1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 #endif 114 115 static int max_huge_page_level __read_mostly; 116 static int tdp_root_level __read_mostly; 117 static int max_tdp_level __read_mostly; 118 119 #define PTE_PREFETCH_NUM 8 120 121 #include <trace/events/kvm.h> 122 123 /* make pte_list_desc fit well in cache lines */ 124 #define PTE_LIST_EXT 14 125 126 /* 127 * struct pte_list_desc is the core data structure used to implement a custom 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 129 * given GFN when used in the context of rmaps. Using a custom list allows KVM 130 * to optimize for the common case where many GFNs will have at most a handful 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 132 * memory footprint, which in turn improves runtime performance by exploiting 133 * cache locality. 134 * 135 * A list is comprised of one or more pte_list_desc objects (descriptors). 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 138 * becomes the head of the list. This means that by definitions, all tail 139 * descriptors are full. 140 * 141 * Note, the meta data fields are deliberately placed at the start of the 142 * structure to optimize the cacheline layout; accessing the descriptor will 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the 144 * descriptors metadata is accessed). 145 */ 146 struct pte_list_desc { 147 struct pte_list_desc *more; 148 /* The number of PTEs stored in _this_ descriptor. */ 149 u32 spte_count; 150 /* The number of PTEs stored in all tails of this descriptor. */ 151 u32 tail_count; 152 u64 *sptes[PTE_LIST_EXT]; 153 }; 154 155 struct kvm_shadow_walk_iterator { 156 u64 addr; 157 hpa_t shadow_addr; 158 u64 *sptep; 159 int level; 160 unsigned index; 161 }; 162 163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 165 (_root), (_addr)); \ 166 shadow_walk_okay(&(_walker)); \ 167 shadow_walk_next(&(_walker))) 168 169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 171 shadow_walk_okay(&(_walker)); \ 172 shadow_walk_next(&(_walker))) 173 174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 176 shadow_walk_okay(&(_walker)) && \ 177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 178 __shadow_walk_next(&(_walker), spte)) 179 180 static struct kmem_cache *pte_list_desc_cache; 181 struct kmem_cache *mmu_page_header_cache; 182 183 static void mmu_spte_set(u64 *sptep, u64 spte); 184 185 struct kvm_mmu_role_regs { 186 const unsigned long cr0; 187 const unsigned long cr4; 188 const u64 efer; 189 }; 190 191 #define CREATE_TRACE_POINTS 192 #include "mmutrace.h" 193 194 /* 195 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 196 * reading from the role_regs. Once the root_role is constructed, it becomes 197 * the single source of truth for the MMU's state. 198 */ 199 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 200 static inline bool __maybe_unused \ 201 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 202 { \ 203 return !!(regs->reg & flag); \ 204 } 205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 215 216 /* 217 * The MMU itself (with a valid role) is the single source of truth for the 218 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 219 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 220 * and the vCPU may be incorrect/irrelevant. 221 */ 222 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 223 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 224 { \ 225 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 226 } 227 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 228 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 233 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 234 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 235 236 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 237 { 238 return mmu->cpu_role.base.level > 0; 239 } 240 241 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 242 { 243 return !mmu->cpu_role.base.has_4_byte_gpte; 244 } 245 246 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 247 { 248 struct kvm_mmu_role_regs regs = { 249 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 250 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 251 .efer = vcpu->arch.efer, 252 }; 253 254 return regs; 255 } 256 257 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 258 { 259 return kvm_read_cr3(vcpu); 260 } 261 262 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 263 struct kvm_mmu *mmu) 264 { 265 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 266 return kvm_read_cr3(vcpu); 267 268 return mmu->get_guest_pgd(vcpu); 269 } 270 271 static inline bool kvm_available_flush_remote_tlbs_range(void) 272 { 273 #if IS_ENABLED(CONFIG_HYPERV) 274 return kvm_x86_ops.flush_remote_tlbs_range; 275 #else 276 return false; 277 #endif 278 } 279 280 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 281 282 /* Flush the range of guest memory mapped by the given SPTE. */ 283 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 284 { 285 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 286 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 287 288 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 289 } 290 291 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 292 unsigned int access) 293 { 294 u64 spte = make_mmio_spte(vcpu, gfn, access); 295 296 trace_mark_mmio_spte(sptep, gfn, spte); 297 mmu_spte_set(sptep, spte); 298 } 299 300 static gfn_t get_mmio_spte_gfn(u64 spte) 301 { 302 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 303 304 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 305 & shadow_nonpresent_or_rsvd_mask; 306 307 return gpa >> PAGE_SHIFT; 308 } 309 310 static unsigned get_mmio_spte_access(u64 spte) 311 { 312 return spte & shadow_mmio_access_mask; 313 } 314 315 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 316 { 317 u64 kvm_gen, spte_gen, gen; 318 319 gen = kvm_vcpu_memslots(vcpu)->generation; 320 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 321 return false; 322 323 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 324 spte_gen = get_mmio_spte_generation(spte); 325 326 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 327 return likely(kvm_gen == spte_gen); 328 } 329 330 static int is_cpuid_PSE36(void) 331 { 332 return 1; 333 } 334 335 #ifdef CONFIG_X86_64 336 static void __set_spte(u64 *sptep, u64 spte) 337 { 338 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 339 WRITE_ONCE(*sptep, spte); 340 } 341 342 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 343 { 344 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 345 WRITE_ONCE(*sptep, spte); 346 } 347 348 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 349 { 350 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 351 return xchg(sptep, spte); 352 } 353 354 static u64 __get_spte_lockless(u64 *sptep) 355 { 356 return READ_ONCE(*sptep); 357 } 358 #else 359 union split_spte { 360 struct { 361 u32 spte_low; 362 u32 spte_high; 363 }; 364 u64 spte; 365 }; 366 367 static void count_spte_clear(u64 *sptep, u64 spte) 368 { 369 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 370 371 if (is_shadow_present_pte(spte)) 372 return; 373 374 /* Ensure the spte is completely set before we increase the count */ 375 smp_wmb(); 376 sp->clear_spte_count++; 377 } 378 379 static void __set_spte(u64 *sptep, u64 spte) 380 { 381 union split_spte *ssptep, sspte; 382 383 ssptep = (union split_spte *)sptep; 384 sspte = (union split_spte)spte; 385 386 ssptep->spte_high = sspte.spte_high; 387 388 /* 389 * If we map the spte from nonpresent to present, We should store 390 * the high bits firstly, then set present bit, so cpu can not 391 * fetch this spte while we are setting the spte. 392 */ 393 smp_wmb(); 394 395 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 396 } 397 398 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 399 { 400 union split_spte *ssptep, sspte; 401 402 ssptep = (union split_spte *)sptep; 403 sspte = (union split_spte)spte; 404 405 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 406 407 /* 408 * If we map the spte from present to nonpresent, we should clear 409 * present bit firstly to avoid vcpu fetch the old high bits. 410 */ 411 smp_wmb(); 412 413 ssptep->spte_high = sspte.spte_high; 414 count_spte_clear(sptep, spte); 415 } 416 417 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 418 { 419 union split_spte *ssptep, sspte, orig; 420 421 ssptep = (union split_spte *)sptep; 422 sspte = (union split_spte)spte; 423 424 /* xchg acts as a barrier before the setting of the high bits */ 425 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 426 orig.spte_high = ssptep->spte_high; 427 ssptep->spte_high = sspte.spte_high; 428 count_spte_clear(sptep, spte); 429 430 return orig.spte; 431 } 432 433 /* 434 * The idea using the light way get the spte on x86_32 guest is from 435 * gup_get_pte (mm/gup.c). 436 * 437 * An spte tlb flush may be pending, because they are coalesced and 438 * we are running out of the MMU lock. Therefore 439 * we need to protect against in-progress updates of the spte. 440 * 441 * Reading the spte while an update is in progress may get the old value 442 * for the high part of the spte. The race is fine for a present->non-present 443 * change (because the high part of the spte is ignored for non-present spte), 444 * but for a present->present change we must reread the spte. 445 * 446 * All such changes are done in two steps (present->non-present and 447 * non-present->present), hence it is enough to count the number of 448 * present->non-present updates: if it changed while reading the spte, 449 * we might have hit the race. This is done using clear_spte_count. 