level)) 3396 break; 3397 3398 /* 3399 * Check whether the memory access that caused the fault would 3400 * still cause it if it were to be performed right now. If not, 3401 * then this is a spurious fault caused by TLB lazily flushed, 3402 * or some other CPU has already fixed the PTE after the 3403 * current CPU took the fault. 3404 * 3405 * Need not check the access of upper level table entries since 3406 * they are always ACC_ALL. 3407 */ 3408 if (is_access_allowed(fault, spte)) { 3409 ret = RET_PF_SPURIOUS; 3410 break; 3411 } 3412 3413 new_spte = spte; 3414 3415 /* 3416 * KVM only supports fixing page faults outside of MMU lock for 3417 * direct MMUs, nested MMUs are always indirect, and KVM always 3418 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3419 * enabled, the SPTE can't be an access-tracked SPTE. 3420 */ 3421 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3422 new_spte = restore_acc_track_spte(new_spte); 3423 3424 /* 3425 * To keep things simple, only SPTEs that are MMU-writable can 3426 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3427 * that were write-protected for dirty-logging or access 3428 * tracking are handled here. Don't bother checking if the 3429 * SPTE is writable to prioritize running with A/D bits enabled. 3430 * The is_access_allowed() check above handles the common case 3431 * of the fault being spurious, and the SPTE is known to be 3432 * shadow-present, i.e. except for access tracking restoration 3433 * making the new SPTE writable, the check is wasteful. 3434 */ 3435 if (fault->write && is_mmu_writable_spte(spte)) { 3436 new_spte |= PT_WRITABLE_MASK; 3437 3438 /* 3439 * Do not fix write-permission on the large spte when 3440 * dirty logging is enabled. Since we only dirty the 3441 * first page into the dirty-bitmap in 3442 * fast_pf_fix_direct_spte(), other pages are missed 3443 * if its slot has dirty logging enabled. 3444 * 3445 * Instead, we let the slow page fault path create a 3446 * normal spte to fix the access. 3447 */ 3448 if (sp->role.level > PG_LEVEL_4K && 3449 kvm_slot_dirty_track_enabled(fault->slot)) 3450 break; 3451 } 3452 3453 /* Verify that the fault can be handled in the fast path */ 3454 if (new_spte == spte || 3455 !is_access_allowed(fault, new_spte)) 3456 break; 3457 3458 /* 3459 * Currently, fast page fault only works for direct mapping 3460 * since the gfn is not stable for indirect shadow page. See 3461 * Documentation/virt/kvm/locking.rst to get more detail. 3462 */ 3463 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3464 ret = RET_PF_FIXED; 3465 break; 3466 } 3467 3468 if (++retry_count > 4) { 3469 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3470 break; 3471 } 3472 3473 } while (true); 3474 3475 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3476 walk_shadow_page_lockless_end(vcpu); 3477 3478 if (ret != RET_PF_INVALID) 3479 vcpu->stat.pf_fast++; 3480 3481 return ret; 3482 } 3483 3484 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3485 struct list_head *invalid_list) 3486 { 3487 struct kvm_mmu_page *sp; 3488 3489 if (!VALID_PAGE(*root_hpa)) 3490 return; 3491 3492 /* 3493 * The "root" may be a special root, e.g. a PAE entry, treat it as a 3494 * SPTE to ensure any non-PA bits are dropped. 3495 */ 3496 sp = spte_to_child_sp(*root_hpa); 3497 if (WARN_ON(!sp)) 3498 return; 3499 3500 if (is_tdp_mmu_page(sp)) 3501 kvm_tdp_mmu_put_root(kvm, sp, false); 3502 else if (!--sp->root_count && sp->role.invalid) 3503 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3504 3505 *root_hpa = INVALID_PAGE; 3506 } 3507 3508 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3509 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3510 ulong roots_to_free) 3511 { 3512 int i; 3513 LIST_HEAD(invalid_list); 3514 bool free_active_root; 3515 3516 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3517 3518 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3519 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3520 && VALID_PAGE(mmu->root.hpa); 3521 3522 if (!free_active_root) { 3523 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3524 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3525 VALID_PAGE(mmu->prev_roots[i].hpa)) 3526 break; 3527 3528 if (i == KVM_MMU_NUM_PREV_ROOTS) 3529 return; 3530 } 3531 3532 write_lock(&kvm->mmu_lock); 3533 3534 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3535 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3536 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3537 &invalid_list); 3538 3539 if (free_active_root) { 3540 if (to_shadow_page(mmu->root.hpa)) { 3541 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3542 } else if (mmu->pae_root) { 3543 for (i = 0; i < 4; ++i) { 3544 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3545 continue; 3546 3547 mmu_free_root_page(kvm, &mmu->pae_root[i], 3548 &invalid_list); 3549 mmu->pae_root[i] = INVALID_PAE_ROOT; 3550 } 3551 } 3552 mmu->root.hpa = INVALID_PAGE; 3553 mmu->root.pgd = 0; 3554 } 3555 3556 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3557 write_unlock(&kvm->mmu_lock); 3558 } 3559 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3560 3561 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3562 { 3563 unsigned long roots_to_free = 0; 3564 hpa_t root_hpa; 3565 int i; 3566 3567 /* 3568 * This should not be called while L2 is active, L2 can't invalidate 3569 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3570 */ 3571 WARN_ON_ONCE(mmu->root_role.guest_mode); 3572 3573 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3574 root_hpa = mmu->prev_roots[i].hpa; 3575 if (!VALID_PAGE(root_hpa)) 3576 continue; 3577 3578 if (!to_shadow_page(root_hpa) || 3579 to_shadow_page(root_hpa)->role.guest_mode) 3580 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3581 } 3582 3583 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3584 } 3585 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3586 3587 3588 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3589 { 3590 int ret = 0; 3591 3592 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3593 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3594 ret = 1; 3595 } 3596 3597 return ret; 3598 } 3599 3600 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3601 u8 level) 3602 { 3603 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3604 struct kvm_mmu_page *sp; 3605 3606 role.level = level; 3607 role.quadrant = quadrant; 3608 3609 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3610 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3611 3612 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3613 ++sp->root_count; 3614 3615 return __pa(sp->spt); 3616 } 3617 3618 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3619 { 3620 struct kvm_mmu *mmu = vcpu->arch.mmu; 3621 u8 shadow_root_level = mmu->root_role.level; 3622 hpa_t root; 3623 unsigned i; 3624 int r; 3625 3626 write_lock(&vcpu->kvm->mmu_lock); 3627 r = make_mmu_pages_available(vcpu); 3628 if (r < 0) 3629 goto out_unlock; 3630 3631 if (tdp_mmu_enabled) { 3632 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3633 mmu->root.hpa = root; 3634 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3635 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3636 mmu->root.hpa = root; 3637 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3638 if (WARN_ON_ONCE(!mmu->pae_root)) { 3639 r = -EIO; 3640 goto out_unlock; 3641 } 3642 3643 for (i = 0; i < 4; ++i) { 3644 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3645 3646 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3647 PT32_ROOT_LEVEL); 3648 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3649 shadow_me_value; 3650 } 3651 mmu->root.hpa = __pa(mmu->pae_root); 3652 } else { 3653 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3654 r = -EIO; 3655 goto out_unlock; 3656 } 3657 3658 /* root.pgd is ignored for direct MMUs. */ 3659 mmu->root.pgd = 0; 3660 out_unlock: 3661 write_unlock(&vcpu->kvm->mmu_lock); 3662 return r; 3663 } 3664 3665 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3666 { 3667 struct kvm_memslots *slots; 3668 struct kvm_memory_slot *slot; 3669 int r = 0, i, bkt; 3670 3671 /* 3672 * Check if this is the first shadow root being allocated before 3673 * taking the lock. 3674 */ 3675 if (kvm_shadow_root_allocated(kvm)) 3676 return 0; 3677 3678 mutex_lock(&kvm->slots_arch_lock); 3679 3680 /* Recheck, under the lock, whether this is the first shadow root. */ 3681 if (kvm_shadow_root_allocated(kvm)) 3682 goto out_unlock; 3683 3684 /* 3685 * Check if anything actually needs to be allocated, e.g. all metadata 3686 * will be allocated upfront if TDP is disabled. 3687 */ 3688 if (kvm_memslots_have_rmaps(kvm) && 3689 kvm_page_track_write_tracking_enabled(kvm)) 3690 goto out_success; 3691 3692 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3693 slots = __kvm_memslots(kvm, i); 3694 kvm_for_each_memslot(slot, bkt, slots) { 3695 /* 3696 * Both of these functions are no-ops if the target is 3697 * already allocated, so unconditionally calling both 3698 * is safe. Intentionally do NOT free allocations on 3699 * failure to avoid having to track which allocations 3700 * were made now versus when the memslot was created. 3701 * The metadata is guaranteed to be freed when the slot 3702 * is freed, and will be kept/used if userspace retries 3703 * KVM_RUN instead of killing the VM. 3704 */ 3705 r = memslot_rmap_alloc(slot, slot->npages); 3706 if (r) 3707 goto out_unlock; 3708 r = kvm_page_track_write_tracking_alloc(slot); 3709 if (r) 3710 goto out_unlock; 3711 } 3712 } 3713 3714 /* 3715 * Ensure that shadow_root_allocated becomes true strictly after 3716 * all the related pointers are set. 3717 */ 3718 out_success: 3719 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3720 3721 out_unlock: 3722 mutex_unlock(&kvm->slots_arch_lock); 3723 return r; 3724 } 3725 3726 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3727 { 3728 struct kvm_mmu *mmu = vcpu->arch.mmu; 3729 u64 pdptrs[4], pm_mask; 3730 gfn_t root_gfn, root_pgd; 3731 int quadrant, i, r; 3732 hpa_t root; 3733 3734 root_pgd = mmu->get_guest_pgd(vcpu); 3735 root_gfn = root_pgd >> PAGE_SHIFT; 3736 3737 if (mmu_check_root(vcpu, root_gfn)) 3738 return 1; 3739 3740 /* 3741 * On SVM, reading PDPTRs might access guest memory, which might fault 3742 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3743 */ 3744 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3745 for (i = 0; i < 4; ++i) { 3746 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3747 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3748 continue; 3749 3750 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3751 return 1; 3752 } 3753 } 3754 3755 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3756 if (r) 3757 return r; 3758 3759 write_lock(&vcpu->kvm->mmu_lock); 3760 r = make_mmu_pages_available(vcpu); 3761 if (r < 0) 3762 goto out_unlock; 3763 3764 /* 3765 * Do we shadow a long mode page table? If so we need to 3766 * write-protect the guests page table root. 3767 */ 3768 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3769 root = mmu_alloc_root(vcpu, root_gfn, 0, 3770 mmu->root_role.level); 3771 mmu->root.hpa = root; 3772 goto set_root_pgd; 3773 } 3774 3775 if (WARN_ON_ONCE(!mmu->pae_root)) { 3776 r = -EIO; 3777 goto out_unlock; 3778 } 3779 3780 /* 3781 * We shadow a 32 bit page table. This may be a legacy 2-level 3782 * or a PAE 3-level page table. In either case we need to be aware that 3783 * the shadow page table may be a PAE or a long mode page table. 3784 */ 3785 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3786 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3787 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3788 3789 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3790 r = -EIO; 3791 goto out_unlock; 3792 } 3793 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3794 3795 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3796 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3797 r = -EIO; 3798 goto out_unlock; 3799 } 3800 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3801 } 3802 } 3803 3804 for (i = 0; i < 4; ++i) { 3805 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3806 3807 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3808 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3809 mmu->pae_root[i] = INVALID_PAE_ROOT; 3810 continue; 3811 } 3812 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3813 } 3814 3815 /* 3816 * If shadowing 32-bit non-PAE page tables, each PAE page 3817 * directory maps one quarter of the guest's non-PAE page 3818 * directory. Othwerise each PAE page direct shadows one guest 3819 * PAE page directory so that quadrant should be 0. 3820 */ 3821 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3822 3823 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3824 mmu->pae_root[i] = root | pm_mask; 3825 } 3826 3827 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3828 mmu->root.hpa = __pa(mmu->pml5_root); 3829 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3830 mmu->root.hpa = __pa(mmu->pml4_root); 3831 else 3832 mmu->root.hpa = __pa(mmu->pae_root); 3833 3834 set_root_pgd: 3835 mmu->root.pgd = root_pgd; 3836 out_unlock: 3837 write_unlock(&vcpu->kvm->mmu_lock); 3838 3839 return r; 3840 } 3841 3842 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3843 { 3844 struct kvm_mmu *mmu = vcpu->arch.mmu; 3845 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3846 u64 *pml5_root = NULL; 3847 u64 *pml4_root = NULL; 3848 u64 *pae_root; 3849 3850 /* 3851 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3852 * tables are allocated and initialized at root creation as there is no 3853 * equivalent level in the guest's NPT to shadow. Allocate the tables 3854 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3855 */ 3856 if (mmu->root_role.direct || 3857 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3858 mmu->root_role.level < PT64_ROOT_4LEVEL) 3859 return 0; 3860 3861 /* 3862 * NPT, the only paging mode that uses this horror, uses a fixed number 3863 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3864 * all MMus are 5-level. Thus, this can safely require that pml5_root 3865 * is allocated if the other roots are valid and pml5 is needed, as any 3866 * prior MMU would also have required pml5. 