1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "smm.h" 26 #include "kvm_emulate.h" 27 #include "cpuid.h" 28 #include "spte.h" 29 30 #include <linux/kvm_host.h> 31 #include <linux/types.h> 32 #include <linux/string.h> 33 #include <linux/mm.h> 34 #include <linux/highmem.h> 35 #include <linux/moduleparam.h> 36 #include <linux/export.h> 37 #include <linux/swap.h> 38 #include <linux/hugetlb.h> 39 #include <linux/compiler.h> 40 #include <linux/srcu.h> 41 #include <linux/slab.h> 42 #include <linux/sched/signal.h> 43 #include <linux/uaccess.h> 44 #include <linux/hash.h> 45 #include <linux/kern_levels.h> 46 #include <linux/kthread.h> 47 48 #include <asm/page.h> 49 #include <asm/memtype.h> 50 #include <asm/cmpxchg.h> 51 #include <asm/io.h> 52 #include <asm/set_memory.h> 53 #include <asm/vmx.h> 54 #include <asm/kvm_page_track.h> 55 #include "trace.h" 56 57 extern bool itlb_multihit_kvm_mitigation; 58 59 int __read_mostly nx_huge_pages = -1; 60 static uint __read_mostly nx_huge_pages_recovery_period_ms; 61 #ifdef CONFIG_PREEMPT_RT 62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 64 #else 65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 66 #endif 67 68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 69 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 70 71 static const struct kernel_param_ops nx_huge_pages_ops = { 72 .set = set_nx_huge_pages, 73 .get = param_get_bool, 74 }; 75 76 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 77 .set = set_nx_huge_pages_recovery_param, 78 .get = param_get_uint, 79 }; 80 81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 82 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 84 &nx_huge_pages_recovery_ratio, 0644); 85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 86 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 87 &nx_huge_pages_recovery_period_ms, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 89 90 static bool __read_mostly force_flush_and_sync_on_reuse; 91 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 92 93 /* 94 * When setting this variable to true it enables Two-Dimensional-Paging 95 * where the hardware walks 2 page tables: 96 * 1. the guest-virtual to guest-physical 97 * 2. while doing 1. it walks guest-physical to host-physical 98 * If the hardware supports that we don't need to do shadow paging. 99 */ 100 bool tdp_enabled = false; 101 102 static int max_huge_page_level __read_mostly; 103 static int tdp_root_level __read_mostly; 104 static int max_tdp_level __read_mostly; 105 106 #ifdef MMU_DEBUG 107 bool dbg = 0; 108 module_param(dbg, bool, 0644); 109 #endif 110 111 #define PTE_PREFETCH_NUM 8 112 113 #include <trace/events/kvm.h> 114 115 /* make pte_list_desc fit well in cache lines */ 116 #define PTE_LIST_EXT 14 117 118 /* 119 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 120 * at the start; then accessing it will only use one single cacheline for 121 * either full (entries==PTE_LIST_EXT) case or entries<=6. 122 */ 123 struct pte_list_desc { 124 struct pte_list_desc *more; 125 /* 126 * Stores number of entries stored in the pte_list_desc. No need to be 127 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 128 */ 129 u64 spte_count; 130 u64 *sptes[PTE_LIST_EXT]; 131 }; 132 133 struct kvm_shadow_walk_iterator { 134 u64 addr; 135 hpa_t shadow_addr; 136 u64 *sptep; 137 int level; 138 unsigned index; 139 }; 140 141 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 142 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 143 (_root), (_addr)); \ 144 shadow_walk_okay(&(_walker)); \ 145 shadow_walk_next(&(_walker))) 146 147 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 148 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 149 shadow_walk_okay(&(_walker)); \ 150 shadow_walk_next(&(_walker))) 151 152 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 153 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 154 shadow_walk_okay(&(_walker)) && \ 155 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 156 __shadow_walk_next(&(_walker), spte)) 157 158 static struct kmem_cache *pte_list_desc_cache; 159 struct kmem_cache *mmu_page_header_cache; 160 static struct percpu_counter kvm_total_used_mmu_pages; 161 162 static void mmu_spte_set(u64 *sptep, u64 spte); 163 164 struct kvm_mmu_role_regs { 165 const unsigned long cr0; 166 const unsigned long cr4; 167 const u64 efer; 168 }; 169 170 #define CREATE_TRACE_POINTS 171 #include "mmutrace.h" 172 173 /* 174 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 175 * reading from the role_regs. Once the root_role is constructed, it becomes 176 * the single source of truth for the MMU's state. 177 */ 178 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 179 static inline bool __maybe_unused \ 180 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 181 { \ 182 return !!(regs->reg & flag); \ 183 } 184 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 185 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 186 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 187 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 188 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 189 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 190 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 191 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 192 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 193 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 194 195 /* 196 * The MMU itself (with a valid role) is the single source of truth for the 197 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 198 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 199 * and the vCPU may be incorrect/irrelevant. 200 */ 201 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 202 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 203 { \ 204 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 205 } 206 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 207 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 208 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 209 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 210 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 211 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 212 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 213 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 214 215 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 216 { 217 return mmu->cpu_role.base.level > 0; 218 } 219 220 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 221 { 222 return !mmu->cpu_role.base.has_4_byte_gpte; 223 } 224 225 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 226 { 227 struct kvm_mmu_role_regs regs = { 228 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 229 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 230 .efer = vcpu->arch.efer, 231 }; 232 233 return regs; 234 } 235 236 static inline bool kvm_available_flush_tlb_with_range(void) 237 { 238 return kvm_x86_ops.tlb_remote_flush_with_range; 239 } 240 241 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 242 struct kvm_tlb_range *range) 243 { 244 int ret = -ENOTSUPP; 245 246 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 247 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 248 249 if (ret) 250 kvm_flush_remote_tlbs(kvm); 251 } 252 253 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 254 u64 start_gfn, u64 pages) 255 { 256 struct kvm_tlb_range range; 257 258 range.start_gfn = start_gfn; 259 range.pages = pages; 260 261 kvm_flush_remote_tlbs_with_range(kvm, &range); 262 } 263 264 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 265 unsigned int access) 266 { 267 u64 spte = make_mmio_spte(vcpu, gfn, access); 268 269 trace_mark_mmio_spte(sptep, gfn, spte); 270 mmu_spte_set(sptep, spte); 271 } 272 273 static gfn_t get_mmio_spte_gfn(u64 spte) 274 { 275 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 276 277 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 278 & shadow_nonpresent_or_rsvd_mask; 279 280 return gpa >> PAGE_SHIFT; 281 } 282 283 static unsigned get_mmio_spte_access(u64 spte) 284 { 285 return spte & shadow_mmio_access_mask; 286 } 287 288 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 289 { 290 u64 kvm_gen, spte_gen, gen; 291 292 gen = kvm_vcpu_memslots(vcpu)->generation; 293 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 294 return false; 295 296 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 297 spte_gen = get_mmio_spte_generation(spte); 298 299 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 300 return likely(kvm_gen == spte_gen); 301 } 302 303 static int is_cpuid_PSE36(void) 304 { 305 return 1; 306 } 307 308 #ifdef CONFIG_X86_64 309 static void __set_spte(u64 *sptep, u64 spte) 310 { 311 WRITE_ONCE(*sptep, spte); 312 } 313 314 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 315 { 316 WRITE_ONCE(*sptep, spte); 317 } 318 319 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 320 { 321 return xchg(sptep, spte); 322 } 323 324 static u64 __get_spte_lockless(u64 *sptep) 325 { 326 return READ_ONCE(*sptep); 327 } 328 #else 329 union split_spte { 330 struct { 331 u32 spte_low; 332 u32 spte_high; 333 }; 334 u64 spte; 335 }; 336 337 static void count_spte_clear(u64 *sptep, u64 spte) 338 { 339 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 340 341 if (is_shadow_present_pte(spte)) 342 return; 343 344 /* Ensure the spte is completely set before we increase the count */ 345 smp_wmb(); 346 sp->clear_spte_count++; 347 } 348 349 static void __set_spte(u64 *sptep, u64 spte) 350 { 351 union split_spte *ssptep, sspte; 352 353 ssptep = (union split_spte *)sptep; 354 sspte = (union split_spte)spte; 355 356 ssptep->spte_high = sspte.spte_high; 357 358 /* 359 * If we map the spte from nonpresent to present, We should store 360 * the high bits firstly, then set present bit, so cpu can not 361 * fetch this spte while we are setting the spte. 362 */ 363 smp_wmb(); 364 365 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 366 } 367 368 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 369 { 370 union split_spte *ssptep, sspte; 371 372 ssptep = (union split_spte *)sptep; 373 sspte = (union split_spte)spte; 374 375 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 376 377 /* 378 * If we map the spte from present to nonpresent, we should clear 379 * present bit firstly to avoid vcpu fetch the old high bits. 380 */ 381 smp_wmb(); 382 383 ssptep->spte_high = sspte.spte_high; 384 count_spte_clear(sptep, spte); 385 } 386 387 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 388 { 389 union split_spte *ssptep, sspte, orig; 390 391 ssptep = (union split_spte *)sptep; 392 sspte = (union split_spte)spte; 393 394 /* xchg acts as a barrier before the setting of the high bits */ 395 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 396 orig.spte_high = ssptep->spte_high; 397 ssptep->spte_high = sspte.spte_high; 398 count_spte_clear(sptep, spte); 399 400 return orig.spte; 401 } 402 403 /* 404 * The idea using the light way get the spte on x86_32 guest is from 405 * gup_get_pte (mm/gup.c). 406 * 407 * An spte tlb flush may be pending, because kvm_set_pte_rmap 408 * coalesces them and we are running out of the MMU lock. Therefore 409 * we need to protect against in-progress updates of the spte. 410 * 411 * Reading the spte while an update is in progress may get the old value 412 * for the high part of the spte. The race is fine for a present->non-present 413 * change (because the high part of the spte is ignored for non-present spte), 414 * but for a present->present change we must reread the spte. 415 * 416 * All such changes are done in two steps (present->non-present and 417 * non-present->present), hence it is enough to count the number of 418 * present->non-present updates: if it changed while reading the spte, 419 * we might have hit the race. This is done using clear_spte_count. 420 */ 421 static u64 __get_spte_lockless(u64 *sptep) 422 { 423 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 424 union split_spte spte, *orig = (union split_spte *)sptep; 425 int count; 426 427 retry: 428 count = sp->clear_spte_count; 429 smp_rmb(); 430 431 spte.spte_low = orig->spte_low; 432 smp_rmb(); 433 434 spte.spte_high = orig->spte_high; 435 smp_rmb(); 436 437 if (unlikely(spte.spte_low != orig->spte_low || 438 count != sp->clear_spte_count)) 439 goto retry; 440 441 return spte.spte; 442 } 443 #endif 444 445 /* Rules for using mmu_spte_set: 446 * Set the sptep from nonpresent to present. 447 * Note: the sptep being assigned *must* be either not present 448 * or in a state where the hardware will not attempt to update 449 * the spte. 450 */ 451 static void mmu_spte_set(u64 *sptep, u64 new_spte) 452 { 453 WARN_ON(is_shadow_present_pte(*sptep)); 454 __set_spte(sptep, new_spte); 455 } 456 457 /* 458 * Update the SPTE (excluding the PFN), but do not track changes in its 459 * accessed/dirty status. 460 */ 461 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 462 { 463 u64 old_spte = *sptep; 464 465 WARN_ON(!is_shadow_present_pte(new_spte)); 466 check_spte_writable_invariants(new_spte); 467 468 if (!is_shadow_present_pte(old_spte)) { 469 mmu_spte_set(sptep, new_spte); 470 return old_spte; 471 } 472 473 if (!spte_has_volatile_bits(old_spte)) 474 __update_clear_spte_fast(sptep, new_spte); 475 else 476 old_spte = __update_clear_spte_slow(sptep, new_spte); 477 478 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 479 480 return old_spte; 481 } 482 483 /* Rules for using mmu_spte_update: 484 * Update the state bits, it means the mapped pfn is not changed. 485 * 486 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 487 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 488 * spte, even though the writable spte might be cached on a CPU's TLB. 489 * 490 * Returns true if the TLB needs to be flushed 491 */ 492 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 493 { 494 bool flush = false; 495 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 496 497 if (!is_shadow_present_pte(old_spte)) 498 return false; 499 500 /* 501 * For the spte updated out of mmu-lock is safe, since 502 * we always atomically update it, see the comments in 503 * spte_has_volatile_bits(). 504 */ 505 if (is_mmu_writable_spte(old_spte) && 506 !is_writable_pte(new_spte)) 507 flush = true; 508 509 /* 510 * Flush TLB when accessed/dirty states are changed in the page tables, 511 * to guarantee consistency between TLB and page tables. 512 */ 513 514 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 515 flush = true; 516 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 517 } 518 519 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 520 flush = true; 521 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 522 } 523 524 return flush; 525 } 526 527 /* 528 * Rules for using mmu_spte_clear_track_bits: 529 * It sets the sptep from present to nonpresent, and track the 530 * state bits, it is used to clear the last level sptep. 531 * Returns the old PTE. 532 */ 533 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 534 { 535 kvm_pfn_t pfn; 536 u64 old_spte = *sptep; 537 int level = sptep_to_sp(sptep)->role.level; 538 struct page *page; 539 540 if (!is_shadow_present_pte(old_spte) || 541 !spte_has_volatile_bits(old_spte)) 542 __update_clear_spte_fast(sptep, 0ull); 543 else 544 old_spte = __update_clear_spte_slow(sptep, 0ull); 545 546 if (!is_shadow_present_pte(old_spte)) 547 return old_spte; 548 549 kvm_update_page_stats(kvm, level, -1); 550 551 pfn = spte_to_pfn(old_spte); 552 553 /* 554 * KVM doesn't hold a reference to any pages mapped into the guest, and 555 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 556 * before they are reclaimed. Sanity check that, if the pfn is backed 557 * by a refcounted page, the refcount is elevated. 558 */ 559 page = kvm_pfn_to_refcounted_page(pfn); 560 WARN_ON(page && !page_count(page)); 561 562 if (is_accessed_spte(old_spte)) 563 kvm_set_pfn_accessed(pfn); 564 565 if (is_dirty_spte(old_spte)) 566 kvm_set_pfn_dirty(pfn); 567 568 return old_spte; 569 } 570 571 /* 572 * Rules for using mmu_spte_clear_no_track: 573 * Directly clear spte without caring the state bits of sptep, 574 * it is used to set the upper level spte. 575 */ 576 static void mmu_spte_clear_no_track(u64 *sptep) 577 { 578 __update_clear_spte_fast(sptep, 0ull); 579 } 580 581 static u64 mmu_spte_get_lockless(u64 *sptep) 582 { 583 return __get_spte_lockless(sptep); 584 } 585 586 /* Returns the Accessed status of the PTE and resets it at the same time. */ 587 static bool mmu_spte_age(u64 *sptep) 588 { 589 u64 spte = mmu_spte_get_lockless(sptep); 590 591 if (!is_accessed_spte(spte)) 592 return false; 593 594 if (spte_ad_enabled(spte)) { 595 clear_bit((ffs(shadow_accessed_mask) - 1), 596 (unsigned long *)sptep); 597 } else { 598 /* 599 * Capture the dirty status of the page, so that it doesn't get 600 * lost when the SPTE is marked for access tracking. 601 */ 602 if (is_writable_pte(spte)) 603 kvm_set_pfn_dirty(spte_to_pfn(spte)); 604 605 spte = mark_spte_for_access_track(spte); 606 mmu_spte_update_no_track(sptep, spte); 607 } 608 609 return true; 610 } 611 612 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 613 { 614 if (is_tdp_mmu(vcpu->arch.mmu)) { 615 kvm_tdp_mmu_walk_lockless_begin(); 616 } else { 617 /* 618 * Prevent page table teardown by making any free-er wait during 619 * kvm_flush_remote_tlbs() IPI to all active vcpus. 620 */ 621 local_irq_disable(); 622 623 /* 624 * Make sure a following spte read is not reordered ahead of the write 625 * to vcpu->mode. 626 */ 627 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 628 } 629 } 630 631 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 632 { 633 if (is_tdp_mmu(vcpu->arch.mmu)) { 634 kvm_tdp_mmu_walk_lockless_end(); 635 } else { 636 /* 637 * Make sure the write to vcpu->mode is not reordered in front of 638 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 639 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 640 */ 641 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 642 local_irq_enable(); 643 } 644 } 645 646 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 647 { 648 int r; 649 650 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 651 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 652 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 653 if (r) 654 return r; 655 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 656 PT64_ROOT_MAX_LEVEL); 657 if (r) 658 return r; 659 if (maybe_indirect) { 660 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 661 PT64_ROOT_MAX_LEVEL); 662 if (r) 663 return r; 664 } 665 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 666 PT64_ROOT_MAX_LEVEL); 667 } 668 669 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 670 { 671 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 672 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 673 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 674 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 675 } 676 677 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 678 { 679 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 680 } 681 682 static bool sp_has_gptes(struct kvm_mmu_page *sp); 683 684 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 685 { 686 if (sp->role.passthrough) 687 return sp->gfn; 688 689 if (!sp->role.direct) 690 return sp->shadowed_translation[index] >> PAGE_SHIFT; 691 692 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 693 } 694 695 /* 696 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 697 * that the SPTE itself may have a more constrained access permissions that 698 * what the guest enforces. For example, a guest may create an executable 699 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 700 */ 701 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 702 { 703 if (sp_has_gptes(sp)) 704 return sp->shadowed_translation[index] & ACC_ALL; 705 706 /* 707 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 708 * KVM is not shadowing any guest page tables, so the "guest access 709 * permissions" are just ACC_ALL. 710 * 711 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 712 * is shadowing a guest huge page with small pages, the guest access 713 * permissions being shadowed are the access permissions of the huge 714 * page. 715 * 716 * In both cases, sp->role.access contains the correct access bits. 717 */ 718 return sp->role.access; 719 } 720 721 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 722 gfn_t gfn, unsigned int access) 723 { 724 if (sp_has_gptes(sp)) { 725 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 726 return; 727 } 728 729 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 730 "access mismatch under %s page %llx (expected %u, got %u)\n", 731 sp->role.passthrough ? "passthrough" : "direct", 732 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 733 734 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 735 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 736 sp->role.passthrough ? "passthrough" : "direct", 737 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 738 } 739 740 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 741 unsigned int access) 742 { 743 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 744 745 kvm_mmu_page_set_translation(sp, index, gfn, access); 746 } 747 748 /* 749 * Return the pointer to the large page information for a given gfn, 750 * handling slots that are not large page aligned. 751 */ 752 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 753 const struct kvm_memory_slot *slot, int level) 754 { 755 unsigned long idx; 756 757 idx = gfn_to_index(gfn, slot->base_gfn, level); 758 return &slot->arch.lpage_info[level - 2][idx]; 759 } 760 761 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 762 gfn_t gfn, int count) 763 { 764 struct kvm_lpage_info *linfo; 765 int i; 766 767 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 768 linfo = lpage_info_slot(gfn, slot, i); 769 linfo->disallow_lpage += count; 770 WARN_ON(linfo->disallow_lpage < 0); 771 } 772 } 773 774 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 775 { 776 update_gfn_disallow_lpage_count(slot, gfn, 1); 777 } 778 779 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 780 { 781 update_gfn_disallow_lpage_count(slot, gfn, -1); 782 } 783 784 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 785 { 786 struct kvm_memslots *slots; 787 struct kvm_memory_slot *slot; 788 gfn_t gfn; 789 790 kvm->arch.indirect_shadow_pages++; 791 gfn = sp->gfn; 792 slots = kvm_memslots_for_spte_role(kvm, sp->role); 793 slot = __gfn_to_memslot(slots, gfn); 794 795 /* the non-leaf shadow pages are keeping readonly. */ 796 if (sp->role.level > PG_LEVEL_4K) 797 return kvm_slot_page_track_add_page(kvm, slot, gfn, 798 KVM_PAGE_TRACK_WRITE); 799 800 kvm_mmu_gfn_disallow_lpage(slot, gfn); 801 802 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 803 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 804 } 805 806 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 807 { 808 /* 809 * If it's possible to replace the shadow page with an NX huge page, 810 * i.e. if the shadow page is the only thing currently preventing KVM 811 * from using a huge page, add the shadow page to the list of "to be 812 * zapped for NX recovery" pages. Note, the shadow page can already be 813 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 814 * links a shadow page at multiple points. 815 */ 816 if (!list_empty(&sp->possible_nx_huge_page_link)) 817 return; 818 819 ++kvm->stat.nx_lpage_splits; 820 list_add_tail(&sp->possible_nx_huge_page_link, 821 &kvm->arch.possible_nx_huge_pages); 822 } 823 824 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 825 bool nx_huge_page_possible) 826 { 827 sp->nx_huge_page_disallowed = true; 828 829 if (nx_huge_page_possible) 830 track_possible_nx_huge_page(kvm, sp); 831 } 832 833 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 834 { 835 struct kvm_memslots *slots; 836 struct kvm_memory_slot *slot; 837 gfn_t gfn; 838 839 kvm->arch.indirect_shadow_pages--; 840 gfn = sp->gfn; 841 slots = kvm_memslots_for_spte_role(kvm, sp->role); 842 slot = __gfn_to_memslot(slots, gfn); 843 if (sp->role.level > PG_LEVEL_4K) 844 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 845 KVM_PAGE_TRACK_WRITE); 846 847 kvm_mmu_gfn_allow_lpage(slot, gfn); 848 } 849 850 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 851 { 852 if (list_empty(&sp->possible_nx_huge_page_link)) 853 return; 854 855 --kvm->stat.nx_lpage_splits; 856 list_del_init(&sp->possible_nx_huge_page_link); 857 } 858 859 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 860 { 861 sp->nx_huge_page_disallowed = false; 862 863 untrack_possible_nx_huge_page(kvm, sp); 864 } 865 866 static struct kvm_memory_slot * 867 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 868 bool no_dirty_log) 869 { 870 struct kvm_memory_slot *slot; 871 872 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 873 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 874 return NULL; 875 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 876 return NULL; 877 878 return slot; 879 } 880 881 /* 882 * About rmap_head encoding: 883 * 884 * If the bit zero of rmap_head->val is clear, then it points to the only spte 885 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 886 * pte_list_desc containing more mappings. 887 */ 888 889 /* 890 * Returns the number of pointers in the rmap chain, not counting the new one. 891 */ 892 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 893 struct kvm_rmap_head *rmap_head) 894 { 895 struct pte_list_desc *desc; 896 int count = 0; 897 898 if (!rmap_head->val) { 899 rmap_printk("%p %llx 0->1\n", spte, *spte); 900 rmap_head->val = (unsigned long)spte; 901 } else if (!