450 */ 451 static u64 __get_spte_lockless(u64 *sptep) 452 { 453 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 454 union split_spte spte, *orig = (union split_spte *)sptep; 455 int count; 456 457 retry: 458 count = sp->clear_spte_count; 459 smp_rmb(); 460 461 spte.spte_low = orig->spte_low; 462 smp_rmb(); 463 464 spte.spte_high = orig->spte_high; 465 smp_rmb(); 466 467 if (unlikely(spte.spte_low != orig->spte_low || 468 count != sp->clear_spte_count)) 469 goto retry; 470 471 return spte.spte; 472 } 473 #endif 474 475 /* Rules for using mmu_spte_set: 476 * Set the sptep from nonpresent to present. 477 * Note: the sptep being assigned *must* be either not present 478 * or in a state where the hardware will not attempt to update 479 * the spte. 480 */ 481 static void mmu_spte_set(u64 *sptep, u64 new_spte) 482 { 483 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 484 __set_spte(sptep, new_spte); 485 } 486 487 /* Rules for using mmu_spte_update: 488 * Update the state bits, it means the mapped pfn is not changed. 489 * 490 * Returns true if the TLB needs to be flushed 491 */ 492 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 493 { 494 u64 old_spte = *sptep; 495 496 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 497 check_spte_writable_invariants(new_spte); 498 499 if (!is_shadow_present_pte(old_spte)) { 500 mmu_spte_set(sptep, new_spte); 501 return false; 502 } 503 504 if (!spte_has_volatile_bits(old_spte)) 505 __update_clear_spte_fast(sptep, new_spte); 506 else 507 old_spte = __update_clear_spte_slow(sptep, new_spte); 508 509 WARN_ON_ONCE(!is_shadow_present_pte(old_spte) || 510 spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 511 512 return leaf_spte_change_needs_tlb_flush(old_spte, new_spte); 513 } 514 515 /* 516 * Rules for using mmu_spte_clear_track_bits: 517 * It sets the sptep from present to nonpresent, and track the 518 * state bits, it is used to clear the last level sptep. 519 * Returns the old PTE. 520 */ 521 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 522 { 523 u64 old_spte = *sptep; 524 int level = sptep_to_sp(sptep)->role.level; 525 526 if (!is_shadow_present_pte(old_spte) || 527 !spte_has_volatile_bits(old_spte)) 528 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 529 else 530 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 531 532 if (!is_shadow_present_pte(old_spte)) 533 return old_spte; 534 535 kvm_update_page_stats(kvm, level, -1); 536 return old_spte; 537 } 538 539 /* 540 * Rules for using mmu_spte_clear_no_track: 541 * Directly clear spte without caring the state bits of sptep, 542 * it is used to set the upper level spte. 543 */ 544 static void mmu_spte_clear_no_track(u64 *sptep) 545 { 546 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 547 } 548 549 static u64 mmu_spte_get_lockless(u64 *sptep) 550 { 551 return __get_spte_lockless(sptep); 552 } 553 554 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 555 { 556 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 557 } 558 559 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 560 { 561 if (is_tdp_mmu_active(vcpu)) { 562 kvm_tdp_mmu_walk_lockless_begin(); 563 } else { 564 /* 565 * Prevent page table teardown by making any free-er wait during 566 * kvm_flush_remote_tlbs() IPI to all active vcpus. 567 */ 568 local_irq_disable(); 569 570 /* 571 * Make sure a following spte read is not reordered ahead of the write 572 * to vcpu->mode. 573 */ 574 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 575 } 576 } 577 578 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 579 { 580 if (is_tdp_mmu_active(vcpu)) { 581 kvm_tdp_mmu_walk_lockless_end(); 582 } else { 583 /* 584 * Make sure the write to vcpu->mode is not reordered in front of 585 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 586 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 587 */ 588 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 589 local_irq_enable(); 590 } 591 } 592 593 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 594 { 595 int r; 596 597 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 598 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 599 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 600 if (r) 601 return r; 602 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 603 PT64_ROOT_MAX_LEVEL); 604 if (r) 605 return r; 606 if (maybe_indirect) { 607 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 608 PT64_ROOT_MAX_LEVEL); 609 if (r) 610 return r; 611 } 612 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 613 PT64_ROOT_MAX_LEVEL); 614 } 615 616 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 617 { 618 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 619 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 620 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 621 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 622 } 623 624 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 625 { 626 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 627 } 628 629 static bool sp_has_gptes(struct kvm_mmu_page *sp); 630 631 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 632 { 633 if (sp->role.passthrough) 634 return sp->gfn; 635 636 if (sp->shadowed_translation) 637 return sp->shadowed_translation[index] >> PAGE_SHIFT; 638 639 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 640 } 641 642 /* 643 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 644 * that the SPTE itself may have a more constrained access permissions that 645 * what the guest enforces. For example, a guest may create an executable 646 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 647 */ 648 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 649 { 650 if (sp->shadowed_translation) 651 return sp->shadowed_translation[index] & ACC_ALL; 652 653 /* 654 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 655 * KVM is not shadowing any guest page tables, so the "guest access 656 * permissions" are just ACC_ALL. 657 * 658 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 659 * is shadowing a guest huge page with small pages, the guest access 660 * permissions being shadowed are the access permissions of the huge 661 * page. 662 * 663 * In both cases, sp->role.access contains the correct access bits. 664 */ 665 return sp->role.access; 666 } 667 668 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 669 gfn_t gfn, unsigned int access) 670 { 671 if (sp->shadowed_translation) { 672 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 673 return; 674 } 675 676 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 677 "access mismatch under %s page %llx (expected %u, got %u)\n", 678 sp->role.passthrough ? "passthrough" : "direct", 679 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 680 681 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 682 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 683 sp->role.passthrough ? "passthrough" : "direct", 684 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 685 } 686 687 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 688 unsigned int access) 689 { 690 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 691 692 kvm_mmu_page_set_translation(sp, index, gfn, access); 693 } 694 695 /* 696 * Return the pointer to the large page information for a given gfn, 697 * handling slots that are not large page aligned. 698 */ 699 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 700 const struct kvm_memory_slot *slot, int level) 701 { 702 unsigned long idx; 703 704 idx = gfn_to_index(gfn, slot->base_gfn, level); 705 return &slot->arch.lpage_info[level - 2][idx]; 706 } 707 708 /* 709 * The most significant bit in disallow_lpage tracks whether or not memory 710 * attributes are mixed, i.e. not identical for all gfns at the current level. 711 * The lower order bits are used to refcount other cases where a hugepage is 712 * disallowed, e.g. if KVM has shadow a page table at the gfn. 713 */ 714 #define KVM_LPAGE_MIXED_FLAG BIT(31) 715 716 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 717 gfn_t gfn, int count) 718 { 719 struct kvm_lpage_info *linfo; 720 int old, i; 721 722 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 723 linfo = lpage_info_slot(gfn, slot, i); 724 725 old = linfo->disallow_lpage; 726 linfo->disallow_lpage += count; 727 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 728 } 729 } 730 731 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 732 { 733 update_gfn_disallow_lpage_count(slot, gfn, 1); 734 } 735 736 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 737 { 738 update_gfn_disallow_lpage_count(slot, gfn, -1); 739 } 740 741 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 742 { 743 struct kvm_memslots *slots; 744 struct kvm_memory_slot *slot; 745 gfn_t gfn; 746 747 kvm->arch.indirect_shadow_pages++; 748 /* 749 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 750 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 751 * emulated writes are visible before re-reading guest PTEs, or that 752 * an emulated write will see the elevated count and acquire mmu_lock 753 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 754 */ 755 smp_mb(); 756 757 gfn = sp->gfn; 758 slots = kvm_memslots_for_spte_role(kvm, sp->role); 759 slot = __gfn_to_memslot(slots, gfn); 760 761 /* the non-leaf shadow pages are keeping readonly. */ 762 if (sp->role.level > PG_LEVEL_4K) 763 return __kvm_write_track_add_gfn(kvm, slot, gfn); 764 765 kvm_mmu_gfn_disallow_lpage(slot, gfn); 766 767 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 768 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 769 } 770 771 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 772 { 773 /* 774 * If it's possible to replace the shadow page with an NX huge page, 775 * i.e. if the shadow page is the only thing currently preventing KVM 776 * from using a huge page, add the shadow page to the list of "to be 777 * zapped for NX recovery" pages. Note, the shadow page can already be 778 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 779 * links a shadow page at multiple points. 