3867 */ 3868 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3869 return 0; 3870 3871 /* 3872 * The special roots should always be allocated in concert. Yell and 3873 * bail if KVM ends up in a state where only one of the roots is valid. 3874 */ 3875 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3876 (need_pml5 && mmu->pml5_root))) 3877 return -EIO; 3878 3879 /* 3880 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3881 * doesn't need to be decrypted. 3882 */ 3883 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3884 if (!pae_root) 3885 return -ENOMEM; 3886 3887 #ifdef CONFIG_X86_64 3888 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3889 if (!pml4_root) 3890 goto err_pml4; 3891 3892 if (need_pml5) { 3893 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3894 if (!pml5_root) 3895 goto err_pml5; 3896 } 3897 #endif 3898 3899 mmu->pae_root = pae_root; 3900 mmu->pml4_root = pml4_root; 3901 mmu->pml5_root = pml5_root; 3902 3903 return 0; 3904 3905 #ifdef CONFIG_X86_64 3906 err_pml5: 3907 free_page((unsigned long)pml4_root); 3908 err_pml4: 3909 free_page((unsigned long)pae_root); 3910 return -ENOMEM; 3911 #endif 3912 } 3913 3914 static bool is_unsync_root(hpa_t root) 3915 { 3916 struct kvm_mmu_page *sp; 3917 3918 if (!VALID_PAGE(root)) 3919 return false; 3920 3921 /* 3922 * The read barrier orders the CPU's read of SPTE.W during the page table 3923 * walk before the reads of sp->unsync/sp->unsync_children here. 3924 * 3925 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3926 * any guest page table changes are not guaranteed to be visible anyway 3927 * until this VCPU issues a TLB flush strictly after those changes are 3928 * made. We only need to ensure that the other CPU sets these flags 3929 * before any actual changes to the page tables are made. The comments 3930 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3931 * requirement isn't satisfied. 3932 */ 3933 smp_rmb(); 3934 sp = to_shadow_page(root); 3935 3936 /* 3937 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3938 * PDPTEs for a given PAE root need to be synchronized individually. 3939 */ 3940 if (WARN_ON_ONCE(!sp)) 3941 return false; 3942 3943 if (sp->unsync || sp->unsync_children) 3944 return true; 3945 3946 return false; 3947 } 3948 3949 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3950 { 3951 int i; 3952 struct kvm_mmu_page *sp; 3953 3954 if (vcpu->arch.mmu->root_role.direct) 3955 return; 3956 3957 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 3958 return; 3959 3960 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3961 3962 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3963 hpa_t root = vcpu->arch.mmu->root.hpa; 3964 sp = to_shadow_page(root); 3965 3966 if (!is_unsync_root(root)) 3967 return; 3968 3969 write_lock(&vcpu->kvm->mmu_lock); 3970 mmu_sync_children(vcpu, sp, true); 3971 write_unlock(&vcpu->kvm->mmu_lock); 3972 return; 3973 } 3974 3975 write_lock(&vcpu->kvm->mmu_lock); 3976 3977 for (i = 0; i < 4; ++i) { 3978 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3979 3980 if (IS_VALID_PAE_ROOT(root)) { 3981 sp = spte_to_child_sp(root); 3982 mmu_sync_children(vcpu, sp, true); 3983 } 3984 } 3985 3986 write_unlock(&vcpu->kvm->mmu_lock); 3987 } 3988 3989 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 3990 { 3991 unsigned long roots_to_free = 0; 3992 int i; 3993 3994 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3995 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 3996 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3997 3998 /* sync prev_roots by simply freeing them */ 3999 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4000 } 4001 4002 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4003 gpa_t vaddr, u64 access, 4004 struct x86_exception *exception) 4005 { 4006 if (exception) 4007 exception->error_code = 0; 4008 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4009 } 4010 4011 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4012 { 4013 /* 4014 * A nested guest cannot use the MMIO cache if it is using nested 4015 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4016 */ 4017 if (mmu_is_nested(vcpu)) 4018 return false; 4019 4020 if (direct) 4021 return vcpu_match_mmio_gpa(vcpu, addr); 4022 4023 return vcpu_match_mmio_gva(vcpu, addr); 4024 } 4025 4026 /* 4027 * Return the level of the lowest level SPTE added to sptes. 4028 * That SPTE may be non-present. 4029 * 4030 * Must be called between walk_shadow_page_lockless_{begin,end}. 4031 */ 4032 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4033 { 4034 struct kvm_shadow_walk_iterator iterator; 4035 int leaf = -1; 4036 u64 spte; 4037 4038 for (shadow_walk_init(&iterator, vcpu, addr), 4039 *root_level = iterator.level; 4040 shadow_walk_okay(&iterator); 4041 __shadow_walk_next(&iterator, spte)) { 4042 leaf = iterator.level; 4043 spte = mmu_spte_get_lockless(iterator.sptep); 4044 4045 sptes[leaf] = spte; 4046 } 4047 4048 return leaf; 4049 } 4050 4051 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4052 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4053 { 4054 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4055 struct rsvd_bits_validate *rsvd_check; 4056 int root, leaf, level; 4057 bool reserved = false; 4058 4059 walk_shadow_page_lockless_begin(vcpu); 4060 4061 if (is_tdp_mmu_active(vcpu)) 4062 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 4063 else 4064 leaf = get_walk(vcpu, addr, sptes, &root); 4065 4066 walk_shadow_page_lockless_end(vcpu); 4067 4068 if (unlikely(leaf < 0)) { 4069 *sptep = 0ull; 4070 return reserved; 4071 } 4072 4073 *sptep = sptes[leaf]; 4074 4075 /* 4076 * Skip reserved bits checks on the terminal leaf if it's not a valid 4077 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4078 * design, always have reserved bits set. The purpose of the checks is 4079 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4080 */ 4081 if (!is_shadow_present_pte(sptes[leaf])) 4082 leaf++; 4083 4084 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4085 4086 for (level = root; level >= leaf; level--) 4087 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4088 4089 if (reserved) { 4090 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4091 __func__, addr); 4092 for (level = root; level >= leaf; level--) 4093 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4094 sptes[level], level, 4095 get_rsvd_bits(rsvd_check, sptes[level], level)); 4096 } 4097 4098 return reserved; 4099 } 4100 4101 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4102 { 4103 u64 spte; 4104 bool reserved; 4105 4106 if (mmio_info_in_cache(vcpu, addr, direct)) 4107 return RET_PF_EMULATE; 4108 4109 reserved = get_mmio_spte(vcpu, addr, &spte); 4110 if (WARN_ON(reserved)) 4111 return -EINVAL; 4112 4113 if (is_mmio_spte(spte)) { 4114 gfn_t gfn = get_mmio_spte_gfn(spte); 4115 unsigned int access = get_mmio_spte_access(spte); 4116 4117 if (!check_mmio_spte(vcpu, spte)) 4118 return RET_PF_INVALID; 4119 4120 if (direct) 4121 addr = 0; 4122 4123 trace_handle_mmio_page_fault(addr, gfn, access); 4124 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4125 return RET_PF_EMULATE; 4126 } 4127 4128 /* 4129 * If the page table is zapped by other cpus, let CPU fault again on 4130 * the address. 4131 */ 4132 return RET_PF_RETRY; 4133 } 4134 4135 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4136 struct kvm_page_fault *fault) 4137 { 4138 if (unlikely(fault->rsvd)) 4139 return false; 4140 4141 if (!fault->present || !fault->write) 4142 return false; 4143 4144 /* 4145 * guest is writing the page which is write tracked which can 4146 * not be fixed by page fault handler. 4147 */ 4148 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 4149 return true; 4150 4151 return false; 4152 } 4153 4154 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4155 { 4156 struct kvm_shadow_walk_iterator iterator; 4157 u64 spte; 4158 4159 walk_shadow_page_lockless_begin(vcpu); 4160 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4161 clear_sp_write_flooding_count(iterator.sptep); 4162 walk_shadow_page_lockless_end(vcpu); 4163 } 4164 4165 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4166 { 4167 /* make sure the token value is not 0 */ 4168 u32 id = vcpu->arch.apf.id; 4169 4170 if (id << 12 == 0) 4171 vcpu->arch.apf.id = 1; 4172 4173 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4174 } 4175 4176 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4177 gfn_t gfn) 4178 { 4179 struct kvm_arch_async_pf arch; 4180 4181 arch.token = alloc_apf_token(vcpu); 4182 arch.gfn = gfn; 4183 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4184 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 4185 4186 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4187 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4188 } 4189 4190 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4191 { 4192 int r; 4193 4194 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4195 work->wakeup_all) 4196 return; 4197 4198 r = kvm_mmu_reload(vcpu); 4199 if (unlikely(r)) 4200 return; 4201 4202 if (!vcpu->arch.mmu->root_role.direct && 4203 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 4204 return; 4205 4206 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 4207 } 4208 4209 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4210 { 4211 struct kvm_memory_slot *slot = fault->slot; 4212 bool async; 4213 4214 /* 4215 * Retry the page fault if the gfn hit a memslot that is being deleted 4216 * or moved. This ensures any existing SPTEs for the old memslot will 4217 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4218 */ 4219 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 4220 return RET_PF_RETRY; 4221 4222 if (!kvm_is_visible_memslot(slot)) { 4223 /* Don't expose private memslots to L2. */ 4224 if (is_guest_mode(vcpu)) { 4225 fault->slot = NULL; 4226 fault->pfn = KVM_PFN_NOSLOT; 4227 fault->map_writable = false; 4228 return RET_PF_CONTINUE; 4229 } 4230 /* 4231 * If the APIC access page exists but is disabled, go directly 4232 * to emulation without caching the MMIO access or creating a 4233 * MMIO SPTE. That way the cache doesn't need to be purged 4234 * when the AVIC is re-enabled. 4235 */ 4236 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 4237 !kvm_apicv_activated(vcpu->kvm)) 4238 return RET_PF_EMULATE; 4239 } 4240 4241 async = false; 4242 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async, 4243 fault->write, &fault->map_writable, 4244 &fault->hva); 4245 if (!async) 4246 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4247 4248 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4249 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4250 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4251 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4252 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4253 return RET_PF_RETRY; 4254 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { 4255 return RET_PF_RETRY; 4256 } 4257 } 4258 4259 /* 4260 * Allow gup to bail on pending non-fatal signals when it's also allowed 4261 * to wait for IO. Note, gup always bails if it is unable to quickly 4262 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4263 */ 4264 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL, 4265 fault->write, &fault->map_writable, 4266 &fault->hva); 4267 return RET_PF_CONTINUE; 4268 } 4269 4270 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 4271 unsigned int access) 4272 { 4273 int ret; 4274 4275 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4276 smp_rmb(); 4277 4278 ret = __kvm_faultin_pfn(vcpu, fault); 4279 if (ret != RET_PF_CONTINUE) 4280 return ret; 4281 4282 if (unlikely(is_error_pfn(fault->pfn))) 4283 return kvm_handle_error_pfn(vcpu, fault); 4284 4285 if (unlikely(!fault->slot)) 4286 return kvm_handle_noslot_fault(vcpu, fault, access); 4287 4288 return RET_PF_CONTINUE; 4289 } 4290 4291 /* 4292 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4293 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4294 */ 4295 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4296 struct kvm_page_fault *fault) 4297 { 4298 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); 4299 4300 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4301 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4302 return true; 4303 4304 /* 4305 * Roots without an associated shadow page are considered invalid if 4306 * there is a pending request to free obsolete roots. The request is 4307 * only a hint that the current root _may_ be obsolete and needs to be 4308 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4309 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4310 * to reload even if no vCPU is actively using the root. 4311 */ 4312 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4313 return true; 4314 4315 return fault->slot && 4316 mmu_invalidate_retry_hva(vcpu->kvm, fault->mmu_seq, fault->hva); 4317 } 4318 4319 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4320 { 4321 int r; 4322 4323 if (page_fault_handle_page_track(vcpu, fault)) 4324 return RET_PF_EMULATE; 4325 4326 r = fast_page_fault(vcpu, fault); 4327 if (r != RET_PF_INVALID) 4328 return r; 4329 4330 r = mmu_topup_memory_caches(vcpu, false); 4331 if (r) 4332 return r; 4333 4334 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4335 if (r != RET_PF_CONTINUE) 4336 return r; 4337 4338 r = RET_PF_RETRY; 4339 write_lock(&vcpu->kvm->mmu_lock); 4340 4341 if (is_page_fault_stale(vcpu, fault)) 4342 goto out_unlock; 4343 4344 r = make_mmu_pages_available(vcpu); 4345 if (r) 4346 goto out_unlock; 4347 4348 r = direct_map(vcpu, fault); 4349 4350 out_unlock: 4351 write_unlock(&vcpu->kvm->mmu_lock); 4352 kvm_release_pfn_clean(fault->pfn); 4353 return r; 4354 } 4355 4356 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4357 struct kvm_page_fault *fault) 4358 { 4359 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4360 4361 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4362 fault->max_level = PG_LEVEL_2M; 4363 return direct_page_fault(vcpu, fault); 4364 } 4365 4366 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4367 u64 fault_address, char *insn, int insn_len) 4368 { 4369 int r = 1; 4370 u32 flags = vcpu->arch.apf.host_apf_flags; 4371 4372 #ifndef