(rmap_head->val & 1)) { 902 rmap_printk("%p %llx 1->many\n", spte, *spte); 903 desc = kvm_mmu_memory_cache_alloc(cache); 904 desc->sptes[0] = (u64 *)rmap_head->val; 905 desc->sptes[1] = spte; 906 desc->spte_count = 2; 907 rmap_head->val = (unsigned long)desc | 1; 908 ++count; 909 } else { 910 rmap_printk("%p %llx many->many\n", spte, *spte); 911 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 912 while (desc->spte_count == PTE_LIST_EXT) { 913 count += PTE_LIST_EXT; 914 if (!desc->more) { 915 desc->more = kvm_mmu_memory_cache_alloc(cache); 916 desc = desc->more; 917 desc->spte_count = 0; 918 break; 919 } 920 desc = desc->more; 921 } 922 count += desc->spte_count; 923 desc->sptes[desc->spte_count++] = spte; 924 } 925 return count; 926 } 927 928 static void 929 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 930 struct pte_list_desc *desc, int i, 931 struct pte_list_desc *prev_desc) 932 { 933 int j = desc->spte_count - 1; 934 935 desc->sptes[i] = desc->sptes[j]; 936 desc->sptes[j] = NULL; 937 desc->spte_count--; 938 if (desc->spte_count) 939 return; 940 if (!prev_desc && !desc->more) 941 rmap_head->val = 0; 942 else 943 if (prev_desc) 944 prev_desc->more = desc->more; 945 else 946 rmap_head->val = (unsigned long)desc->more | 1; 947 mmu_free_pte_list_desc(desc); 948 } 949 950 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 951 { 952 struct pte_list_desc *desc; 953 struct pte_list_desc *prev_desc; 954 int i; 955 956 if (!rmap_head->val) { 957 pr_err("%s: %p 0->BUG\n", __func__, spte); 958 BUG(); 959 } else if (!(rmap_head->val & 1)) { 960 rmap_printk("%p 1->0\n", spte); 961 if ((u64 *)rmap_head->val != spte) { 962 pr_err("%s: %p 1->BUG\n", __func__, spte); 963 BUG(); 964 } 965 rmap_head->val = 0; 966 } else { 967 rmap_printk("%p many->many\n", spte); 968 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 969 prev_desc = NULL; 970 while (desc) { 971 for (i = 0; i < desc->spte_count; ++i) { 972 if (desc->sptes[i] == spte) { 973 pte_list_desc_remove_entry(rmap_head, 974 desc, i, prev_desc); 975 return; 976 } 977 } 978 prev_desc = desc; 979 desc = desc->more; 980 } 981 pr_err("%s: %p many->many\n", __func__, spte); 982 BUG(); 983 } 984 } 985 986 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 987 struct kvm_rmap_head *rmap_head, u64 *sptep) 988 { 989 mmu_spte_clear_track_bits(kvm, sptep); 990 pte_list_remove(sptep, rmap_head); 991 } 992 993 /* Return true if at least one SPTE was zapped, false otherwise */ 994 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 995 struct kvm_rmap_head *rmap_head) 996 { 997 struct pte_list_desc *desc, *next; 998 int i; 999 1000 if (!rmap_head->val) 1001 return false; 1002 1003 if (!(rmap_head->val & 1)) { 1004 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1005 goto out; 1006 } 1007 1008 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1009 1010 for (; desc; desc = next) { 1011 for (i = 0; i < desc->spte_count; i++) 1012 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1013 next = desc->more; 1014 mmu_free_pte_list_desc(desc); 1015 } 1016 out: 1017 /* rmap_head is meaningless now, remember to reset it */ 1018 rmap_head->val = 0; 1019 return true; 1020 } 1021 1022 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1023 { 1024 struct pte_list_desc *desc; 1025 unsigned int count = 0; 1026 1027 if (!rmap_head->val) 1028 return 0; 1029 else if (!(rmap_head->val & 1)) 1030 return 1; 1031 1032 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1033 1034 while (desc) { 1035 count += desc->spte_count; 1036 desc = desc->more; 1037 } 1038 1039 return count; 1040 } 1041 1042 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1043 const struct kvm_memory_slot *slot) 1044 { 1045 unsigned long idx; 1046 1047 idx = gfn_to_index(gfn, slot->base_gfn, level); 1048 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1049 } 1050 1051 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1052 { 1053 struct kvm_mmu_memory_cache *mc; 1054 1055 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1056 return kvm_mmu_memory_cache_nr_free_objects(mc); 1057 } 1058 1059 static void rmap_remove(struct kvm *kvm, u64 *spte) 1060 { 1061 struct kvm_memslots *slots; 1062 struct kvm_memory_slot *slot; 1063 struct kvm_mmu_page *sp; 1064 gfn_t gfn; 1065 struct kvm_rmap_head *rmap_head; 1066 1067 sp = sptep_to_sp(spte); 1068 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1069 1070 /* 1071 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1072 * so we have to determine which memslots to use based on context 1073 * information in sp->role. 1074 */ 1075 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1076 1077 slot = __gfn_to_memslot(slots, gfn); 1078 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1079 1080 pte_list_remove(spte, rmap_head); 1081 } 1082 1083 /* 1084 * Used by the following functions to iterate through the sptes linked by a 1085 * rmap. All fields are private and not assumed to be used outside. 1086 */ 1087 struct rmap_iterator { 1088 /* private fields */ 1089 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1090 int pos; /* index of the sptep */ 1091 }; 1092 1093 /* 1094 * Iteration must be started by this function. This should also be used after 1095 * removing/dropping sptes from the rmap link because in such cases the 1096 * information in the iterator may not be valid. 1097 * 1098 * Returns sptep if found, NULL otherwise. 1099 */ 1100 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1101 struct rmap_iterator *iter) 1102 { 1103 u64 *sptep; 1104 1105 if (!rmap_head->val) 1106 return NULL; 1107 1108 if (!(rmap_head->val & 1)) { 1109 iter->desc = NULL; 1110 sptep = (u64 *)rmap_head->val; 1111 goto out; 1112 } 1113 1114 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1115 iter->pos = 0; 1116 sptep = iter->desc->sptes[iter->pos]; 1117 out: 1118 BUG_ON(!is_shadow_present_pte(*sptep)); 1119 return sptep; 1120 } 1121 1122 /* 1123 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1124 * 1125 * Returns sptep if found, NULL otherwise. 1126 */ 1127 static u64 *rmap_get_next(struct rmap_iterator *iter) 1128 { 1129 u64 *sptep; 1130 1131 if (iter->desc) { 1132 if (iter->pos < PTE_LIST_EXT - 1) { 1133 ++iter->pos; 1134 sptep = iter->desc->sptes[iter->pos]; 1135 if (sptep) 1136 goto out; 1137 } 1138 1139 iter->desc = iter->desc->more; 1140 1141 if (iter->desc) { 1142 iter->pos = 0; 1143 /* desc->sptes[0] cannot be NULL */ 1144 sptep = iter->desc->sptes[iter->pos]; 1145 goto out; 1146 } 1147 } 1148 1149 return NULL; 1150 out: 1151 BUG_ON(!is_shadow_present_pte(*sptep)); 1152 return sptep; 1153 } 1154 1155 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1156 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1157 _spte_; _spte_ = rmap_get_next(_iter_)) 1158 1159 static void drop_spte(struct kvm *kvm, u64 *sptep) 1160 { 1161 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1162 1163 if (is_shadow_present_pte(old_spte)) 1164 rmap_remove(kvm, sptep); 1165 } 1166 1167 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1168 { 1169 struct kvm_mmu_page *sp; 1170 1171 sp = sptep_to_sp(sptep); 1172 WARN_ON(sp->role.level == PG_LEVEL_4K); 1173 1174 drop_spte(kvm, sptep); 1175 1176 if (flush) 1177 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 1178 KVM_PAGES_PER_HPAGE(sp->role.level)); 1179 } 1180 1181 /* 1182 * Write-protect on the specified @sptep, @pt_protect indicates whether 1183 * spte write-protection is caused by protecting shadow page table. 1184 * 1185 * Note: write protection is difference between dirty logging and spte 1186 * protection: 1187 * - for dirty logging, the spte can be set to writable at anytime if 1188 * its dirty bitmap is properly set. 1189 * - for spte protection, the spte can be writable only after unsync-ing 1190 * shadow page. 1191 * 1192 * Return true if tlb need be flushed. 1193 */ 1194 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1195 { 1196 u64 spte = *sptep; 1197 1198 if (!is_writable_pte(spte) && 1199 !(pt_protect && is_mmu_writable_spte(spte))) 1200 return false; 1201 1202 rmap_printk("spte %p %llx\n", sptep, *sptep); 1203 1204 if (pt_protect) 1205 spte &= ~shadow_mmu_writable_mask; 1206 spte = spte & ~PT_WRITABLE_MASK; 1207 1208 return mmu_spte_update(sptep, spte); 1209 } 1210 1211 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1212 bool pt_protect) 1213 { 1214 u64 *sptep; 1215 struct rmap_iterator iter; 1216 bool flush = false; 1217 1218 for_each_rmap_spte(rmap_head, &iter, sptep) 1219 flush |= spte_write_protect(sptep, pt_protect); 1220 1221 return flush; 1222 } 1223 1224 static bool spte_clear_dirty(u64 *sptep) 1225 { 1226 u64 spte = *sptep; 1227 1228 rmap_printk("spte %p %llx\n", sptep, *sptep); 1229 1230 MMU_WARN_ON(!spte_ad_enabled(spte)); 1231 spte &= ~shadow_dirty_mask; 1232 return mmu_spte_update(sptep, spte); 1233 } 1234 1235 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1236 { 1237 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1238 (unsigned long *)sptep); 1239 if (was_writable && !spte_ad_enabled(*sptep)) 1240 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1241 1242 return was_writable; 1243 } 1244 1245 /* 1246 * Gets the GFN ready for another round of dirty logging by clearing the 1247 * - D bit on ad-enabled SPTEs, and 1248 * - W bit on ad-disabled SPTEs. 1249 * Returns true iff any D or W bits were cleared. 1250 */ 1251 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1252 const struct kvm_memory_slot *slot) 1253 { 1254 u64 *sptep; 1255 struct rmap_iterator iter; 1256 bool flush = false; 1257 1258 for_each_rmap_spte(rmap_head, &iter, sptep) 1259 if (spte_ad_need_write_protect(*sptep)) 1260 flush |= spte_wrprot_for_clear_dirty(sptep); 1261 else 1262 flush |= spte_clear_dirty(sptep); 1263 1264 return flush; 1265 } 1266 1267 /** 1268 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1269 * @kvm: kvm instance 1270 * @slot: slot to protect 1271 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1272 * @mask: indicates which pages we should protect 1273 * 1274 * Used when we do not need to care about huge page mappings. 1275 */ 1276 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1277 struct kvm_memory_slot *slot, 1278 gfn_t gfn_offset, unsigned long mask) 1279 { 1280 struct kvm_rmap_head *rmap_head; 1281 1282 if (is_tdp_mmu_enabled(kvm)) 1283 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1284 slot->base_gfn + gfn_offset, mask, true); 1285 1286 if (!kvm_memslots_have_rmaps(kvm)) 1287 return; 1288 1289 while (mask) { 1290 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1291 PG_LEVEL_4K, slot); 1292 rmap_write_protect(rmap_head, false); 1293 1294 /* clear the first set bit */ 1295 mask &= mask - 1; 1296 } 1297 } 1298 1299 /** 1300 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1301 * protect the page if the D-bit isn't supported. 1302 * @kvm: kvm instance 1303 * @slot: slot to clear D-bit 1304 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1305 * @mask: indicates which pages we should clear D-bit 1306 * 1307 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1308 */ 1309 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1310 struct kvm_memory_slot *slot, 1311 gfn_t gfn_offset, unsigned long mask) 1312 { 1313 struct kvm_rmap_head *rmap_head; 1314 1315 if (is_tdp_mmu_enabled(kvm)) 1316 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1317 slot->base_gfn + gfn_offset, mask, false); 1318 1319 if (!kvm_memslots_have_rmaps(kvm)) 1320 return; 1321 1322 while (mask) { 1323 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1324 PG_LEVEL_4K, slot); 1325 __rmap_clear_dirty(kvm, rmap_head, slot); 1326 1327 /* clear the first set bit */ 1328 mask &= mask - 1; 1329 } 1330 } 1331 1332 /** 1333 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1334 * PT level pages. 1335 * 1336 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1337 * enable dirty logging for them. 1338 * 1339 * We need to care about huge page mappings: e.g. during dirty logging we may 1340 * have such mappings. 1341 */ 1342 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1343 struct kvm_memory_slot *slot, 1344 gfn_t gfn_offset, unsigned long mask) 1345 { 1346 /* 1347 * Huge pages are NOT write protected when we start dirty logging in 1348 * initially-all-set mode; must write protect them here so that they 1349 * are split to 4K on the first write. 1350 * 1351 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1352 * of memslot has no such restriction, so the range can cross two large 1353 * pages. 1354 */ 1355 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1356 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1357 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1358 1359 if (READ_ONCE(eager_page_split)) 1360 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1361 1362 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1363 1364 /* Cross two large pages? */ 1365 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1366 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1367 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1368 PG_LEVEL_2M); 1369 } 1370 1371 /* Now handle 4K PTEs. */ 1372 if (kvm_x86_ops.cpu_dirty_log_size) 1373 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1374 else 1375 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1376 } 1377 1378 int kvm_cpu_dirty_log_size(void) 1379 { 1380 return kvm_x86_ops.cpu_dirty_log_size; 1381 } 1382 1383 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1384 struct kvm_memory_slot *slot, u64 gfn, 1385 int min_level) 1386 { 1387 struct kvm_rmap_head *rmap_head; 1388 int i; 1389 bool write_protected = false; 1390 1391 if (kvm_memslots_have_rmaps(kvm)) { 1392 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1393 rmap_head = gfn_to_rmap(gfn, i, slot); 1394 write_protected |= rmap_write_protect(rmap_head, true); 1395 } 1396 } 1397 1398 if (is_tdp_mmu_enabled(kvm)) 1399 write_protected |= 1400 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1401 1402 return write_protected; 1403 } 1404 1405 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1406 { 1407 struct kvm_memory_slot *slot; 1408 1409 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1410 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1411 } 1412 1413 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1414 const struct kvm_memory_slot *slot) 1415 { 1416 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1417 } 1418 1419 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1420 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1421 pte_t unused) 1422 { 1423 return __kvm_zap_rmap(kvm, rmap_head, slot); 1424 } 1425 1426 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1427 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1428 pte_t pte) 1429 { 1430 u64 *sptep; 1431 struct rmap_iterator iter; 1432 bool need_flush = false; 1433 u64 new_spte; 1434 kvm_pfn_t new_pfn; 1435 1436 WARN_ON(pte_huge(pte)); 1437 new_pfn = pte_pfn(pte); 1438 1439 restart: 1440 for_each_rmap_spte(rmap_head, &iter, sptep) { 1441 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1442 sptep, *sptep, gfn, level); 1443 1444 need_flush = true; 1445 1446 if (pte_write(pte)) { 1447 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 1448 goto restart; 1449 } else { 1450 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1451 *sptep, new_pfn); 1452 1453 mmu_spte_clear_track_bits(kvm, sptep); 1454 mmu_spte_set(sptep, new_spte); 1455 } 1456 } 1457 1458 if (need_flush && kvm_available_flush_tlb_with_range()) { 1459 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1460 return false; 1461 } 1462 1463 return need_flush; 1464 } 1465 1466 struct slot_rmap_walk_iterator { 1467 /* input fields. */ 1468 const struct kvm_memory_slot *slot; 1469 gfn_t start_gfn; 1470 gfn_t end_gfn; 1471 int start_level; 1472 int end_level; 1473 1474 /* output fields. */ 1475 gfn_t gfn; 1476 struct kvm_rmap_head *rmap; 1477 int level; 1478 1479 /* private field. */ 1480 struct kvm_rmap_head *end_rmap; 1481 }; 1482 1483 static void 1484 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1485 { 1486 iterator->level = level; 1487 iterator->gfn = iterator->start_gfn; 1488 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1489 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1490 } 1491 1492 static void 1493 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1494 const struct kvm_memory_slot *slot, int start_level, 1495 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1496 { 1497 iterator->slot = slot; 1498 iterator->start_level = start_level; 1499 iterator->end_level = end_level; 1500 iterator->start_gfn = start_gfn; 1501 iterator->end_gfn = end_gfn; 1502 1503 rmap_walk_init_level(iterator, iterator->start_level); 1504 } 1505 1506 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1507 { 1508 return !!iterator->rmap; 1509 } 1510 1511 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1512 { 1513 while (++iterator->rmap <= iterator->end_rmap) { 1514 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1515 1516 if (iterator->rmap->val) 1517 return; 1518 } 1519 1520 if (++iterator->level > iterator->end_level) { 1521 iterator->rmap = NULL; 1522 return; 1523 } 1524 1525 rmap_walk_init_level(iterator, iterator->level); 1526 } 1527 1528 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1529 _start_gfn, _end_gfn, _iter_) \ 1530 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1531 _end_level_, _start_gfn, _end_gfn); \ 1532 slot_rmap_walk_okay(_iter_); \ 1533 slot_rmap_walk_next(_iter_)) 1534 1535 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1536 struct kvm_memory_slot *slot, gfn_t gfn, 1537 int level, pte_t pte); 1538 1539 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1540 struct kvm_gfn_range *range, 1541 rmap_handler_t handler) 1542 { 1543 struct slot_rmap_walk_iterator iterator; 1544 bool ret = false; 1545 1546 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1547 range->start, range->end - 1, &iterator) 1548 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1549 iterator.level, range->pte); 1550 1551 return ret; 1552 } 1553 1554 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1555 { 1556 bool flush = false; 1557 1558 if (kvm_memslots_have_rmaps(kvm)) 1559 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1560 1561 if (is_tdp_mmu_enabled(kvm)) 1562 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1563 1564 return flush; 1565 } 1566 1567 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1568 { 1569 bool flush = false; 1570 1571 if (kvm_memslots_have_rmaps(kvm)) 1572 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); 1573 1574 if (is_tdp_mmu_enabled(kvm)) 1575 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1576 1577 return flush; 1578 } 1579 1580 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1581 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1582 pte_t unused) 1583 { 1584 u64 *sptep; 1585 struct rmap_iterator iter; 1586 int young = 0; 1587 1588 for_each_rmap_spte(rmap_head, &iter, sptep) 1589 young |= mmu_spte_age(sptep); 1590 1591 return young; 1592 } 1593 1594 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1595 struct kvm_memory_slot *slot, gfn_t gfn, 1596 int level, pte_t unused) 1597 { 1598 u64 *sptep; 1599 struct rmap_iterator iter; 1600 1601 for_each_rmap_spte(rmap_head, &iter, sptep) 1602 if (is_accessed_spte(*sptep)) 1603 return true; 1604 return false; 1605 } 1606 1607 #define RMAP_RECYCLE_THRESHOLD 1000 1608 1609 static void __rmap_add(struct kvm *kvm, 1610 struct kvm_mmu_memory_cache *cache, 1611 const struct kvm_memory_slot *slot, 1612 u64 *spte, gfn_t gfn, unsigned int access) 1613 { 1614 struct kvm_mmu_page *sp; 1615 struct kvm_rmap_head *rmap_head; 1616 int rmap_count; 1617 1618 sp = sptep_to_sp(spte); 1619 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1620 kvm_update_page_stats(kvm, sp->role.level, 1); 1621 1622 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1623 rmap_count = pte_list_add(cache, spte, rmap_head); 1624 1625 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1626 kvm->stat.max_mmu_rmap_size = rmap_count; 1627 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1628 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1629 kvm_flush_remote_tlbs_with_address( 1630 kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 1631 } 1632 } 1633 1634 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1635 u64 *spte, gfn_t gfn, unsigned int access) 1636 { 1637 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1638 1639 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1640 } 1641 1642 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1643 { 1644 bool young = false; 1645 1646 if (kvm_memslots_have_rmaps(kvm)) 1647 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1648 1649 if (is_tdp_mmu_enabled(kvm)) 1650 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1651 1652 return young; 1653 } 1654 1655 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1656 { 1657 bool young = false; 1658 1659 if (kvm_memslots_have_rmaps(kvm)) 1660 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1661 1662 if (is_tdp_mmu_enabled(kvm)) 1663 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1664 1665 return young; 1666 } 1667 1668 #ifdef MMU_DEBUG 1669 static int is_empty_shadow_page(u64 *spt) 1670 { 1671 u64 *pos; 1672 u64 *end; 1673 1674 for (pos = spt, end = pos + SPTE_ENT_PER_PAGE; pos != end; pos++) 1675 if (is_shadow_present_pte(*pos)) { 1676 printk(KERN_ERR "%s: %p %llx\n", __func__, 1677 pos, *pos); 1678 return 0; 1679 } 1680 return 1; 1681 } 1682 #endif 1683 1684 /* 1685 * This value is the sum of all of the kvm instances's 1686 * kvm->arch.n_used_mmu_pages values. We need a global, 1687 * aggregate version in order to make the slab shrinker 1688 * faster 1689 */ 1690 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1691 { 1692 kvm->arch.n_used_mmu_pages += nr; 1693 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1694 } 1695 1696 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1697 { 1698 kvm_mod_used_mmu_pages(kvm, +1); 1699 kvm_account_pgtable_pages((void *)sp->spt, +1); 1700 } 1701 1702 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1703 { 1704 kvm_mod_used_mmu_pages(kvm, -1); 1705 kvm_account_pgtable_pages((void *)sp->spt, -1); 1706 } 1707 1708 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1709 { 1710 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1711 hlist_del(&sp->hash_link); 1712 list_del(&sp->link); 1713 free_page((unsigned long)sp->spt); 1714 if (!sp->role.direct) 1715 free_page((unsigned long)sp->shadowed_translation); 1716 kmem_cache_free(mmu_page_header_cache, sp); 1717 } 1718 1719 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1720 { 1721 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1722 } 1723 1724 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1725 struct kvm_mmu_page *sp, u64 *parent_pte) 1726 { 1727 if (!parent_pte) 1728 return; 1729 1730 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1731 } 1732 1733 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1734 u64 *parent_pte) 1735 { 1736 pte_list_remove(parent_pte, &sp->parent_ptes); 1737 } 1738 1739 static void drop_parent_pte(struct kvm_mmu_page *sp, 1740 u64 *parent_pte) 1741 { 1742 mmu_page_remove_parent_pte(sp, parent_pte); 1743 mmu_spte_clear_no_track(parent_pte); 1744 } 1745 1746 static void mark_unsync(u64 *spte); 1747 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1748 { 1749 u64 *sptep; 1750 struct rmap_iterator iter; 1751 1752 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1753 mark_unsync(sptep); 1754 } 1755 } 1756 1757 static void mark_unsync(u64 *spte) 1758 { 1759 struct kvm_mmu_page *sp; 1760 1761 sp = sptep_to_sp(spte); 1762 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1763 return; 1764 if (sp->unsync_children++) 1765 return; 1766 kvm_mmu_mark_parents_unsync(sp); 1767 } 1768 1769 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1770 struct kvm_mmu_page *sp) 1771 { 1772 return -1; 1773 } 1774 1775 #define KVM_PAGE_ARRAY_NR 16 1776 1777 struct kvm_mmu_pages { 1778 struct mmu_page_and_offset { 1779 struct kvm_mmu_page *sp; 1780 unsigned int idx; 1781 } page[KVM_PAGE_ARRAY_NR]; 1782 unsigned int nr; 1783 }; 1784 1785 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1786 int idx) 1787 { 1788 int i; 1789 1790 if (sp->unsync) 1791 for (i=0; i < pvec->nr; i++) 1792 if (pvec->page[i].sp == sp) 1793 return 0; 1794 1795 pvec->page[pvec->nr].sp = sp; 1796 pvec->page[pvec->nr].idx = idx; 1797 pvec->nr++; 1798 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1799 } 1800 1801 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1802 { 1803 --sp->unsync_children; 1804 WARN_ON((int)sp->unsync_children < 0); 1805 __clear_bit(idx, sp->unsync_child_bitmap); 1806 } 1807 1808 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1809 struct kvm_mmu_pages *pvec) 1810 { 1811 int i, ret, nr_unsync_leaf = 0; 1812 1813 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1814 struct kvm_mmu_page *child; 1815 u64 ent = sp->spt[i]; 1816 1817 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1818 clear_unsync_child_bit(sp, i); 1819 continue; 1820 } 1821 1822 child = spte_to_child_sp(ent); 1823 1824 if (child->unsync_children) { 1825 if (mmu_pages_add(pvec, child, i)) 1826 return -ENOSPC; 1827 1828 ret = __mmu_unsync_walk(child, pvec); 1829 if (!ret) { 1830 clear_unsync_child_bit(sp, i); 1831 continue; 1832 } else if (ret > 0) { 1833 nr_unsync_leaf += ret; 1834 } else 1835 return ret; 1836 } else if (child->unsync) { 1837 nr_unsync_leaf++; 1838 if (mmu_pages_add(pvec, child, i)) 1839 return -ENOSPC; 1840 } else 1841 clear_unsync_child_bit(sp, i); 1842 } 1843 1844 return nr_unsync_leaf; 1845 } 1846 1847 #define INVALID_INDEX (-1) 1848 1849 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1850 struct kvm_mmu_pages *pvec) 1851 { 1852 pvec->nr = 0; 1853 if (!sp->unsync_children) 1854 return 0; 1855 1856 mmu_pages_add(pvec, sp, INVALID_INDEX); 1857 return __mmu_unsync_walk(sp, pvec); 1858 } 1859 1860 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1861 { 1862 WARN_ON(!sp->unsync); 1863 trace_kvm_mmu_sync_page(sp); 1864 sp->unsync = 0; 1865 --kvm->stat.mmu_unsync; 1866 } 1867 1868 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1869 struct list_head *invalid_list); 1870 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1871 struct list_head *invalid_list); 1872 1873 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1874 { 1875 if (sp->role.direct) 1876 return false; 1877 1878 if (sp->role.passthrough) 1879 return false; 1880 1881 return true; 1882 } 1883 1884 #define for_each_valid_sp(_kvm, _sp, _list) \ 1885 hlist_for_each_entry(_sp, _list, hash_link) \ 1886 if (is_obsolete_sp((_kvm), (_sp))) { \ 1887 } else 1888 1889 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1890 for_each_valid_sp(_kvm, _sp, \ 1891 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1892 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1893 1894 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1895 struct list_head *invalid_list) 1896 { 1897 int ret = vcpu->arch.mmu->sync_page(vcpu, sp); 1898 1899 if (ret < 0) 1900 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1901 return ret; 1902 } 1903 1904 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1905 struct list_head *invalid_list, 1906 bool remote_flush) 1907 { 1908 if (!remote_flush && list_empty(invalid_list)) 1909 return false; 1910 1911 if (!list_empty(invalid_list)) 1912 kvm_mmu_commit_zap_page(kvm, invalid_list); 1913 else 1914 kvm_flush_remote_tlbs(kvm); 1915 return true; 1916 } 1917 1918 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1919 { 1920 if (sp->role.invalid) 1921 return true; 1922 1923 /* TDP MMU pages do not use the MMU generation. */ 1924 return !sp->tdp_mmu_page && 1925 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1926 } 1927 1928 struct mmu_page_path { 1929 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1930 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1931 }; 1932 1933 #define for_each_sp(pvec, sp, parents, i) \ 1934 for (i = mmu_pages_first(&pvec, &parents); \ 1935 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1936 i = mmu_pages_next(&pvec, &parents, i)) 1937 1938 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1939 struct mmu_page_path *parents, 1940 int i) 1941 { 1942 int n; 1943 1944 for (n = i+1; n < pvec->nr; n++) { 1945 struct kvm_mmu_page *sp = pvec->page[n].sp; 1946 unsigned idx = pvec->page[n].idx; 1947 int level = sp->role.level; 1948 1949 parents->idx[level-1] = idx; 1950 if (level == PG_LEVEL_4K) 1951 break; 1952 1953 parents->parent[level-2] = sp; 1954 } 1955 1956 return n; 1957 } 1958 1959 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1960 struct mmu_page_path *parents) 1961 { 1962 struct kvm_mmu_page *sp; 1963 int level; 1964 1965 if (pvec->nr == 0) 1966 return 0; 1967 1968 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1969 1970 sp = pvec->page[0].sp; 1971 level = sp->role.level; 1972 WARN_ON(level == PG_LEVEL_4K); 1973 1974 parents->parent[level-2] = sp; 1975 1976 /* Also set up a sentinel. Further entries in pvec are all 1977 * children of sp, so this element is never overwritten. 