780 */ 781 if (!list_empty(&sp->possible_nx_huge_page_link)) 782 return; 783 784 ++kvm->stat.nx_lpage_splits; 785 list_add_tail(&sp->possible_nx_huge_page_link, 786 &kvm->arch.possible_nx_huge_pages); 787 } 788 789 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 790 bool nx_huge_page_possible) 791 { 792 sp->nx_huge_page_disallowed = true; 793 794 if (nx_huge_page_possible) 795 track_possible_nx_huge_page(kvm, sp); 796 } 797 798 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 799 { 800 struct kvm_memslots *slots; 801 struct kvm_memory_slot *slot; 802 gfn_t gfn; 803 804 kvm->arch.indirect_shadow_pages--; 805 gfn = sp->gfn; 806 slots = kvm_memslots_for_spte_role(kvm, sp->role); 807 slot = __gfn_to_memslot(slots, gfn); 808 if (sp->role.level > PG_LEVEL_4K) 809 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 810 811 kvm_mmu_gfn_allow_lpage(slot, gfn); 812 } 813 814 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 815 { 816 if (list_empty(&sp->possible_nx_huge_page_link)) 817 return; 818 819 --kvm->stat.nx_lpage_splits; 820 list_del_init(&sp->possible_nx_huge_page_link); 821 } 822 823 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 824 { 825 sp->nx_huge_page_disallowed = false; 826 827 untrack_possible_nx_huge_page(kvm, sp); 828 } 829 830 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 831 gfn_t gfn, 832 bool no_dirty_log) 833 { 834 struct kvm_memory_slot *slot; 835 836 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 837 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 838 return NULL; 839 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 840 return NULL; 841 842 return slot; 843 } 844 845 /* 846 * About rmap_head encoding: 847 * 848 * If the bit zero of rmap_head->val is clear, then it points to the only spte 849 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 850 * pte_list_desc containing more mappings. 851 */ 852 #define KVM_RMAP_MANY BIT(0) 853 854 /* 855 * Returns the number of pointers in the rmap chain, not counting the new one. 856 */ 857 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 858 struct kvm_rmap_head *rmap_head) 859 { 860 struct pte_list_desc *desc; 861 int count = 0; 862 863 if (!rmap_head->val) { 864 rmap_head->val = (unsigned long)spte; 865 } else if (!(rmap_head->val & KVM_RMAP_MANY)) { 866 desc = kvm_mmu_memory_cache_alloc(cache); 867 desc->sptes[0] = (u64 *)rmap_head->val; 868 desc->sptes[1] = spte; 869 desc->spte_count = 2; 870 desc->tail_count = 0; 871 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; 872 ++count; 873 } else { 874 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 875 count = desc->tail_count + desc->spte_count; 876 877 /* 878 * If the previous head is full, allocate a new head descriptor 879 * as tail descriptors are always kept full. 880 */ 881 if (desc->spte_count == PTE_LIST_EXT) { 882 desc = kvm_mmu_memory_cache_alloc(cache); 883 desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 884 desc->spte_count = 0; 885 desc->tail_count = count; 886 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; 887 } 888 desc->sptes[desc->spte_count++] = spte; 889 } 890 return count; 891 } 892 893 static void pte_list_desc_remove_entry(struct kvm *kvm, 894 struct kvm_rmap_head *rmap_head, 895 struct pte_list_desc *desc, int i) 896 { 897 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 898 int j = head_desc->spte_count - 1; 899 900 /* 901 * The head descriptor should never be empty. A new head is added only 902 * when adding an entry and the previous head is full, and heads are 903 * removed (this flow) when they become empty. 904 */ 905 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 906 907 /* 908 * Replace the to-be-freed SPTE with the last valid entry from the head 909 * descriptor to ensure that tail descriptors are full at all times. 910 * Note, this also means that tail_count is stable for each descriptor. 911 */ 912 desc->sptes[i] = head_desc->sptes[j]; 913 head_desc->sptes[j] = NULL; 914 head_desc->spte_count--; 915 if (head_desc->spte_count) 916 return; 917 918 /* 919 * The head descriptor is empty. If there are no tail descriptors, 920 * nullify the rmap head to mark the list as empty, else point the rmap 921 * head at the next descriptor, i.e. the new head. 922 */ 923 if (!head_desc->more) 924 rmap_head->val = 0; 925 else 926 rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY; 927 mmu_free_pte_list_desc(head_desc); 928 } 929 930 static void pte_list_remove(struct kvm *kvm, u64 *spte, 931 struct kvm_rmap_head *rmap_head) 932 { 933 struct pte_list_desc *desc; 934 int i; 935 936 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) 937 return; 938 939 if (!(rmap_head->val & KVM_RMAP_MANY)) { 940 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) 941 return; 942 943 rmap_head->val = 0; 944 } else { 945 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 946 while (desc) { 947 for (i = 0; i < desc->spte_count; ++i) { 948 if (desc->sptes[i] == spte) { 949 pte_list_desc_remove_entry(kvm, rmap_head, 950 desc, i); 951 return; 952 } 953 } 954 desc = desc->more; 955 } 956 957 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 958 } 959 } 960 961 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 962 struct kvm_rmap_head *rmap_head, u64 *sptep) 963 { 964 mmu_spte_clear_track_bits(kvm, sptep); 965 pte_list_remove(kvm, sptep, rmap_head); 966 } 967 968 /* Return true if at least one SPTE was zapped, false otherwise */ 969 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 970 struct kvm_rmap_head *rmap_head) 971 { 972 struct pte_list_desc *desc, *next; 973 int i; 974 975 if (!rmap_head->val) 976 return false; 977 978 if (!(rmap_head->val & KVM_RMAP_MANY)) { 979 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 980 goto out; 981 } 982 983 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 984 985 for (; desc; desc = next) { 986 for (i = 0; i < desc->spte_count; i++) 987 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 988 next = desc->more; 989 mmu_free_pte_list_desc(desc); 990 } 991 out: 992 /* rmap_head is meaningless now, remember to reset it */ 993 rmap_head->val = 0; 994 return true; 995 } 996 997 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 998 { 999 struct pte_list_desc *desc; 1000 1001 if (!rmap_head->val) 1002 return 0; 1003 else if (!(rmap_head->val & KVM_RMAP_MANY)) 1004 return 1; 1005 1006 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1007 return desc->tail_count + desc->spte_count; 1008 } 1009 1010 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1011 const struct kvm_memory_slot *slot) 1012 { 1013 unsigned long idx; 1014 1015 idx = gfn_to_index(gfn, slot->base_gfn, level); 1016 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1017 } 1018 1019 static void rmap_remove(struct kvm *kvm, u64 *spte) 1020 { 1021 struct kvm_memslots *slots; 1022 struct kvm_memory_slot *slot; 1023 struct kvm_mmu_page *sp; 1024 gfn_t gfn; 1025 struct kvm_rmap_head *rmap_head; 1026 1027 sp = sptep_to_sp(spte); 1028 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1029 1030 /* 1031 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1032 * so we have to determine which memslots to use based on context 1033 * information in sp->role. 1034 */ 1035 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1036 1037 slot = __gfn_to_memslot(slots, gfn); 1038 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1039 1040 pte_list_remove(kvm, spte, rmap_head); 1041 } 1042 1043 /* 1044 * Used by the following functions to iterate through the sptes linked by a 1045 * rmap. All fields are private and not assumed to be used outside. 1046 */ 1047 struct rmap_iterator { 1048 /* private fields */ 1049 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1050 int pos; /* index of the sptep */ 1051 }; 1052 1053 /* 1054 * Iteration must be started by this function. This should also be used after 1055 * removing/dropping sptes from the rmap link because in such cases the 1056 * information in the iterator may not be valid. 1057 * 1058 * Returns sptep if found, NULL otherwise. 1059 */ 1060 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1061 struct rmap_iterator *iter) 1062 { 1063 u64 *sptep; 1064 1065 if (!rmap_head->val) 1066 return NULL; 1067 1068 if (!(rmap_head->val & KVM_RMAP_MANY)) { 1069 iter->desc = NULL; 1070 sptep = (u64 *)rmap_head->val; 1071 goto out; 1072 } 1073 1074 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1075 iter->pos = 0; 1076 sptep = iter->desc->sptes[iter->pos]; 1077 out: 1078 BUG_ON(!is_shadow_present_pte(*sptep)); 1079 return sptep; 1080 } 1081 1082 /* 1083 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1084 * 1085 * Returns sptep if found, NULL otherwise. 