CONFIG_X86_64 4373 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4374 if (WARN_ON_ONCE(fault_address >> 32)) 4375 return -EFAULT; 4376 #endif 4377 4378 vcpu->arch.l1tf_flush_l1d = true; 4379 if (!flags) { 4380 trace_kvm_page_fault(vcpu, fault_address, error_code); 4381 4382 if (kvm_event_needs_reinjection(vcpu)) 4383 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4384 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4385 insn_len); 4386 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4387 vcpu->arch.apf.host_apf_flags = 0; 4388 local_irq_disable(); 4389 kvm_async_pf_task_wait_schedule(fault_address); 4390 local_irq_enable(); 4391 } else { 4392 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4393 } 4394 4395 return r; 4396 } 4397 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4398 4399 #ifdef CONFIG_X86_64 4400 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4401 struct kvm_page_fault *fault) 4402 { 4403 int r; 4404 4405 if (page_fault_handle_page_track(vcpu, fault)) 4406 return RET_PF_EMULATE; 4407 4408 r = fast_page_fault(vcpu, fault); 4409 if (r != RET_PF_INVALID) 4410 return r; 4411 4412 r = mmu_topup_memory_caches(vcpu, false); 4413 if (r) 4414 return r; 4415 4416 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4417 if (r != RET_PF_CONTINUE) 4418 return r; 4419 4420 r = RET_PF_RETRY; 4421 read_lock(&vcpu->kvm->mmu_lock); 4422 4423 if (is_page_fault_stale(vcpu, fault)) 4424 goto out_unlock; 4425 4426 r = kvm_tdp_mmu_map(vcpu, fault); 4427 4428 out_unlock: 4429 read_unlock(&vcpu->kvm->mmu_lock); 4430 kvm_release_pfn_clean(fault->pfn); 4431 return r; 4432 } 4433 #endif 4434 4435 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4436 { 4437 /* 4438 * If the guest's MTRRs may be used to compute the "real" memtype, 4439 * restrict the mapping level to ensure KVM uses a consistent memtype 4440 * across the entire mapping. If the host MTRRs are ignored by TDP 4441 * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA 4442 * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype 4443 * from the guest's MTRRs so that guest accesses to memory that is 4444 * DMA'd aren't cached against the guest's wishes. 4445 * 4446 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4447 * e.g. KVM will force UC memtype for host MMIO. 4448 */ 4449 if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 4450 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4451 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4452 gfn_t base = gfn_round_for_level(fault->gfn, 4453 fault->max_level); 4454 4455 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4456 break; 4457 } 4458 } 4459 4460 #ifdef CONFIG_X86_64 4461 if (tdp_mmu_enabled) 4462 return kvm_tdp_mmu_page_fault(vcpu, fault); 4463 #endif 4464 4465 return direct_page_fault(vcpu, fault); 4466 } 4467 4468 static void nonpaging_init_context(struct kvm_mmu *context) 4469 { 4470 context->page_fault = nonpaging_page_fault; 4471 context->gva_to_gpa = nonpaging_gva_to_gpa; 4472 context->sync_page = nonpaging_sync_page; 4473 context->invlpg = NULL; 4474 } 4475 4476 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4477 union kvm_mmu_page_role role) 4478 { 4479 return (role.direct || pgd == root->pgd) && 4480 VALID_PAGE(root->hpa) && 4481 role.word == to_shadow_page(root->hpa)->role.word; 4482 } 4483 4484 /* 4485 * Find out if a previously cached root matching the new pgd/role is available, 4486 * and insert the current root as the MRU in the cache. 4487 * If a matching root is found, it is assigned to kvm_mmu->root and 4488 * true is returned. 4489 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4490 * evicted to make room for the current root, and false is returned. 4491 */ 4492 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4493 gpa_t new_pgd, 4494 union kvm_mmu_page_role new_role) 4495 { 4496 uint i; 4497 4498 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4499 return true; 4500 4501 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4502 /* 4503 * The swaps end up rotating the cache like this: 4504 * C 0 1 2 3 (on entry to the function) 4505 * 0 C 1 2 3 4506 * 1 C 0 2 3 4507 * 2 C 0 1 3 4508 * 3 C 0 1 2 (on exit from the loop) 4509 */ 4510 swap(mmu->root, mmu->prev_roots[i]); 4511 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4512 return true; 4513 } 4514 4515 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4516 return false; 4517 } 4518 4519 /* 4520 * Find out if a previously cached root matching the new pgd/role is available. 4521 * On entry, mmu->root is invalid. 4522 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4523 * of the cache becomes invalid, and true is returned. 4524 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4525 */ 4526 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4527 gpa_t new_pgd, 4528 union kvm_mmu_page_role new_role) 4529 { 4530 uint i; 4531 4532 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4533 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4534 goto hit; 4535 4536 return false; 4537 4538 hit: 4539 swap(mmu->root, mmu->prev_roots[i]); 4540 /* Bubble up the remaining roots. */ 4541 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4542 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4543 mmu->prev_roots[i].hpa = INVALID_PAGE; 4544 return true; 4545 } 4546 4547 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4548 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4549 { 4550 /* 4551 * For now, limit the caching to 64-bit hosts+VMs in order to avoid 4552 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4553 * later if necessary. 4554 */ 4555 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) 4556 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4557 4558 if (VALID_PAGE(mmu->root.hpa)) 4559 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4560 else 4561 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4562 } 4563 4564 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4565 { 4566 struct kvm_mmu *mmu = vcpu->arch.mmu; 4567 union kvm_mmu_page_role new_role = mmu->root_role; 4568 4569 /* 4570 * Return immediately if no usable root was found, kvm_mmu_reload() 4571 * will establish a valid root prior to the next VM-Enter. 4572 */ 4573 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4574 return; 4575 4576 /* 4577 * It's possible that the cached previous root page is obsolete because 4578 * of a change in the MMU generation number. However, changing the 4579 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4580 * which will free the root set here and allocate a new one. 4581 */ 4582 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4583 4584 if (force_flush_and_sync_on_reuse) { 4585 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4586 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4587 } 4588 4589 /* 4590 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4591 * switching to a new CR3, that GVA->GPA mapping may no longer be 4592 * valid. So clear any cached MMIO info even when we don't need to sync 4593 * the shadow page tables. 4594 */ 4595 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4596 4597 /* 4598 * If this is a direct root page, it doesn't have a write flooding 4599 * count. Otherwise, clear the write flooding count. 4600 */ 4601 if (!new_role.direct) 4602 __clear_sp_write_flooding_count( 4603 to_shadow_page(vcpu->arch.mmu->root.hpa)); 4604 } 4605 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4606 4607 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4608 { 4609 return kvm_read_cr3(vcpu); 4610 } 4611 4612 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4613 unsigned int access) 4614 { 4615 if (unlikely(is_mmio_spte(*sptep))) { 4616 if (gfn != get_mmio_spte_gfn(*sptep)) { 4617 mmu_spte_clear_no_track(sptep); 4618 return true; 4619 } 4620 4621 mark_mmio_spte(vcpu, sptep, gfn, access); 4622 return true; 4623 } 4624 4625 return false; 4626 } 4627 4628 #define PTTYPE_EPT 18 /* arbitrary */ 4629 #define PTTYPE PTTYPE_EPT 4630 #include "paging_tmpl.h" 4631 #undef PTTYPE 4632 4633 #define PTTYPE 64 4634 #include "paging_tmpl.h" 4635 #undef PTTYPE 4636 4637 #define PTTYPE 32 4638 #include "paging_tmpl.h" 4639 #undef PTTYPE 4640 4641 static void 4642 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4643 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4644 bool pse, bool amd) 4645 { 4646 u64 gbpages_bit_rsvd = 0; 4647 u64 nonleaf_bit8_rsvd = 0; 4648 u64 high_bits_rsvd; 4649 4650 rsvd_check->bad_mt_xwr = 0; 4651 4652 if (!gbpages) 4653 gbpages_bit_rsvd = rsvd_bits(7, 7); 4654 4655 if (level == PT32E_ROOT_LEVEL) 4656 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4657 else 4658 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4659 4660 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4661 if (!nx) 4662 high_bits_rsvd |= rsvd_bits(63, 63); 4663 4664 /* 4665 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4666 * leaf entries) on AMD CPUs only. 4667 */ 4668 if (amd) 4669 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4670 4671 switch (level) { 4672 case PT32_ROOT_LEVEL: 4673 /* no rsvd bits for 2 level 4K page table entries */ 4674 rsvd_check->rsvd_bits_mask[0][1] = 0; 4675 rsvd_check->rsvd_bits_mask[0][0] = 0; 4676 rsvd_check->rsvd_bits_mask[1][0] = 4677 rsvd_check->rsvd_bits_mask[0][0]; 4678 4679 if (!pse) { 4680 rsvd_check->rsvd_bits_mask[1][1] = 0; 4681 break; 4682 } 4683 4684 if (is_cpuid_PSE36()) 4685 /* 36bits PSE 4MB page */ 4686 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4687 else 4688 /* 32 bits PSE 4MB page */ 4689 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4690 break; 4691 case PT32E_ROOT_LEVEL: 4692 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4693 high_bits_rsvd | 4694 rsvd_bits(5, 8) | 4695 rsvd_bits(1, 2); /* PDPTE */ 4696 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4697 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4698 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4699 rsvd_bits(13, 20); /* large page */ 4700 rsvd_check->rsvd_bits_mask[1][0] = 4701 rsvd_check->rsvd_bits_mask[0][0]; 4702 break; 4703 case PT64_ROOT_5LEVEL: 4704 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4705 nonleaf_bit8_rsvd | 4706 rsvd_bits(7, 7); 4707 rsvd_check->rsvd_bits_mask[1][4] = 4708 rsvd_check->rsvd_bits_mask[0][4]; 4709 fallthrough; 4710 case PT64_ROOT_4LEVEL: 4711 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4712 nonleaf_bit8_rsvd | 4713 rsvd_bits(7, 7); 4714 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4715 gbpages_bit_rsvd; 4716 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4717 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4718 rsvd_check->rsvd_bits_mask[1][3] = 4719 rsvd_check->rsvd_bits_mask[0][3]; 4720 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4721 gbpages_bit_rsvd | 4722 rsvd_bits(13, 29); 4723 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4724 rsvd_bits(13, 20); /* large page */ 4725 rsvd_check->rsvd_bits_mask[1][0] = 4726 rsvd_check->rsvd_bits_mask[0][0]; 4727 break; 4728 } 4729 } 4730 4731 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4732 { 4733 /* 4734 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4735 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4736 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4737 * walk for performance and complexity reasons. Not to mention KVM 4738 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4739 * KVM once a TDP translation is installed. Mimic hardware behavior so 4740 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4741 */ 4742 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4743 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4744 } 4745 4746 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4747 struct kvm_mmu *context) 4748 { 4749 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4750 vcpu->arch.reserved_gpa_bits, 4751 context->cpu_role.base.level, is_efer_nx(context), 4752 guest_can_use_gbpages(vcpu), 4753 is_cr4_pse(context), 4754 guest_cpuid_is_amd_or_hygon(vcpu)); 4755 } 4756 4757 static void 4758 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4759 u64 pa_bits_rsvd, bool execonly, int huge_page_level) 4760 { 4761 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4762 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4763 u64 bad_mt_xwr; 4764 4765 if (huge_page_level < PG_LEVEL_1G) 4766 large_1g_rsvd = rsvd_bits(7, 7); 4767 if (huge_page_level < PG_LEVEL_2M) 4768 large_2m_rsvd = rsvd_bits(7, 7); 4769 4770 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4771 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4772 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4773 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4774 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4775 4776 /* large page */ 4777 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4778 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4779 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4780 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4781 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4782 4783 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4784 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4785 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4786 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4787 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4788 if (!execonly) { 4789 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4790 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4791 } 4792 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4793 } 4794 4795 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4796 struct kvm_mmu *context, bool execonly, int huge_page_level) 4797 { 4798 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4799 vcpu->arch.reserved_gpa_bits, execonly, 4800 huge_page_level); 4801 } 4802 4803 static inline u64 reserved_hpa_bits(void) 4804 { 4805 return rsvd_bits(shadow_phys_bits, 63); 4806 } 4807 4808 /* 4809 * the page table on host is the shadow page table for the page 4810 * table in guest or amd nested guest, its mmu features completely 4811 * follow the features in guest. 