1978 */ 1979 parents->parent[level-1] = NULL; 1980 return mmu_pages_next(pvec, parents, 0); 1981 } 1982 1983 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1984 { 1985 struct kvm_mmu_page *sp; 1986 unsigned int level = 0; 1987 1988 do { 1989 unsigned int idx = parents->idx[level]; 1990 sp = parents->parent[level]; 1991 if (!sp) 1992 return; 1993 1994 WARN_ON(idx == INVALID_INDEX); 1995 clear_unsync_child_bit(sp, idx); 1996 level++; 1997 } while (!sp->unsync_children); 1998 } 1999 2000 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2001 struct kvm_mmu_page *parent, bool can_yield) 2002 { 2003 int i; 2004 struct kvm_mmu_page *sp; 2005 struct mmu_page_path parents; 2006 struct kvm_mmu_pages pages; 2007 LIST_HEAD(invalid_list); 2008 bool flush = false; 2009 2010 while (mmu_unsync_walk(parent, &pages)) { 2011 bool protected = false; 2012 2013 for_each_sp(pages, sp, parents, i) 2014 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2015 2016 if (protected) { 2017 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2018 flush = false; 2019 } 2020 2021 for_each_sp(pages, sp, parents, i) { 2022 kvm_unlink_unsync_page(vcpu->kvm, sp); 2023 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2024 mmu_pages_clear_parents(&parents); 2025 } 2026 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2027 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2028 if (!can_yield) { 2029 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2030 return -EINTR; 2031 } 2032 2033 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2034 flush = false; 2035 } 2036 } 2037 2038 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2039 return 0; 2040 } 2041 2042 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2043 { 2044 atomic_set(&sp->write_flooding_count, 0); 2045 } 2046 2047 static void clear_sp_write_flooding_count(u64 *spte) 2048 { 2049 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2050 } 2051 2052 /* 2053 * The vCPU is required when finding indirect shadow pages; the shadow 2054 * page may already exist and syncing it needs the vCPU pointer in 2055 * order to read guest page tables. Direct shadow pages are never 2056 * unsync, thus @vcpu can be NULL if @role.direct is true. 2057 */ 2058 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2059 struct kvm_vcpu *vcpu, 2060 gfn_t gfn, 2061 struct hlist_head *sp_list, 2062 union kvm_mmu_page_role role) 2063 { 2064 struct kvm_mmu_page *sp; 2065 int ret; 2066 int collisions = 0; 2067 LIST_HEAD(invalid_list); 2068 2069 for_each_valid_sp(kvm, sp, sp_list) { 2070 if (sp->gfn != gfn) { 2071 collisions++; 2072 continue; 2073 } 2074 2075 if (sp->role.word != role.word) { 2076 /* 2077 * If the guest is creating an upper-level page, zap 2078 * unsync pages for the same gfn. While it's possible 2079 * the guest is using recursive page tables, in all 2080 * likelihood the guest has stopped using the unsync 2081 * page and is installing a completely unrelated page. 2082 * Unsync pages must not be left as is, because the new 2083 * upper-level page will be write-protected. 2084 */ 2085 if (role.level > PG_LEVEL_4K && sp->unsync) 2086 kvm_mmu_prepare_zap_page(kvm, sp, 2087 &invalid_list); 2088 continue; 2089 } 2090 2091 /* unsync and write-flooding only apply to indirect SPs. */ 2092 if (sp->role.direct) 2093 goto out; 2094 2095 if (sp->unsync) { 2096 if (KVM_BUG_ON(!vcpu, kvm)) 2097 break; 2098 2099 /* 2100 * The page is good, but is stale. kvm_sync_page does 2101 * get the latest guest state, but (unlike mmu_unsync_children) 2102 * it doesn't write-protect the page or mark it synchronized! 2103 * This way the validity of the mapping is ensured, but the 2104 * overhead of write protection is not incurred until the 2105 * guest invalidates the TLB mapping. This allows multiple 2106 * SPs for a single gfn to be unsync. 2107 * 2108 * If the sync fails, the page is zapped. If so, break 2109 * in order to rebuild it. 2110 */ 2111 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2112 if (ret < 0) 2113 break; 2114 2115 WARN_ON(!list_empty(&invalid_list)); 2116 if (ret > 0) 2117 kvm_flush_remote_tlbs(kvm); 2118 } 2119 2120 __clear_sp_write_flooding_count(sp); 2121 2122 goto out; 2123 } 2124 2125 sp = NULL; 2126 ++kvm->stat.mmu_cache_miss; 2127 2128 out: 2129 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2130 2131 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2132 kvm->stat.max_mmu_page_hash_collisions = collisions; 2133 return sp; 2134 } 2135 2136 /* Caches used when allocating a new shadow page. */ 2137 struct shadow_page_caches { 2138 struct kvm_mmu_memory_cache *page_header_cache; 2139 struct kvm_mmu_memory_cache *shadow_page_cache; 2140 struct kvm_mmu_memory_cache *shadowed_info_cache; 2141 }; 2142 2143 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2144 struct shadow_page_caches *caches, 2145 gfn_t gfn, 2146 struct hlist_head *sp_list, 2147 union kvm_mmu_page_role role) 2148 { 2149 struct kvm_mmu_page *sp; 2150 2151 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2152 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2153 if (!role.direct) 2154 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2155 2156 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2157 2158 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2159 2160 /* 2161 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2162 * depends on valid pages being added to the head of the list. See 2163 * comments in kvm_zap_obsolete_pages(). 2164 */ 2165 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2166 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2167 kvm_account_mmu_page(kvm, sp); 2168 2169 sp->gfn = gfn; 2170 sp->role = role; 2171 hlist_add_head(&sp->hash_link, sp_list); 2172 if (sp_has_gptes(sp)) 2173 account_shadowed(kvm, sp); 2174 2175 return sp; 2176 } 2177 2178 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2179 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2180 struct kvm_vcpu *vcpu, 2181 struct shadow_page_caches *caches, 2182 gfn_t gfn, 2183 union kvm_mmu_page_role role) 2184 { 2185 struct hlist_head *sp_list; 2186 struct kvm_mmu_page *sp; 2187 bool created = false; 2188 2189 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2190 2191 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2192 if (!sp) { 2193 created = true; 2194 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2195 } 2196 2197 trace_kvm_mmu_get_page(sp, created); 2198 return sp; 2199 } 2200 2201 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2202 gfn_t gfn, 2203 union kvm_mmu_page_role role) 2204 { 2205 struct shadow_page_caches caches = { 2206 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2207 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2208 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2209 }; 2210 2211 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2212 } 2213 2214 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2215 unsigned int access) 2216 { 2217 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2218 union kvm_mmu_page_role role; 2219 2220 role = parent_sp->role; 2221 role.level--; 2222 role.access = access; 2223 role.direct = direct; 2224 role.passthrough = 0; 2225 2226 /* 2227 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2228 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2229 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2230 * shadow each guest page table with multiple shadow page tables, which 2231 * requires extra bookkeeping in the role. 2232 * 2233 * Specifically, to shadow the guest's page directory (which covers a 2234 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2235 * 1GiB of the address space. @role.quadrant encodes which quarter of 2236 * the address space each maps. 2237 * 2238 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2239 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2240 * @role.quadrant encodes which half of the region they map. 2241 * 2242 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2243 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2244 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2245 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2246 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2247 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2248 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2249 * covers bit 21 (see above), thus the quadrant is calculated from the 2250 * _least_ significant bit of the PDE index. 2251 */ 2252 if (role.has_4_byte_gpte) { 2253 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2254 role.quadrant = spte_index(sptep) & 1; 2255 } 2256 2257 return role; 2258 } 2259 2260 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2261 u64 *sptep, gfn_t gfn, 2262 bool direct, unsigned int access) 2263 { 2264 union kvm_mmu_page_role role; 2265 2266 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2267 return ERR_PTR(-EEXIST); 2268 2269 role = kvm_mmu_child_role(sptep, direct, access); 2270 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2271 } 2272 2273 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2274 struct kvm_vcpu *vcpu, hpa_t root, 2275 u64 addr) 2276 { 2277 iterator->addr = addr; 2278 iterator->shadow_addr = root; 2279 iterator->level = vcpu->arch.mmu->root_role.level; 2280 2281 if (iterator->level >= PT64_ROOT_4LEVEL && 2282 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2283 !vcpu->arch.mmu->root_role.direct) 2284 iterator->level = PT32E_ROOT_LEVEL; 2285 2286 if (iterator->level == PT32E_ROOT_LEVEL) { 2287 /* 2288 * prev_root is currently only used for 64-bit hosts. So only 2289 * the active root_hpa is valid here. 2290 */ 2291 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2292 2293 iterator->shadow_addr 2294 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2295 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2296 --iterator->level; 2297 if (!iterator->shadow_addr) 2298 iterator->level = 0; 2299 } 2300 } 2301 2302 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2303 struct kvm_vcpu *vcpu, u64 addr) 2304 { 2305 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2306 addr); 2307 } 2308 2309 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2310 { 2311 if (iterator->level < PG_LEVEL_4K) 2312 return false; 2313 2314 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2315 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2316 return true; 2317 } 2318 2319 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2320 u64 spte) 2321 { 2322 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2323 iterator->level = 0; 2324 return; 2325 } 2326 2327 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2328 --iterator->level; 2329 } 2330 2331 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2332 { 2333 __shadow_walk_next(iterator, *iterator->sptep); 2334 } 2335 2336 static void __link_shadow_page(struct kvm *kvm, 2337 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2338 struct kvm_mmu_page *sp, bool flush) 2339 { 2340 u64 spte; 2341 2342 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2343 2344 /* 2345 * If an SPTE is present already, it must be a leaf and therefore 2346 * a large one. Drop it, and flush the TLB if needed, before 2347 * installing sp. 2348 */ 2349 if (is_shadow_present_pte(*sptep)) 2350 drop_large_spte(kvm, sptep, flush); 2351 2352 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2353 2354 mmu_spte_set(sptep, spte); 2355 2356 mmu_page_add_parent_pte(cache, sp, sptep); 2357 2358 if (sp->unsync_children || sp->unsync) 2359 mark_unsync(sptep); 2360 } 2361 2362 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2363 struct kvm_mmu_page *sp) 2364 { 2365 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2366 } 2367 2368 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2369 unsigned direct_access) 2370 { 2371 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2372 struct kvm_mmu_page *child; 2373 2374 /* 2375 * For the direct sp, if the guest pte's dirty bit 2376 * changed form clean to dirty, it will corrupt the 2377 * sp's access: allow writable in the read-only sp, 2378 * so we should update the spte at this point to get 2379 * a new sp with the correct access. 2380 */ 2381 child = spte_to_child_sp(*sptep); 2382 if (child->role.access == direct_access) 2383 return; 2384 2385 drop_parent_pte(child, sptep); 2386 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2387 } 2388 } 2389 2390 /* Returns the number of zapped non-leaf child shadow pages. */ 2391 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2392 u64 *spte, struct list_head *invalid_list) 2393 { 2394 u64 pte; 2395 struct kvm_mmu_page *child; 2396 2397 pte = *spte; 2398 if (is_shadow_present_pte(pte)) { 2399 if (is_last_spte(pte, sp->role.level)) { 2400 drop_spte(kvm, spte); 2401 } else { 2402 child = spte_to_child_sp(pte); 2403 drop_parent_pte(child, spte); 2404 2405 /* 2406 * Recursively zap nested TDP SPs, parentless SPs are 2407 * unlikely to be used again in the near future. This 2408 * avoids retaining a large number of stale nested SPs. 2409 */ 2410 if (tdp_enabled && invalid_list && 2411 child->role.guest_mode && !child->parent_ptes.val) 2412 return kvm_mmu_prepare_zap_page(kvm, child, 2413 invalid_list); 2414 } 2415 } else if (is_mmio_spte(pte)) { 2416 mmu_spte_clear_no_track(spte); 2417 } 2418 return 0; 2419 } 2420 2421 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2422 struct kvm_mmu_page *sp, 2423 struct list_head *invalid_list) 2424 { 2425 int zapped = 0; 2426 unsigned i; 2427 2428 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2429 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2430 2431 return zapped; 2432 } 2433 2434 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) 2435 { 2436 u64 *sptep; 2437 struct rmap_iterator iter; 2438 2439 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2440 drop_parent_pte(sp, sptep); 2441 } 2442 2443 static int mmu_zap_unsync_children(struct kvm *kvm, 2444 struct kvm_mmu_page *parent, 2445 struct list_head *invalid_list) 2446 { 2447 int i, zapped = 0; 2448 struct mmu_page_path parents; 2449 struct kvm_mmu_pages pages; 2450 2451 if (parent->role.level == PG_LEVEL_4K) 2452 return 0; 2453 2454 while (mmu_unsync_walk(parent, &pages)) { 2455 struct kvm_mmu_page *sp; 2456 2457 for_each_sp(pages, sp, parents, i) { 2458 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2459 mmu_pages_clear_parents(&parents); 2460 zapped++; 2461 } 2462 } 2463 2464 return zapped; 2465 } 2466 2467 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2468 struct kvm_mmu_page *sp, 2469 struct list_head *invalid_list, 2470 int *nr_zapped) 2471 { 2472 bool list_unstable, zapped_root = false; 2473 2474 lockdep_assert_held_write(&kvm->mmu_lock); 2475 trace_kvm_mmu_prepare_zap_page(sp); 2476 ++kvm->stat.mmu_shadow_zapped; 2477 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2478 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2479 kvm_mmu_unlink_parents(sp); 2480 2481 /* Zapping children means active_mmu_pages has become unstable. */ 2482 list_unstable = *nr_zapped; 2483 2484 if (!sp->role.invalid && sp_has_gptes(sp)) 2485 unaccount_shadowed(kvm, sp); 2486 2487 if (sp->unsync) 2488 kvm_unlink_unsync_page(kvm, sp); 2489 if (!sp->root_count) { 2490 /* Count self */ 2491 (*nr_zapped)++; 2492 2493 /* 2494 * Already invalid pages (previously active roots) are not on 2495 * the active page list. See list_del() in the "else" case of 2496 * !sp->root_count. 2497 */ 2498 if (sp->role.invalid) 2499 list_add(&sp->link, invalid_list); 2500 else 2501 list_move(&sp->link, invalid_list); 2502 kvm_unaccount_mmu_page(kvm, sp); 2503 } else { 2504 /* 2505 * Remove the active root from the active page list, the root 2506 * will be explicitly freed when the root_count hits zero. 2507 */ 2508 list_del(&sp->link); 2509 2510 /* 2511 * Obsolete pages cannot be used on any vCPUs, see the comment 2512 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2513 * treats invalid shadow pages as being obsolete. 2514 */ 2515 zapped_root = !is_obsolete_sp(kvm, sp); 2516 } 2517 2518 if (sp->nx_huge_page_disallowed) 2519 unaccount_nx_huge_page(kvm, sp); 2520 2521 sp->role.invalid = 1; 2522 2523 /* 2524 * Make the request to free obsolete roots after marking the root 2525 * invalid, otherwise other vCPUs may not see it as invalid. 2526 */ 2527 if (zapped_root) 2528 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2529 return list_unstable; 2530 } 2531 2532 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2533 struct list_head *invalid_list) 2534 { 2535 int nr_zapped; 2536 2537 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2538 return nr_zapped; 2539 } 2540 2541 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2542 struct list_head *invalid_list) 2543 { 2544 struct kvm_mmu_page *sp, *nsp; 2545 2546 if (list_empty(invalid_list)) 2547 return; 2548 2549 /* 2550 * We need to make sure everyone sees our modifications to 2551 * the page tables and see changes to vcpu->mode here. The barrier 2552 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2553 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2554 * 2555 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2556 * guest mode and/or lockless shadow page table walks. 2557 */ 2558 kvm_flush_remote_tlbs(kvm); 2559 2560 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2561 WARN_ON(!sp->role.invalid || sp->root_count); 2562 kvm_mmu_free_shadow_page(sp); 2563 } 2564 } 2565 2566 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2567 unsigned long nr_to_zap) 2568 { 2569 unsigned long total_zapped = 0; 2570 struct kvm_mmu_page *sp, *tmp; 2571 LIST_HEAD(invalid_list); 2572 bool unstable; 2573 int nr_zapped; 2574 2575 if (list_empty(&kvm->arch.active_mmu_pages)) 2576 return 0; 2577 2578 restart: 2579 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2580 /* 2581 * Don't zap active root pages, the page itself can't be freed 2582 * and zapping it will just force vCPUs to realloc and reload. 2583 */ 2584 if (sp->root_count) 2585 continue; 2586 2587 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2588 &nr_zapped); 2589 total_zapped += nr_zapped; 2590 if (total_zapped >= nr_to_zap) 2591 break; 2592 2593 if (unstable) 2594 goto restart; 2595 } 2596 2597 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2598 2599 kvm->stat.mmu_recycled += total_zapped; 2600 return total_zapped; 2601 } 2602 2603 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2604 { 2605 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2606 return kvm->arch.n_max_mmu_pages - 2607 kvm->arch.n_used_mmu_pages; 2608 2609 return 0; 2610 } 2611 2612 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2613 { 2614 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2615 2616 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2617 return 0; 2618 2619 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2620 2621 /* 2622 * Note, this check is intentionally soft, it only guarantees that one 2623 * page is available, while the caller may end up allocating as many as 2624 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2625 * exceeding the (arbitrary by default) limit will not harm the host, 2626 * being too aggressive may unnecessarily kill the guest, and getting an 2627 * exact count is far more trouble than it's worth, especially in the 2628 * page fault paths. 2629 */ 2630 if (!kvm_mmu_available_pages(vcpu->kvm)) 2631 return -ENOSPC; 2632 return 0; 2633 } 2634 2635 /* 2636 * Changing the number of mmu pages allocated to the vm 2637 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2638 */ 2639 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2640 { 2641 write_lock(&kvm->mmu_lock); 2642 2643 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2644 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2645 goal_nr_mmu_pages); 2646 2647 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2648 } 2649 2650 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2651 2652 write_unlock(&kvm->mmu_lock); 2653 } 2654 2655 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2656 { 2657 struct kvm_mmu_page *sp; 2658 LIST_HEAD(invalid_list); 2659 int r; 2660 2661 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2662 r = 0; 2663 write_lock(&kvm->mmu_lock); 2664 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2665 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2666 sp->role.word); 2667 r = 1; 2668 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2669 } 2670 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2671 write_unlock(&kvm->mmu_lock); 2672 2673 return r; 2674 } 2675 2676 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2677 { 2678 gpa_t gpa; 2679 int r; 2680 2681 if (vcpu->arch.mmu->root_role.direct) 2682 return 0; 2683 2684 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2685 2686 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2687 2688 return r; 2689 } 2690 2691 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2692 { 2693 trace_kvm_mmu_unsync_page(sp); 2694 ++kvm->stat.mmu_unsync; 2695 sp->unsync = 1; 2696 2697 kvm_mmu_mark_parents_unsync(sp); 2698 } 2699 2700 /* 2701 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2702 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2703 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2704 * be write-protected. 2705 */ 2706 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2707 gfn_t gfn, bool can_unsync, bool prefetch) 2708 { 2709 struct kvm_mmu_page *sp; 2710 bool locked = false; 2711 2712 /* 2713 * Force write-protection if the page is being tracked. Note, the page 2714 * track machinery is used to write-protect upper-level shadow pages, 2715 * i.e. this guards the role.level == 4K assertion below! 2716 */ 2717 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2718 return -EPERM; 2719 2720 /* 2721 * The page is not write-tracked, mark existing shadow pages unsync 2722 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2723 * that case, KVM must complete emulation of the guest TLB flush before 2724 * allowing shadow pages to become unsync (writable by the guest). 2725 */ 2726 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2727 if (!can_unsync) 2728 return -EPERM; 2729 2730 if (sp->unsync) 2731 continue; 2732 2733 if (prefetch) 2734 return -EEXIST; 2735 2736 /* 2737 * TDP MMU page faults require an additional spinlock as they 2738 * run with mmu_lock held for read, not write, and the unsync 2739 * logic is not thread safe. Take the spinklock regardless of 2740 * the MMU type to avoid extra conditionals/parameters, there's 2741 * no meaningful penalty if mmu_lock is held for write. 2742 */ 2743 if (!locked) { 2744 locked = true; 2745 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2746 2747 /* 2748 * Recheck after taking the spinlock, a different vCPU 2749 * may have since marked the page unsync. A false 2750 * positive on the unprotected check above is not 2751 * possible as clearing sp->unsync _must_ hold mmu_lock 2752 * for write, i.e. unsync cannot transition from 0->1 2753 * while this CPU holds mmu_lock for read (or write). 2754 */ 2755 if (READ_ONCE(sp->unsync)) 2756 continue; 2757 } 2758 2759 WARN_ON(sp->role.level != PG_LEVEL_4K); 2760 kvm_unsync_page(kvm, sp); 2761 } 2762 if (locked) 2763 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2764 2765 /* 2766 * We need to ensure that the marking of unsync pages is visible 2767 * before the SPTE is updated to allow writes because 2768 * kvm_mmu_sync_roots() checks the unsync flags without holding 2769 * the MMU lock and so can race with this. If the SPTE was updated 2770 * before the page had been marked as unsync-ed, something like the 2771 * following could happen: 2772 * 2773 * CPU 1 CPU 2 2774 * --------------------------------------------------------------------- 2775 * 1.2 Host updates SPTE 2776 * to be writable 2777 * 2.1 Guest writes a GPTE for GVA X. 2778 * (GPTE being in the guest page table shadowed 2779 * by the SP from CPU 1.) 