1086 */ 1087 static u64 *rmap_get_next(struct rmap_iterator *iter) 1088 { 1089 u64 *sptep; 1090 1091 if (iter->desc) { 1092 if (iter->pos < PTE_LIST_EXT - 1) { 1093 ++iter->pos; 1094 sptep = iter->desc->sptes[iter->pos]; 1095 if (sptep) 1096 goto out; 1097 } 1098 1099 iter->desc = iter->desc->more; 1100 1101 if (iter->desc) { 1102 iter->pos = 0; 1103 /* desc->sptes[0] cannot be NULL */ 1104 sptep = iter->desc->sptes[iter->pos]; 1105 goto out; 1106 } 1107 } 1108 1109 return NULL; 1110 out: 1111 BUG_ON(!is_shadow_present_pte(*sptep)); 1112 return sptep; 1113 } 1114 1115 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1116 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1117 _spte_; _spte_ = rmap_get_next(_iter_)) 1118 1119 static void drop_spte(struct kvm *kvm, u64 *sptep) 1120 { 1121 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1122 1123 if (is_shadow_present_pte(old_spte)) 1124 rmap_remove(kvm, sptep); 1125 } 1126 1127 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1128 { 1129 struct kvm_mmu_page *sp; 1130 1131 sp = sptep_to_sp(sptep); 1132 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1133 1134 drop_spte(kvm, sptep); 1135 1136 if (flush) 1137 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1138 } 1139 1140 /* 1141 * Write-protect on the specified @sptep, @pt_protect indicates whether 1142 * spte write-protection is caused by protecting shadow page table. 1143 * 1144 * Note: write protection is difference between dirty logging and spte 1145 * protection: 1146 * - for dirty logging, the spte can be set to writable at anytime if 1147 * its dirty bitmap is properly set. 1148 * - for spte protection, the spte can be writable only after unsync-ing 1149 * shadow page. 1150 * 1151 * Return true if tlb need be flushed. 1152 */ 1153 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1154 { 1155 u64 spte = *sptep; 1156 1157 if (!is_writable_pte(spte) && 1158 !(pt_protect && is_mmu_writable_spte(spte))) 1159 return false; 1160 1161 if (pt_protect) 1162 spte &= ~shadow_mmu_writable_mask; 1163 spte = spte & ~PT_WRITABLE_MASK; 1164 1165 return mmu_spte_update(sptep, spte); 1166 } 1167 1168 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1169 bool pt_protect) 1170 { 1171 u64 *sptep; 1172 struct rmap_iterator iter; 1173 bool flush = false; 1174 1175 for_each_rmap_spte(rmap_head, &iter, sptep) 1176 flush |= spte_write_protect(sptep, pt_protect); 1177 1178 return flush; 1179 } 1180 1181 static bool spte_clear_dirty(u64 *sptep) 1182 { 1183 u64 spte = *sptep; 1184 1185 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1186 spte &= ~shadow_dirty_mask; 1187 return mmu_spte_update(sptep, spte); 1188 } 1189 1190 /* 1191 * Gets the GFN ready for another round of dirty logging by clearing the 1192 * - D bit on ad-enabled SPTEs, and 1193 * - W bit on ad-disabled SPTEs. 1194 * Returns true iff any D or W bits were cleared. 1195 */ 1196 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1197 const struct kvm_memory_slot *slot) 1198 { 1199 u64 *sptep; 1200 struct rmap_iterator iter; 1201 bool flush = false; 1202 1203 for_each_rmap_spte(rmap_head, &iter, sptep) 1204 if (spte_ad_need_write_protect(*sptep)) 1205 flush |= test_and_clear_bit(PT_WRITABLE_SHIFT, 1206 (unsigned long *)sptep); 1207 else 1208 flush |= spte_clear_dirty(sptep); 1209 1210 return flush; 1211 } 1212 1213 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1214 struct kvm_memory_slot *slot, 1215 gfn_t gfn_offset, unsigned long mask) 1216 { 1217 struct kvm_rmap_head *rmap_head; 1218 1219 if (tdp_mmu_enabled) 1220 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1221 slot->base_gfn + gfn_offset, mask, true); 1222 1223 if (!kvm_memslots_have_rmaps(kvm)) 1224 return; 1225 1226 while (mask) { 1227 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1228 PG_LEVEL_4K, slot); 1229 rmap_write_protect(rmap_head, false); 1230 1231 /* clear the first set bit */ 1232 mask &= mask - 1; 1233 } 1234 } 1235 1236 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1237 struct kvm_memory_slot *slot, 1238 gfn_t gfn_offset, unsigned long mask) 1239 { 1240 struct kvm_rmap_head *rmap_head; 1241 1242 if (tdp_mmu_enabled) 1243 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1244 slot->base_gfn + gfn_offset, mask, false); 1245 1246 if (!kvm_memslots_have_rmaps(kvm)) 1247 return; 1248 1249 while (mask) { 1250 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1251 PG_LEVEL_4K, slot); 1252 __rmap_clear_dirty(kvm, rmap_head, slot); 1253 1254 /* clear the first set bit */ 1255 mask &= mask - 1; 1256 } 1257 } 1258 1259 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1260 struct kvm_memory_slot *slot, 1261 gfn_t gfn_offset, unsigned long mask) 1262 { 1263 /* 1264 * If the slot was assumed to be "initially all dirty", write-protect 1265 * huge pages to ensure they are split to 4KiB on the first write (KVM 1266 * dirty logs at 4KiB granularity). If eager page splitting is enabled, 1267 * immediately try to split huge pages, e.g. so that vCPUs don't get 1268 * saddled with the cost of splitting. 1269 * 1270 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1271 * of memslot has no such restriction, so the range can cross two large 1272 * pages. 1273 */ 1274 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1275 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1276 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1277 1278 if (READ_ONCE(eager_page_split)) 1279 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1280 1281 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1282 1283 /* Cross two large pages? */ 1284 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1285 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1286 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1287 PG_LEVEL_2M); 1288 } 1289 1290 /* 1291 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in 1292 * mask. If PML is enabled and the GFN doesn't need to be write- 1293 * protected for other reasons, e.g. shadow paging, clear the Dirty bit. 1294 * Otherwise clear the Writable bit. 1295 * 1296 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is 1297 * enabled but it chooses between clearing the Dirty bit and Writeable 1298 * bit based on the context. 1299 */ 1300 if (kvm_x86_ops.cpu_dirty_log_size) 1301 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1302 else 1303 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1304 } 1305 1306 int kvm_cpu_dirty_log_size(void) 1307 { 1308 return kvm_x86_ops.cpu_dirty_log_size; 1309 } 1310 1311 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1312 struct kvm_memory_slot *slot, u64 gfn, 1313 int min_level) 1314 { 1315 struct kvm_rmap_head *rmap_head; 1316 int i; 1317 bool write_protected = false; 1318 1319 if (kvm_memslots_have_rmaps(kvm)) { 1320 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1321 rmap_head = gfn_to_rmap(gfn, i, slot); 1322 write_protected |= rmap_write_protect(rmap_head, true); 1323 } 1324 } 1325 1326 if (tdp_mmu_enabled) 1327 write_protected |= 1328 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1329 1330 return write_protected; 1331 } 1332 1333 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1334 { 1335 struct kvm_memory_slot *slot; 1336 1337 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1338 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1339 } 1340 1341 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1342 const struct kvm_memory_slot *slot) 1343 { 1344 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1345 } 1346 1347 struct slot_rmap_walk_iterator { 1348 /* input fields. */ 1349 const struct kvm_memory_slot *slot; 1350 gfn_t start_gfn; 1351 gfn_t end_gfn; 1352 int start_level; 1353 int end_level; 1354 1355 /* output fields. */ 1356 gfn_t gfn; 1357 struct kvm_rmap_head *rmap; 1358 int level; 1359 1360 /* private field. */ 1361 struct kvm_rmap_head *end_rmap; 1362 }; 1363 1364 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1365 int level) 1366 { 1367 iterator->level = level; 1368 iterator->gfn = iterator->start_gfn; 1369 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1370 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1371 } 1372 1373 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1374 const struct kvm_memory_slot *slot, 1375 int start_level, int end_level, 1376 gfn_t start_gfn, gfn_t end_gfn) 1377 { 1378 iterator->slot = slot; 1379 iterator->start_level = start_level; 1380 iterator->end_level = end_level; 1381 iterator->start_gfn = start_gfn; 1382 iterator->end_gfn = end_gfn; 1383 1384 rmap_walk_init_level(iterator, iterator->start_level); 1385 } 1386 1387 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1388 { 1389 return !!iterator->rmap; 1390 } 1391 1392 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1393 { 1394 while (++iterator->rmap <= iterator->end_rmap) { 1395 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); 1396 1397 if (iterator->rmap->val) 1398 return; 1399 } 1400 1401 if (++iterator->level > iterator->end_level) { 1402 iterator->rmap = NULL; 1403 return; 1404 } 1405 1406 rmap_walk_init_level(iterator, iterator->level); 1407 } 1408 1409 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1410 _start_gfn, _end_gfn, _iter_) \ 1411 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1412 _end_level_, _start_gfn, _end_gfn); \ 1413 slot_rmap_walk_okay(_iter_); \ 1414 slot_rmap_walk_next(_iter_)) 1415 1416 /* The return value indicates if tlb flush on all vcpus is needed. */ 1417 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 1418 struct kvm_rmap_head *rmap_head, 1419 const struct kvm_memory_slot *slot); 1420 1421 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 1422 const struct kvm_memory_slot *slot, 1423 slot_rmaps_handler fn, 1424 int start_level, int end_level, 1425 gfn_t start_gfn, gfn_t end_gfn, 1426 bool can_yield, bool flush_on_yield, 1427 bool flush) 1428 { 1429 struct slot_rmap_walk_iterator iterator; 1430 1431 lockdep_assert_held_write(&kvm->mmu_lock); 1432 1433 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 1434 end_gfn, &iterator) { 1435 if (iterator.rmap) 1436 flush |= fn(kvm, iterator.rmap, slot); 1437 1438 if (!can_yield) 1439 continue; 1440 1441 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 1442 if (flush && flush_on_yield) { 1443 kvm_flush_remote_tlbs_range(kvm, start_gfn, 1444 iterator.gfn - start_gfn + 1); 1445 flush = false; 1446 } 1447 cond_resched_rwlock_write(&kvm->mmu_lock); 1448 } 1449 } 1450 1451 return flush; 1452 } 1453 1454 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 1455 const struct kvm_memory_slot *slot, 1456 slot_rmaps_handler fn, 1457 int start_level, int end_level, 1458 bool flush_on_yield) 1459 { 1460 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 1461 slot->base_gfn, slot->base_gfn + slot->npages - 1, 1462 true, flush_on_yield, false); 1463 } 1464 1465 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 1466 const struct kvm_memory_slot *slot, 1467 slot_rmaps_handler fn, 1468 bool flush_on_yield) 1469 { 1470 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 1471 } 1472 1473 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm, 1474 const struct kvm_memory_slot *slot, 1475 gfn_t start, gfn_t end, bool can_yield, 1476 bool flush) 1477 { 1478 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap, 1479 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1480 start, end - 1, can_yield, true, flush); 1481 } 1482 1483 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1484 { 1485 bool flush = false; 1486 1487 /* 1488 * To prevent races with vCPUs faulting in a gfn using stale data, 1489 * zapping a gfn range must be protected by mmu_invalidate_in_progress 1490 * (and mmu_invalidate_seq). The only exception is memslot deletion; 1491 * in that case, SRCU synchronization ensures that SPTEs are zapped 1492 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the 1493 * invalid slot. 1494 */ 1495 lockdep_assert_once(kvm->mmu_invalidate_in_progress || 1496 lockdep_is_held(&kvm->slots_lock)); 1497 1498 if (kvm_memslots_have_rmaps(kvm)) 1499 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot, 1500 range->start, range->end, 1501 range->may_block, flush); 1502 1503 if (tdp_mmu_enabled) 1504 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1505 1506 if (kvm_x86_ops.set_apic_access_page_addr && 1507 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1508 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1509 1510 return flush; 1511 } 1512 1513 #define RMAP_RECYCLE_THRESHOLD 1000 1514 1515 static void __rmap_add(struct kvm *kvm, 1516 struct kvm_mmu_memory_cache *cache, 1517 const struct kvm_memory_slot *slot, 1518 u64 *spte, gfn_t gfn, unsigned int access) 1519 { 1520 struct kvm_mmu_page *sp; 1521 struct kvm_rmap_head *rmap_head; 1522 int rmap_count; 1523 1524 sp = sptep_to_sp(spte); 1525 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1526 kvm_update_page_stats(kvm, sp->role.level, 1); 1527 1528 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1529 rmap_count = pte_list_add(cache, spte, rmap_head); 1530 1531 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1532 kvm->stat.max_mmu_rmap_size = rmap_count; 1533 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1534 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1535 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1536 } 1537 } 1538 1539 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1540 u64 *spte, gfn_t gfn, unsigned int access) 1541 { 1542 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1543 1544 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1545 } 1546 1547 static bool kvm_rmap_age_gfn_range(struct kvm *kvm, 1548 struct kvm_gfn_range *range, bool test_only) 1549 { 1550 struct slot_rmap_walk_iterator iterator; 1551 struct rmap_iterator iter; 1552 bool young = false; 1553 u64 *sptep; 1554 1555 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1556 range->start, range->end - 1, &iterator) { 1557 for_each_rmap_spte(iterator.rmap, &iter, sptep) { 1558 u64 spte = *sptep; 1559 1560 if (!is_accessed_spte(spte)) 1561 continue; 1562 1563 if (test_only) 1564 return true; 1565 1566 if (spte_ad_enabled(spte)) { 1567 clear_bit((ffs(shadow_accessed_mask) - 1), 1568 (unsigned long *)sptep); 1569 } else { 1570 /* 1571 * WARN if mmu_spte_update() signals the need 1572 * for a TLB flush, as Access tracking a SPTE 1573 * should never trigger an _immediate_ flush. 1574 */ 1575 spte = mark_spte_for_access_track(spte); 1576 WARN_ON_ONCE(mmu_spte_update(sptep, spte)); 1577 } 1578 young = true; 1579 } 1580 } 1581 return young; 1582 } 1583 1584 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1585 { 1586 bool young = false; 1587 1588 if (kvm_memslots_have_rmaps(kvm)) 1589 young = kvm_rmap_age_gfn_range(kvm, range, false); 1590 1591 if (tdp_mmu_enabled) 1592 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1593 1594 return young; 1595 } 1596 1597 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1598 { 1599 bool young = false; 1600 1601 if (kvm_memslots_have_rmaps(kvm)) 1602 young = kvm_rmap_age_gfn_range(kvm, range, true); 1603 1604 if (tdp_mmu_enabled) 1605 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1606 1607 return young; 1608 } 1609 1610 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1611 { 1612 #ifdef CONFIG_KVM_PROVE_MMU 1613 int i; 1614 1615 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1616 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1617 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1618 sp->spt[i], &sp->spt[i], 1619 kvm_mmu_page_get_gfn(sp, i)); 1620 } 1621 #endif 1622 } 1623 1624 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1625 { 1626 kvm->arch.n_used_mmu_pages++; 1627 kvm_account_pgtable_pages((void *)sp->spt, +1); 1628 } 1629 1630 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1631 { 1632 kvm->arch.n_used_mmu_pages--; 1633 kvm_account_pgtable_pages((void *)sp->spt, -1); 1634 } 1635 1636 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1637 { 1638 kvm_mmu_check_sptes_at_free(sp); 1639 1640 hlist_del(&sp->hash_link); 1641 list_del(&sp->link); 1642 free_page((unsigned long)sp->spt); 1643 free_page((unsigned long)sp->shadowed_translation); 1644 kmem_cache_free(mmu_page_header_cache, sp); 1645 } 1646 1647 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1648 { 1649 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1650 } 1651 1652 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1653 struct kvm_mmu_page *sp, u64 *parent_pte) 1654 { 1655 if (!parent_pte) 1656 return; 1657 1658 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1659 } 1660 1661 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1662 u64 *parent_pte) 1663 { 1664 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1665 } 1666 1667 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1668 u64 *parent_pte) 1669 { 1670 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1671 mmu_spte_clear_no_track(parent_pte); 1672 } 1673 1674 static void mark_unsync(u64 *spte); 1675 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1676 { 1677 u64 *sptep; 1678 struct rmap_iterator iter; 1679 1680 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1681 mark_unsync(sptep); 1682 } 1683 } 1684 1685 static void mark_unsync(u64 *spte) 1686 { 1687 struct kvm_mmu_page *sp; 1688 1689 sp = sptep_to_sp(spte); 1690 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1691 return; 1692 if (sp->unsync_children++) 1693 return; 1694 kvm_mmu_mark_parents_unsync(sp); 1695 } 1696 1697 #define KVM_PAGE_ARRAY_NR 16 1698 1699 struct kvm_mmu_pages { 1700 struct mmu_page_and_offset { 1701 struct kvm_mmu_page *sp; 1702 unsigned int idx; 1703 } page[KVM_PAGE_ARRAY_NR]; 1704 unsigned int nr; 1705 }; 1706 1707 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1708 int idx) 1709 { 1710 int i; 1711 1712 if (sp->unsync) 1713 for (i=0; i < pvec->nr; i++) 1714 if (pvec->page[i].sp == sp) 1715 return 0; 1716 1717 pvec->page[pvec->nr].sp = sp; 1718 pvec->page[pvec->nr].idx = idx; 1719 pvec->nr++; 1720 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1721 } 1722 1723 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1724 { 1725 --sp->unsync_children; 1726 WARN_ON_ONCE((int)sp->unsync_children < 0); 1727 __clear_bit(idx, sp->unsync_child_bitmap); 1728 } 1729 1730 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1731 struct kvm_mmu_pages *pvec) 1732 { 1733 int i, ret, nr_unsync_leaf = 0; 1734 1735 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1736 struct kvm_mmu_page *child; 1737 u64 ent = sp->spt[i]; 1738 1739 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1740 clear_unsync_child_bit(sp, i); 1741 continue; 1742 } 1743 1744 child = spte_to_child_sp(ent); 1745 1746 if (child->unsync_children) { 1747 if (mmu_pages_add(pvec, child, i)) 1748 return -ENOSPC; 1749 1750 ret = __mmu_unsync_walk(child, pvec); 1751 if (!ret) { 1752 clear_unsync_child_bit(sp, i); 1753 continue; 1754 } else if (ret > 0) { 1755 nr_unsync_leaf += ret; 1756 } else 1757 return ret; 1758 } else if (child->unsync) { 1759 nr_unsync_leaf++; 1760 if (mmu_pages_add(pvec, child, i)) 1761 return -ENOSPC; 1762 } else 1763 clear_unsync_child_bit(sp, i); 1764 } 1765 1766 return nr_unsync_leaf; 1767 } 1768 1769 #define INVALID_INDEX (-1) 1770 1771 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1772 struct kvm_mmu_pages *pvec) 1773 { 1774 pvec->nr = 0; 1775 if (!sp->unsync_children) 1776 return 0; 1777 1778 mmu_pages_add(pvec, sp, INVALID_INDEX); 1779 return __mmu_unsync_walk(sp, pvec); 1780 } 1781 1782 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1783 { 1784 WARN_ON_ONCE(!sp->unsync); 1785 trace_kvm_mmu_sync_page(sp); 1786 sp->unsync = 0; 1787 --kvm->stat.mmu_unsync; 1788 } 1789 1790 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1791 struct list_head *invalid_list); 1792 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1793 struct list_head *invalid_list); 1794 1795 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1796 { 1797 if (sp->role.direct) 1798 return false; 1799 1800 if (sp->role.passthrough) 1801 return false; 1802 1803 return true; 1804 } 1805 1806 #define for_each_valid_sp(_kvm, _sp, _list) \ 1807 hlist_for_each_entry(_sp, _list, hash_link) \ 1808 if (is_obsolete_sp((_kvm), (_sp))) { \ 1809 } else 1810 1811 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1812 for_each_valid_sp(_kvm, _sp, \ 1813 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1814 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1815 1816 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1817 { 1818 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1819 1820 /* 1821 * Ignore various flags when verifying that it's safe to sync a shadow 1822 * page using the current MMU context. 