4812 */ 4813 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4814 struct kvm_mmu *context) 4815 { 4816 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4817 bool is_amd = true; 4818 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4819 bool is_pse = false; 4820 struct rsvd_bits_validate *shadow_zero_check; 4821 int i; 4822 4823 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 4824 4825 shadow_zero_check = &context->shadow_zero_check; 4826 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4827 context->root_role.level, 4828 context->root_role.efer_nx, 4829 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4830 4831 if (!shadow_me_mask) 4832 return; 4833 4834 for (i = context->root_role.level; --i >= 0;) { 4835 /* 4836 * So far shadow_me_value is a constant during KVM's life 4837 * time. Bits in shadow_me_value are allowed to be set. 4838 * Bits in shadow_me_mask but not in shadow_me_value are 4839 * not allowed to be set. 4840 */ 4841 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 4842 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 4843 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 4844 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 4845 } 4846 4847 } 4848 4849 static inline bool boot_cpu_is_amd(void) 4850 { 4851 WARN_ON_ONCE(!tdp_enabled); 4852 return shadow_x_mask == 0; 4853 } 4854 4855 /* 4856 * the direct page table on host, use as much mmu features as 4857 * possible, however, kvm currently does not do execution-protection. 4858 */ 4859 static void 4860 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4861 { 4862 struct rsvd_bits_validate *shadow_zero_check; 4863 int i; 4864 4865 shadow_zero_check = &context->shadow_zero_check; 4866 4867 if (boot_cpu_is_amd()) 4868 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4869 context->root_role.level, true, 4870 boot_cpu_has(X86_FEATURE_GBPAGES), 4871 false, true); 4872 else 4873 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4874 reserved_hpa_bits(), false, 4875 max_huge_page_level); 4876 4877 if (!shadow_me_mask) 4878 return; 4879 4880 for (i = context->root_role.level; --i >= 0;) { 4881 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4882 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4883 } 4884 } 4885 4886 /* 4887 * as the comments in reset_shadow_zero_bits_mask() except it 4888 * is the shadow page table for intel nested guest. 4889 */ 4890 static void 4891 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4892 { 4893 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4894 reserved_hpa_bits(), execonly, 4895 max_huge_page_level); 4896 } 4897 4898 #define BYTE_MASK(access) \ 4899 ((1 & (access) ? 2 : 0) | \ 4900 (2 & (access) ? 4 : 0) | \ 4901 (3 & (access) ? 8 : 0) | \ 4902 (4 & (access) ? 16 : 0) | \ 4903 (5 & (access) ? 32 : 0) | \ 4904 (6 & (access) ? 64 : 0) | \ 4905 (7 & (access) ? 128 : 0)) 4906 4907 4908 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4909 { 4910 unsigned byte; 4911 4912 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4913 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4914 const u8 u = BYTE_MASK(ACC_USER_MASK); 4915 4916 bool cr4_smep = is_cr4_smep(mmu); 4917 bool cr4_smap = is_cr4_smap(mmu); 4918 bool cr0_wp = is_cr0_wp(mmu); 4919 bool efer_nx = is_efer_nx(mmu); 4920 4921 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4922 unsigned pfec = byte << 1; 4923 4924 /* 4925 * Each "*f" variable has a 1 bit for each UWX value 4926 * that causes a fault with the given PFEC. 4927 */ 4928 4929 /* Faults from writes to non-writable pages */ 4930 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4931 /* Faults from user mode accesses to supervisor pages */ 4932 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4933 /* Faults from fetches of non-executable pages*/ 4934 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4935 /* Faults from kernel mode fetches of user pages */ 4936 u8 smepf = 0; 4937 /* Faults from kernel mode accesses of user pages */ 4938 u8 smapf = 0; 4939 4940 if (!ept) { 4941 /* Faults from kernel mode accesses to user pages */ 4942 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4943 4944 /* Not really needed: !nx will cause pte.nx to fault */ 4945 if (!efer_nx) 4946 ff = 0; 4947 4948 /* Allow supervisor writes if !cr0.wp */ 4949 if (!cr0_wp) 4950 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4951 4952 /* Disallow supervisor fetches of user code if cr4.smep */ 4953 if (cr4_smep) 4954 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4955 4956 /* 4957 * SMAP:kernel-mode data accesses from user-mode 4958 * mappings should fault. A fault is considered 4959 * as a SMAP violation if all of the following 4960 * conditions are true: 4961 * - X86_CR4_SMAP is set in CR4 4962 * - A user page is accessed 4963 * - The access is not a fetch 4964 * - The access is supervisor mode 4965 * - If implicit supervisor access or X86_EFLAGS_AC is clear 4966 * 4967 * Here, we cover the first four conditions. 4968 * The fifth is computed dynamically in permission_fault(); 4969 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4970 * *not* subject to SMAP restrictions. 4971 */ 4972 if (cr4_smap) 4973 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4974 } 4975 4976 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4977 } 4978 } 4979 4980 /* 4981 * PKU is an additional mechanism by which the paging controls access to 4982 * user-mode addresses based on the value in the PKRU register. Protection 4983 * key violations are reported through a bit in the page fault error code. 4984 * Unlike other bits of the error code, the PK bit is not known at the 4985 * call site of e.g. gva_to_gpa; it must be computed directly in 4986 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4987 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4988 * 4989 * In particular the following conditions come from the error code, the 4990 * page tables and the machine state: 4991 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4992 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4993 * - PK is always zero if U=0 in the page tables 4994 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4995 * 4996 * The PKRU bitmask caches the result of these four conditions. The error 4997 * code (minus the P bit) and the page table's U bit form an index into the 4998 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4999 * with the two bits of the PKRU register corresponding to the protection key. 5000 * For the first three conditions above the bits will be 00, thus masking 5001 * away both AD and WD. For all reads or if the last condition holds, WD 5002 * only will be masked away. 5003 */ 5004 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5005 { 5006 unsigned bit; 5007 bool wp; 5008 5009 mmu->pkru_mask = 0; 5010 5011 if (!is_cr4_pke(mmu)) 5012 return; 5013 5014 wp = is_cr0_wp(mmu); 5015 5016 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5017 unsigned pfec, pkey_bits; 5018 bool check_pkey, check_write, ff, uf, wf, pte_user; 5019 5020 pfec = bit << 1; 5021 ff = pfec & PFERR_FETCH_MASK; 5022 uf = pfec & PFERR_USER_MASK; 5023 wf = pfec & PFERR_WRITE_MASK; 5024 5025 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5026 pte_user = pfec & PFERR_RSVD_MASK; 5027 5028 /* 5029 * Only need to check the access which is not an 5030 * instruction fetch and is to a user page. 5031 */ 5032 check_pkey = (!ff && pte_user); 5033 /* 5034 * write access is controlled by PKRU if it is a 5035 * user access or CR0.WP = 1. 5036 */ 5037 check_write = check_pkey && wf && (uf || wp); 5038 5039 /* PKRU.AD stops both read and write access. */ 5040 pkey_bits = !!check_pkey; 5041 /* PKRU.WD stops write access. */ 5042 pkey_bits |= (!!check_write) << 1; 5043 5044 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5045 } 5046 } 5047 5048 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5049 struct kvm_mmu *mmu) 5050 { 5051 if (!is_cr0_pg(mmu)) 5052 return; 5053 5054 reset_guest_rsvds_bits_mask(vcpu, mmu); 5055 update_permission_bitmask(mmu, false); 5056 update_pkru_bitmask(mmu); 5057 } 5058 5059 static void paging64_init_context(struct kvm_mmu *context) 5060 { 5061 context->page_fault = paging64_page_fault; 5062 context->gva_to_gpa = paging64_gva_to_gpa; 5063 context->sync_page = paging64_sync_page; 5064 context->invlpg = paging64_invlpg; 5065 } 5066 5067 static void paging32_init_context(struct kvm_mmu *context) 5068 { 5069 context->page_fault = paging32_page_fault; 5070 context->gva_to_gpa = paging32_gva_to_gpa; 5071 context->sync_page = paging32_sync_page; 5072 context->invlpg = paging32_invlpg; 5073 } 5074 5075 static union kvm_cpu_role 5076 kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs) 5077 { 5078 union kvm_cpu_role role = {0}; 5079 5080 role.base.access = ACC_ALL; 5081 role.base.smm = is_smm(vcpu); 5082 role.base.guest_mode = is_guest_mode(vcpu); 5083 role.ext.valid = 1; 5084 5085 if (!____is_cr0_pg(regs)) { 5086 role.base.direct = 1; 5087 return role; 5088 } 5089 5090 role.base.efer_nx = ____is_efer_nx(regs); 5091 role.base.cr0_wp = ____is_cr0_wp(regs); 5092 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5093 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5094 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5095 5096 if (____is_efer_lma(regs)) 5097 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5098 : PT64_ROOT_4LEVEL; 5099 else if (____is_cr4_pae(regs)) 5100 role.base.level = PT32E_ROOT_LEVEL; 5101 else 5102 role.base.level = PT32_ROOT_LEVEL; 5103 5104 role.ext.cr4_smep = ____is_cr4_smep(regs); 5105 role.ext.cr4_smap = ____is_cr4_smap(regs); 5106 role.ext.cr4_pse = ____is_cr4_pse(regs); 5107 5108 /* PKEY and LA57 are active iff long mode is active. */ 5109 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5110 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5111 role.ext.efer_lma = ____is_efer_lma(regs); 5112 return role; 5113 } 5114 5115 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5116 { 5117 /* tdp_root_level is architecture forced level, use it if nonzero */ 5118 if (tdp_root_level) 5119 return tdp_root_level; 5120 5121 /* Use 5-level TDP if and only if it's useful/necessary. */ 5122 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5123 return 4; 5124 5125 return max_tdp_level; 5126 } 5127 5128 static union kvm_mmu_page_role 5129 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5130 union kvm_cpu_role cpu_role) 5131 { 5132 union kvm_mmu_page_role role = {0}; 5133 5134 role.access = ACC_ALL; 5135 role.cr0_wp = true; 5136 role.efer_nx = true; 5137 role.smm = cpu_role.base.smm; 5138 role.guest_mode = cpu_role.base.guest_mode; 5139 role.ad_disabled = !kvm_ad_enabled(); 5140 role.level = kvm_mmu_get_tdp_level(vcpu); 5141 role.direct = true; 5142 role.has_4_byte_gpte = false; 5143 5144 return role; 5145 } 5146 5147 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5148 union kvm_cpu_role cpu_role) 5149 { 5150 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5151 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5152 5153 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5154 root_role.word == context->root_role.word) 5155 return; 5156 5157 context->cpu_role.as_u64 = cpu_role.as_u64; 5158 context->root_role.word = root_role.word; 5159 context->page_fault = kvm_tdp_page_fault; 5160 context->sync_page = nonpaging_sync_page; 5161 context->invlpg = NULL; 5162 context->get_guest_pgd = get_cr3; 5163 context->get_pdptr = kvm_pdptr_read; 5164 context->inject_page_fault = kvm_inject_page_fault; 5165 5166 if (!is_cr0_pg(context)) 5167 context->gva_to_gpa = nonpaging_gva_to_gpa; 5168 else if (is_cr4_pae(context)) 5169 context->gva_to_gpa = paging64_gva_to_gpa; 5170 else 5171 context->gva_to_gpa = paging32_gva_to_gpa; 5172 5173 reset_guest_paging_metadata(vcpu, context); 5174 reset_tdp_shadow_zero_bits_mask(context); 5175 } 5176 5177 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5178 union kvm_cpu_role cpu_role, 5179 union kvm_mmu_page_role root_role) 5180 { 5181 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5182 root_role.word == context->root_role.word) 5183 return; 5184 5185 context->cpu_role.as_u64 = cpu_role.as_u64; 5186 context->root_role.word = root_role.word; 5187 5188 if (!is_cr0_pg(context)) 5189 nonpaging_init_context(context); 5190 else if (is_cr4_pae(context)) 5191 paging64_init_context(context); 5192 else 5193 paging32_init_context(context); 5194 5195 reset_guest_paging_metadata(vcpu, context); 5196 reset_shadow_zero_bits_mask(vcpu, context); 5197 } 5198 5199 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5200 union kvm_cpu_role cpu_role) 5201 { 5202 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5203 union kvm_mmu_page_role root_role; 5204 5205 root_role = cpu_role.base; 5206 5207 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5208 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5209 5210 /* 5211 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5212 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5213 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5214 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5215 * The iTLB multi-hit workaround can be toggled at any time, so assume 5216 * NX can be used by any non-nested shadow MMU to avoid having to reset 5217 * MMU contexts. 5218 */ 5219 root_role.efer_nx = true; 5220 5221 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5222 } 5223 5224 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5225 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5226 { 5227 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5228 struct kvm_mmu_role_regs regs = { 5229 .cr0 = cr0, 5230 .cr4 = cr4 & ~X86_CR4_PKE, 5231 .efer = efer, 5232 }; 5233 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5234 union kvm_mmu_page_role root_role; 5235 5236 /* NPT requires CR0.PG=1. */ 5237 WARN_ON_ONCE(cpu_role.base.direct); 5238 5239 root_role = cpu_role.base; 5240 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5241 if (root_role.level == PT64_ROOT_5LEVEL && 5242 cpu_role.base.level == PT64_ROOT_4LEVEL) 5243 root_role.passthrough = 1; 5244 5245 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5246 kvm_mmu_new_pgd(vcpu, nested_cr3); 5247 } 5248 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5249 5250 static union kvm_cpu_role 5251 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5252 bool execonly, u8 level) 5253 { 5254 union kvm_cpu_role role = {0}; 5255 5256 /* 5257 * KVM does not support SMM transfer monitors, and consequently does not 5258 * support the "entry to SMM" control either. role.base.smm is always 0. 