2780 * This reads SPTE during the page table walk. 2781 * Since SPTE.W is read as 1, there is no 2782 * fault. 2783 * 2784 * 2.2 Guest issues TLB flush. 2785 * That causes a VM Exit. 2786 * 2787 * 2.3 Walking of unsync pages sees sp->unsync is 2788 * false and skips the page. 2789 * 2790 * 2.4 Guest accesses GVA X. 2791 * Since the mapping in the SP was not updated, 2792 * so the old mapping for GVA X incorrectly 2793 * gets used. 2794 * 1.1 Host marks SP 2795 * as unsync 2796 * (sp->unsync = true) 2797 * 2798 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2799 * the situation in 2.4 does not arise. It pairs with the read barrier 2800 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2801 */ 2802 smp_wmb(); 2803 2804 return 0; 2805 } 2806 2807 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2808 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2809 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2810 { 2811 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2812 int level = sp->role.level; 2813 int was_rmapped = 0; 2814 int ret = RET_PF_FIXED; 2815 bool flush = false; 2816 bool wrprot; 2817 u64 spte; 2818 2819 /* Prefetching always gets a writable pfn. */ 2820 bool host_writable = !fault || fault->map_writable; 2821 bool prefetch = !fault || fault->prefetch; 2822 bool write_fault = fault && fault->write; 2823 2824 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2825 *sptep, write_fault, gfn); 2826 2827 if (unlikely(is_noslot_pfn(pfn))) { 2828 vcpu->stat.pf_mmio_spte_created++; 2829 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2830 return RET_PF_EMULATE; 2831 } 2832 2833 if (is_shadow_present_pte(*sptep)) { 2834 /* 2835 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2836 * the parent of the now unreachable PTE. 2837 */ 2838 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2839 struct kvm_mmu_page *child; 2840 u64 pte = *sptep; 2841 2842 child = spte_to_child_sp(pte); 2843 drop_parent_pte(child, sptep); 2844 flush = true; 2845 } else if (pfn != spte_to_pfn(*sptep)) { 2846 pgprintk("hfn old %llx new %llx\n", 2847 spte_to_pfn(*sptep), pfn); 2848 drop_spte(vcpu->kvm, sptep); 2849 flush = true; 2850 } else 2851 was_rmapped = 1; 2852 } 2853 2854 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2855 true, host_writable, &spte); 2856 2857 if (*sptep == spte) { 2858 ret = RET_PF_SPURIOUS; 2859 } else { 2860 flush |= mmu_spte_update(sptep, spte); 2861 trace_kvm_mmu_set_spte(level, gfn, sptep); 2862 } 2863 2864 if (wrprot) { 2865 if (write_fault) 2866 ret = RET_PF_EMULATE; 2867 } 2868 2869 if (flush) 2870 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2871 KVM_PAGES_PER_HPAGE(level)); 2872 2873 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2874 2875 if (!was_rmapped) { 2876 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2877 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2878 } else { 2879 /* Already rmapped but the pte_access bits may have changed. */ 2880 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2881 } 2882 2883 return ret; 2884 } 2885 2886 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2887 struct kvm_mmu_page *sp, 2888 u64 *start, u64 *end) 2889 { 2890 struct page *pages[PTE_PREFETCH_NUM]; 2891 struct kvm_memory_slot *slot; 2892 unsigned int access = sp->role.access; 2893 int i, ret; 2894 gfn_t gfn; 2895 2896 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2897 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2898 if (!slot) 2899 return -1; 2900 2901 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2902 if (ret <= 0) 2903 return -1; 2904 2905 for (i = 0; i < ret; i++, gfn++, start++) { 2906 mmu_set_spte(vcpu, slot, start, access, gfn, 2907 page_to_pfn(pages[i]), NULL); 2908 put_page(pages[i]); 2909 } 2910 2911 return 0; 2912 } 2913 2914 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2915 struct kvm_mmu_page *sp, u64 *sptep) 2916 { 2917 u64 *spte, *start = NULL; 2918 int i; 2919 2920 WARN_ON(!sp->role.direct); 2921 2922 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 2923 spte = sp->spt + i; 2924 2925 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2926 if (is_shadow_present_pte(*spte) || spte == sptep) { 2927 if (!start) 2928 continue; 2929 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2930 return; 2931 start = NULL; 2932 } else if (!start) 2933 start = spte; 2934 } 2935 if (start) 2936 direct_pte_prefetch_many(vcpu, sp, start, spte); 2937 } 2938 2939 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2940 { 2941 struct kvm_mmu_page *sp; 2942 2943 sp = sptep_to_sp(sptep); 2944 2945 /* 2946 * Without accessed bits, there's no way to distinguish between 2947 * actually accessed translations and prefetched, so disable pte 2948 * prefetch if accessed bits aren't available. 2949 */ 2950 if (sp_ad_disabled(sp)) 2951 return; 2952 2953 if (sp->role.level > PG_LEVEL_4K) 2954 return; 2955 2956 /* 2957 * If addresses are being invalidated, skip prefetching to avoid 2958 * accidentally prefetching those addresses. 2959 */ 2960 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 2961 return; 2962 2963 __direct_pte_prefetch(vcpu, sp, sptep); 2964 } 2965 2966 /* 2967 * Lookup the mapping level for @gfn in the current mm. 2968 * 2969 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 2970 * consumer to be tied into KVM's handlers for MMU notifier events! 2971 * 2972 * There are several ways to safely use this helper: 2973 * 2974 * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before 2975 * consuming it. In this case, mmu_lock doesn't need to be held during the 2976 * lookup, but it does need to be held while checking the MMU notifier. 2977 * 2978 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 2979 * event for the hva. This can be done by explicit checking the MMU notifier 2980 * or by ensuring that KVM already has a valid mapping that covers the hva. 2981 * 2982 * - Do not use the result to install new mappings, e.g. use the host mapping 2983 * level only to decide whether or not to zap an entry. In this case, it's 2984 * not required to hold mmu_lock (though it's highly likely the caller will 2985 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 2986 * 2987 * Note! The lookup can still race with modifications to host page tables, but 2988 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 2989 * race with the primary MMU occurs. 2990 */ 2991 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 2992 const struct kvm_memory_slot *slot) 2993 { 2994 int level = PG_LEVEL_4K; 2995 unsigned long hva; 2996 unsigned long flags; 2997 pgd_t pgd; 2998 p4d_t p4d; 2999 pud_t pud; 3000 pmd_t pmd; 3001 3002 /* 3003 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3004 * is not solely for performance, it's also necessary to avoid the 3005 * "writable" check in __gfn_to_hva_many(), which will always fail on 3006 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3007 * page fault steps have already verified the guest isn't writing a 3008 * read-only memslot. 3009 */ 3010 hva = __gfn_to_hva_memslot(slot, gfn); 3011 3012 /* 3013 * Disable IRQs to prevent concurrent tear down of host page tables, 3014 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3015 * the original page table. 3016 */ 3017 local_irq_save(flags); 3018 3019 /* 3020 * Read each entry once. As above, a non-leaf entry can be promoted to 3021 * a huge page _during_ this walk. Re-reading the entry could send the 3022 * walk into the weeks, e.g. p*d_large() returns false (sees the old 3023 * value) and then p*d_offset() walks into the target huge page instead 3024 * of the old page table (sees the new value). 3025 */ 3026 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3027 if (pgd_none(pgd)) 3028 goto out; 3029 3030 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3031 if (p4d_none(p4d) || !p4d_present(p4d)) 3032 goto out; 3033 3034 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3035 if (pud_none(pud) || !pud_present(pud)) 3036 goto out; 3037 3038 if (pud_large(pud)) { 3039 level = PG_LEVEL_1G; 3040 goto out; 3041 } 3042 3043 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3044 if (pmd_none(pmd) || !pmd_present(pmd)) 3045 goto out; 3046 3047 if (pmd_large(pmd)) 3048 level = PG_LEVEL_2M; 3049 3050 out: 3051 local_irq_restore(flags); 3052 return level; 3053 } 3054 3055 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3056 const struct kvm_memory_slot *slot, gfn_t gfn, 3057 int max_level) 3058 { 3059 struct kvm_lpage_info *linfo; 3060 int host_level; 3061 3062 max_level = min(max_level, max_huge_page_level); 3063 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3064 linfo = lpage_info_slot(gfn, slot, max_level); 3065 if (!linfo->disallow_lpage) 3066 break; 3067 } 3068 3069 if (max_level == PG_LEVEL_4K) 3070 return PG_LEVEL_4K; 3071 3072 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3073 return min(host_level, max_level); 3074 } 3075 3076 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3077 { 3078 struct kvm_memory_slot *slot = fault->slot; 3079 kvm_pfn_t mask; 3080 3081 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3082 3083 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3084 return; 3085 3086 if (is_error_noslot_pfn(fault->pfn)) 3087 return; 3088 3089 if (kvm_slot_dirty_track_enabled(slot)) 3090 return; 3091 3092 /* 3093 * Enforce the iTLB multihit workaround after capturing the requested 3094 * level, which will be used to do precise, accurate accounting. 3095 */ 3096 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3097 fault->gfn, fault->max_level); 3098 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3099 return; 3100 3101 /* 3102 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3103 * the pmd can't be split from under us. 3104 */ 3105 fault->goal_level = fault->req_level; 3106 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3107 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3108 fault->pfn &= ~mask; 3109 } 3110 3111 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3112 { 3113 if (cur_level > PG_LEVEL_4K && 3114 cur_level == fault->goal_level && 3115 is_shadow_present_pte(spte) && 3116 !is_large_pte(spte) && 3117 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3118 /* 3119 * A small SPTE exists for this pfn, but FNAME(fetch) 3120 * and __direct_map would like to create a large PTE 3121 * instead: just force them to go down another level, 3122 * patching back for them into pfn the next 9 bits of 3123 * the address. 3124 */ 3125 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3126 KVM_PAGES_PER_HPAGE(cur_level - 1); 3127 fault->pfn |= fault->gfn & page_mask; 3128 fault->goal_level--; 3129 } 3130 } 3131 3132 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3133 { 3134 struct kvm_shadow_walk_iterator it; 3135 struct kvm_mmu_page *sp; 3136 int ret; 3137 gfn_t base_gfn = fault->gfn; 3138 3139 kvm_mmu_hugepage_adjust(vcpu, fault); 3140 3141 trace_kvm_mmu_spte_requested(fault); 3142 for_each_shadow_entry(vcpu, fault->addr, it) { 3143 /* 3144 * We cannot overwrite existing page tables with an NX 3145 * large page, as the leaf could be executable. 3146 */ 3147 if (fault->nx_huge_page_workaround_enabled) 3148 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3149 3150 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 3151 if (it.level == fault->goal_level) 3152 break; 3153 3154 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3155 if (sp == ERR_PTR(-EEXIST)) 3156 continue; 3157 3158 link_shadow_page(vcpu, it.sptep, sp); 3159 if (fault->huge_page_disallowed) 3160 account_nx_huge_page(vcpu->kvm, sp, 3161 fault->req_level >= it.level); 3162 } 3163 3164 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3165 return -EFAULT; 3166 3167 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3168 base_gfn, fault->pfn, fault); 3169 if (ret == RET_PF_SPURIOUS) 3170 return ret; 3171 3172 direct_pte_prefetch(vcpu, it.sptep); 3173 return ret; 3174 } 3175 3176 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 3177 { 3178 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 3179 } 3180 3181 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 3182 { 3183 if (is_sigpending_pfn(pfn)) { 3184 kvm_handle_signal_exit(vcpu); 3185 return -EINTR; 3186 } 3187 3188 /* 3189 * Do not cache the mmio info caused by writing the readonly gfn 3190 * into the spte otherwise read access on readonly gfn also can 3191 * caused mmio page fault and treat it as mmio access. 3192 */ 3193 if (pfn == KVM_PFN_ERR_RO_FAULT) 3194 return RET_PF_EMULATE; 3195 3196 if (pfn == KVM_PFN_ERR_HWPOISON) { 3197 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3198 return RET_PF_RETRY; 3199 } 3200 3201 return -EFAULT; 3202 } 3203 3204 static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3205 unsigned int access) 3206 { 3207 /* The pfn is invalid, report the error! */ 3208 if (unlikely(is_error_pfn(fault->pfn))) 3209 return kvm_handle_error_pfn(vcpu, fault->gfn, fault->pfn); 3210 3211 if (unlikely(!fault->slot)) { 3212 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3213 3214 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3215 access & shadow_mmio_access_mask); 3216 /* 3217 * If MMIO caching is disabled, emulate immediately without 3218 * touching the shadow page tables as attempting to install an 3219 * MMIO SPTE will just be an expensive nop. Do not cache MMIO 3220 * whose gfn is greater than host.MAXPHYADDR, any guest that 3221 * generates such gfns is running nested and is being tricked 3222 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if 3223 * and only if L1's MAXPHYADDR is inaccurate with respect to 3224 * the hardware's). 3225 */ 3226 if (unlikely(!enable_mmio_caching) || 3227 unlikely(fault->gfn > kvm_mmu_max_gfn())) 3228 return RET_PF_EMULATE; 3229 } 3230 3231 return RET_PF_CONTINUE; 3232 } 3233 3234 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3235 { 3236 /* 3237 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3238 * reach the common page fault handler if the SPTE has an invalid MMIO 3239 * generation number. Refreshing the MMIO generation needs to go down 3240 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3241 */ 3242 if (fault->rsvd) 3243 return false; 3244 3245 /* 3246 * #PF can be fast if: 3247 * 3248 * 1. The shadow page table entry is not present and A/D bits are 3249 * disabled _by KVM_, which could mean that the fault is potentially 3250 * caused by access tracking (if enabled). If A/D bits are enabled 3251 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3252 * bits for L2 and employ access tracking, but the fast page fault 3253 * mechanism only supports direct MMUs. 3254 * 2. The shadow page table entry is present, the access is a write, 3255 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3256 * the fault was caused by a write-protection violation. If the 3257 * SPTE is MMU-writable (determined later), the fault can be fixed 3258 * by setting the Writable bit, which can be done out of mmu_lock. 3259 */ 3260 if (!fault->present) 3261 return !kvm_ad_enabled(); 3262 3263 /* 3264 * Note, instruction fetches and writes are mutually exclusive, ignore 3265 * the "exec" flag. 3266 */ 3267 return fault->write; 3268 } 3269 3270 /* 3271 * Returns true if the SPTE was fixed successfully. Otherwise, 3272 * someone else modified the SPTE from its original value. 3273 */ 3274 static bool 3275 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3276 u64 *sptep, u64 old_spte, u64 new_spte) 3277 { 3278 /* 3279 * Theoretically we could also set dirty bit (and flush TLB) here in 3280 * order to eliminate unnecessary PML logging. See comments in 3281 * set_spte. But fast_page_fault is very unlikely to happen with PML 3282 * enabled, so we do not do this. This might result in the same GPA 3283 * to be logged in PML buffer again when the write really happens, and 3284 * eventually to be called by mark_page_dirty twice. But it's also no 3285 * harm. This also avoids the TLB flush needed after setting dirty bit 3286 * so non-PML cases won't be impacted. 3287 * 3288 * Compare with set_spte where instead shadow_dirty_mask is set. 3289 */ 3290 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3291 return false; 3292 3293 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3294 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3295 3296 return true; 3297 } 3298 3299 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3300 { 3301 if (fault->exec) 3302 return is_executable_pte(spte); 3303 3304 if (fault->write) 3305 return is_writable_pte(spte); 3306 3307 /* Fault was on Read access */ 3308 return spte & PT_PRESENT_MASK; 3309 } 3310 3311 /* 3312 * Returns the last level spte pointer of the shadow page walk for the given 3313 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3314 * walk could be performed, returns NULL and *spte does not contain valid data. 3315 * 3316 * Contract: 3317 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3318 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3319 */ 3320 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3321 { 3322 struct kvm_shadow_walk_iterator iterator; 3323 u64 old_spte; 3324 u64 *sptep = NULL; 3325 3326 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3327 sptep = iterator.sptep; 3328 *spte = old_spte; 3329 } 3330 3331 return sptep; 3332 } 3333 3334 /* 3335 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3336 */ 3337 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3338 { 3339 struct kvm_mmu_page *sp; 3340 int ret = RET_PF_INVALID; 3341 u64 spte = 0ull; 3342 u64 *sptep = NULL; 3343 uint retry_count = 0; 3344 3345 if (!page_fault_can_be_fast(fault)) 3346 return ret; 3347 3348 walk_shadow_page_lockless_begin(vcpu); 3349 3350 do { 3351 u64 new_spte; 3352 3353 if (is_tdp_mmu(vcpu->arch.mmu)) 3354 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3355 else 3356 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3357 3358 if (!is_shadow_present_pte(spte)) 3359 break; 3360 3361 sp = sptep_to_sp(sptep); 3362 if (!is_last_spte(spte, sp->role.level)) 3363 break; 3364 3365 /* 3366 * Check whether the memory access that caused the fault would 3367 * still cause it if it were to be performed right now. If not, 3368 * then this is a spurious fault caused by TLB lazily flushed, 3369 * or some other CPU has already fixed the PTE after the 3370 * current CPU took the fault. 3371 * 3372 * Need not check the access of upper level table entries since 3373 * they are always ACC_ALL. 3374 */ 3375 if (is_access_allowed(fault, spte)) { 3376 ret = RET_PF_SPURIOUS; 3377 break; 3378 } 3379 3380 new_spte = spte; 3381 3382 /* 3383 * KVM only supports fixing page faults outside of MMU lock for 3384 * direct MMUs, nested MMUs are always indirect, and KVM always 3385 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3386 * enabled, the SPTE can't be an access-tracked SPTE. 3387 */ 3388 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3389 new_spte = restore_acc_track_spte(new_spte); 3390 3391 /* 3392 * To keep things simple, only SPTEs that are MMU-writable can 3393 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3394 * that were write-protected for dirty-logging or access 3395 * tracking are handled here. Don't bother checking if the 3396 * SPTE is writable to prioritize running with A/D bits enabled. 3397 * The is_access_allowed() check above handles the common case 3398 * of the fault being spurious, and the SPTE is known to be 3399 * shadow-present, i.e. except for access tracking restoration 3400 * making the new SPTE writable, the check is wasteful. 3401 */ 3402 if (fault->write && is_mmu_writable_spte(spte)) { 3403 new_spte |= PT_WRITABLE_MASK; 3404 3405 /* 3406 * Do not fix write-permission on the large spte when 3407 * dirty logging is enabled. Since we only dirty the 3408 * first page into the dirty-bitmap in 3409 * fast_pf_fix_direct_spte(), other pages are missed 3410 * if its slot has dirty logging enabled. 3411 * 3412 * Instead, we let the slow page fault path create a 3413 * normal spte to fix the access. 3414 */ 3415 if (sp->role.level > PG_LEVEL_4K && 3416 kvm_slot_dirty_track_enabled(fault->slot)) 3417 break; 3418 } 3419 3420 /* Verify that the fault can be handled in the fast path */ 3421 if (new_spte == spte || 3422 !is_access_allowed(fault, new_spte)) 3423 break; 3424 3425 /* 3426 * Currently, fast page fault only works for direct mapping 3427 * since the gfn is not stable for indirect shadow page. See 3428 * Documentation/virt/kvm/locking.rst to get more detail. 3429 */ 3430 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3431 ret = RET_PF_FIXED; 3432 break; 3433 } 3434 3435 if (++retry_count > 4) { 3436 printk_once(KERN_WARNING 3437 "kvm: Fast #PF retrying more than 4 times.\n"); 3438 break; 3439 } 3440 3441 } while (true); 3442 3443 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3444 walk_shadow_page_lockless_end(vcpu); 3445 3446 if (ret != RET_PF_INVALID) 3447 vcpu->stat.pf_fast++; 3448 3449 return ret; 3450 } 3451 3452 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3453 struct list_head *invalid_list) 3454 { 3455 struct kvm_mmu_page *sp; 3456 3457 if (!VALID_PAGE(*root_hpa)) 3458 return; 3459 3460 /* 3461 * The "root" may be a special root, e.g. a PAE entry, treat it as a 3462 * SPTE to ensure any non-PA bits are dropped. 3463 */ 3464 sp = spte_to_child_sp(*root_hpa); 3465 if (WARN_ON(!sp)) 3466 return; 3467 3468 if (is_tdp_mmu_page(sp)) 3469 kvm_tdp_mmu_put_root(kvm, sp, false); 3470 else if (!--sp->root_count && sp->role.invalid) 3471 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3472 3473 *root_hpa = INVALID_PAGE; 3474 } 3475 3476 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3477 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3478 ulong roots_to_free) 3479 { 3480 int i; 3481 LIST_HEAD(invalid_list); 3482 bool free_active_root; 3483 3484 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3485 3486 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3487 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3488 && VALID_PAGE(mmu->root.hpa); 3489 3490 if (!free_active_root) { 3491 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3492 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3493 VALID_PAGE(mmu->prev_roots[i].hpa)) 3494 break; 3495 3496 if (i == KVM_MMU_NUM_PREV_ROOTS) 3497 return; 3498 } 3499 3500 write_lock(&kvm->mmu_lock); 3501 3502 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3503 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3504 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3505 &invalid_list); 3506 3507 if (free_active_root) { 3508 if (to_shadow_page(mmu->root.hpa)) { 3509 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3510 } else if (mmu->pae_root) { 3511 for (i = 0; i < 4; ++i) { 3512 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3513 continue; 3514 3515 mmu_free_root_page(kvm, &mmu->pae_root[i], 3516 &invalid_list); 3517 mmu->pae_root[i] = INVALID_PAE_ROOT; 3518 } 3519 } 3520 mmu->root.hpa = INVALID_PAGE; 3521 mmu->root.pgd = 0; 3522 } 3523 3524 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3525 write_unlock(&kvm->mmu_lock); 3526 } 3527 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3528 3529 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3530 { 3531 unsigned long roots_to_free = 0; 3532 hpa_t root_hpa; 3533 int i; 3534 3535 /* 3536 * This should not be called while L2 is active, L2 can't invalidate 3537 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3538 */ 3539 WARN_ON_ONCE(mmu->root_role.guest_mode); 3540 3541 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3542 root_hpa = mmu->prev_roots[i].hpa; 3543 if (!VALID_PAGE(root_hpa)) 3544 continue; 3545 3546 if (!to_shadow_page(root_hpa) || 3547 to_shadow_page(root_hpa)->role.guest_mode) 3548 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3549 } 3550 3551 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3552 } 3553 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3554 3555 3556 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3557 { 3558 int ret = 0; 3559 3560 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3561 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3562 ret = 1; 3563 } 3564 3565 return ret; 3566 } 3567 3568 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3569 u8 level) 3570 { 3571 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3572 struct kvm_mmu_page *sp; 3573 3574 role.level = level; 3575 role.quadrant = quadrant; 3576 3577 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3578 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3579 3580 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3581 ++sp->root_count; 3582 3583 return __pa(sp->spt); 3584 } 3585 3586 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3587 { 3588 struct kvm_mmu *mmu = vcpu->arch.mmu; 3589 u8 shadow_root_level = mmu->root_role.level; 3590 hpa_t root; 3591 unsigned i; 3592 int r; 3593 3594 write_lock(&vcpu->kvm->mmu_lock); 3595 r = make_mmu_pages_available(vcpu); 3596 if (r < 0) 3597 goto out_unlock; 3598 3599 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3600 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3601 mmu->root.hpa = root; 3602 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3603 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3604 mmu->root.hpa = root; 3605 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3606 if (WARN_ON_ONCE(!mmu->pae_root)) { 3607 r = -EIO; 3608 goto out_unlock; 3609 } 3610 3611 for (i = 0; i < 4; ++i) { 3612 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3613 3614 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3615 PT32_ROOT_LEVEL); 3616 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3617 shadow_me_value; 3618 } 3619 mmu->root.hpa = __pa(mmu->pae_root); 3620 } else { 3621 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3622 r = -EIO; 3623 goto out_unlock; 3624 } 3625 3626 /* root.pgd is ignored for direct MMUs. */ 3627 mmu->root.pgd = 0; 3628 out_unlock: 3629 write_unlock(&vcpu->kvm->mmu_lock); 3630 return r; 3631 } 3632 3633 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3634 { 3635 struct kvm_memslots *slots; 3636 struct kvm_memory_slot *slot; 3637 int r = 0, i, bkt; 3638 3639 /* 3640 * Check if this is the first shadow root being allocated before 3641 * taking the lock. 3642 */ 3643 if (kvm_shadow_root_allocated(kvm)) 3644 return 0; 3645 3646 mutex_lock(&kvm->slots_arch_lock); 3647 3648 /* Recheck, under the lock, whether this is the first shadow root. */ 3649 if (kvm_shadow_root_allocated(kvm)) 3650 goto out_unlock; 3651 3652 /* 3653 * Check if anything actually needs to be allocated, e.g. all metadata 3654 * will be allocated upfront if TDP is disabled. 