1823 * 1824 * - level: not part of the overall MMU role and will never match as the MMU's 1825 * level tracks the root level 1826 * - access: updated based on the new guest PTE 1827 * - quadrant: not part of the overall MMU role (similar to level) 1828 */ 1829 const union kvm_mmu_page_role sync_role_ign = { 1830 .level = 0xf, 1831 .access = 0x7, 1832 .quadrant = 0x3, 1833 .passthrough = 0x1, 1834 }; 1835 1836 /* 1837 * Direct pages can never be unsync, and KVM should never attempt to 1838 * sync a shadow page for a different MMU context, e.g. if the role 1839 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1840 * reserved bits checks will be wrong, etc... 1841 */ 1842 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1843 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1844 return false; 1845 1846 return true; 1847 } 1848 1849 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1850 { 1851 /* sp->spt[i] has initial value of shadow page table allocation */ 1852 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 1853 return 0; 1854 1855 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1856 } 1857 1858 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1859 { 1860 int flush = 0; 1861 int i; 1862 1863 if (!kvm_sync_page_check(vcpu, sp)) 1864 return -1; 1865 1866 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1867 int ret = kvm_sync_spte(vcpu, sp, i); 1868 1869 if (ret < -1) 1870 return -1; 1871 flush |= ret; 1872 } 1873 1874 /* 1875 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1876 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1877 * unmap or dirty logging event doesn't fail to flush. The guest is 1878 * responsible for flushing the TLB to ensure any changes in protection 1879 * bits are recognized, i.e. until the guest flushes or page faults on 1880 * a relevant address, KVM is architecturally allowed to let vCPUs use 1881 * cached translations with the old protection bits. 1882 */ 1883 return flush; 1884 } 1885 1886 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1887 struct list_head *invalid_list) 1888 { 1889 int ret = __kvm_sync_page(vcpu, sp); 1890 1891 if (ret < 0) 1892 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1893 return ret; 1894 } 1895 1896 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1897 struct list_head *invalid_list, 1898 bool remote_flush) 1899 { 1900 if (!remote_flush && list_empty(invalid_list)) 1901 return false; 1902 1903 if (!list_empty(invalid_list)) 1904 kvm_mmu_commit_zap_page(kvm, invalid_list); 1905 else 1906 kvm_flush_remote_tlbs(kvm); 1907 return true; 1908 } 1909 1910 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1911 { 1912 if (sp->role.invalid) 1913 return true; 1914 1915 /* TDP MMU pages do not use the MMU generation. */ 1916 return !is_tdp_mmu_page(sp) && 1917 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1918 } 1919 1920 struct mmu_page_path { 1921 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1922 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1923 }; 1924 1925 #define for_each_sp(pvec, sp, parents, i) \ 1926 for (i = mmu_pages_first(&pvec, &parents); \ 1927 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1928 i = mmu_pages_next(&pvec, &parents, i)) 1929 1930 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1931 struct mmu_page_path *parents, 1932 int i) 1933 { 1934 int n; 1935 1936 for (n = i+1; n < pvec->nr; n++) { 1937 struct kvm_mmu_page *sp = pvec->page[n].sp; 1938 unsigned idx = pvec->page[n].idx; 1939 int level = sp->role.level; 1940 1941 parents->idx[level-1] = idx; 1942 if (level == PG_LEVEL_4K) 1943 break; 1944 1945 parents->parent[level-2] = sp; 1946 } 1947 1948 return n; 1949 } 1950 1951 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1952 struct mmu_page_path *parents) 1953 { 1954 struct kvm_mmu_page *sp; 1955 int level; 1956 1957 if (pvec->nr == 0) 1958 return 0; 1959 1960 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 1961 1962 sp = pvec->page[0].sp; 1963 level = sp->role.level; 1964 WARN_ON_ONCE(level == PG_LEVEL_4K); 1965 1966 parents->parent[level-2] = sp; 1967 1968 /* Also set up a sentinel. Further entries in pvec are all 1969 * children of sp, so this element is never overwritten. 1970 */ 1971 parents->parent[level-1] = NULL; 1972 return mmu_pages_next(pvec, parents, 0); 1973 } 1974 1975 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1976 { 1977 struct kvm_mmu_page *sp; 1978 unsigned int level = 0; 1979 1980 do { 1981 unsigned int idx = parents->idx[level]; 1982 sp = parents->parent[level]; 1983 if (!sp) 1984 return; 1985 1986 WARN_ON_ONCE(idx == INVALID_INDEX); 1987 clear_unsync_child_bit(sp, idx); 1988 level++; 1989 } while (!sp->unsync_children); 1990 } 1991 1992 static int mmu_sync_children(struct kvm_vcpu *vcpu, 1993 struct kvm_mmu_page *parent, bool can_yield) 1994 { 1995 int i; 1996 struct kvm_mmu_page *sp; 1997 struct mmu_page_path parents; 1998 struct kvm_mmu_pages pages; 1999 LIST_HEAD(invalid_list); 2000 bool flush = false; 2001 2002 while (mmu_unsync_walk(parent, &pages)) { 2003 bool protected = false; 2004 2005 for_each_sp(pages, sp, parents, i) 2006 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2007 2008 if (protected) { 2009 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2010 flush = false; 2011 } 2012 2013 for_each_sp(pages, sp, parents, i) { 2014 kvm_unlink_unsync_page(vcpu->kvm, sp); 2015 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2016 mmu_pages_clear_parents(&parents); 2017 } 2018 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2019 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2020 if (!can_yield) { 2021 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2022 return -EINTR; 2023 } 2024 2025 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2026 flush = false; 2027 } 2028 } 2029 2030 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2031 return 0; 2032 } 2033 2034 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2035 { 2036 atomic_set(&sp->write_flooding_count, 0); 2037 } 2038 2039 static void clear_sp_write_flooding_count(u64 *spte) 2040 { 2041 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2042 } 2043 2044 /* 2045 * The vCPU is required when finding indirect shadow pages; the shadow 2046 * page may already exist and syncing it needs the vCPU pointer in 2047 * order to read guest page tables. Direct shadow pages are never 2048 * unsync, thus @vcpu can be NULL if @role.direct is true. 2049 */ 2050 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2051 struct kvm_vcpu *vcpu, 2052 gfn_t gfn, 2053 struct hlist_head *sp_list, 2054 union kvm_mmu_page_role role) 2055 { 2056 struct kvm_mmu_page *sp; 2057 int ret; 2058 int collisions = 0; 2059 LIST_HEAD(invalid_list); 2060 2061 for_each_valid_sp(kvm, sp, sp_list) { 2062 if (sp->gfn != gfn) { 2063 collisions++; 2064 continue; 2065 } 2066 2067 if (sp->role.word != role.word) { 2068 /* 2069 * If the guest is creating an upper-level page, zap 2070 * unsync pages for the same gfn. While it's possible 2071 * the guest is using recursive page tables, in all 2072 * likelihood the guest has stopped using the unsync 2073 * page and is installing a completely unrelated page. 2074 * Unsync pages must not be left as is, because the new 2075 * upper-level page will be write-protected. 2076 */ 2077 if (role.level > PG_LEVEL_4K && sp->unsync) 2078 kvm_mmu_prepare_zap_page(kvm, sp, 2079 &invalid_list); 2080 continue; 2081 } 2082 2083 /* unsync and write-flooding only apply to indirect SPs. */ 2084 if (sp->role.direct) 2085 goto out; 2086 2087 if (sp->unsync) { 2088 if (KVM_BUG_ON(!vcpu, kvm)) 2089 break; 2090 2091 /* 2092 * The page is good, but is stale. kvm_sync_page does 2093 * get the latest guest state, but (unlike mmu_unsync_children) 2094 * it doesn't write-protect the page or mark it synchronized! 2095 * This way the validity of the mapping is ensured, but the 2096 * overhead of write protection is not incurred until the 2097 * guest invalidates the TLB mapping. This allows multiple 2098 * SPs for a single gfn to be unsync. 2099 * 2100 * If the sync fails, the page is zapped. If so, break 2101 * in order to rebuild it. 2102 */ 2103 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2104 if (ret < 0) 2105 break; 2106 2107 WARN_ON_ONCE(!list_empty(&invalid_list)); 2108 if (ret > 0) 2109 kvm_flush_remote_tlbs(kvm); 2110 } 2111 2112 __clear_sp_write_flooding_count(sp); 2113 2114 goto out; 2115 } 2116 2117 sp = NULL; 2118 ++kvm->stat.mmu_cache_miss; 2119 2120 out: 2121 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2122 2123 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2124 kvm->stat.max_mmu_page_hash_collisions = collisions; 2125 return sp; 2126 } 2127 2128 /* Caches used when allocating a new shadow page. */ 2129 struct shadow_page_caches { 2130 struct kvm_mmu_memory_cache *page_header_cache; 2131 struct kvm_mmu_memory_cache *shadow_page_cache; 2132 struct kvm_mmu_memory_cache *shadowed_info_cache; 2133 }; 2134 2135 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2136 struct shadow_page_caches *caches, 2137 gfn_t gfn, 2138 struct hlist_head *sp_list, 2139 union kvm_mmu_page_role role) 2140 { 2141 struct kvm_mmu_page *sp; 2142 2143 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2144 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2145 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL) 2146 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2147 2148 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2149 2150 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2151 2152 /* 2153 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2154 * depends on valid pages being added to the head of the list. See 2155 * comments in kvm_zap_obsolete_pages(). 