5259 */ 5260 WARN_ON_ONCE(is_smm(vcpu)); 5261 role.base.level = level; 5262 role.base.has_4_byte_gpte = false; 5263 role.base.direct = false; 5264 role.base.ad_disabled = !accessed_dirty; 5265 role.base.guest_mode = true; 5266 role.base.access = ACC_ALL; 5267 5268 role.ext.word = 0; 5269 role.ext.execonly = execonly; 5270 role.ext.valid = 1; 5271 5272 return role; 5273 } 5274 5275 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5276 int huge_page_level, bool accessed_dirty, 5277 gpa_t new_eptp) 5278 { 5279 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5280 u8 level = vmx_eptp_page_walk_level(new_eptp); 5281 union kvm_cpu_role new_mode = 5282 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5283 execonly, level); 5284 5285 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5286 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5287 context->cpu_role.as_u64 = new_mode.as_u64; 5288 context->root_role.word = new_mode.base.word; 5289 5290 context->page_fault = ept_page_fault; 5291 context->gva_to_gpa = ept_gva_to_gpa; 5292 context->sync_page = ept_sync_page; 5293 context->invlpg = ept_invlpg; 5294 5295 update_permission_bitmask(context, true); 5296 context->pkru_mask = 0; 5297 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5298 reset_ept_shadow_zero_bits_mask(context, execonly); 5299 } 5300 5301 kvm_mmu_new_pgd(vcpu, new_eptp); 5302 } 5303 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5304 5305 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5306 union kvm_cpu_role cpu_role) 5307 { 5308 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5309 5310 kvm_init_shadow_mmu(vcpu, cpu_role); 5311 5312 context->get_guest_pgd = get_cr3; 5313 context->get_pdptr = kvm_pdptr_read; 5314 context->inject_page_fault = kvm_inject_page_fault; 5315 } 5316 5317 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5318 union kvm_cpu_role new_mode) 5319 { 5320 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5321 5322 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5323 return; 5324 5325 g_context->cpu_role.as_u64 = new_mode.as_u64; 5326 g_context->get_guest_pgd = get_cr3; 5327 g_context->get_pdptr = kvm_pdptr_read; 5328 g_context->inject_page_fault = kvm_inject_page_fault; 5329 5330 /* 5331 * L2 page tables are never shadowed, so there is no need to sync 5332 * SPTEs. 5333 */ 5334 g_context->invlpg = NULL; 5335 5336 /* 5337 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5338 * L1's nested page tables (e.g. EPT12). The nested translation 5339 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5340 * L2's page tables as the first level of translation and L1's 5341 * nested page tables as the second level of translation. Basically 5342 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5343 */ 5344 if (!is_paging(vcpu)) 5345 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5346 else if (is_long_mode(vcpu)) 5347 g_context->gva_to_gpa = paging64_gva_to_gpa; 5348 else if (is_pae(vcpu)) 5349 g_context->gva_to_gpa = paging64_gva_to_gpa; 5350 else 5351 g_context->gva_to_gpa = paging32_gva_to_gpa; 5352 5353 reset_guest_paging_metadata(vcpu, g_context); 5354 } 5355 5356 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5357 { 5358 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5359 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5360 5361 if (mmu_is_nested(vcpu)) 5362 init_kvm_nested_mmu(vcpu, cpu_role); 5363 else if (tdp_enabled) 5364 init_kvm_tdp_mmu(vcpu, cpu_role); 5365 else 5366 init_kvm_softmmu(vcpu, cpu_role); 5367 } 5368 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5369 5370 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5371 { 5372 /* 5373 * Invalidate all MMU roles to force them to reinitialize as CPUID 5374 * information is factored into reserved bit calculations. 5375 * 5376 * Correctly handling multiple vCPU models with respect to paging and 5377 * physical address properties) in a single VM would require tracking 5378 * all relevant CPUID information in kvm_mmu_page_role. That is very 5379 * undesirable as it would increase the memory requirements for 5380 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5381 * problem is swept under the rug; KVM's CPUID API is horrific and 5382 * it's all but impossible to solve it without introducing a new API. 5383 */ 5384 vcpu->arch.root_mmu.root_role.word = 0; 5385 vcpu->arch.guest_mmu.root_role.word = 0; 5386 vcpu->arch.nested_mmu.root_role.word = 0; 5387 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5388 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5389 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5390 kvm_mmu_reset_context(vcpu); 5391 5392 /* 5393 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5394 * kvm_arch_vcpu_ioctl(). 5395 */ 5396 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm); 5397 } 5398 5399 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5400 { 5401 kvm_mmu_unload(vcpu); 5402 kvm_init_mmu(vcpu); 5403 } 5404 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5405 5406 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5407 { 5408 int r; 5409 5410 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5411 if (r) 5412 goto out; 5413 r = mmu_alloc_special_roots(vcpu); 5414 if (r) 5415 goto out; 5416 if (vcpu->arch.mmu->root_role.direct) 5417 r = mmu_alloc_direct_roots(vcpu); 5418 else 5419 r = mmu_alloc_shadow_roots(vcpu); 5420 if (r) 5421 goto out; 5422 5423 kvm_mmu_sync_roots(vcpu); 5424 5425 kvm_mmu_load_pgd(vcpu); 5426 5427 /* 5428 * Flush any TLB entries for the new root, the provenance of the root 5429 * is unknown. Even if KVM ensures there are no stale TLB entries 5430 * for a freed root, in theory another hypervisor could have left 5431 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5432 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5433 */ 5434 static_call(kvm_x86_flush_tlb_current)(vcpu); 5435 out: 5436 return r; 5437 } 5438 5439 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5440 { 5441 struct kvm *kvm = vcpu->kvm; 5442 5443 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5444 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5445 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5446 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5447 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5448 } 5449 5450 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5451 { 5452 struct kvm_mmu_page *sp; 5453 5454 if (!VALID_PAGE(root_hpa)) 5455 return false; 5456 5457 /* 5458 * When freeing obsolete roots, treat roots as obsolete if they don't 5459 * have an associated shadow page. This does mean KVM will get false 5460 * positives and free roots that don't strictly need to be freed, but 5461 * such false positives are relatively rare: 5462 * 5463 * (a) only PAE paging and nested NPT has roots without shadow pages 5464 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5465 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5466 * is unlikely to zap an in-use PGD. 5467 */ 5468 sp = to_shadow_page(root_hpa); 5469 return !sp || is_obsolete_sp(kvm, sp); 5470 } 5471 5472 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5473 { 5474 unsigned long roots_to_free = 0; 5475 int i; 5476 5477 if (is_obsolete_root(kvm, mmu->root.hpa)) 5478 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5479 5480 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5481 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5482 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5483 } 5484 5485 if (roots_to_free) 5486 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5487 } 5488 5489 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5490 { 5491 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5492 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5493 } 5494 5495 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5496 int *bytes) 5497 { 5498 u64 gentry = 0; 5499 int r; 5500 5501 /* 5502 * Assume that the pte write on a page table of the same type 5503 * as the current vcpu paging mode since we update the sptes only 5504 * when they have the same mode. 5505 */ 5506 if (is_pae(vcpu) && *bytes == 4) { 5507 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5508 *gpa &= ~(gpa_t)7; 5509 *bytes = 8; 5510 } 5511 5512 if (*bytes == 4 || *bytes == 8) { 5513 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5514 if (r) 5515 gentry = 0; 5516 } 5517 5518 return gentry; 5519 } 5520 5521 /* 5522 * If we're seeing too many writes to a page, it may no longer be a page table, 5523 * or we may be forking, in which case it is better to unmap the page. 5524 */ 5525 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5526 { 5527 /* 5528 * Skip write-flooding detected for the sp whose level is 1, because 5529 * it can become unsync, then the guest page is not write-protected. 5530 */ 5531 if (sp->role.level == PG_LEVEL_4K) 5532 return false; 5533 5534 atomic_inc(&sp->write_flooding_count); 5535 return atomic_read(&sp->write_flooding_count) >= 3; 5536 } 5537 5538 /* 5539 * Misaligned accesses are too much trouble to fix up; also, they usually 5540 * indicate a page is not used as a page table. 5541 */ 5542 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5543 int bytes) 5544 { 5545 unsigned offset, pte_size, misaligned; 5546 5547 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5548 gpa, bytes, sp->role.word); 5549 5550 offset = offset_in_page(gpa); 5551 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5552 5553 /* 5554 * Sometimes, the OS only writes the last one bytes to update status 5555 * bits, for example, in linux, andb instruction is used in clear_bit(). 5556 */ 5557 if (!(offset & (pte_size - 1)) && bytes == 1) 5558 return false; 5559 5560 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5561 misaligned |= bytes < 4; 5562 5563 return misaligned; 5564 } 5565 5566 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5567 { 5568 unsigned page_offset, quadrant; 5569 u64 *spte; 5570 int level; 5571 5572 page_offset = offset_in_page(gpa); 5573 level = sp->role.level; 5574 *nspte = 1; 5575 if (sp->role.has_4_byte_gpte) { 5576 page_offset <<= 1; /* 32->64 */ 5577 /* 5578 * A 32-bit pde maps 4MB while the shadow pdes map 5579 * only 2MB. So we need to double the offset again 5580 * and zap two pdes instead of one. 5581 */ 5582 if (level == PT32_ROOT_LEVEL) { 5583 page_offset &= ~7; /* kill rounding error */ 5584 page_offset <<= 1; 5585 *nspte = 2; 5586 } 5587 quadrant = page_offset >> PAGE_SHIFT; 5588 page_offset &= ~PAGE_MASK; 5589 if (quadrant != sp->role.quadrant) 5590 return NULL; 5591 } 5592 5593 spte = &sp->spt[page_offset / sizeof(*spte)]; 5594 return spte; 5595 } 5596 5597 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5598 const u8 *new, int bytes, 5599 struct kvm_page_track_notifier_node *node) 5600 { 5601 gfn_t gfn = gpa >> PAGE_SHIFT; 5602 struct kvm_mmu_page *sp; 5603 LIST_HEAD(invalid_list); 5604 u64 entry, gentry, *spte; 5605 int npte; 5606 bool flush = false; 5607 5608 /* 5609 * If we don't have indirect shadow pages, it means no page is 5610 * write-protected, so we can exit simply. 5611 */ 5612 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5613 return; 5614 5615 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5616 5617 write_lock(&vcpu->kvm->mmu_lock); 5618 5619 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5620 5621 ++vcpu->kvm->stat.mmu_pte_write; 5622 5623 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5624 if (detect_write_misaligned(sp, gpa, bytes) || 5625 detect_write_flooding(sp)) { 5626 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5627 ++vcpu->kvm->stat.mmu_flooded; 5628 continue; 5629 } 5630 5631 spte = get_written_sptes(sp, gpa, &npte); 5632 if (!spte) 5633 continue; 5634 5635 while (npte--) { 5636 entry = *spte; 5637 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5638 if (gentry && sp->role.level != PG_LEVEL_4K) 5639 ++vcpu->kvm->stat.mmu_pde_zapped; 5640 if (is_shadow_present_pte(entry)) 5641 flush = true; 5642 ++spte; 5643 } 5644 } 5645 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5646 write_unlock(&vcpu->kvm->mmu_lock); 5647 } 5648 5649 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5650 void *insn, int insn_len) 5651 { 5652 int r, emulation_type = EMULTYPE_PF; 5653 bool direct = vcpu->arch.mmu->root_role.direct; 5654 5655 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5656 return RET_PF_RETRY; 5657 5658 r = RET_PF_INVALID; 5659 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5660 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5661 if (r == RET_PF_EMULATE) 5662 goto emulate; 5663 } 5664 5665 if (r == RET_PF_INVALID) { 5666 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5667 lower_32_bits(error_code), false); 5668 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5669 return -EIO; 5670 } 5671 5672 if (r < 0) 5673 return r; 5674 if (r != RET_PF_EMULATE) 5675 return 1; 5676 5677 /* 5678 * Before emulating the instruction, check if the error code 5679 * was due to a RO violation while translating the guest page. 5680 * This can occur when using nested virtualization with nested 5681 * paging in both guests. If true, we simply unprotect the page 5682 * and resume the guest. 