3655 */ 3656 if (kvm_memslots_have_rmaps(kvm) && 3657 kvm_page_track_write_tracking_enabled(kvm)) 3658 goto out_success; 3659 3660 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3661 slots = __kvm_memslots(kvm, i); 3662 kvm_for_each_memslot(slot, bkt, slots) { 3663 /* 3664 * Both of these functions are no-ops if the target is 3665 * already allocated, so unconditionally calling both 3666 * is safe. Intentionally do NOT free allocations on 3667 * failure to avoid having to track which allocations 3668 * were made now versus when the memslot was created. 3669 * The metadata is guaranteed to be freed when the slot 3670 * is freed, and will be kept/used if userspace retries 3671 * KVM_RUN instead of killing the VM. 3672 */ 3673 r = memslot_rmap_alloc(slot, slot->npages); 3674 if (r) 3675 goto out_unlock; 3676 r = kvm_page_track_write_tracking_alloc(slot); 3677 if (r) 3678 goto out_unlock; 3679 } 3680 } 3681 3682 /* 3683 * Ensure that shadow_root_allocated becomes true strictly after 3684 * all the related pointers are set. 3685 */ 3686 out_success: 3687 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3688 3689 out_unlock: 3690 mutex_unlock(&kvm->slots_arch_lock); 3691 return r; 3692 } 3693 3694 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3695 { 3696 struct kvm_mmu *mmu = vcpu->arch.mmu; 3697 u64 pdptrs[4], pm_mask; 3698 gfn_t root_gfn, root_pgd; 3699 int quadrant, i, r; 3700 hpa_t root; 3701 3702 root_pgd = mmu->get_guest_pgd(vcpu); 3703 root_gfn = root_pgd >> PAGE_SHIFT; 3704 3705 if (mmu_check_root(vcpu, root_gfn)) 3706 return 1; 3707 3708 /* 3709 * On SVM, reading PDPTRs might access guest memory, which might fault 3710 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3711 */ 3712 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3713 for (i = 0; i < 4; ++i) { 3714 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3715 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3716 continue; 3717 3718 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3719 return 1; 3720 } 3721 } 3722 3723 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3724 if (r) 3725 return r; 3726 3727 write_lock(&vcpu->kvm->mmu_lock); 3728 r = make_mmu_pages_available(vcpu); 3729 if (r < 0) 3730 goto out_unlock; 3731 3732 /* 3733 * Do we shadow a long mode page table? If so we need to 3734 * write-protect the guests page table root. 3735 */ 3736 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3737 root = mmu_alloc_root(vcpu, root_gfn, 0, 3738 mmu->root_role.level); 3739 mmu->root.hpa = root; 3740 goto set_root_pgd; 3741 } 3742 3743 if (WARN_ON_ONCE(!mmu->pae_root)) { 3744 r = -EIO; 3745 goto out_unlock; 3746 } 3747 3748 /* 3749 * We shadow a 32 bit page table. This may be a legacy 2-level 3750 * or a PAE 3-level page table. In either case we need to be aware that 3751 * the shadow page table may be a PAE or a long mode page table. 3752 */ 3753 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3754 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3755 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3756 3757 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3758 r = -EIO; 3759 goto out_unlock; 3760 } 3761 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3762 3763 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3764 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3765 r = -EIO; 3766 goto out_unlock; 3767 } 3768 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3769 } 3770 } 3771 3772 for (i = 0; i < 4; ++i) { 3773 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3774 3775 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3776 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3777 mmu->pae_root[i] = INVALID_PAE_ROOT; 3778 continue; 3779 } 3780 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3781 } 3782 3783 /* 3784 * If shadowing 32-bit non-PAE page tables, each PAE page 3785 * directory maps one quarter of the guest's non-PAE page 3786 * directory. Othwerise each PAE page direct shadows one guest 3787 * PAE page directory so that quadrant should be 0. 3788 */ 3789 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3790 3791 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3792 mmu->pae_root[i] = root | pm_mask; 3793 } 3794 3795 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3796 mmu->root.hpa = __pa(mmu->pml5_root); 3797 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3798 mmu->root.hpa = __pa(mmu->pml4_root); 3799 else 3800 mmu->root.hpa = __pa(mmu->pae_root); 3801 3802 set_root_pgd: 3803 mmu->root.pgd = root_pgd; 3804 out_unlock: 3805 write_unlock(&vcpu->kvm->mmu_lock); 3806 3807 return r; 3808 } 3809 3810 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3811 { 3812 struct kvm_mmu *mmu = vcpu->arch.mmu; 3813 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3814 u64 *pml5_root = NULL; 3815 u64 *pml4_root = NULL; 3816 u64 *pae_root; 3817 3818 /* 3819 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3820 * tables are allocated and initialized at root creation as there is no 3821 * equivalent level in the guest's NPT to shadow. Allocate the tables 3822 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3823 */ 3824 if (mmu->root_role.direct || 3825 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3826 mmu->root_role.level < PT64_ROOT_4LEVEL) 3827 return 0; 3828 3829 /* 3830 * NPT, the only paging mode that uses this horror, uses a fixed number 3831 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3832 * all MMus are 5-level. Thus, this can safely require that pml5_root 3833 * is allocated if the other roots are valid and pml5 is needed, as any 3834 * prior MMU would also have required pml5. 3835 */ 3836 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3837 return 0; 3838 3839 /* 3840 * The special roots should always be allocated in concert. Yell and 3841 * bail if KVM ends up in a state where only one of the roots is valid. 3842 */ 3843 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3844 (need_pml5 && mmu->pml5_root))) 3845 return -EIO; 3846 3847 /* 3848 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3849 * doesn't need to be decrypted. 3850 */ 3851 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3852 if (!pae_root) 3853 return -ENOMEM; 3854 3855 #ifdef CONFIG_X86_64 3856 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3857 if (!pml4_root) 3858 goto err_pml4; 3859 3860 if (need_pml5) { 3861 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3862 if (!pml5_root) 3863 goto err_pml5; 3864 } 3865 #endif 3866 3867 mmu->pae_root = pae_root; 3868 mmu->pml4_root = pml4_root; 3869 mmu->pml5_root = pml5_root; 3870 3871 return 0; 3872 3873 #ifdef CONFIG_X86_64 3874 err_pml5: 3875 free_page((unsigned long)pml4_root); 3876 err_pml4: 3877 free_page((unsigned long)pae_root); 3878 return -ENOMEM; 3879 #endif 3880 } 3881 3882 static bool is_unsync_root(hpa_t root) 3883 { 3884 struct kvm_mmu_page *sp; 3885 3886 if (!VALID_PAGE(root)) 3887 return false; 3888 3889 /* 3890 * The read barrier orders the CPU's read of SPTE.W during the page table 3891 * walk before the reads of sp->unsync/sp->unsync_children here. 3892 * 3893 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3894 * any guest page table changes are not guaranteed to be visible anyway 3895 * until this VCPU issues a TLB flush strictly after those changes are 3896 * made. We only need to ensure that the other CPU sets these flags 3897 * before any actual changes to the page tables are made. The comments 3898 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3899 * requirement isn't satisfied. 3900 */ 3901 smp_rmb(); 3902 sp = to_shadow_page(root); 3903 3904 /* 3905 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3906 * PDPTEs for a given PAE root need to be synchronized individually. 3907 */ 3908 if (WARN_ON_ONCE(!sp)) 3909 return false; 3910 3911 if (sp->unsync || sp->unsync_children) 3912 return true; 3913 3914 return false; 3915 } 3916 3917 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3918 { 3919 int i; 3920 struct kvm_mmu_page *sp; 3921 3922 if (vcpu->arch.mmu->root_role.direct) 3923 return; 3924 3925 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 3926 return; 3927 3928 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3929 3930 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3931 hpa_t root = vcpu->arch.mmu->root.hpa; 3932 sp = to_shadow_page(root); 3933 3934 if (!is_unsync_root(root)) 3935 return; 3936 3937 write_lock(&vcpu->kvm->mmu_lock); 3938 mmu_sync_children(vcpu, sp, true); 3939 write_unlock(&vcpu->kvm->mmu_lock); 3940 return; 3941 } 3942 3943 write_lock(&vcpu->kvm->mmu_lock); 3944 3945 for (i = 0; i < 4; ++i) { 3946 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3947 3948 if (IS_VALID_PAE_ROOT(root)) { 3949 sp = spte_to_child_sp(root); 3950 mmu_sync_children(vcpu, sp, true); 3951 } 3952 } 3953 3954 write_unlock(&vcpu->kvm->mmu_lock); 3955 } 3956 3957 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 3958 { 3959 unsigned long roots_to_free = 0; 3960 int i; 3961 3962 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3963 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 3964 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3965 3966 /* sync prev_roots by simply freeing them */ 3967 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 3968 } 3969 3970 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3971 gpa_t vaddr, u64 access, 3972 struct x86_exception *exception) 3973 { 3974 if (exception) 3975 exception->error_code = 0; 3976 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 3977 } 3978 3979 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3980 { 3981 /* 3982 * A nested guest cannot use the MMIO cache if it is using nested 3983 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3984 */ 3985 if (mmu_is_nested(vcpu)) 3986 return false; 3987 3988 if (direct) 3989 return vcpu_match_mmio_gpa(vcpu, addr); 3990 3991 return vcpu_match_mmio_gva(vcpu, addr); 3992 } 3993 3994 /* 3995 * Return the level of the lowest level SPTE added to sptes. 3996 * That SPTE may be non-present. 3997 * 3998 * Must be called between walk_shadow_page_lockless_{begin,end}. 3999 */ 4000 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4001 { 4002 struct kvm_shadow_walk_iterator iterator; 4003 int leaf = -1; 4004 u64 spte; 4005 4006 for (shadow_walk_init(&iterator, vcpu, addr), 4007 *root_level = iterator.level; 4008 shadow_walk_okay(&iterator); 4009 __shadow_walk_next(&iterator, spte)) { 4010 leaf = iterator.level; 4011 spte = mmu_spte_get_lockless(iterator.sptep); 4012 4013 sptes[leaf] = spte; 4014 } 4015 4016 return leaf; 4017 } 4018 4019 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4020 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4021 { 4022 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4023 struct rsvd_bits_validate *rsvd_check; 4024 int root, leaf, level; 4025 bool reserved = false; 4026 4027 walk_shadow_page_lockless_begin(vcpu); 4028 4029 if (is_tdp_mmu(vcpu->arch.mmu)) 4030 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 4031 else 4032 leaf = get_walk(vcpu, addr, sptes, &root); 4033 4034 walk_shadow_page_lockless_end(vcpu); 4035 4036 if (unlikely(leaf < 0)) { 4037 *sptep = 0ull; 4038 return reserved; 4039 } 4040 4041 *sptep = sptes[leaf]; 4042 4043 /* 4044 * Skip reserved bits checks on the terminal leaf if it's not a valid 4045 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4046 * design, always have reserved bits set. The purpose of the checks is 4047 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4048 */ 4049 if (!is_shadow_present_pte(sptes[leaf])) 4050 leaf++; 4051 4052 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4053 4054 for (level = root; level >= leaf; level--) 4055 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4056 4057 if (reserved) { 4058 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4059 __func__, addr); 4060 for (level = root; level >= leaf; level--) 4061 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4062 sptes[level], level, 4063 get_rsvd_bits(rsvd_check, sptes[level], level)); 4064 } 4065 4066 return reserved; 4067 } 4068 4069 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4070 { 4071 u64 spte; 4072 bool reserved; 4073 4074 if (mmio_info_in_cache(vcpu, addr, direct)) 4075 return RET_PF_EMULATE; 4076 4077 reserved = get_mmio_spte(vcpu, addr, &spte); 4078 if (WARN_ON(reserved)) 4079 return -EINVAL; 4080 4081 if (is_mmio_spte(spte)) { 4082 gfn_t gfn = get_mmio_spte_gfn(spte); 4083 unsigned int access = get_mmio_spte_access(spte); 4084 4085 if (!check_mmio_spte(vcpu, spte)) 4086 return RET_PF_INVALID; 4087 4088 if (direct) 4089 addr = 0; 4090 4091 trace_handle_mmio_page_fault(addr, gfn, access); 4092 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4093 return RET_PF_EMULATE; 4094 } 4095 4096 /* 4097 * If the page table is zapped by other cpus, let CPU fault again on 4098 * the address. 4099 */ 4100 return RET_PF_RETRY; 4101 } 4102 4103 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4104 struct kvm_page_fault *fault) 4105 { 4106 if (unlikely(fault->rsvd)) 4107 return false; 4108 4109 if (!fault->present || !fault->write) 4110 return false; 4111 4112 /* 4113 * guest is writing the page which is write tracked which can 4114 * not be fixed by page fault handler. 4115 */ 4116 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 4117 return true; 4118 4119 return false; 4120 } 4121 4122 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4123 { 4124 struct kvm_shadow_walk_iterator iterator; 4125 u64 spte; 4126 4127 walk_shadow_page_lockless_begin(vcpu); 4128 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4129 clear_sp_write_flooding_count(iterator.sptep); 4130 walk_shadow_page_lockless_end(vcpu); 4131 } 4132 4133 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4134 { 4135 /* make sure the token value is not 0 */ 4136 u32 id = vcpu->arch.apf.id; 4137 4138 if (id << 12 == 0) 4139 vcpu->arch.apf.id = 1; 4140 4141 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4142 } 4143 4144 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4145 gfn_t gfn) 4146 { 4147 struct kvm_arch_async_pf arch; 4148 4149 arch.token = alloc_apf_token(vcpu); 4150 arch.gfn = gfn; 4151 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4152 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 4153 4154 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4155 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4156 } 4157 4158 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4159 { 4160 int r; 4161 4162 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4163 work->wakeup_all) 4164 return; 4165 4166 r = kvm_mmu_reload(vcpu); 4167 if (unlikely(r)) 4168 return; 4169 4170 if (!vcpu->arch.mmu->root_role.direct && 4171 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 4172 return; 4173 4174 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 4175 } 4176 4177 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4178 { 4179 struct kvm_memory_slot *slot = fault->slot; 4180 bool async; 4181 4182 /* 4183 * Retry the page fault if the gfn hit a memslot that is being deleted 4184 * or moved. This ensures any existing SPTEs for the old memslot will 4185 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4186 */ 4187 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 4188 return RET_PF_RETRY; 4189 4190 if (!kvm_is_visible_memslot(slot)) { 4191 /* Don't expose private memslots to L2. */ 4192 if (is_guest_mode(vcpu)) { 4193 fault->slot = NULL; 4194 fault->pfn = KVM_PFN_NOSLOT; 4195 fault->map_writable = false; 4196 return RET_PF_CONTINUE; 4197 } 4198 /* 4199 * If the APIC access page exists but is disabled, go directly 4200 * to emulation without caching the MMIO access or creating a 4201 * MMIO SPTE. That way the cache doesn't need to be purged 4202 * when the AVIC is re-enabled. 4203 */ 4204 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 4205 !kvm_apicv_activated(vcpu->kvm)) 4206 return RET_PF_EMULATE; 4207 } 4208 4209 async = false; 4210 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async, 4211 fault->write, &fault->map_writable, 4212 &fault->hva); 4213 if (!async) 4214 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4215 4216 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4217 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4218 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4219 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4220 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4221 return RET_PF_RETRY; 4222 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { 4223 return RET_PF_RETRY; 4224 } 4225 } 4226 4227 /* 4228 * Allow gup to bail on pending non-fatal signals when it's also allowed 4229 * to wait for IO. Note, gup always bails if it is unable to quickly 4230 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4231 */ 4232 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL, 4233 fault->write, &fault->map_writable, 4234 &fault->hva); 4235 return RET_PF_CONTINUE; 4236 } 4237 4238 /* 4239 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4240 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4241 */ 4242 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4243 struct kvm_page_fault *fault, int mmu_seq) 4244 { 4245 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); 4246 4247 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4248 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4249 return true; 4250 4251 /* 4252 * Roots without an associated shadow page are considered invalid if 4253 * there is a pending request to free obsolete roots. The request is 4254 * only a hint that the current root _may_ be obsolete and needs to be 4255 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4256 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4257 * to reload even if no vCPU is actively using the root. 4258 */ 4259 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4260 return true; 4261 4262 return fault->slot && 4263 mmu_invalidate_retry_hva(vcpu->kvm, mmu_seq, fault->hva); 4264 } 4265 4266 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4267 { 4268 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 4269 4270 unsigned long mmu_seq; 4271 int r; 4272 4273 fault->gfn = fault->addr >> PAGE_SHIFT; 4274 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 4275 4276 if (page_fault_handle_page_track(vcpu, fault)) 4277 return RET_PF_EMULATE; 4278 4279 r = fast_page_fault(vcpu, fault); 4280 if (r != RET_PF_INVALID) 4281 return r; 4282 4283 r = mmu_topup_memory_caches(vcpu, false); 4284 if (r) 4285 return r; 4286 4287 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4288 smp_rmb(); 4289 4290 r = kvm_faultin_pfn(vcpu, fault); 4291 if (r != RET_PF_CONTINUE) 4292 return r; 4293 4294 r = handle_abnormal_pfn(vcpu, fault, ACC_ALL); 4295 if (r != RET_PF_CONTINUE) 4296 return r; 4297 4298 r = RET_PF_RETRY; 4299 4300 if (is_tdp_mmu_fault) 4301 read_lock(&vcpu->kvm->mmu_lock); 4302 else 4303 write_lock(&vcpu->kvm->mmu_lock); 4304 4305 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 4306 goto out_unlock; 4307 4308 if (is_tdp_mmu_fault) { 4309 r = kvm_tdp_mmu_map(vcpu, fault); 4310 } else { 4311 r = make_mmu_pages_available(vcpu); 4312 if (r) 4313 goto out_unlock; 4314 r = __direct_map(vcpu, fault); 4315 } 4316 4317 out_unlock: 4318 if (is_tdp_mmu_fault) 4319 read_unlock(&vcpu->kvm->mmu_lock); 4320 else 4321 write_unlock(&vcpu->kvm->mmu_lock); 4322 kvm_release_pfn_clean(fault->pfn); 4323 return r; 4324 } 4325 4326 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4327 struct kvm_page_fault *fault) 4328 { 4329 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4330 4331 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4332 fault->max_level = PG_LEVEL_2M; 4333 return direct_page_fault(vcpu, fault); 4334 } 4335 4336 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4337 u64 fault_address, char *insn, int insn_len) 4338 { 4339 int r = 1; 4340 u32 flags = vcpu->arch.apf.host_apf_flags; 4341 4342 #ifndef CONFIG_X86_64 4343 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4344 if (WARN_ON_ONCE(fault_address >> 32)) 4345 return -EFAULT; 4346 #endif 4347 4348 vcpu->arch.l1tf_flush_l1d = true; 4349 if (!flags) { 4350 trace_kvm_page_fault(vcpu, fault_address, error_code); 4351 4352 if (kvm_event_needs_reinjection(vcpu)) 4353 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4354 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4355 insn_len); 4356 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4357 vcpu->arch.apf.host_apf_flags = 0; 4358 local_irq_disable(); 4359 kvm_async_pf_task_wait_schedule(fault_address); 4360 local_irq_enable(); 4361 } else { 4362 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4363 } 4364 4365 return r; 4366 } 4367 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4368 4369 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4370 { 4371 /* 4372 * If the guest's MTRRs may be used to compute the "real" memtype, 4373 * restrict the mapping level to ensure KVM uses a consistent memtype 4374 * across the entire mapping. If the host MTRRs are ignored by TDP 4375 * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA 4376 * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype 4377 * from the guest's MTRRs so that guest accesses to memory that is 4378 * DMA'd aren't cached against the guest's wishes. 4379 * 4380 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4381 * e.g. KVM will force UC memtype for host MMIO. 4382 */ 4383 if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 4384 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4385 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4386 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); 4387 4388 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4389 break; 4390 } 4391 } 4392 4393 return direct_page_fault(vcpu, fault); 4394 } 4395 4396 static void nonpaging_init_context(struct kvm_mmu *context) 4397 { 4398 context->page_fault = nonpaging_page_fault; 4399 context->gva_to_gpa = nonpaging_gva_to_gpa; 4400 context->sync_page = nonpaging_sync_page; 4401 context->invlpg = NULL; 4402 } 4403 4404 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4405 union kvm_mmu_page_role role) 4406 { 4407 return (role.direct || pgd == root->pgd) && 4408 VALID_PAGE(root->hpa) && 4409 role.word == to_shadow_page(root->hpa)->role.word; 4410 } 4411 4412 /* 4413 * Find out if a previously cached root matching the new pgd/role is available, 4414 * and insert the current root as the MRU in the cache. 4415 * If a matching root is found, it is assigned to kvm_mmu->root and 4416 * true is returned. 4417 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4418 * evicted to make room for the current root, and false is returned. 4419 */ 4420 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4421 gpa_t new_pgd, 4422 union kvm_mmu_page_role new_role) 4423 { 4424 uint i; 4425 4426 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4427 return true; 4428 4429 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4430 /* 4431 * The swaps end up rotating the cache like this: 4432 * C 0 1 2 3 (on entry to the function) 4433 * 0 C 1 2 3 4434 * 1 C 0 2 3 4435 * 2 C 0 1 3 4436 * 3 C 0 1 2 (on exit from the loop) 4437 */ 4438 swap(mmu->root, mmu->prev_roots[i]); 4439 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4440 return true; 4441 } 4442 4443 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4444 return false; 4445 } 4446 4447 /* 4448 * Find out if a previously cached root matching the new pgd/role is available. 4449 * On entry, mmu->root is invalid. 4450 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4451 * of the cache becomes invalid, and true is returned. 4452 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4453 */ 4454 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4455 gpa_t new_pgd, 4456 union kvm_mmu_page_role new_role) 4457 { 4458 uint i; 4459 4460 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4461 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4462 goto hit; 4463 4464 return false; 4465 4466 hit: 4467 swap(mmu->root, mmu->prev_roots[i]); 4468 /* Bubble up the remaining roots. */ 4469 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4470 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4471 mmu->prev_roots[i].hpa = INVALID_PAGE; 4472 return true; 4473 } 4474 4475 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4476 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4477 { 4478 /* 4479 * For now, limit the caching to 64-bit hosts+VMs in order to avoid 4480 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4481 * later if necessary. 4482 */ 4483 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) 4484 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4485 4486 if (VALID_PAGE(mmu->root.hpa)) 4487 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4488 else 4489 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4490 } 4491 4492 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4493 { 4494 struct kvm_mmu *mmu = vcpu->arch.mmu; 4495 union kvm_mmu_page_role new_role = mmu->root_role; 4496 4497 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) { 4498 /* kvm_mmu_ensure_valid_pgd will set up a new root. */ 4499 return; 4500 } 4501 4502 /* 4503 * It's possible that the cached previous root page is obsolete because 4504 * of a change in the MMU generation number. However, changing the 4505 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4506 * which will free the root set here and allocate a new one. 4507 */ 4508 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4509 4510 if (force_flush_and_sync_on_reuse) { 4511 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4512 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4513 } 4514 4515 /* 4516 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4517 * switching to a new CR3, that GVA->GPA mapping may no longer be 4518 * valid. So clear any cached MMIO info even when we don't need to sync 4519 * the shadow page tables. 4520 */ 4521 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4522 4523 /* 4524 * If this is a direct root page, it doesn't have a write flooding 4525 * count. Otherwise, clear the write flooding count. 4526 */ 4527 if (!new_role.direct) 4528 __clear_sp_write_flooding_count( 4529 to_shadow_page(vcpu->arch.mmu->root.hpa)); 4530 } 4531 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4532 4533 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4534 { 4535 return kvm_read_cr3(vcpu); 4536 } 4537 4538 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4539 unsigned int access) 4540 { 4541 if (unlikely(is_mmio_spte(*sptep))) { 4542 if (gfn != get_mmio_spte_gfn(*sptep)) { 4543 mmu_spte_clear_no_track(sptep); 4544 return true; 4545 } 4546 4547 mark_mmio_spte(vcpu, sptep, gfn, access); 4548 return true; 4549 } 4550 4551 return false; 4552 } 4553 4554 #define PTTYPE_EPT 18 /* arbitrary */ 4555 #define PTTYPE PTTYPE_EPT 4556 #include "paging_tmpl.h" 4557 #undef PTTYPE 4558 4559 #define PTTYPE 64 4560 #include "paging_tmpl.h" 4561 #undef PTTYPE 4562 4563 #define PTTYPE 32 4564 #include "paging_tmpl.h" 4565 #undef PTTYPE 4566 4567 static void 4568 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4569 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4570 bool pse, bool amd) 4571 { 4572 u64 gbpages_bit_rsvd = 0; 4573 u64 nonleaf_bit8_rsvd = 0; 4574 u64 high_bits_rsvd; 4575 4576 rsvd_check->bad_mt_xwr = 0; 4577 4578 if (!gbpages) 4579 gbpages_bit_rsvd = rsvd_bits(7, 7); 4580 4581 if (level == PT32E_ROOT_LEVEL) 4582 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4583 else 4584 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4585 4586 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4587 if (!nx) 4588 high_bits_rsvd |= rsvd_bits(63, 63); 4589 4590 /* 4591 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4592 * leaf entries) on AMD CPUs only. 4593 */ 4594 if (amd) 4595 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4596 4597 switch (level) { 4598 case PT32_ROOT_LEVEL: 4599 /* no rsvd bits for 2 level 4K page table entries */ 4600 rsvd_check->rsvd_bits_mask[0][1] = 0; 4601 rsvd_check->rsvd_bits_mask[0][0] = 0; 4602 rsvd_check->rsvd_bits_mask[1][0] = 4603 rsvd_check->rsvd_bits_mask[0][0]; 4604 4605 if (!pse) { 4606 rsvd_check->rsvd_bits_mask[1][1] = 0; 4607 break; 4608 } 4609 4610 if (is_cpuid_PSE36()) 4611 /* 36bits PSE 4MB page */ 4612 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4613 else 4614 /* 32 bits PSE 4MB page */ 4615 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4616 break; 4617 case PT32E_ROOT_LEVEL: 4618 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4619 high_bits_rsvd | 4620 rsvd_bits(5, 8) | 4621 rsvd_bits(1, 2); /* PDPTE */ 4622 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4623 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4624 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4625 rsvd_bits(13, 20); /* large page */ 4626 rsvd_check->rsvd_bits_mask[1][0] = 4627 rsvd_check->rsvd_bits_mask[0][0]; 4628 break; 4629 case PT64_ROOT_5LEVEL: 4630 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4631 nonleaf_bit8_rsvd | 4632 rsvd_bits(7, 7); 4633 rsvd_check->rsvd_bits_mask[1][4] = 4634 rsvd_check->rsvd_bits_mask[0][4]; 4635 fallthrough; 4636 case PT64_ROOT_4LEVEL: 4637 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4638 nonleaf_bit8_rsvd | 4639 rsvd_bits(7, 7); 4640 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4641 gbpages_bit_rsvd; 4642 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4643 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4644 rsvd_check->rsvd_bits_mask[1][3] = 4645 rsvd_check->rsvd_bits_mask[0][3]; 4646 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4647 gbpages_bit_rsvd | 4648 rsvd_bits(13, 29); 4649 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4650 rsvd_bits(13, 20); /* large page */ 4651 rsvd_check->rsvd_bits_mask[1][0] = 4652 rsvd_check->rsvd_bits_mask[0][0]; 4653 break; 4654 } 4655 } 4656 4657 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4658 { 4659 /* 4660 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4661 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4662 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4663 * walk for performance and complexity reasons. Not to mention KVM 4664 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4665 * KVM once a TDP translation is installed. Mimic hardware behavior so 4666 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4667 */ 4668 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4669 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4670 } 4671 4672 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4673 struct kvm_mmu *context) 4674 { 4675 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4676 vcpu->arch.reserved_gpa_bits, 4677 context->cpu_role.base.level, is_efer_nx(context), 4678 guest_can_use_gbpages(vcpu), 4679 is_cr4_pse(context), 4680 guest_cpuid_is_amd_or_hygon(vcpu)); 4681 } 4682 4683 static void 4684 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4685 u64 pa_bits_rsvd, bool execonly, int huge_page_level) 4686 { 4687 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4688 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4689 u64 bad_mt_xwr; 4690 4691 if (huge_page_level < PG_LEVEL_1G) 4692 large_1g_rsvd = rsvd_bits(7, 7); 4693 if (huge_page_level < PG_LEVEL_2M) 4694 large_2m_rsvd = rsvd_bits(7, 7); 4695 4696 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4697 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4698 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4699 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4700 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4701 4702 /* large page */ 4703 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4704 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4705 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4706 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4707 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4708 4709 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4710 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4711 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4712 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4713 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4714 if (!execonly) { 4715 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4716 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4717 } 4718 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4719 } 4720 4721 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4722 struct kvm_mmu *context, bool execonly, int huge_page_level) 4723 { 4724 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4725 vcpu->arch.reserved_gpa_bits, execonly, 4726 huge_page_level); 4727 } 4728 4729 static inline u64 reserved_hpa_bits(void) 4730 { 4731 return rsvd_bits(shadow_phys_bits, 63); 4732 } 4733 4734 /* 4735 * the page table on host is the shadow page table for the page 4736 * table in guest or amd nested guest, its mmu features completely 4737 * follow the features in guest. 4738 */ 4739 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4740 struct kvm_mmu *context) 4741 { 4742 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4743 bool is_amd = true; 4744 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4745 bool is_pse = false; 4746 struct rsvd_bits_validate *shadow_zero_check; 4747 int i; 4748 4749 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 4750 4751 shadow_zero_check = &context->shadow_zero_check; 4752 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4753 context->root_role.level, 4754 context->root_role.efer_nx, 4755 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4756 4757 if (!shadow_me_mask) 4758 return; 4759 4760 for (i = context->root_role.level; --i >= 0;) { 4761 /* 4762 * So far shadow_me_value is a constant during KVM's life 4763 * time. Bits in shadow_me_value are allowed to be set. 4764 * Bits in shadow_me_mask but not in shadow_me_value are 4765 * not allowed to be set. 4766 */ 4767 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 4768 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 4769 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 4770 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 4771 } 4772 4773 } 4774 4775 static inline bool boot_cpu_is_amd(void) 4776 { 4777 WARN_ON_ONCE(!tdp_enabled); 4778 return shadow_x_mask == 0; 4779 } 4780 4781 /* 4782 * the direct page table on host, use as much mmu features as 4783 * possible, however, kvm currently does not do execution-protection. 4784 */ 4785 static void 4786 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4787 { 4788 struct rsvd_bits_validate *shadow_zero_check; 4789 int i; 4790 4791 shadow_zero_check = &context->shadow_zero_check; 4792 4793 if (boot_cpu_is_amd()) 4794 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4795 context->root_role.level, true, 4796 boot_cpu_has(X86_FEATURE_GBPAGES), 4797 false, true); 4798 else 4799 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4800 reserved_hpa_bits(), false, 4801 max_huge_page_level); 4802 4803 if (!shadow_me_mask) 4804 return; 4805 4806 for (i = context->root_role.level; --i >= 0;) { 4807 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4808 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4809 } 4810 } 4811 4812 /* 4813 * as the comments in reset_shadow_zero_bits_mask() except it 4814 * is the shadow page table for intel nested guest. 4815 */ 4816 static void 4817 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4818 { 4819 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4820 reserved_hpa_bits(), execonly, 4821 max_huge_page_level); 4822 } 4823 4824 #define BYTE_MASK(access) \ 4825 ((1 & (access) ? 2 : 0) | \ 4826 (2 & (access) ? 4 : 0) | \ 4827 (3 & (access) ? 8 : 0) | \ 4828 (4 & (access) ? 16 : 0) | \ 4829 (5 & (access) ? 32 : 0) | \ 4830 (6 & (access) ? 64 : 0) | \ 4831 (7 & (access) ? 128 : 0)) 4832 4833 4834 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4835 { 4836 unsigned byte; 4837 4838 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4839 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4840 const u8 u = BYTE_MASK(ACC_USER_MASK); 4841 4842 bool cr4_smep = is_cr4_smep(mmu); 4843 bool cr4_smap = is_cr4_smap(mmu); 4844 bool cr0_wp = is_cr0_wp(mmu); 4845 bool efer_nx = is_efer_nx(mmu); 4846 4847 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4848 unsigned pfec = byte << 1; 4849 4850 /* 4851 * Each "*f" variable has a 1 bit for each UWX value 4852 * that causes a fault with the given PFEC. 4853 */ 4854 4855 /* Faults from writes to non-writable pages */ 4856 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4857 /* Faults from user mode accesses to supervisor pages */ 4858 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4859 /* Faults from fetches of non-executable pages*/ 4860 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4861 /* Faults from kernel mode fetches of user pages */ 4862 u8 smepf = 0; 4863 /* Faults from kernel mode accesses of user pages */ 4864 u8 smapf = 0; 4865 4866 if (!ept) { 4867 /* Faults from kernel mode accesses to user pages */ 4868 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4869 4870 /* Not really needed: !nx will cause pte.nx to fault */ 4871 if (!efer_nx) 4872 ff = 0; 4873 4874 /* Allow supervisor writes if !cr0.wp */ 4875 if (!cr0_wp) 4876 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4877 4878 /* Disallow supervisor fetches of user code if cr4.smep */ 4879 if (cr4_smep) 4880 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4881 4882 /* 4883 * SMAP:kernel-mode data accesses from user-mode 4884 * mappings should fault. A fault is considered 4885 * as a SMAP violation if all of the following 4886 * conditions are true: 4887 * - X86_CR4_SMAP is set in CR4 4888 * - A user page is accessed 4889 * - The access is not a fetch 4890 * - The access is supervisor mode 4891 * - If implicit supervisor access or X86_EFLAGS_AC is clear 4892 * 4893 * Here, we cover the first four conditions. 4894 * The fifth is computed dynamically in permission_fault(); 4895 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4896 * *not* subject to SMAP restrictions. 4897 */ 4898 if (cr4_smap) 4899 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4900 } 4901 4902 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4903 } 4904 } 4905 4906 /* 4907 * PKU is an additional mechanism by which the paging controls access to 4908 * user-mode addresses based on the value in the PKRU register. Protection 4909 * key violations are reported through a bit in the page fault error code. 4910 * Unlike other bits of the error code, the PK bit is not known at the 4911 * call site of e.g. gva_to_gpa; it must be computed directly in 4912 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4913 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4914 * 4915 * In particular the following conditions come from the error code, the 4916 * page tables and the machine state: 4917 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4918 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4919 * - PK is always zero if U=0 in the page tables 4920 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4921 * 4922 * The PKRU bitmask caches the result of these four conditions. The error 4923 * code (minus the P bit) and the page table's U bit form an index into the 4924 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4925 * with the two bits of the PKRU register corresponding to the protection key. 4926 * For the first three conditions above the bits will be 00, thus masking 4927 * away both AD and WD. For all reads or if the last condition holds, WD 4928 * only will be masked away. 4929 */ 4930 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4931 { 4932 unsigned bit; 4933 bool wp; 4934 4935 mmu->pkru_mask = 0; 4936 4937 if (!is_cr4_pke(mmu)) 4938 return; 4939 4940 wp = is_cr0_wp(mmu); 4941 4942 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4943 unsigned pfec, pkey_bits; 4944 bool check_pkey, check_write, ff, uf, wf, pte_user; 4945 4946 pfec = bit << 1; 4947 ff = pfec & PFERR_FETCH_MASK; 4948 uf = pfec & PFERR_USER_MASK; 4949 wf = pfec & PFERR_WRITE_MASK; 4950 4951 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4952 pte_user = pfec & PFERR_RSVD_MASK; 4953 4954 /* 4955 * Only need to check the access which is not an 4956 * instruction fetch and is to a user page. 4957 */ 4958 check_pkey = (!ff && pte_user); 4959 /* 4960 * write access is controlled by PKRU if it is a 4961 * user access or CR0.WP = 1. 4962 */ 4963 check_write = check_pkey && wf && (uf || wp); 4964 4965 /* PKRU.AD stops both read and write access. */ 4966 pkey_bits = !!check_pkey; 4967 /* PKRU.WD stops write access. */ 4968 pkey_bits |= (!!check_write) << 1; 4969 4970 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4971 } 4972 } 4973 4974 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4975 struct kvm_mmu *mmu) 4976 { 4977 if (!is_cr0_pg(mmu)) 4978 return; 4979 4980 reset_guest_rsvds_bits_mask(vcpu, mmu); 4981 update_permission_bitmask(mmu, false); 4982 update_pkru_bitmask(mmu); 4983 } 4984 4985 static void paging64_init_context(struct kvm_mmu *context) 4986 { 4987 context->page_fault = paging64_page_fault; 4988 context->gva_to_gpa = paging64_gva_to_gpa; 4989 context->sync_page = paging64_sync_page; 4990 context->invlpg = paging64_invlpg; 4991 } 4992 4993 static void paging32_init_context(struct kvm_mmu *context) 4994 { 4995 context->page_fault = paging32_page_fault; 4996 context->gva_to_gpa = paging32_gva_to_gpa; 4997 context->sync_page = paging32_sync_page; 4998 context->invlpg = paging32_invlpg; 4999 } 5000 5001 static union kvm_cpu_role 5002 kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs) 5003 { 5004 union kvm_cpu_role role = {0}; 5005 5006 role.base.access = ACC_ALL; 5007 role.base.smm = is_smm(vcpu); 5008 role.base.guest_mode = is_guest_mode(vcpu); 5009 role.ext.valid = 1; 5010 5011 if (!____is_cr0_pg(regs)) { 5012 role.base.direct = 1; 5013 return role; 5014 } 5015 5016 role.base.efer_nx = ____is_efer_nx(regs); 5017 role.base.cr0_wp = ____is_cr0_wp(regs); 5018 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5019 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5020 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5021 5022 if (____is_efer_lma(regs)) 5023 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5024 : PT64_ROOT_4LEVEL; 5025 else if (____is_cr4_pae(regs)) 5026 role.base.level = PT32E_ROOT_LEVEL; 5027 else 5028 role.base.level = PT32_ROOT_LEVEL; 5029 5030 role.ext.cr4_smep = ____is_cr4_smep(regs); 5031 role.ext.cr4_smap = ____is_cr4_smap(regs); 5032 role.ext.cr4_pse = ____is_cr4_pse(regs); 5033 5034 /* PKEY and LA57 are active iff long mode is active. */ 5035 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5036 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5037 role.ext.efer_lma = ____is_efer_lma(regs); 5038 return role; 5039 } 5040 5041 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5042 { 5043 /* tdp_root_level is architecture forced level, use it if nonzero */ 5044 if (tdp_root_level) 5045 return tdp_root_level; 5046 5047 /* Use 5-level TDP if and only if it's useful/necessary. */ 5048 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5049 return 4; 5050 5051 return max_tdp_level; 5052 } 5053 5054 static union kvm_mmu_page_role 5055 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5056 union kvm_cpu_role cpu_role) 5057 { 5058 union kvm_mmu_page_role role = {0}; 5059 5060 role.access = ACC_ALL; 5061 role.cr0_wp = true; 5062 role.efer_nx = true; 5063 role.smm = cpu_role.base.smm; 5064 role.guest_mode = cpu_role.base.guest_mode; 5065 role.ad_disabled = !kvm_ad_enabled(); 5066 role.level = kvm_mmu_get_tdp_level(vcpu); 5067 role.direct = true; 5068 role.has_4_byte_gpte = false; 5069 5070 return role; 5071 } 5072 5073 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5074 union kvm_cpu_role cpu_role) 5075 { 5076 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5077 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5078 5079 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5080 root_role.word == context->root_role.word) 5081 return; 5082 5083 context->cpu_role.as_u64 = cpu_role.as_u64; 5084 context->root_role.word = root_role.word; 5085 context->page_fault = kvm_tdp_page_fault; 5086 context->sync_page = nonpaging_sync_page; 5087 context->invlpg = NULL; 5088 context->get_guest_pgd = get_cr3; 5089 context->get_pdptr = kvm_pdptr_read; 5090 context->inject_page_fault = kvm_inject_page_fault; 5091 5092 if (!is_cr0_pg(context)) 5093 context->gva_to_gpa = nonpaging_gva_to_gpa; 5094 else if (is_cr4_pae(context)) 5095 context->gva_to_gpa = paging64_gva_to_gpa; 5096 else 5097 context->gva_to_gpa = paging32_gva_to_gpa; 5098 5099 reset_guest_paging_metadata(vcpu, context); 5100 reset_tdp_shadow_zero_bits_mask(context); 5101 } 5102 5103 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5104 union kvm_cpu_role cpu_role, 5105 union kvm_mmu_page_role root_role) 5106 { 5107 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5108 root_role.word == context->root_role.word) 5109 return; 5110 5111 context->cpu_role.as_u64 = cpu_role.as_u64; 5112 context->root_role.word = root_role.word; 5113 5114 if (!is_cr0_pg(context)) 5115 nonpaging_init_context(context); 5116 else if (is_cr4_pae(context)) 5117 paging64_init_context(context); 5118 else 5119 paging32_init_context(context); 5120 5121 reset_guest_paging_metadata(vcpu, context); 5122 reset_shadow_zero_bits_mask(vcpu, context); 5123 } 5124 5125 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5126 union kvm_cpu_role cpu_role) 5127 { 5128 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5129 union kvm_mmu_page_role root_role; 5130 5131 root_role = cpu_role.base; 5132 5133 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5134 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5135 5136 /* 5137 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5138 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5139 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5140 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5141 * The iTLB multi-hit workaround can be toggled at any time, so assume 5142 * NX can be used by any non-nested shadow MMU to avoid having to reset 5143 * MMU contexts. 5144 */ 5145 root_role.efer_nx = true; 5146 5147 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5148 } 5149 5150 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5151 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5152 { 5153 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5154 struct kvm_mmu_role_regs regs = { 5155 .cr0 = cr0, 5156 .cr4 = cr4 & ~X86_CR4_PKE, 5157 .efer = efer, 5158 }; 5159 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5160 union kvm_mmu_page_role root_role; 5161 5162 /* NPT requires CR0.PG=1. */ 5163 WARN_ON_ONCE(cpu_role.base.direct); 5164 5165 root_role = cpu_role.base; 5166 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5167 if (root_role.level == PT64_ROOT_5LEVEL && 5168 cpu_role.base.level == PT64_ROOT_4LEVEL) 5169 root_role.passthrough = 1; 5170 5171 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5172 kvm_mmu_new_pgd(vcpu, nested_cr3); 5173 } 5174 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5175 5176 static union kvm_cpu_role 5177 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5178 bool execonly, u8 level) 5179 { 5180 union kvm_cpu_role role = {0}; 5181 5182 /* 5183 * KVM does not support SMM transfer monitors, and consequently does not 5184 * support the "entry to SMM" control either. role.base.smm is always 0. 5185 */ 5186 WARN_ON_ONCE(is_smm(vcpu)); 5187 role.base.level = level; 5188 role.base.has_4_byte_gpte = false; 5189 role.base.direct = false; 5190 role.base.ad_disabled = !accessed_dirty; 5191 role.base.guest_mode = true; 5192 role.base.access = ACC_ALL; 5193 5194 role.ext.word = 0; 5195 role.ext.execonly = execonly; 5196 role.ext.valid = 1; 5197 5198 return role; 5199 } 5200 5201 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5202 int huge_page_level, bool accessed_dirty, 5203 gpa_t new_eptp) 5204 { 5205 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5206 u8 level = vmx_eptp_page_walk_level(new_eptp); 5207 union kvm_cpu_role new_mode = 5208 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5209 execonly, level); 5210 5211 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5212 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5213 context->cpu_role.as_u64 = new_mode.as_u64; 5214 context->root_role.word = new_mode.base.word; 5215 5216 context->page_fault = ept_page_fault; 5217 context->gva_to_gpa = ept_gva_to_gpa; 5218 context->sync_page = ept_sync_page; 5219 context->invlpg = ept_invlpg; 5220 5221 update_permission_bitmask(context, true); 5222 context->pkru_mask = 0; 5223 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5224 reset_ept_shadow_zero_bits_mask(context, execonly); 5225 } 5226 5227 kvm_mmu_new_pgd(vcpu, new_eptp); 5228 } 5229 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5230 5231 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5232 union kvm_cpu_role cpu_role) 5233 { 5234 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5235 5236 kvm_init_shadow_mmu(vcpu, cpu_role); 5237 5238 context->get_guest_pgd = get_cr3; 5239 context->get_pdptr = kvm_pdptr_read; 5240 context->inject_page_fault = kvm_inject_page_fault; 5241 } 5242 5243 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5244 union kvm_cpu_role new_mode) 5245 { 5246 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5247 5248 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5249 return; 5250 5251 g_context->cpu_role.as_u64 = new_mode.as_u64; 5252 g_context->get_guest_pgd = get_cr3; 5253 g_context->get_pdptr = kvm_pdptr_read; 5254 g_context->inject_page_fault = kvm_inject_page_fault; 5255 5256 /* 5257 * L2 page tables are never shadowed, so there is no need to sync 5258 * SPTEs. 5259 */ 5260 g_context->invlpg = NULL; 5261 5262 /* 5263 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5264 * L1's nested page tables (e.g. EPT12). The nested translation 5265 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5266 * L2's page tables as the first level of translation and L1's 5267 * nested page tables as the second level of translation. Basically 5268 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5269 */ 5270 if (!is_paging(vcpu)) 5271 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5272 else if (is_long_mode(vcpu)) 5273 g_context->gva_to_gpa = paging64_gva_to_gpa; 5274 else if (is_pae(vcpu)) 5275 g_context->gva_to_gpa = paging64_gva_to_gpa; 5276 else 5277 g_context->gva_to_gpa = paging32_gva_to_gpa; 5278 5279 reset_guest_paging_metadata(vcpu, g_context); 5280 } 5281 5282 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5283 { 5284 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5285 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5286 5287 if (mmu_is_nested(vcpu)) 5288 init_kvm_nested_mmu(vcpu, cpu_role); 5289 else if (tdp_enabled) 5290 init_kvm_tdp_mmu(vcpu, cpu_role); 5291 else 5292 init_kvm_softmmu(vcpu, cpu_role); 5293 } 5294 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5295 5296 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5297 { 5298 /* 5299 * Invalidate all MMU roles to force them to reinitialize as CPUID 5300 * information is factored into reserved bit calculations. 