5683 */ 5684 if (vcpu->arch.mmu->root_role.direct && 5685 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5686 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5687 return 1; 5688 } 5689 5690 /* 5691 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5692 * optimistically try to just unprotect the page and let the processor 5693 * re-execute the instruction that caused the page fault. Do not allow 5694 * retrying MMIO emulation, as it's not only pointless but could also 5695 * cause us to enter an infinite loop because the processor will keep 5696 * faulting on the non-existent MMIO address. Retrying an instruction 5697 * from a nested guest is also pointless and dangerous as we are only 5698 * explicitly shadowing L1's page tables, i.e. unprotecting something 5699 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5700 */ 5701 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5702 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5703 emulate: 5704 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5705 insn_len); 5706 } 5707 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5708 5709 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5710 gva_t gva, hpa_t root_hpa) 5711 { 5712 int i; 5713 5714 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5715 if (mmu != &vcpu->arch.guest_mmu) { 5716 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5717 if (is_noncanonical_address(gva, vcpu)) 5718 return; 5719 5720 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5721 } 5722 5723 if (!mmu->invlpg) 5724 return; 5725 5726 if (root_hpa == INVALID_PAGE) { 5727 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5728 5729 /* 5730 * INVLPG is required to invalidate any global mappings for the VA, 5731 * irrespective of PCID. Since it would take us roughly similar amount 5732 * of work to determine whether any of the prev_root mappings of the VA 5733 * is marked global, or to just sync it blindly, so we might as well 5734 * just always sync it. 5735 * 5736 * Mappings not reachable via the current cr3 or the prev_roots will be 5737 * synced when switching to that cr3, so nothing needs to be done here 5738 * for them. 5739 */ 5740 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5741 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5742 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5743 } else { 5744 mmu->invlpg(vcpu, gva, root_hpa); 5745 } 5746 } 5747 5748 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5749 { 5750 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5751 ++vcpu->stat.invlpg; 5752 } 5753 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5754 5755 5756 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5757 { 5758 struct kvm_mmu *mmu = vcpu->arch.mmu; 5759 bool tlb_flush = false; 5760 uint i; 5761 5762 if (pcid == kvm_get_active_pcid(vcpu)) { 5763 if (mmu->invlpg) 5764 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5765 tlb_flush = true; 5766 } 5767 5768 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5769 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5770 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5771 if (mmu->invlpg) 5772 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5773 tlb_flush = true; 5774 } 5775 } 5776 5777 if (tlb_flush) 5778 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5779 5780 ++vcpu->stat.invlpg; 5781 5782 /* 5783 * Mappings not reachable via the current cr3 or the prev_roots will be 5784 * synced when switching to that cr3, so nothing needs to be done here 5785 * for them. 5786 */ 5787 } 5788 5789 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5790 int tdp_max_root_level, int tdp_huge_page_level) 5791 { 5792 tdp_enabled = enable_tdp; 5793 tdp_root_level = tdp_forced_root_level; 5794 max_tdp_level = tdp_max_root_level; 5795 5796 #ifdef CONFIG_X86_64 5797 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 5798 #endif 5799 /* 5800 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5801 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5802 * the kernel is not. But, KVM never creates a page size greater than 5803 * what is used by the kernel for any given HVA, i.e. the kernel's 5804 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5805 */ 5806 if (tdp_enabled) 5807 max_huge_page_level = tdp_huge_page_level; 5808 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5809 max_huge_page_level = PG_LEVEL_1G; 5810 else 5811 max_huge_page_level = PG_LEVEL_2M; 5812 } 5813 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5814 5815 /* The return value indicates if tlb flush on all vcpus is needed. */ 5816 typedef bool (*slot_level_handler) (struct kvm *kvm, 5817 struct kvm_rmap_head *rmap_head, 5818 const struct kvm_memory_slot *slot); 5819 5820 /* The caller should hold mmu-lock before calling this function. */ 5821 static __always_inline bool 5822 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5823 slot_level_handler fn, int start_level, int end_level, 5824 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5825 bool flush) 5826 { 5827 struct slot_rmap_walk_iterator iterator; 5828 5829 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5830 end_gfn, &iterator) { 5831 if (iterator.rmap) 5832 flush |= fn(kvm, iterator.rmap, memslot); 5833 5834 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5835 if (flush && flush_on_yield) { 5836 kvm_flush_remote_tlbs_with_address(kvm, 5837 start_gfn, 5838 iterator.gfn - start_gfn + 1); 5839 flush = false; 5840 } 5841 cond_resched_rwlock_write(&kvm->mmu_lock); 5842 } 5843 } 5844 5845 return flush; 5846 } 5847 5848 static __always_inline bool 5849 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5850 slot_level_handler fn, int start_level, int end_level, 5851 bool flush_on_yield) 5852 { 5853 return slot_handle_level_range(kvm, memslot, fn, start_level, 5854 end_level, memslot->base_gfn, 5855 memslot->base_gfn + memslot->npages - 1, 5856 flush_on_yield, false); 5857 } 5858 5859 static __always_inline bool 5860 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5861 slot_level_handler fn, bool flush_on_yield) 5862 { 5863 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5864 PG_LEVEL_4K, flush_on_yield); 5865 } 5866 5867 static void free_mmu_pages(struct kvm_mmu *mmu) 5868 { 5869 if (!tdp_enabled && mmu->pae_root) 5870 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5871 free_page((unsigned long)mmu->pae_root); 5872 free_page((unsigned long)mmu->pml4_root); 5873 free_page((unsigned long)mmu->pml5_root); 5874 } 5875 5876 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5877 { 5878 struct page *page; 5879 int i; 5880 5881 mmu->root.hpa = INVALID_PAGE; 5882 mmu->root.pgd = 0; 5883 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5884 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5885 5886 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5887 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5888 return 0; 5889 5890 /* 5891 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5892 * while the PDP table is a per-vCPU construct that's allocated at MMU 5893 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5894 * x86_64. Therefore we need to allocate the PDP table in the first 5895 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5896 * generally doesn't use PAE paging and can skip allocating the PDP 5897 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5898 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5899 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 5900 */ 5901 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5902 return 0; 5903 5904 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5905 if (!page) 5906 return -ENOMEM; 5907 5908 mmu->pae_root = page_address(page); 5909 5910 /* 5911 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5912 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5913 * that KVM's writes and the CPU's reads get along. Note, this is 5914 * only necessary when using shadow paging, as 64-bit NPT can get at 5915 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5916 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5917 */ 5918 if (!tdp_enabled) 5919 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5920 else 5921 WARN_ON_ONCE(shadow_me_value); 5922 5923 for (i = 0; i < 4; ++i) 5924 mmu->pae_root[i] = INVALID_PAE_ROOT; 5925 5926 return 0; 5927 } 5928 5929 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5930 { 5931 int ret; 5932 5933 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5934 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5935 5936 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5937 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5938 5939 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5940 5941 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5942 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5943 5944 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5945 if (ret) 5946 return ret; 5947 5948 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5949 if (ret) 5950 goto fail_allocate_root; 5951 5952 return ret; 5953 fail_allocate_root: 5954 free_mmu_pages(&vcpu->arch.guest_mmu); 5955 return ret; 5956 } 5957 5958 #define BATCH_ZAP_PAGES 10 5959 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5960 { 5961 struct kvm_mmu_page *sp, *node; 5962 int nr_zapped, batch = 0; 5963 bool unstable; 5964 5965 restart: 5966 list_for_each_entry_safe_reverse(sp, node, 5967 &kvm->arch.active_mmu_pages, link) { 5968 /* 5969 * No obsolete valid page exists before a newly created page 5970 * since active_mmu_pages is a FIFO list. 5971 */ 5972 if (!is_obsolete_sp(kvm, sp)) 5973 break; 5974 5975 /* 5976 * Invalid pages should never land back on the list of active 5977 * pages. Skip the bogus page, otherwise we'll get stuck in an 5978 * infinite loop if the page gets put back on the list (again). 5979 */ 5980 if (WARN_ON(sp->role.invalid)) 5981 continue; 5982 5983 /* 5984 * No need to flush the TLB since we're only zapping shadow 5985 * pages with an obsolete generation number and all vCPUS have 5986 * loaded a new root, i.e. the shadow pages being zapped cannot 5987 * be in active use by the guest. 5988 */ 5989 if (batch >= BATCH_ZAP_PAGES && 5990 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5991 batch = 0; 5992 goto restart; 5993 } 5994 5995 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 5996 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 5997 batch += nr_zapped; 5998 5999 if (unstable) 6000 goto restart; 6001 } 6002 6003 /* 6004 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6005 * to ensure KVM is not in the middle of a lockless shadow page table 6006 * walk, which may reference the pages. The remote TLB flush itself is 6007 * not required and is simply a convenient way to kick vCPUs as needed. 6008 * KVM performs a local TLB flush when allocating a new root (see 6009 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6010 * running with an obsolete MMU. 6011 */ 6012 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 6013 } 6014 6015 /* 6016 * Fast invalidate all shadow pages and use lock-break technique 6017 * to zap obsolete pages. 6018 * 6019 * It's required when memslot is being deleted or VM is being 6020 * destroyed, in these cases, we should ensure that KVM MMU does 6021 * not use any resource of the being-deleted slot or all slots 6022 * after calling the function. 6023 */ 6024 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6025 { 6026 lockdep_assert_held(&kvm->slots_lock); 6027 6028 write_lock(&kvm->mmu_lock); 6029 trace_kvm_mmu_zap_all_fast(kvm); 6030 6031 /* 6032 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6033 * held for the entire duration of zapping obsolete pages, it's 6034 * impossible for there to be multiple invalid generations associated 6035 * with *valid* shadow pages at any given time, i.e. there is exactly 6036 * one valid generation and (at most) one invalid generation. 6037 */ 6038 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6039 6040 /* 6041 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6042 * invalidating TDP MMU roots must be done while holding mmu_lock for 6043 * write and in the same critical section as making the reload request, 6044 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6045 */ 6046 if (tdp_mmu_enabled) 6047 kvm_tdp_mmu_invalidate_all_roots(kvm); 6048 6049 /* 6050 * Notify all vcpus to reload its shadow page table and flush TLB. 6051 * Then all vcpus will switch to new shadow page table with the new 6052 * mmu_valid_gen. 6053 * 6054 * Note: we need to do this under the protection of mmu_lock, 6055 * otherwise, vcpu would purge shadow page but miss tlb flush. 6056 */ 6057 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6058 6059 kvm_zap_obsolete_pages(kvm); 6060 6061 write_unlock(&kvm->mmu_lock); 6062 6063 /* 6064 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6065 * returning to the caller, e.g. if the zap is in response to a memslot 6066 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6067 * associated with the deleted memslot once the update completes, and 6068 * Deferring the zap until the final reference to the root is put would 6069 * lead to use-after-free. 6070 */ 6071 if (tdp_mmu_enabled) 6072 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6073 } 6074 6075 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 6076 { 6077 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6078 } 6079 6080 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 6081 struct kvm_memory_slot *slot, 6082 struct kvm_page_track_notifier_node *node) 6083 { 6084 kvm_mmu_zap_all_fast(kvm); 6085 } 6086 6087 int kvm_mmu_init_vm(struct kvm *kvm) 6088 { 6089 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 6090 int r; 6091 6092 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6093 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6094 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6095 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6096 6097 if (tdp_mmu_enabled) { 6098 r = kvm_mmu_init_tdp_mmu(kvm); 6099 if (r < 0) 6100 return r; 6101 } 6102 6103 node->track_write = kvm_mmu_pte_write; 6104 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 6105 kvm_page_track_register_notifier(kvm, node); 6106 6107 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6108 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6109 6110 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6111 6112 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6113 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6114 6115 return 0; 6116 } 6117 6118 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6119 { 6120 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6121 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6122 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6123 } 6124 6125 void kvm_mmu_uninit_vm(struct kvm *kvm) 6126 { 6127 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 6128 6129 kvm_page_track_unregister_notifier(kvm, node); 6130 6131 if (tdp_mmu_enabled) 6132 kvm_mmu_uninit_tdp_mmu(kvm); 6133 6134 mmu_free_vm_memory_caches(kvm); 6135 } 6136 6137 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6138 { 6139 const struct kvm_memory_slot *memslot; 6140 struct kvm_memslots *slots; 6141 struct kvm_memslot_iter iter; 6142 bool flush = false; 6143 gfn_t start, end; 6144 int i; 6145 6146 if (!kvm_memslots_have_rmaps(kvm)) 6147 return flush; 6148 6149 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6150 slots = __kvm_memslots(kvm, i); 6151 6152 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6153 memslot = iter.slot; 6154 start = max(gfn_start, memslot->base_gfn); 6155 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6156 if (WARN_ON_ONCE(start >= end)) 6157 continue; 6158 6159 flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap, 6160 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6161 start, end - 1, true, flush); 6162 } 6163 } 6164 6165 return flush; 6166 } 6167 6168 /* 6169 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6170 * (not including it) 6171 */ 6172 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6173 { 6174 bool flush; 6175 int i; 6176 6177 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6178 return; 6179 6180 write_lock(&kvm->mmu_lock); 6181 6182 kvm_mmu_invalidate_begin(kvm, 0, -1ul); 6183 6184 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6185 6186 if (tdp_mmu_enabled) { 6187 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 6188 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 6189 gfn_end, true, flush); 6190 } 6191 6192 if (flush) 6193 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 6194 gfn_end - gfn_start); 6195 6196 kvm_mmu_invalidate_end(kvm, 0, -1ul); 6197 6198 write_unlock(&kvm->mmu_lock); 6199 } 6200 6201 static bool slot_rmap_write_protect(struct kvm *kvm, 6202 struct kvm_rmap_head *rmap_head, 6203 const struct kvm_memory_slot *slot) 6204 { 6205 return rmap_write_protect(rmap_head, false); 6206 } 6207 6208 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6209 const struct kvm_memory_slot *memslot, 6210 int start_level) 6211 { 6212 if (kvm_memslots_have_rmaps(kvm)) { 6213 write_lock(&kvm->mmu_lock); 6214 slot_handle_level(kvm, memslot, slot_rmap_write_protect, 6215 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6216 write_unlock(&kvm->mmu_lock); 6217 } 6218 6219 if (tdp_mmu_enabled) { 6220 read_lock(&kvm->mmu_lock); 6221 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6222 read_unlock(&kvm->mmu_lock); 6223 } 6224 } 6225 6226 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6227 { 6228 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6229 } 6230 6231 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6232 { 6233 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6234 return true; 6235 6236 /* 6237 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6238 * to split a single huge page. Calculating how many are actually needed 6239 * is possible but not worth the complexity. 6240 */ 6241 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6242 need_topup(&kvm->arch.split_page_header_cache, 1) || 6243 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6244 } 6245 6246 static int topup_split_caches(struct kvm *kvm) 6247 { 6248 /* 6249 * Allocating rmap list entries when splitting huge pages for nested 6250 * MMUs is uncommon as KVM needs to use a list if and only if there is 6251 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6252 * aliased by multiple L2 gfns and/or from multiple nested roots with 6253 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6254 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6255 * but aliasing rarely occurs post-boot or for many gfns. If there is 6256 * only one rmap entry, rmap->val points directly at that one entry and 6257 * doesn't need to allocate a list. Buffer the cache by the default 6258 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6259 * encounters an aliased gfn or two. 6260 */ 6261 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6262 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6263 int r; 6264 6265 lockdep_assert_held(&kvm->slots_lock); 6266 6267 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6268 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6269 if (r) 6270 return r; 6271 6272 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6273 if (r) 6274 return r; 6275 6276 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6277 } 6278 6279 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6280 { 6281 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6282 struct shadow_page_caches caches = {}; 6283 union kvm_mmu_page_role role; 6284 unsigned int access; 6285 gfn_t gfn; 6286 6287 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6288 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6289 6290 /* 6291 * Note, huge page splitting always uses direct shadow pages, regardless 6292 * of whether the huge page itself is mapped by a direct or indirect 6293 * shadow page, since the huge page region itself is being directly 6294 * mapped with smaller pages. 6295 */ 6296 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6297 6298 /* Direct SPs do not require a shadowed_info_cache. */ 6299 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6300 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6301 6302 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6303 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6304 } 6305 6306 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6307 const struct kvm_memory_slot *slot, 6308 u64 *huge_sptep) 6309 6310 { 6311 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6312 u64 huge_spte = READ_ONCE(*huge_sptep); 6313 struct kvm_mmu_page *sp; 6314 bool flush = false; 6315 u64 *sptep, spte; 6316 gfn_t gfn; 6317 int index; 6318 6319 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6320 6321 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6322 sptep = &sp->spt[index]; 6323 gfn = kvm_mmu_page_get_gfn(sp, index); 6324 6325 /* 6326 * The SP may already have populated SPTEs, e.g. if this huge 6327 * page is aliased by multiple sptes with the same access 6328 * permissions. These entries are guaranteed to map the same 6329 * gfn-to-pfn translation since the SP is direct, so no need to 6330 * modify them. 6331 * 6332 * However, if a given SPTE points to a lower level page table, 6333 * that lower level page table may only be partially populated. 6334 * Installing such SPTEs would effectively unmap a potion of the 6335 * huge page. Unmapping guest memory always requires a TLB flush 6336 * since a subsequent operation on the unmapped regions would 6337 * fail to detect the need to flush. 6338 */ 6339 if (is_shadow_present_pte(*sptep)) { 6340 flush |= !is_last_spte(*sptep, sp->role.level); 6341 continue; 6342 } 6343 6344 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6345 mmu_spte_set(sptep, spte); 6346 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6347 } 6348 6349 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6350 } 6351 6352 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6353 const struct kvm_memory_slot *slot, 6354 u64 *huge_sptep) 6355 { 6356 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6357 int level, r = 0; 6358 gfn_t gfn; 6359 u64 spte; 6360 6361 /* Grab information for the tracepoint before dropping the MMU lock. */ 6362 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6363 level = huge_sp->role.level; 6364 spte = *huge_sptep; 6365 6366 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6367 r = -ENOSPC; 6368 goto out; 6369 } 6370 6371 if (need_topup_split_caches_or_resched(kvm)) { 6372 write_unlock(&kvm->mmu_lock); 6373 cond_resched(); 6374 /* 6375 * If the topup succeeds, return -EAGAIN to indicate that the 6376 * rmap iterator should be restarted because the MMU lock was 6377 * dropped. 6378 */ 6379 r = topup_split_caches(kvm) ?: -EAGAIN; 6380 write_lock(&kvm->mmu_lock); 6381 goto out; 6382 } 6383 6384 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6385 6386 out: 6387 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6388 return r; 6389 } 6390 6391 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6392 struct kvm_rmap_head *rmap_head, 6393 const struct kvm_memory_slot *slot) 6394 { 6395 struct rmap_iterator iter; 6396 struct kvm_mmu_page *sp; 6397 u64 *huge_sptep; 6398 int r; 6399 6400 restart: 6401 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6402 sp = sptep_to_sp(huge_sptep); 6403 6404 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6405 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6406 continue; 6407 6408 /* The rmaps should never contain non-leaf SPTEs. */ 6409 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6410 continue; 6411 6412 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6413 if (WARN_ON_ONCE(sp->unsync)) 6414 continue; 6415 6416 /* Don't bother splitting huge pages on invalid SPs. */ 6417 if (sp->role.invalid) 6418 continue; 6419 6420 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6421 6422 /* 6423 * The split succeeded or needs to be retried because the MMU 6424 * lock was dropped. Either way, restart the iterator to get it 6425 * back into a consistent state. 6426 */ 6427 if (!r || r == -EAGAIN) 6428 goto restart; 6429 6430 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6431 break; 6432 } 6433 6434 return false; 6435 } 6436 6437 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6438 const struct kvm_memory_slot *slot, 6439 gfn_t start, gfn_t end, 6440 int target_level) 6441 { 6442 int level; 6443 6444 /* 6445 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6446 * down to the target level. This ensures pages are recursively split 6447 * all the way to the target level. There's no need to split pages 6448 * already at the target level. 6449 */ 6450 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) { 6451 slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages, 6452 level, level, start, end - 1, true, false); 6453 } 6454 } 6455 6456 /* Must be called with the mmu_lock held in write-mode. */ 6457 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6458 const struct kvm_memory_slot *memslot, 6459 u64 start, u64 end, 6460 int target_level) 6461 { 6462 if (!tdp_mmu_enabled) 6463 return; 6464 6465 if (kvm_memslots_have_rmaps(kvm)) 6466 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6467 6468 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6469 6470 /* 6471 * A TLB flush is unnecessary at this point for the same resons as in 6472 * kvm_mmu_slot_try_split_huge_pages(). 6473 */ 6474 } 6475 6476 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6477 const struct kvm_memory_slot *memslot, 6478 int target_level) 6479 { 6480 u64 start = memslot->base_gfn; 6481 u64 end = start + memslot->npages; 6482 6483 if (!tdp_mmu_enabled) 6484 return; 6485 6486 if (kvm_memslots_have_rmaps(kvm)) { 6487 write_lock(&kvm->mmu_lock); 6488 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6489 write_unlock(&kvm->mmu_lock); 6490 } 6491 6492 read_lock(&kvm->mmu_lock); 6493 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6494 read_unlock(&kvm->mmu_lock); 6495 6496 /* 6497 * No TLB flush is necessary here. KVM will flush TLBs after 6498 * write-protecting and/or clearing dirty on the newly split SPTEs to 6499 * ensure that guest writes are reflected in the dirty log before the 6500 * ioctl to enable dirty logging on this memslot completes. Since the 6501 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6502 * safe for KVM to decide if a TLB flush is necessary based on the split 6503 * SPTEs. 6504 */ 6505 } 6506 6507 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6508 struct kvm_rmap_head *rmap_head, 6509 const struct kvm_memory_slot *slot) 6510 { 6511 u64 *sptep; 6512 struct rmap_iterator iter; 6513 int need_tlb_flush = 0; 6514 struct kvm_mmu_page *sp; 6515 6516 restart: 6517 for_each_rmap_spte(rmap_head, &iter, sptep) { 6518 sp = sptep_to_sp(sptep); 6519 6520 /* 6521 * We cannot do huge page mapping for indirect shadow pages, 6522 * which are found on the last rmap (level = 1) when not using 6523 * tdp; such shadow pages are synced with the page table in 6524 * the guest, and the guest page table is using 4K page size 6525 * mapping if the indirect sp has level = 1. 6526 */ 6527 if (sp->role.direct && 6528 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6529 PG_LEVEL_NUM)) { 6530 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6531 6532 if (kvm_available_flush_tlb_with_range()) 6533 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6534 else 6535 need_tlb_flush = 1; 6536 6537 goto restart; 6538 } 6539 } 6540 6541 return need_tlb_flush; 6542 } 6543 6544 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6545 const struct kvm_memory_slot *slot) 6546 { 6547 /* 6548 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6549 * pages that are already mapped at the maximum hugepage level. 6550 */ 6551 if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte, 6552 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6553 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 6554 } 6555 6556 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6557 const struct kvm_memory_slot *slot) 6558 { 6559 if (kvm_memslots_have_rmaps(kvm)) { 6560 write_lock(&kvm->mmu_lock); 6561 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6562 write_unlock(&kvm->mmu_lock); 6563 } 6564 6565 if (tdp_mmu_enabled) { 6566 read_lock(&kvm->mmu_lock); 6567 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6568 read_unlock(&kvm->mmu_lock); 6569 } 6570 } 6571 6572 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 6573 const struct kvm_memory_slot *memslot) 6574 { 6575 /* 6576 * All current use cases for flushing the TLBs for a specific memslot 6577 * related to dirty logging, and many do the TLB flush out of mmu_lock. 6578 * The interaction between the various operations on memslot must be 6579 * serialized by slots_locks to ensure the TLB flush from one operation 6580 * is observed by any other operation on the same memslot. 6581 */ 6582 lockdep_assert_held(&kvm->slots_lock); 6583 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6584 memslot->npages); 6585 } 6586 6587 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6588 const struct kvm_memory_slot *memslot) 6589 { 6590 if (kvm_memslots_have_rmaps(kvm)) { 6591 write_lock(&kvm->mmu_lock); 6592 /* 6593 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6594 * support dirty logging at a 4k granularity. 