5301 * 5302 * Correctly handling multiple vCPU models with respect to paging and 5303 * physical address properties) in a single VM would require tracking 5304 * all relevant CPUID information in kvm_mmu_page_role. That is very 5305 * undesirable as it would increase the memory requirements for 5306 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5307 * problem is swept under the rug; KVM's CPUID API is horrific and 5308 * it's all but impossible to solve it without introducing a new API. 5309 */ 5310 vcpu->arch.root_mmu.root_role.word = 0; 5311 vcpu->arch.guest_mmu.root_role.word = 0; 5312 vcpu->arch.nested_mmu.root_role.word = 0; 5313 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5314 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5315 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5316 kvm_mmu_reset_context(vcpu); 5317 5318 /* 5319 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5320 * kvm_arch_vcpu_ioctl(). 5321 */ 5322 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm); 5323 } 5324 5325 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5326 { 5327 kvm_mmu_unload(vcpu); 5328 kvm_init_mmu(vcpu); 5329 } 5330 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5331 5332 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5333 { 5334 int r; 5335 5336 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5337 if (r) 5338 goto out; 5339 r = mmu_alloc_special_roots(vcpu); 5340 if (r) 5341 goto out; 5342 if (vcpu->arch.mmu->root_role.direct) 5343 r = mmu_alloc_direct_roots(vcpu); 5344 else 5345 r = mmu_alloc_shadow_roots(vcpu); 5346 if (r) 5347 goto out; 5348 5349 kvm_mmu_sync_roots(vcpu); 5350 5351 kvm_mmu_load_pgd(vcpu); 5352 5353 /* 5354 * Flush any TLB entries for the new root, the provenance of the root 5355 * is unknown. Even if KVM ensures there are no stale TLB entries 5356 * for a freed root, in theory another hypervisor could have left 5357 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5358 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5359 */ 5360 static_call(kvm_x86_flush_tlb_current)(vcpu); 5361 out: 5362 return r; 5363 } 5364 5365 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5366 { 5367 struct kvm *kvm = vcpu->kvm; 5368 5369 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5370 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5371 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5372 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5373 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5374 } 5375 5376 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5377 { 5378 struct kvm_mmu_page *sp; 5379 5380 if (!VALID_PAGE(root_hpa)) 5381 return false; 5382 5383 /* 5384 * When freeing obsolete roots, treat roots as obsolete if they don't 5385 * have an associated shadow page. This does mean KVM will get false 5386 * positives and free roots that don't strictly need to be freed, but 5387 * such false positives are relatively rare: 5388 * 5389 * (a) only PAE paging and nested NPT has roots without shadow pages 5390 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5391 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5392 * is unlikely to zap an in-use PGD. 5393 */ 5394 sp = to_shadow_page(root_hpa); 5395 return !sp || is_obsolete_sp(kvm, sp); 5396 } 5397 5398 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5399 { 5400 unsigned long roots_to_free = 0; 5401 int i; 5402 5403 if (is_obsolete_root(kvm, mmu->root.hpa)) 5404 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5405 5406 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5407 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5408 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5409 } 5410 5411 if (roots_to_free) 5412 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5413 } 5414 5415 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5416 { 5417 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5418 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5419 } 5420 5421 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5422 int *bytes) 5423 { 5424 u64 gentry = 0; 5425 int r; 5426 5427 /* 5428 * Assume that the pte write on a page table of the same type 5429 * as the current vcpu paging mode since we update the sptes only 5430 * when they have the same mode. 5431 */ 5432 if (is_pae(vcpu) && *bytes == 4) { 5433 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5434 *gpa &= ~(gpa_t)7; 5435 *bytes = 8; 5436 } 5437 5438 if (*bytes == 4 || *bytes == 8) { 5439 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5440 if (r) 5441 gentry = 0; 5442 } 5443 5444 return gentry; 5445 } 5446 5447 /* 5448 * If we're seeing too many writes to a page, it may no longer be a page table, 5449 * or we may be forking, in which case it is better to unmap the page. 5450 */ 5451 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5452 { 5453 /* 5454 * Skip write-flooding detected for the sp whose level is 1, because 5455 * it can become unsync, then the guest page is not write-protected. 5456 */ 5457 if (sp->role.level == PG_LEVEL_4K) 5458 return false; 5459 5460 atomic_inc(&sp->write_flooding_count); 5461 return atomic_read(&sp->write_flooding_count) >= 3; 5462 } 5463 5464 /* 5465 * Misaligned accesses are too much trouble to fix up; also, they usually 5466 * indicate a page is not used as a page table. 5467 */ 5468 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5469 int bytes) 5470 { 5471 unsigned offset, pte_size, misaligned; 5472 5473 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5474 gpa, bytes, sp->role.word); 5475 5476 offset = offset_in_page(gpa); 5477 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5478 5479 /* 5480 * Sometimes, the OS only writes the last one bytes to update status 5481 * bits, for example, in linux, andb instruction is used in clear_bit(). 5482 */ 5483 if (!(offset & (pte_size - 1)) && bytes == 1) 5484 return false; 5485 5486 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5487 misaligned |= bytes < 4; 5488 5489 return misaligned; 5490 } 5491 5492 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5493 { 5494 unsigned page_offset, quadrant; 5495 u64 *spte; 5496 int level; 5497 5498 page_offset = offset_in_page(gpa); 5499 level = sp->role.level; 5500 *nspte = 1; 5501 if (sp->role.has_4_byte_gpte) { 5502 page_offset <<= 1; /* 32->64 */ 5503 /* 5504 * A 32-bit pde maps 4MB while the shadow pdes map 5505 * only 2MB. So we need to double the offset again 5506 * and zap two pdes instead of one. 5507 */ 5508 if (level == PT32_ROOT_LEVEL) { 5509 page_offset &= ~7; /* kill rounding error */ 5510 page_offset <<= 1; 5511 *nspte = 2; 5512 } 5513 quadrant = page_offset >> PAGE_SHIFT; 5514 page_offset &= ~PAGE_MASK; 5515 if (quadrant != sp->role.quadrant) 5516 return NULL; 5517 } 5518 5519 spte = &sp->spt[page_offset / sizeof(*spte)]; 5520 return spte; 5521 } 5522 5523 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5524 const u8 *new, int bytes, 5525 struct kvm_page_track_notifier_node *node) 5526 { 5527 gfn_t gfn = gpa >> PAGE_SHIFT; 5528 struct kvm_mmu_page *sp; 5529 LIST_HEAD(invalid_list); 5530 u64 entry, gentry, *spte; 5531 int npte; 5532 bool flush = false; 5533 5534 /* 5535 * If we don't have indirect shadow pages, it means no page is 5536 * write-protected, so we can exit simply. 5537 */ 5538 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5539 return; 5540 5541 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5542 5543 write_lock(&vcpu->kvm->mmu_lock); 5544 5545 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5546 5547 ++vcpu->kvm->stat.mmu_pte_write; 5548 5549 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5550 if (detect_write_misaligned(sp, gpa, bytes) || 5551 detect_write_flooding(sp)) { 5552 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5553 ++vcpu->kvm->stat.mmu_flooded; 5554 continue; 5555 } 5556 5557 spte = get_written_sptes(sp, gpa, &npte); 5558 if (!spte) 5559 continue; 5560 5561 while (npte--) { 5562 entry = *spte; 5563 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5564 if (gentry && sp->role.level != PG_LEVEL_4K) 5565 ++vcpu->kvm->stat.mmu_pde_zapped; 5566 if (is_shadow_present_pte(entry)) 5567 flush = true; 5568 ++spte; 5569 } 5570 } 5571 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5572 write_unlock(&vcpu->kvm->mmu_lock); 5573 } 5574 5575 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5576 void *insn, int insn_len) 5577 { 5578 int r, emulation_type = EMULTYPE_PF; 5579 bool direct = vcpu->arch.mmu->root_role.direct; 5580 5581 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5582 return RET_PF_RETRY; 5583 5584 r = RET_PF_INVALID; 5585 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5586 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5587 if (r == RET_PF_EMULATE) 5588 goto emulate; 5589 } 5590 5591 if (r == RET_PF_INVALID) { 5592 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5593 lower_32_bits(error_code), false); 5594 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5595 return -EIO; 5596 } 5597 5598 if (r < 0) 5599 return r; 5600 if (r != RET_PF_EMULATE) 5601 return 1; 5602 5603 /* 5604 * Before emulating the instruction, check if the error code 5605 * was due to a RO violation while translating the guest page. 5606 * This can occur when using nested virtualization with nested 5607 * paging in both guests. If true, we simply unprotect the page 5608 * and resume the guest. 5609 */ 5610 if (vcpu->arch.mmu->root_role.direct && 5611 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5612 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5613 return 1; 5614 } 5615 5616 /* 5617 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5618 * optimistically try to just unprotect the page and let the processor 5619 * re-execute the instruction that caused the page fault. Do not allow 5620 * retrying MMIO emulation, as it's not only pointless but could also 5621 * cause us to enter an infinite loop because the processor will keep 5622 * faulting on the non-existent MMIO address. Retrying an instruction 5623 * from a nested guest is also pointless and dangerous as we are only 5624 * explicitly shadowing L1's page tables, i.e. unprotecting something 5625 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5626 */ 5627 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5628 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5629 emulate: 5630 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5631 insn_len); 5632 } 5633 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5634 5635 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5636 gva_t gva, hpa_t root_hpa) 5637 { 5638 int i; 5639 5640 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5641 if (mmu != &vcpu->arch.guest_mmu) { 5642 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5643 if (is_noncanonical_address(gva, vcpu)) 5644 return; 5645 5646 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5647 } 5648 5649 if (!mmu->invlpg) 5650 return; 5651 5652 if (root_hpa == INVALID_PAGE) { 5653 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5654 5655 /* 5656 * INVLPG is required to invalidate any global mappings for the VA, 5657 * irrespective of PCID. Since it would take us roughly similar amount 5658 * of work to determine whether any of the prev_root mappings of the VA 5659 * is marked global, or to just sync it blindly, so we might as well 5660 * just always sync it. 5661 * 5662 * Mappings not reachable via the current cr3 or the prev_roots will be 5663 * synced when switching to that cr3, so nothing needs to be done here 5664 * for them. 5665 */ 5666 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5667 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5668 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5669 } else { 5670 mmu->invlpg(vcpu, gva, root_hpa); 5671 } 5672 } 5673 5674 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5675 { 5676 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5677 ++vcpu->stat.invlpg; 5678 } 5679 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5680 5681 5682 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5683 { 5684 struct kvm_mmu *mmu = vcpu->arch.mmu; 5685 bool tlb_flush = false; 5686 uint i; 5687 5688 if (pcid == kvm_get_active_pcid(vcpu)) { 5689 if (mmu->invlpg) 5690 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5691 tlb_flush = true; 5692 } 5693 5694 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5695 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5696 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5697 if (mmu->invlpg) 5698 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5699 tlb_flush = true; 5700 } 5701 } 5702 5703 if (tlb_flush) 5704 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5705 5706 ++vcpu->stat.invlpg; 5707 5708 /* 5709 * Mappings not reachable via the current cr3 or the prev_roots will be 5710 * synced when switching to that cr3, so nothing needs to be done here 5711 * for them. 5712 */ 5713 } 5714 5715 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5716 int tdp_max_root_level, int tdp_huge_page_level) 5717 { 5718 tdp_enabled = enable_tdp; 5719 tdp_root_level = tdp_forced_root_level; 5720 max_tdp_level = tdp_max_root_level; 5721 5722 /* 5723 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5724 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5725 * the kernel is not. But, KVM never creates a page size greater than 5726 * what is used by the kernel for any given HVA, i.e. the kernel's 5727 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5728 */ 5729 if (tdp_enabled) 5730 max_huge_page_level = tdp_huge_page_level; 5731 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5732 max_huge_page_level = PG_LEVEL_1G; 5733 else 5734 max_huge_page_level = PG_LEVEL_2M; 5735 } 5736 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5737 5738 /* The return value indicates if tlb flush on all vcpus is needed. */ 5739 typedef bool (*slot_level_handler) (struct kvm *kvm, 5740 struct kvm_rmap_head *rmap_head, 5741 const struct kvm_memory_slot *slot); 5742 5743 /* The caller should hold mmu-lock before calling this function. */ 5744 static __always_inline bool 5745 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5746 slot_level_handler fn, int start_level, int end_level, 5747 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5748 bool flush) 5749 { 5750 struct slot_rmap_walk_iterator iterator; 5751 5752 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5753 end_gfn, &iterator) { 5754 if (iterator.rmap) 5755 flush |= fn(kvm, iterator.rmap, memslot); 5756 5757 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5758 if (flush && flush_on_yield) { 5759 kvm_flush_remote_tlbs_with_address(kvm, 5760 start_gfn, 5761 iterator.gfn - start_gfn + 1); 5762 flush = false; 5763 } 5764 cond_resched_rwlock_write(&kvm->mmu_lock); 5765 } 5766 } 5767 5768 return flush; 5769 } 5770 5771 static __always_inline bool 5772 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5773 slot_level_handler fn, int start_level, int end_level, 5774 bool flush_on_yield) 5775 { 5776 return slot_handle_level_range(kvm, memslot, fn, start_level, 5777 end_level, memslot->base_gfn, 5778 memslot->base_gfn + memslot->npages - 1, 5779 flush_on_yield, false); 5780 } 5781 5782 static __always_inline bool 5783 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5784 slot_level_handler fn, bool flush_on_yield) 5785 { 5786 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5787 PG_LEVEL_4K, flush_on_yield); 5788 } 5789 5790 static void free_mmu_pages(struct kvm_mmu *mmu) 5791 { 5792 if (!tdp_enabled && mmu->pae_root) 5793 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5794 free_page((unsigned long)mmu->pae_root); 5795 free_page((unsigned long)mmu->pml4_root); 5796 free_page((unsigned long)mmu->pml5_root); 5797 } 5798 5799 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5800 { 5801 struct page *page; 5802 int i; 5803 5804 mmu->root.hpa = INVALID_PAGE; 5805 mmu->root.pgd = 0; 5806 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5807 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5808 5809 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5810 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5811 return 0; 5812 5813 /* 5814 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5815 * while the PDP table is a per-vCPU construct that's allocated at MMU 5816 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5817 * x86_64. Therefore we need to allocate the PDP table in the first 5818 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5819 * generally doesn't use PAE paging and can skip allocating the PDP 5820 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5821 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5822 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 5823 */ 5824 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5825 return 0; 5826 5827 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5828 if (!page) 5829 return -ENOMEM; 5830 5831 mmu->pae_root = page_address(page); 5832 5833 /* 5834 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5835 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5836 * that KVM's writes and the CPU's reads get along. Note, this is 5837 * only necessary when using shadow paging, as 64-bit NPT can get at 5838 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5839 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5840 */ 5841 if (!tdp_enabled) 5842 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5843 else 5844 WARN_ON_ONCE(shadow_me_value); 5845 5846 for (i = 0; i < 4; ++i) 5847 mmu->pae_root[i] = INVALID_PAE_ROOT; 5848 5849 return 0; 5850 } 5851 5852 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5853 { 5854 int ret; 5855 5856 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5857 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5858 5859 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5860 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5861 5862 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5863 5864 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5865 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5866 5867 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5868 if (ret) 5869 return ret; 5870 5871 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5872 if (ret) 5873 goto fail_allocate_root; 5874 5875 return ret; 5876 fail_allocate_root: 5877 free_mmu_pages(&vcpu->arch.guest_mmu); 5878 return ret; 5879 } 5880 5881 #define BATCH_ZAP_PAGES 10 5882 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5883 { 5884 struct kvm_mmu_page *sp, *node; 5885 int nr_zapped, batch = 0; 5886 bool unstable; 5887 5888 restart: 5889 list_for_each_entry_safe_reverse(sp, node, 5890 &kvm->arch.active_mmu_pages, link) { 5891 /* 5892 * No obsolete valid page exists before a newly created page 5893 * since active_mmu_pages is a FIFO list. 5894 */ 5895 if (!is_obsolete_sp(kvm, sp)) 5896 break; 5897 5898 /* 5899 * Invalid pages should never land back on the list of active 5900 * pages. Skip the bogus page, otherwise we'll get stuck in an 5901 * infinite loop if the page gets put back on the list (again). 5902 */ 5903 if (WARN_ON(sp->role.invalid)) 5904 continue; 5905 5906 /* 5907 * No need to flush the TLB since we're only zapping shadow 5908 * pages with an obsolete generation number and all vCPUS have 5909 * loaded a new root, i.e. the shadow pages being zapped cannot 5910 * be in active use by the guest. 5911 */ 5912 if (batch >= BATCH_ZAP_PAGES && 5913 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5914 batch = 0; 5915 goto restart; 5916 } 5917 5918 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 5919 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 5920 batch += nr_zapped; 5921 5922 if (unstable) 5923 goto restart; 5924 } 5925 5926 /* 5927 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 5928 * to ensure KVM is not in the middle of a lockless shadow page table 5929 * walk, which may reference the pages. The remote TLB flush itself is 5930 * not required and is simply a convenient way to kick vCPUs as needed. 5931 * KVM performs a local TLB flush when allocating a new root (see 5932 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 5933 * running with an obsolete MMU. 5934 */ 5935 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5936 } 5937 5938 /* 5939 * Fast invalidate all shadow pages and use lock-break technique 5940 * to zap obsolete pages. 5941 * 5942 * It's required when memslot is being deleted or VM is being 5943 * destroyed, in these cases, we should ensure that KVM MMU does 5944 * not use any resource of the being-deleted slot or all slots 5945 * after calling the function. 5946 */ 5947 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5948 { 5949 lockdep_assert_held(&kvm->slots_lock); 5950 5951 write_lock(&kvm->mmu_lock); 5952 trace_kvm_mmu_zap_all_fast(kvm); 5953 5954 /* 5955 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5956 * held for the entire duration of zapping obsolete pages, it's 5957 * impossible for there to be multiple invalid generations associated 5958 * with *valid* shadow pages at any given time, i.e. there is exactly 5959 * one valid generation and (at most) one invalid generation. 5960 */ 5961 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5962 5963 /* 5964 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 5965 * invalidating TDP MMU roots must be done while holding mmu_lock for 5966 * write and in the same critical section as making the reload request, 5967 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 5968 */ 5969 if (is_tdp_mmu_enabled(kvm)) 5970 kvm_tdp_mmu_invalidate_all_roots(kvm); 5971 5972 /* 5973 * Notify all vcpus to reload its shadow page table and flush TLB. 5974 * Then all vcpus will switch to new shadow page table with the new 5975 * mmu_valid_gen. 5976 * 5977 * Note: we need to do this under the protection of mmu_lock, 5978 * otherwise, vcpu would purge shadow page but miss tlb flush. 5979 */ 5980 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 5981 5982 kvm_zap_obsolete_pages(kvm); 5983 5984 write_unlock(&kvm->mmu_lock); 5985 5986 /* 5987 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 5988 * returning to the caller, e.g. if the zap is in response to a memslot 5989 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 5990 * associated with the deleted memslot once the update completes, and 5991 * Deferring the zap until the final reference to the root is put would 5992 * lead to use-after-free. 5993 */ 5994 if (is_tdp_mmu_enabled(kvm)) 5995 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5996 } 5997 5998 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5999 { 6000 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6001 } 6002 6003 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 6004 struct kvm_memory_slot *slot, 6005 struct kvm_page_track_notifier_node *node) 6006 { 6007 kvm_mmu_zap_all_fast(kvm); 6008 } 6009 6010 int kvm_mmu_init_vm(struct kvm *kvm) 6011 { 6012 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 6013 int r; 6014 6015 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6016 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6017 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6018 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6019 6020 r = kvm_mmu_init_tdp_mmu(kvm); 6021 if (r < 0) 6022 return r; 6023 6024 node->track_write = kvm_mmu_pte_write; 6025 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 6026 kvm_page_track_register_notifier(kvm, node); 6027 6028 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6029 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6030 6031 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6032 6033 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6034 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6035 6036 return 0; 6037 } 6038 6039 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6040 { 6041 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6042 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6043 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6044 } 6045 6046 void kvm_mmu_uninit_vm(struct kvm *kvm) 6047 { 6048 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 6049 6050 kvm_page_track_unregister_notifier(kvm, node); 6051 6052 kvm_mmu_uninit_tdp_mmu(kvm); 6053 6054 mmu_free_vm_memory_caches(kvm); 6055 } 6056 6057 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6058 { 6059 const struct kvm_memory_slot *memslot; 6060 struct kvm_memslots *slots; 6061 struct kvm_memslot_iter iter; 6062 bool flush = false; 6063 gfn_t start, end; 6064 int i; 6065 6066 if (!kvm_memslots_have_rmaps(kvm)) 6067 return flush; 6068 6069 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6070 slots = __kvm_memslots(kvm, i); 6071 6072 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6073 memslot = iter.slot; 6074 start = max(gfn_start, memslot->base_gfn); 6075 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6076 if (WARN_ON_ONCE(start >= end)) 6077 continue; 6078 6079 flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap, 6080 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6081 start, end - 1, true, flush); 6082 } 6083 } 6084 6085 return flush; 6086 } 6087 6088 /* 6089 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6090 * (not including it) 6091 */ 6092 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6093 { 6094 bool flush; 6095 int i; 6096 6097 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6098 return; 6099 6100 write_lock(&kvm->mmu_lock); 6101 6102 kvm_mmu_invalidate_begin(kvm, 0, -1ul); 6103 6104 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6105 6106 if (is_tdp_mmu_enabled(kvm)) { 6107 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 6108 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 6109 gfn_end, true, flush); 6110 } 6111 6112 if (flush) 6113 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 6114 gfn_end - gfn_start); 6115 6116 kvm_mmu_invalidate_end(kvm, 0, -1ul); 6117 6118 write_unlock(&kvm->mmu_lock); 6119 } 6120 6121 static bool slot_rmap_write_protect(struct kvm *kvm, 6122 struct kvm_rmap_head *rmap_head, 6123 const struct kvm_memory_slot *slot) 6124 { 6125 return rmap_write_protect(rmap_head, false); 6126 } 6127 6128 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6129 const struct kvm_memory_slot *memslot, 6130 int start_level) 6131 { 6132 if (kvm_memslots_have_rmaps(kvm)) { 6133 write_lock(&kvm->mmu_lock); 6134 slot_handle_level(kvm, memslot, slot_rmap_write_protect, 6135 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6136 write_unlock(&kvm->mmu_lock); 6137 } 6138 6139 if (is_tdp_mmu_enabled(kvm)) { 6140 read_lock(&kvm->mmu_lock); 6141 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6142 read_unlock(&kvm->mmu_lock); 6143 } 6144 } 6145 6146 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6147 { 6148 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6149 } 6150 6151 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6152 { 6153 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6154 return true; 6155 6156 /* 6157 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6158 * to split a single huge page. Calculating how many are actually needed 6159 * is possible but not worth the complexity. 