6595 */ 6596 slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); 6597 write_unlock(&kvm->mmu_lock); 6598 } 6599 6600 if (tdp_mmu_enabled) { 6601 read_lock(&kvm->mmu_lock); 6602 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6603 read_unlock(&kvm->mmu_lock); 6604 } 6605 6606 /* 6607 * The caller will flush the TLBs after this function returns. 6608 * 6609 * It's also safe to flush TLBs out of mmu lock here as currently this 6610 * function is only used for dirty logging, in which case flushing TLB 6611 * out of mmu lock also guarantees no dirty pages will be lost in 6612 * dirty_bitmap. 6613 */ 6614 } 6615 6616 void kvm_mmu_zap_all(struct kvm *kvm) 6617 { 6618 struct kvm_mmu_page *sp, *node; 6619 LIST_HEAD(invalid_list); 6620 int ign; 6621 6622 write_lock(&kvm->mmu_lock); 6623 restart: 6624 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6625 if (WARN_ON(sp->role.invalid)) 6626 continue; 6627 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6628 goto restart; 6629 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6630 goto restart; 6631 } 6632 6633 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6634 6635 if (tdp_mmu_enabled) 6636 kvm_tdp_mmu_zap_all(kvm); 6637 6638 write_unlock(&kvm->mmu_lock); 6639 } 6640 6641 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6642 { 6643 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6644 6645 gen &= MMIO_SPTE_GEN_MASK; 6646 6647 /* 6648 * Generation numbers are incremented in multiples of the number of 6649 * address spaces in order to provide unique generations across all 6650 * address spaces. Strip what is effectively the address space 6651 * modifier prior to checking for a wrap of the MMIO generation so 6652 * that a wrap in any address space is detected. 6653 */ 6654 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6655 6656 /* 6657 * The very rare case: if the MMIO generation number has wrapped, 6658 * zap all shadow pages. 6659 */ 6660 if (unlikely(gen == 0)) { 6661 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 6662 kvm_mmu_zap_all_fast(kvm); 6663 } 6664 } 6665 6666 static unsigned long 6667 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6668 { 6669 struct kvm *kvm; 6670 int nr_to_scan = sc->nr_to_scan; 6671 unsigned long freed = 0; 6672 6673 mutex_lock(&kvm_lock); 6674 6675 list_for_each_entry(kvm, &vm_list, vm_list) { 6676 int idx; 6677 LIST_HEAD(invalid_list); 6678 6679 /* 6680 * Never scan more than sc->nr_to_scan VM instances. 6681 * Will not hit this condition practically since we do not try 6682 * to shrink more than one VM and it is very unlikely to see 6683 * !n_used_mmu_pages so many times. 6684 */ 6685 if (!nr_to_scan--) 6686 break; 6687 /* 6688 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6689 * here. We may skip a VM instance errorneosly, but we do not 6690 * want to shrink a VM that only started to populate its MMU 6691 * anyway. 6692 */ 6693 if (!kvm->arch.n_used_mmu_pages && 6694 !kvm_has_zapped_obsolete_pages(kvm)) 6695 continue; 6696 6697 idx = srcu_read_lock(&kvm->srcu); 6698 write_lock(&kvm->mmu_lock); 6699 6700 if (kvm_has_zapped_obsolete_pages(kvm)) { 6701 kvm_mmu_commit_zap_page(kvm, 6702 &kvm->arch.zapped_obsolete_pages); 6703 goto unlock; 6704 } 6705 6706 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6707 6708 unlock: 6709 write_unlock(&kvm->mmu_lock); 6710 srcu_read_unlock(&kvm->srcu, idx); 6711 6712 /* 6713 * unfair on small ones 6714 * per-vm shrinkers cry out 6715 * sadness comes quickly 6716 */ 6717 list_move_tail(&kvm->vm_list, &vm_list); 6718 break; 6719 } 6720 6721 mutex_unlock(&kvm_lock); 6722 return freed; 6723 } 6724 6725 static unsigned long 6726 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6727 { 6728 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6729 } 6730 6731 static struct shrinker mmu_shrinker = { 6732 .count_objects = mmu_shrink_count, 6733 .scan_objects = mmu_shrink_scan, 6734 .seeks = DEFAULT_SEEKS * 10, 6735 }; 6736 6737 static void mmu_destroy_caches(void) 6738 { 6739 kmem_cache_destroy(pte_list_desc_cache); 6740 kmem_cache_destroy(mmu_page_header_cache); 6741 } 6742 6743 static bool get_nx_auto_mode(void) 6744 { 6745 /* Return true when CPU has the bug, and mitigations are ON */ 6746 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6747 } 6748 6749 static void __set_nx_huge_pages(bool val) 6750 { 6751 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6752 } 6753 6754 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6755 { 6756 bool old_val = nx_huge_pages; 6757 bool new_val; 6758 6759 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6760 if (sysfs_streq(val, "off")) 6761 new_val = 0; 6762 else if (sysfs_streq(val, "force")) 6763 new_val = 1; 6764 else if (sysfs_streq(val, "auto")) 6765 new_val = get_nx_auto_mode(); 6766 else if (kstrtobool(val, &new_val) < 0) 6767 return -EINVAL; 6768 6769 __set_nx_huge_pages(new_val); 6770 6771 if (new_val != old_val) { 6772 struct kvm *kvm; 6773 6774 mutex_lock(&kvm_lock); 6775 6776 list_for_each_entry(kvm, &vm_list, vm_list) { 6777 mutex_lock(&kvm->slots_lock); 6778 kvm_mmu_zap_all_fast(kvm); 6779 mutex_unlock(&kvm->slots_lock); 6780 6781 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 6782 } 6783 mutex_unlock(&kvm_lock); 6784 } 6785 6786 return 0; 6787 } 6788 6789 /* 6790 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6791 * its default value of -1 is technically undefined behavior for a boolean. 6792 * Forward the module init call to SPTE code so that it too can handle module 6793 * params that need to be resolved/snapshot. 6794 */ 6795 void __init kvm_mmu_x86_module_init(void) 6796 { 6797 if (nx_huge_pages == -1) 6798 __set_nx_huge_pages(get_nx_auto_mode()); 6799 6800 /* 6801 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 6802 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 6803 * when the vendor module is loaded. 6804 */ 6805 tdp_mmu_allowed = tdp_mmu_enabled; 6806 6807 kvm_mmu_spte_module_init(); 6808 } 6809 6810 /* 6811 * The bulk of the MMU initialization is deferred until the vendor module is 6812 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6813 * to be reset when a potentially different vendor module is loaded. 6814 */ 6815 int kvm_mmu_vendor_module_init(void) 6816 { 6817 int ret = -ENOMEM; 6818 6819 /* 6820 * MMU roles use union aliasing which is, generally speaking, an 6821 * undefined behavior. However, we supposedly know how compilers behave 6822 * and the current status quo is unlikely to change. Guardians below are 6823 * supposed to let us know if the assumption becomes false. 6824 */ 6825 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6826 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6827 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 6828 6829 kvm_mmu_reset_all_pte_masks(); 6830 6831 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6832 sizeof(struct pte_list_desc), 6833 0, SLAB_ACCOUNT, NULL); 6834 if (!pte_list_desc_cache) 6835 goto out; 6836 6837 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6838 sizeof(struct kvm_mmu_page), 6839 0, SLAB_ACCOUNT, NULL); 6840 if (!mmu_page_header_cache) 6841 goto out; 6842 6843 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6844 goto out; 6845 6846 ret = register_shrinker(&mmu_shrinker, "x86-mmu"); 6847 if (ret) 6848 goto out_shrinker; 6849 6850 return 0; 6851 6852 out_shrinker: 6853 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6854 out: 6855 mmu_destroy_caches(); 6856 return ret; 6857 } 6858 6859 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6860 { 6861 kvm_mmu_unload(vcpu); 6862 free_mmu_pages(&vcpu->arch.root_mmu); 6863 free_mmu_pages(&vcpu->arch.guest_mmu); 6864 mmu_free_memory_caches(vcpu); 6865 } 6866 6867 void kvm_mmu_vendor_module_exit(void) 6868 { 6869 mmu_destroy_caches(); 6870 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6871 unregister_shrinker(&mmu_shrinker); 6872 } 6873 6874 /* 6875 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6876 * select a halving time of 1 hour". Returns true if recovery is enabled. 6877 */ 6878 static bool calc_nx_huge_pages_recovery_period(uint *period) 6879 { 6880 /* 6881 * Use READ_ONCE to get the params, this may be called outside of the 6882 * param setters, e.g. by the kthread to compute its next timeout. 6883 */ 6884 bool enabled = READ_ONCE(nx_huge_pages); 6885 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6886 6887 if (!enabled || !ratio) 6888 return false; 6889 6890 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6891 if (!*period) { 6892 /* Make sure the period is not less than one second. */ 6893 ratio = min(ratio, 3600u); 6894 *period = 60 * 60 * 1000 / ratio; 6895 } 6896 return true; 6897 } 6898 6899 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6900 { 6901 bool was_recovery_enabled, is_recovery_enabled; 6902 uint old_period, new_period; 6903 int err; 6904 6905 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6906 6907 err = param_set_uint(val, kp); 6908 if (err) 6909 return err; 6910 6911 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 6912 6913 if (is_recovery_enabled && 6914 (!was_recovery_enabled || old_period > new_period)) { 6915 struct kvm *kvm; 6916 6917 mutex_lock(&kvm_lock); 6918 6919 list_for_each_entry(kvm, &vm_list, vm_list) 6920 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 6921 6922 mutex_unlock(&kvm_lock); 6923 } 6924 6925 return err; 6926 } 6927 6928 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 6929 { 6930 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6931 struct kvm_memory_slot *slot; 6932 int rcu_idx; 6933 struct kvm_mmu_page *sp; 6934 unsigned int ratio; 6935 LIST_HEAD(invalid_list); 6936 bool flush = false; 6937 ulong to_zap; 6938 6939 rcu_idx = srcu_read_lock(&kvm->srcu); 6940 write_lock(&kvm->mmu_lock); 6941 6942 /* 6943 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 6944 * be done under RCU protection, because the pages are freed via RCU 6945 * callback. 6946 */ 6947 rcu_read_lock(); 6948 6949 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6950 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6951 for ( ; to_zap; --to_zap) { 6952 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 6953 break; 6954 6955 /* 6956 * We use a separate list instead of just using active_mmu_pages 6957 * because the number of shadow pages that be replaced with an 6958 * NX huge page is expected to be relatively small compared to 6959 * the total number of shadow pages. And because the TDP MMU 6960 * doesn't use active_mmu_pages. 6961 */ 6962 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 6963 struct kvm_mmu_page, 6964 possible_nx_huge_page_link); 6965 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 6966 WARN_ON_ONCE(!sp->role.direct); 6967 6968 /* 6969 * Unaccount and do not attempt to recover any NX Huge Pages 6970 * that are being dirty tracked, as they would just be faulted 6971 * back in as 4KiB pages. The NX Huge Pages in this slot will be 6972 * recovered, along with all the other huge pages in the slot, 6973 * when dirty logging is disabled. 6974 * 6975 * Since gfn_to_memslot() is relatively expensive, it helps to 6976 * skip it if it the test cannot possibly return true. On the 6977 * other hand, if any memslot has logging enabled, chances are 6978 * good that all of them do, in which case unaccount_nx_huge_page() 6979 * is much cheaper than zapping the page. 6980 * 6981 * If a memslot update is in progress, reading an incorrect value 6982 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 6983 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 6984 * it is becoming nonzero, the page will be zapped unnecessarily. 6985 * Either way, this only affects efficiency in racy situations, 6986 * and not correctness. 6987 */ 6988 slot = NULL; 6989 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 6990 slot = gfn_to_memslot(kvm, sp->gfn); 6991 WARN_ON_ONCE(!slot); 6992 } 6993 6994 if (slot && kvm_slot_dirty_track_enabled(slot)) 6995 unaccount_nx_huge_page(kvm, sp); 6996 else if (is_tdp_mmu_page(sp)) 6997 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6998 else 6999 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7000 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7001 7002 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7003 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7004 rcu_read_unlock(); 7005 7006 cond_resched_rwlock_write(&kvm->mmu_lock); 7007 flush = false; 7008 7009 rcu_read_lock(); 7010 } 7011 } 7012 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7013 7014 rcu_read_unlock(); 7015 7016 write_unlock(&kvm->mmu_lock); 7017 srcu_read_unlock(&kvm->srcu, rcu_idx); 7018 } 7019 7020 static long get_nx_huge_page_recovery_timeout(u64 start_time) 7021 { 7022 bool enabled; 7023 uint period; 7024 7025 enabled = calc_nx_huge_pages_recovery_period(&period); 7026 7027 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 7028 : MAX_SCHEDULE_TIMEOUT; 7029 } 7030 7031 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 7032 { 7033 u64 start_time; 7034 long remaining_time; 7035 7036 while (true) { 7037 start_time = get_jiffies_64(); 7038 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7039 7040 set_current_state(TASK_INTERRUPTIBLE); 7041 while (!kthread_should_stop() && remaining_time > 0) { 7042 schedule_timeout(remaining_time); 7043 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7044 set_current_state(TASK_INTERRUPTIBLE); 7045 } 7046 7047 set_current_state(TASK_RUNNING); 7048 7049 if (kthread_should_stop()) 7050 return 0; 7051 7052 kvm_recover_nx_huge_pages(kvm); 7053 } 7054 } 7055 7056 int kvm_mmu_post_init_vm(struct kvm *kvm) 7057 { 7058 int err; 7059 7060 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 7061 "kvm-nx-lpage-recovery", 7062 &kvm->arch.nx_huge_page_recovery_thread); 7063 if (!err) 7064 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 7065 7066 return err; 7067 } 7068 7069 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7070 { 7071 if (kvm->arch.nx_huge_page_recovery_thread) 7072 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 7073 } 7074