6160 */ 6161 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6162 need_topup(&kvm->arch.split_page_header_cache, 1) || 6163 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6164 } 6165 6166 static int topup_split_caches(struct kvm *kvm) 6167 { 6168 /* 6169 * Allocating rmap list entries when splitting huge pages for nested 6170 * MMUs is uncommon as KVM needs to use a list if and only if there is 6171 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6172 * aliased by multiple L2 gfns and/or from multiple nested roots with 6173 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6174 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6175 * but aliasing rarely occurs post-boot or for many gfns. If there is 6176 * only one rmap entry, rmap->val points directly at that one entry and 6177 * doesn't need to allocate a list. Buffer the cache by the default 6178 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6179 * encounters an aliased gfn or two. 6180 */ 6181 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6182 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6183 int r; 6184 6185 lockdep_assert_held(&kvm->slots_lock); 6186 6187 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6188 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6189 if (r) 6190 return r; 6191 6192 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6193 if (r) 6194 return r; 6195 6196 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6197 } 6198 6199 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6200 { 6201 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6202 struct shadow_page_caches caches = {}; 6203 union kvm_mmu_page_role role; 6204 unsigned int access; 6205 gfn_t gfn; 6206 6207 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6208 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6209 6210 /* 6211 * Note, huge page splitting always uses direct shadow pages, regardless 6212 * of whether the huge page itself is mapped by a direct or indirect 6213 * shadow page, since the huge page region itself is being directly 6214 * mapped with smaller pages. 6215 */ 6216 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6217 6218 /* Direct SPs do not require a shadowed_info_cache. */ 6219 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6220 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6221 6222 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6223 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6224 } 6225 6226 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6227 const struct kvm_memory_slot *slot, 6228 u64 *huge_sptep) 6229 6230 { 6231 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6232 u64 huge_spte = READ_ONCE(*huge_sptep); 6233 struct kvm_mmu_page *sp; 6234 bool flush = false; 6235 u64 *sptep, spte; 6236 gfn_t gfn; 6237 int index; 6238 6239 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6240 6241 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6242 sptep = &sp->spt[index]; 6243 gfn = kvm_mmu_page_get_gfn(sp, index); 6244 6245 /* 6246 * The SP may already have populated SPTEs, e.g. if this huge 6247 * page is aliased by multiple sptes with the same access 6248 * permissions. These entries are guaranteed to map the same 6249 * gfn-to-pfn translation since the SP is direct, so no need to 6250 * modify them. 6251 * 6252 * However, if a given SPTE points to a lower level page table, 6253 * that lower level page table may only be partially populated. 6254 * Installing such SPTEs would effectively unmap a potion of the 6255 * huge page. Unmapping guest memory always requires a TLB flush 6256 * since a subsequent operation on the unmapped regions would 6257 * fail to detect the need to flush. 6258 */ 6259 if (is_shadow_present_pte(*sptep)) { 6260 flush |= !is_last_spte(*sptep, sp->role.level); 6261 continue; 6262 } 6263 6264 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6265 mmu_spte_set(sptep, spte); 6266 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6267 } 6268 6269 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6270 } 6271 6272 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6273 const struct kvm_memory_slot *slot, 6274 u64 *huge_sptep) 6275 { 6276 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6277 int level, r = 0; 6278 gfn_t gfn; 6279 u64 spte; 6280 6281 /* Grab information for the tracepoint before dropping the MMU lock. */ 6282 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6283 level = huge_sp->role.level; 6284 spte = *huge_sptep; 6285 6286 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6287 r = -ENOSPC; 6288 goto out; 6289 } 6290 6291 if (need_topup_split_caches_or_resched(kvm)) { 6292 write_unlock(&kvm->mmu_lock); 6293 cond_resched(); 6294 /* 6295 * If the topup succeeds, return -EAGAIN to indicate that the 6296 * rmap iterator should be restarted because the MMU lock was 6297 * dropped. 6298 */ 6299 r = topup_split_caches(kvm) ?: -EAGAIN; 6300 write_lock(&kvm->mmu_lock); 6301 goto out; 6302 } 6303 6304 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6305 6306 out: 6307 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6308 return r; 6309 } 6310 6311 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6312 struct kvm_rmap_head *rmap_head, 6313 const struct kvm_memory_slot *slot) 6314 { 6315 struct rmap_iterator iter; 6316 struct kvm_mmu_page *sp; 6317 u64 *huge_sptep; 6318 int r; 6319 6320 restart: 6321 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6322 sp = sptep_to_sp(huge_sptep); 6323 6324 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6325 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6326 continue; 6327 6328 /* The rmaps should never contain non-leaf SPTEs. */ 6329 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6330 continue; 6331 6332 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6333 if (WARN_ON_ONCE(sp->unsync)) 6334 continue; 6335 6336 /* Don't bother splitting huge pages on invalid SPs. */ 6337 if (sp->role.invalid) 6338 continue; 6339 6340 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6341 6342 /* 6343 * The split succeeded or needs to be retried because the MMU 6344 * lock was dropped. Either way, restart the iterator to get it 6345 * back into a consistent state. 6346 */ 6347 if (!r || r == -EAGAIN) 6348 goto restart; 6349 6350 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6351 break; 6352 } 6353 6354 return false; 6355 } 6356 6357 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6358 const struct kvm_memory_slot *slot, 6359 gfn_t start, gfn_t end, 6360 int target_level) 6361 { 6362 int level; 6363 6364 /* 6365 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6366 * down to the target level. This ensures pages are recursively split 6367 * all the way to the target level. There's no need to split pages 6368 * already at the target level. 6369 */ 6370 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) { 6371 slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages, 6372 level, level, start, end - 1, true, false); 6373 } 6374 } 6375 6376 /* Must be called with the mmu_lock held in write-mode. */ 6377 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6378 const struct kvm_memory_slot *memslot, 6379 u64 start, u64 end, 6380 int target_level) 6381 { 6382 if (!is_tdp_mmu_enabled(kvm)) 6383 return; 6384 6385 if (kvm_memslots_have_rmaps(kvm)) 6386 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6387 6388 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6389 6390 /* 6391 * A TLB flush is unnecessary at this point for the same resons as in 6392 * kvm_mmu_slot_try_split_huge_pages(). 6393 */ 6394 } 6395 6396 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6397 const struct kvm_memory_slot *memslot, 6398 int target_level) 6399 { 6400 u64 start = memslot->base_gfn; 6401 u64 end = start + memslot->npages; 6402 6403 if (!is_tdp_mmu_enabled(kvm)) 6404 return; 6405 6406 if (kvm_memslots_have_rmaps(kvm)) { 6407 write_lock(&kvm->mmu_lock); 6408 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6409 write_unlock(&kvm->mmu_lock); 6410 } 6411 6412 read_lock(&kvm->mmu_lock); 6413 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6414 read_unlock(&kvm->mmu_lock); 6415 6416 /* 6417 * No TLB flush is necessary here. KVM will flush TLBs after 6418 * write-protecting and/or clearing dirty on the newly split SPTEs to 6419 * ensure that guest writes are reflected in the dirty log before the 6420 * ioctl to enable dirty logging on this memslot completes. Since the 6421 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6422 * safe for KVM to decide if a TLB flush is necessary based on the split 6423 * SPTEs. 6424 */ 6425 } 6426 6427 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6428 struct kvm_rmap_head *rmap_head, 6429 const struct kvm_memory_slot *slot) 6430 { 6431 u64 *sptep; 6432 struct rmap_iterator iter; 6433 int need_tlb_flush = 0; 6434 struct kvm_mmu_page *sp; 6435 6436 restart: 6437 for_each_rmap_spte(rmap_head, &iter, sptep) { 6438 sp = sptep_to_sp(sptep); 6439 6440 /* 6441 * We cannot do huge page mapping for indirect shadow pages, 6442 * which are found on the last rmap (level = 1) when not using 6443 * tdp; such shadow pages are synced with the page table in 6444 * the guest, and the guest page table is using 4K page size 6445 * mapping if the indirect sp has level = 1. 6446 */ 6447 if (sp->role.direct && 6448 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6449 PG_LEVEL_NUM)) { 6450 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6451 6452 if (kvm_available_flush_tlb_with_range()) 6453 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 6454 KVM_PAGES_PER_HPAGE(sp->role.level)); 6455 else 6456 need_tlb_flush = 1; 6457 6458 goto restart; 6459 } 6460 } 6461 6462 return need_tlb_flush; 6463 } 6464 6465 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6466 const struct kvm_memory_slot *slot) 6467 { 6468 /* 6469 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6470 * pages that are already mapped at the maximum hugepage level. 6471 */ 6472 if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte, 6473 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6474 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 6475 } 6476 6477 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6478 const struct kvm_memory_slot *slot) 6479 { 6480 if (kvm_memslots_have_rmaps(kvm)) { 6481 write_lock(&kvm->mmu_lock); 6482 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6483 write_unlock(&kvm->mmu_lock); 6484 } 6485 6486 if (is_tdp_mmu_enabled(kvm)) { 6487 read_lock(&kvm->mmu_lock); 6488 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6489 read_unlock(&kvm->mmu_lock); 6490 } 6491 } 6492 6493 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 6494 const struct kvm_memory_slot *memslot) 6495 { 6496 /* 6497 * All current use cases for flushing the TLBs for a specific memslot 6498 * related to dirty logging, and many do the TLB flush out of mmu_lock. 6499 * The interaction between the various operations on memslot must be 6500 * serialized by slots_locks to ensure the TLB flush from one operation 6501 * is observed by any other operation on the same memslot. 6502 */ 6503 lockdep_assert_held(&kvm->slots_lock); 6504 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6505 memslot->npages); 6506 } 6507 6508 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6509 const struct kvm_memory_slot *memslot) 6510 { 6511 if (kvm_memslots_have_rmaps(kvm)) { 6512 write_lock(&kvm->mmu_lock); 6513 /* 6514 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6515 * support dirty logging at a 4k granularity. 6516 */ 6517 slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); 6518 write_unlock(&kvm->mmu_lock); 6519 } 6520 6521 if (is_tdp_mmu_enabled(kvm)) { 6522 read_lock(&kvm->mmu_lock); 6523 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6524 read_unlock(&kvm->mmu_lock); 6525 } 6526 6527 /* 6528 * The caller will flush the TLBs after this function returns. 6529 * 6530 * It's also safe to flush TLBs out of mmu lock here as currently this 6531 * function is only used for dirty logging, in which case flushing TLB 6532 * out of mmu lock also guarantees no dirty pages will be lost in 6533 * dirty_bitmap. 6534 */ 6535 } 6536 6537 void kvm_mmu_zap_all(struct kvm *kvm) 6538 { 6539 struct kvm_mmu_page *sp, *node; 6540 LIST_HEAD(invalid_list); 6541 int ign; 6542 6543 write_lock(&kvm->mmu_lock); 6544 restart: 6545 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6546 if (WARN_ON(sp->role.invalid)) 6547 continue; 6548 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6549 goto restart; 6550 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6551 goto restart; 6552 } 6553 6554 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6555 6556 if (is_tdp_mmu_enabled(kvm)) 6557 kvm_tdp_mmu_zap_all(kvm); 6558 6559 write_unlock(&kvm->mmu_lock); 6560 } 6561 6562 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6563 { 6564 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6565 6566 gen &= MMIO_SPTE_GEN_MASK; 6567 6568 /* 6569 * Generation numbers are incremented in multiples of the number of 6570 * address spaces in order to provide unique generations across all 6571 * address spaces. Strip what is effectively the address space 6572 * modifier prior to checking for a wrap of the MMIO generation so 6573 * that a wrap in any address space is detected. 6574 */ 6575 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6576 6577 /* 6578 * The very rare case: if the MMIO generation number has wrapped, 6579 * zap all shadow pages. 6580 */ 6581 if (unlikely(gen == 0)) { 6582 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6583 kvm_mmu_zap_all_fast(kvm); 6584 } 6585 } 6586 6587 static unsigned long 6588 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6589 { 6590 struct kvm *kvm; 6591 int nr_to_scan = sc->nr_to_scan; 6592 unsigned long freed = 0; 6593 6594 mutex_lock(&kvm_lock); 6595 6596 list_for_each_entry(kvm, &vm_list, vm_list) { 6597 int idx; 6598 LIST_HEAD(invalid_list); 6599 6600 /* 6601 * Never scan more than sc->nr_to_scan VM instances. 6602 * Will not hit this condition practically since we do not try 6603 * to shrink more than one VM and it is very unlikely to see 6604 * !n_used_mmu_pages so many times. 6605 */ 6606 if (!nr_to_scan--) 6607 break; 6608 /* 6609 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6610 * here. We may skip a VM instance errorneosly, but we do not 6611 * want to shrink a VM that only started to populate its MMU 6612 * anyway. 6613 */ 6614 if (!kvm->arch.n_used_mmu_pages && 6615 !kvm_has_zapped_obsolete_pages(kvm)) 6616 continue; 6617 6618 idx = srcu_read_lock(&kvm->srcu); 6619 write_lock(&kvm->mmu_lock); 6620 6621 if (kvm_has_zapped_obsolete_pages(kvm)) { 6622 kvm_mmu_commit_zap_page(kvm, 6623 &kvm->arch.zapped_obsolete_pages); 6624 goto unlock; 6625 } 6626 6627 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6628 6629 unlock: 6630 write_unlock(&kvm->mmu_lock); 6631 srcu_read_unlock(&kvm->srcu, idx); 6632 6633 /* 6634 * unfair on small ones 6635 * per-vm shrinkers cry out 6636 * sadness comes quickly 6637 */ 6638 list_move_tail(&kvm->vm_list, &vm_list); 6639 break; 6640 } 6641 6642 mutex_unlock(&kvm_lock); 6643 return freed; 6644 } 6645 6646 static unsigned long 6647 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6648 { 6649 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6650 } 6651 6652 static struct shrinker mmu_shrinker = { 6653 .count_objects = mmu_shrink_count, 6654 .scan_objects = mmu_shrink_scan, 6655 .seeks = DEFAULT_SEEKS * 10, 6656 }; 6657 6658 static void mmu_destroy_caches(void) 6659 { 6660 kmem_cache_destroy(pte_list_desc_cache); 6661 kmem_cache_destroy(mmu_page_header_cache); 6662 } 6663 6664 static bool get_nx_auto_mode(void) 6665 { 6666 /* Return true when CPU has the bug, and mitigations are ON */ 6667 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6668 } 6669 6670 static void __set_nx_huge_pages(bool val) 6671 { 6672 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6673 } 6674 6675 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6676 { 6677 bool old_val = nx_huge_pages; 6678 bool new_val; 6679 6680 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6681 if (sysfs_streq(val, "off")) 6682 new_val = 0; 6683 else if (sysfs_streq(val, "force")) 6684 new_val = 1; 6685 else if (sysfs_streq(val, "auto")) 6686 new_val = get_nx_auto_mode(); 6687 else if (strtobool(val, &new_val) < 0) 6688 return -EINVAL; 6689 6690 __set_nx_huge_pages(new_val); 6691 6692 if (new_val != old_val) { 6693 struct kvm *kvm; 6694 6695 mutex_lock(&kvm_lock); 6696 6697 list_for_each_entry(kvm, &vm_list, vm_list) { 6698 mutex_lock(&kvm->slots_lock); 6699 kvm_mmu_zap_all_fast(kvm); 6700 mutex_unlock(&kvm->slots_lock); 6701 6702 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 6703 } 6704 mutex_unlock(&kvm_lock); 6705 } 6706 6707 return 0; 6708 } 6709 6710 /* 6711 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6712 * its default value of -1 is technically undefined behavior for a boolean. 6713 * Forward the module init call to SPTE code so that it too can handle module 6714 * params that need to be resolved/snapshot. 6715 */ 6716 void __init kvm_mmu_x86_module_init(void) 6717 { 6718 if (nx_huge_pages == -1) 6719 __set_nx_huge_pages(get_nx_auto_mode()); 6720 6721 kvm_mmu_spte_module_init(); 6722 } 6723 6724 /* 6725 * The bulk of the MMU initialization is deferred until the vendor module is 6726 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6727 * to be reset when a potentially different vendor module is loaded. 6728 */ 6729 int kvm_mmu_vendor_module_init(void) 6730 { 6731 int ret = -ENOMEM; 6732 6733 /* 6734 * MMU roles use union aliasing which is, generally speaking, an 6735 * undefined behavior. However, we supposedly know how compilers behave 6736 * and the current status quo is unlikely to change. Guardians below are 6737 * supposed to let us know if the assumption becomes false. 6738 */ 6739 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6740 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6741 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 6742 6743 kvm_mmu_reset_all_pte_masks(); 6744 6745 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6746 sizeof(struct pte_list_desc), 6747 0, SLAB_ACCOUNT, NULL); 6748 if (!pte_list_desc_cache) 6749 goto out; 6750 6751 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6752 sizeof(struct kvm_mmu_page), 6753 0, SLAB_ACCOUNT, NULL); 6754 if (!mmu_page_header_cache) 6755 goto out; 6756 6757 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6758 goto out; 6759 6760 ret = register_shrinker(&mmu_shrinker, "x86-mmu"); 6761 if (ret) 6762 goto out_shrinker; 6763 6764 return 0; 6765 6766 out_shrinker: 6767 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6768 out: 6769 mmu_destroy_caches(); 6770 return ret; 6771 } 6772 6773 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6774 { 6775 kvm_mmu_unload(vcpu); 6776 free_mmu_pages(&vcpu->arch.root_mmu); 6777 free_mmu_pages(&vcpu->arch.guest_mmu); 6778 mmu_free_memory_caches(vcpu); 6779 } 6780 6781 void kvm_mmu_vendor_module_exit(void) 6782 { 6783 mmu_destroy_caches(); 6784 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6785 unregister_shrinker(&mmu_shrinker); 6786 } 6787 6788 /* 6789 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6790 * select a halving time of 1 hour". Returns true if recovery is enabled. 6791 */ 6792 static bool calc_nx_huge_pages_recovery_period(uint *period) 6793 { 6794 /* 6795 * Use READ_ONCE to get the params, this may be called outside of the 6796 * param setters, e.g. by the kthread to compute its next timeout. 6797 */ 6798 bool enabled = READ_ONCE(nx_huge_pages); 6799 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6800 6801 if (!enabled || !ratio) 6802 return false; 6803 6804 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6805 if (!*period) { 6806 /* Make sure the period is not less than one second. */ 6807 ratio = min(ratio, 3600u); 6808 *period = 60 * 60 * 1000 / ratio; 6809 } 6810 return true; 6811 } 6812 6813 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6814 { 6815 bool was_recovery_enabled, is_recovery_enabled; 6816 uint old_period, new_period; 6817 int err; 6818 6819 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6820 6821 err = param_set_uint(val, kp); 6822 if (err) 6823 return err; 6824 6825 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 6826 6827 if (is_recovery_enabled && 6828 (!was_recovery_enabled || old_period > new_period)) { 6829 struct kvm *kvm; 6830 6831 mutex_lock(&kvm_lock); 6832 6833 list_for_each_entry(kvm, &vm_list, vm_list) 6834 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 6835 6836 mutex_unlock(&kvm_lock); 6837 } 6838 6839 return err; 6840 } 6841 6842 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 6843 { 6844 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6845 struct kvm_memory_slot *slot; 6846 int rcu_idx; 6847 struct kvm_mmu_page *sp; 6848 unsigned int ratio; 6849 LIST_HEAD(invalid_list); 6850 bool flush = false; 6851 ulong to_zap; 6852 6853 rcu_idx = srcu_read_lock(&kvm->srcu); 6854 write_lock(&kvm->mmu_lock); 6855 6856 /* 6857 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 6858 * be done under RCU protection, because the pages are freed via RCU 6859 * callback. 6860 */ 6861 rcu_read_lock(); 6862 6863 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6864 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6865 for ( ; to_zap; --to_zap) { 6866 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 6867 break; 6868 6869 /* 6870 * We use a separate list instead of just using active_mmu_pages 6871 * because the number of shadow pages that be replaced with an 6872 * NX huge page is expected to be relatively small compared to 6873 * the total number of shadow pages. And because the TDP MMU 6874 * doesn't use active_mmu_pages. 6875 */ 6876 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 6877 struct kvm_mmu_page, 6878 possible_nx_huge_page_link); 6879 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 6880 WARN_ON_ONCE(!sp->role.direct); 6881 6882 /* 6883 * Unaccount and do not attempt to recover any NX Huge Pages 6884 * that are being dirty tracked, as they would just be faulted 6885 * back in as 4KiB pages. The NX Huge Pages in this slot will be 6886 * recovered, along with all the other huge pages in the slot, 6887 * when dirty logging is disabled. 6888 * 6889 * Since gfn_to_memslot() is relatively expensive, it helps to 6890 * skip it if it the test cannot possibly return true. On the 6891 * other hand, if any memslot has logging enabled, chances are 6892 * good that all of them do, in which case unaccount_nx_huge_page() 6893 * is much cheaper than zapping the page. 6894 * 6895 * If a memslot update is in progress, reading an incorrect value 6896 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 6897 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 6898 * it is becoming nonzero, the page will be zapped unnecessarily. 6899 * Either way, this only affects efficiency in racy situations, 6900 * and not correctness. 6901 */ 6902 slot = NULL; 6903 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 6904 slot = gfn_to_memslot(kvm, sp->gfn); 6905 WARN_ON_ONCE(!slot); 6906 } 6907 6908 if (slot && kvm_slot_dirty_track_enabled(slot)) 6909 unaccount_nx_huge_page(kvm, sp); 6910 else if (is_tdp_mmu_page(sp)) 6911 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6912 else 6913 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6914 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 6915 6916 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6917 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6918 rcu_read_unlock(); 6919 6920 cond_resched_rwlock_write(&kvm->mmu_lock); 6921 flush = false; 6922 6923 rcu_read_lock(); 6924 } 6925 } 6926 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6927 6928 rcu_read_unlock(); 6929 6930 write_unlock(&kvm->mmu_lock); 6931 srcu_read_unlock(&kvm->srcu, rcu_idx); 6932 } 6933 6934 static long get_nx_huge_page_recovery_timeout(u64 start_time) 6935 { 6936 bool enabled; 6937 uint period; 6938 6939 enabled = calc_nx_huge_pages_recovery_period(&period); 6940 6941 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 6942 : MAX_SCHEDULE_TIMEOUT; 6943 } 6944 6945 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 6946 { 6947 u64 start_time; 6948 long remaining_time; 6949 6950 while (true) { 6951 start_time = get_jiffies_64(); 6952 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 6953 6954 set_current_state(TASK_INTERRUPTIBLE); 6955 while (!kthread_should_stop() && remaining_time > 0) { 6956 schedule_timeout(remaining_time); 6957 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 6958 set_current_state(TASK_INTERRUPTIBLE); 6959 } 6960 6961 set_current_state(TASK_RUNNING); 6962 6963 if (kthread_should_stop()) 6964 return 0; 6965 6966 kvm_recover_nx_huge_pages(kvm); 6967 } 6968 } 6969 6970 int kvm_mmu_post_init_vm(struct kvm *kvm) 6971 { 6972 int err; 6973 6974 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 6975 "kvm-nx-lpage-recovery", 6976 &kvm->arch.nx_huge_page_recovery_thread); 6977 if (!err) 6978 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 6979 6980 return err; 6981 } 6982 6983 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6984 { 6985 if (kvm->arch.nx_huge_page_recovery_thread) 6986 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 6987 } 6988