2156 */ 2157 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2158 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2159 kvm_account_mmu_page(kvm, sp); 2160 2161 sp->gfn = gfn; 2162 sp->role = role; 2163 hlist_add_head(&sp->hash_link, sp_list); 2164 if (sp_has_gptes(sp)) 2165 account_shadowed(kvm, sp); 2166 2167 return sp; 2168 } 2169 2170 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2171 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2172 struct kvm_vcpu *vcpu, 2173 struct shadow_page_caches *caches, 2174 gfn_t gfn, 2175 union kvm_mmu_page_role role) 2176 { 2177 struct hlist_head *sp_list; 2178 struct kvm_mmu_page *sp; 2179 bool created = false; 2180 2181 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2182 2183 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2184 if (!sp) { 2185 created = true; 2186 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2187 } 2188 2189 trace_kvm_mmu_get_page(sp, created); 2190 return sp; 2191 } 2192 2193 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2194 gfn_t gfn, 2195 union kvm_mmu_page_role role) 2196 { 2197 struct shadow_page_caches caches = { 2198 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2199 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2200 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2201 }; 2202 2203 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2204 } 2205 2206 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2207 unsigned int access) 2208 { 2209 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2210 union kvm_mmu_page_role role; 2211 2212 role = parent_sp->role; 2213 role.level--; 2214 role.access = access; 2215 role.direct = direct; 2216 role.passthrough = 0; 2217 2218 /* 2219 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2220 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2221 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2222 * shadow each guest page table with multiple shadow page tables, which 2223 * requires extra bookkeeping in the role. 2224 * 2225 * Specifically, to shadow the guest's page directory (which covers a 2226 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2227 * 1GiB of the address space. @role.quadrant encodes which quarter of 2228 * the address space each maps. 2229 * 2230 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2231 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2232 * @role.quadrant encodes which half of the region they map. 2233 * 2234 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2235 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2236 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2237 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2238 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2239 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2240 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2241 * covers bit 21 (see above), thus the quadrant is calculated from the 2242 * _least_ significant bit of the PDE index. 2243 */ 2244 if (role.has_4_byte_gpte) { 2245 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2246 role.quadrant = spte_index(sptep) & 1; 2247 } 2248 2249 return role; 2250 } 2251 2252 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2253 u64 *sptep, gfn_t gfn, 2254 bool direct, unsigned int access) 2255 { 2256 union kvm_mmu_page_role role; 2257 2258 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2259 return ERR_PTR(-EEXIST); 2260 2261 role = kvm_mmu_child_role(sptep, direct, access); 2262 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2263 } 2264 2265 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2266 struct kvm_vcpu *vcpu, hpa_t root, 2267 u64 addr) 2268 { 2269 iterator->addr = addr; 2270 iterator->shadow_addr = root; 2271 iterator->level = vcpu->arch.mmu->root_role.level; 2272 2273 if (iterator->level >= PT64_ROOT_4LEVEL && 2274 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2275 !vcpu->arch.mmu->root_role.direct) 2276 iterator->level = PT32E_ROOT_LEVEL; 2277 2278 if (iterator->level == PT32E_ROOT_LEVEL) { 2279 /* 2280 * prev_root is currently only used for 64-bit hosts. So only 2281 * the active root_hpa is valid here. 2282 */ 2283 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2284 2285 iterator->shadow_addr 2286 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2287 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2288 --iterator->level; 2289 if (!iterator->shadow_addr) 2290 iterator->level = 0; 2291 } 2292 } 2293 2294 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2295 struct kvm_vcpu *vcpu, u64 addr) 2296 { 2297 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2298 addr); 2299 } 2300 2301 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2302 { 2303 if (iterator->level < PG_LEVEL_4K) 2304 return false; 2305 2306 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2307 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2308 return true; 2309 } 2310 2311 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2312 u64 spte) 2313 { 2314 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2315 iterator->level = 0; 2316 return; 2317 } 2318 2319 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2320 --iterator->level; 2321 } 2322 2323 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2324 { 2325 __shadow_walk_next(iterator, *iterator->sptep); 2326 } 2327 2328 static void __link_shadow_page(struct kvm *kvm, 2329 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2330 struct kvm_mmu_page *sp, bool flush) 2331 { 2332 u64 spte; 2333 2334 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2335 2336 /* 2337 * If an SPTE is present already, it must be a leaf and therefore 2338 * a large one. Drop it, and flush the TLB if needed, before 2339 * installing sp. 2340 */ 2341 if (is_shadow_present_pte(*sptep)) 2342 drop_large_spte(kvm, sptep, flush); 2343 2344 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2345 2346 mmu_spte_set(sptep, spte); 2347 2348 mmu_page_add_parent_pte(cache, sp, sptep); 2349 2350 /* 2351 * The non-direct sub-pagetable must be updated before linking. For 2352 * L1 sp, the pagetable is updated via kvm_sync_page() in 2353 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2354 * so sp->unsync can be true or false. For higher level non-direct 2355 * sp, the pagetable is updated/synced via mmu_sync_children() in 2356 * FNAME(fetch)(), so sp->unsync_children can only be false. 2357 * WARN_ON_ONCE() if anything happens unexpectedly. 2358 */ 2359 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2360 mark_unsync(sptep); 2361 } 2362 2363 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2364 struct kvm_mmu_page *sp) 2365 { 2366 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2367 } 2368 2369 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2370 unsigned direct_access) 2371 { 2372 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2373 struct kvm_mmu_page *child; 2374 2375 /* 2376 * For the direct sp, if the guest pte's dirty bit 2377 * changed form clean to dirty, it will corrupt the 2378 * sp's access: allow writable in the read-only sp, 2379 * so we should update the spte at this point to get 2380 * a new sp with the correct access. 2381 */ 2382 child = spte_to_child_sp(*sptep); 2383 if (child->role.access == direct_access) 2384 return; 2385 2386 drop_parent_pte(vcpu->kvm, child, sptep); 2387 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2388 } 2389 } 2390 2391 /* Returns the number of zapped non-leaf child shadow pages. */ 2392 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2393 u64 *spte, struct list_head *invalid_list) 2394 { 2395 u64 pte; 2396 struct kvm_mmu_page *child; 2397 2398 pte = *spte; 2399 if (is_shadow_present_pte(pte)) { 2400 if (is_last_spte(pte, sp->role.level)) { 2401 drop_spte(kvm, spte); 2402 } else { 2403 child = spte_to_child_sp(pte); 2404 drop_parent_pte(kvm, child, spte); 2405 2406 /* 2407 * Recursively zap nested TDP SPs, parentless SPs are 2408 * unlikely to be used again in the near future. This 2409 * avoids retaining a large number of stale nested SPs. 2410 */ 2411 if (tdp_enabled && invalid_list && 2412 child->role.guest_mode && !child->parent_ptes.val) 2413 return kvm_mmu_prepare_zap_page(kvm, child, 2414 invalid_list); 2415 } 2416 } else if (is_mmio_spte(kvm, pte)) { 2417 mmu_spte_clear_no_track(spte); 2418 } 2419 return 0; 2420 } 2421 2422 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2423 struct kvm_mmu_page *sp, 2424 struct list_head *invalid_list) 2425 { 2426 int zapped = 0; 2427 unsigned i; 2428 2429 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2430 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2431 2432 return zapped; 2433 } 2434 2435 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2436 { 2437 u64 *sptep; 2438 struct rmap_iterator iter; 2439 2440 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2441 drop_parent_pte(kvm, sp, sptep); 2442 } 2443 2444 static int mmu_zap_unsync_children(struct kvm *kvm, 2445 struct kvm_mmu_page *parent, 2446 struct list_head *invalid_list) 2447 { 2448 int i, zapped = 0; 2449 struct mmu_page_path parents; 2450 struct kvm_mmu_pages pages; 2451 2452 if (parent->role.level == PG_LEVEL_4K) 2453 return 0; 2454 2455 while (mmu_unsync_walk(parent, &pages)) { 2456 struct kvm_mmu_page *sp; 2457 2458 for_each_sp(pages, sp, parents, i) { 2459 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2460 mmu_pages_clear_parents(&parents); 2461 zapped++; 2462 } 2463 } 2464 2465 return zapped; 2466 } 2467 2468 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2469 struct kvm_mmu_page *sp, 2470 struct list_head *invalid_list, 2471 int *nr_zapped) 2472 { 2473 bool list_unstable, zapped_root = false; 2474 2475 lockdep_assert_held_write(&kvm->mmu_lock); 2476 trace_kvm_mmu_prepare_zap_page(sp); 2477 ++kvm->stat.mmu_shadow_zapped; 2478 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2479 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2480 kvm_mmu_unlink_parents(kvm, sp); 2481 2482 /* Zapping children means active_mmu_pages has become unstable. */ 2483 list_unstable = *nr_zapped; 2484 2485 if (!sp->role.invalid && sp_has_gptes(sp)) 2486 unaccount_shadowed(kvm, sp); 2487 2488 if (sp->unsync) 2489 kvm_unlink_unsync_page(kvm, sp); 2490 if (!sp->root_count) { 2491 /* Count self */ 2492 (*nr_zapped)++; 2493 2494 /* 2495 * Already invalid pages (previously active roots) are not on 2496 * the active page list. See list_del() in the "else" case of 2497 * !sp->root_count. 2498 */ 2499 if (sp->role.invalid) 2500 list_add(&sp->link, invalid_list); 2501 else 2502 list_move(&sp->link, invalid_list); 2503 kvm_unaccount_mmu_page(kvm, sp); 2504 } else { 2505 /* 2506 * Remove the active root from the active page list, the root 2507 * will be explicitly freed when the root_count hits zero. 2508 */ 2509 list_del(&sp->link); 2510 2511 /* 2512 * Obsolete pages cannot be used on any vCPUs, see the comment 2513 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2514 * treats invalid shadow pages as being obsolete. 2515 */ 2516 zapped_root = !is_obsolete_sp(kvm, sp); 2517 } 2518 2519 if (sp->nx_huge_page_disallowed) 2520 unaccount_nx_huge_page(kvm, sp); 2521 2522 sp->role.invalid = 1; 2523 2524 /* 2525 * Make the request to free obsolete roots after marking the root 2526 * invalid, otherwise other vCPUs may not see it as invalid. 2527 */ 2528 if (zapped_root) 2529 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2530 return list_unstable; 2531 } 2532 2533 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2534 struct list_head *invalid_list) 2535 { 2536 int nr_zapped; 2537 2538 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2539 return nr_zapped; 2540 } 2541 2542 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2543 struct list_head *invalid_list) 2544 { 2545 struct kvm_mmu_page *sp, *nsp; 2546 2547 if (list_empty(invalid_list)) 2548 return; 2549 2550 /* 2551 * We need to make sure everyone sees our modifications to 2552 * the page tables and see changes to vcpu->mode here. The barrier 2553 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2554 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2555 * 2556 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2557 * guest mode and/or lockless shadow page table walks. 2558 */ 2559 kvm_flush_remote_tlbs(kvm); 2560 2561 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2562 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2563 kvm_mmu_free_shadow_page(sp); 2564 } 2565 } 2566 2567 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2568 unsigned long nr_to_zap) 2569 { 2570 unsigned long total_zapped = 0; 2571 struct kvm_mmu_page *sp, *tmp; 2572 LIST_HEAD(invalid_list); 2573 bool unstable; 2574 int nr_zapped; 2575 2576 if (list_empty(&kvm->arch.active_mmu_pages)) 2577 return 0; 2578 2579 restart: 2580 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2581 /* 2582 * Don't zap active root pages, the page itself can't be freed 2583 * and zapping it will just force vCPUs to realloc and reload. 2584 */ 2585 if (sp->root_count) 2586 continue; 2587 2588 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2589 &nr_zapped); 2590 total_zapped += nr_zapped; 2591 if (total_zapped >= nr_to_zap) 2592 break; 2593 2594 if (unstable) 2595 goto restart; 2596 } 2597 2598 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2599 2600 kvm->stat.mmu_recycled += total_zapped; 2601 return total_zapped; 2602 } 2603 2604 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2605 { 2606 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2607 return kvm->arch.n_max_mmu_pages - 2608 kvm->arch.n_used_mmu_pages; 2609 2610 return 0; 2611 } 2612 2613 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2614 { 2615 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2616 2617 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2618 return 0; 2619 2620 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2621 2622 /* 2623 * Note, this check is intentionally soft, it only guarantees that one 2624 * page is available, while the caller may end up allocating as many as 2625 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2626 * exceeding the (arbitrary by default) limit will not harm the host, 2627 * being too aggressive may unnecessarily kill the guest, and getting an 2628 * exact count is far more trouble than it's worth, especially in the 2629 * page fault paths. 2630 */ 2631 if (!kvm_mmu_available_pages(vcpu->kvm)) 2632 return -ENOSPC; 2633 return 0; 2634 } 2635 2636 /* 2637 * Changing the number of mmu pages allocated to the vm 2638 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2639 */ 2640 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2641 { 2642 write_lock(&kvm->mmu_lock); 2643 2644 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2645 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2646 goal_nr_mmu_pages); 2647 2648 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2649 } 2650 2651 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2652 2653 write_unlock(&kvm->mmu_lock); 2654 } 2655 2656 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2657 bool always_retry) 2658 { 2659 struct kvm *kvm = vcpu->kvm; 2660 LIST_HEAD(invalid_list); 2661 struct kvm_mmu_page *sp; 2662 gpa_t gpa = cr2_or_gpa; 2663 bool r = false; 2664 2665 /* 2666 * Bail early if there aren't any write-protected shadow pages to avoid 2667 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked 2668 * by a third party. Reading indirect_shadow_pages without holding 2669 * mmu_lock is safe, as this is purely an optimization, i.e. a false 2670 * positive is benign, and a false negative will simply result in KVM 2671 * skipping the unprotect+retry path, which is also an optimization. 2672 */ 2673 if (!READ_ONCE(kvm->arch.indirect_shadow_pages)) 2674 goto out; 2675 2676 if (!vcpu->arch.mmu->root_role.direct) { 2677 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 2678 if (gpa == INVALID_GPA) 2679 goto out; 2680 } 2681 2682 write_lock(&kvm->mmu_lock); 2683 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa)) 2684 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2685 2686 /* 2687 * Snapshot the result before zapping, as zapping will remove all list 2688 * entries, i.e. checking the list later would yield a false negative. 2689 */ 2690 r = !list_empty(&invalid_list); 2691 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2692 write_unlock(&kvm->mmu_lock); 2693 2694 out: 2695 if (r || always_retry) { 2696 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu); 2697 vcpu->arch.last_retry_addr = cr2_or_gpa; 2698 } 2699 return r; 2700 } 2701 2702 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2703 { 2704 trace_kvm_mmu_unsync_page(sp); 2705 ++kvm->stat.mmu_unsync; 2706 sp->unsync = 1; 2707 2708 kvm_mmu_mark_parents_unsync(sp); 2709 } 2710 2711 /* 2712 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2713 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2714 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2715 * be write-protected. 2716 */ 2717 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2718 gfn_t gfn, bool synchronizing, bool prefetch) 2719 { 2720 struct kvm_mmu_page *sp; 2721 bool locked = false; 2722 2723 /* 2724 * Force write-protection if the page is being tracked. Note, the page 2725 * track machinery is used to write-protect upper-level shadow pages, 2726 * i.e. this guards the role.level == 4K assertion below! 2727 */ 2728 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2729 return -EPERM; 2730 2731 /* 2732 * The page is not write-tracked, mark existing shadow pages unsync 2733 * unless KVM is synchronizing an unsync SP. In that case, KVM must 2734 * complete emulation of the guest TLB flush before allowing shadow 2735 * pages to become unsync (writable by the guest). 2736 */ 2737 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2738 if (synchronizing) 2739 return -EPERM; 2740 2741 if (sp->unsync) 2742 continue; 2743 2744 if (prefetch) 2745 return -EEXIST; 2746 2747 /* 2748 * TDP MMU page faults require an additional spinlock as they 2749 * run with mmu_lock held for read, not write, and the unsync 2750 * logic is not thread safe. Take the spinklock regardless of 2751 * the MMU type to avoid extra conditionals/parameters, there's 2752 * no meaningful penalty if mmu_lock is held for write. 2753 */ 2754 if (!locked) { 2755 locked = true; 2756 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2757 2758 /* 2759 * Recheck after taking the spinlock, a different vCPU 2760 * may have since marked the page unsync. A false 2761 * negative on the unprotected check above is not 2762 * possible as clearing sp->unsync _must_ hold mmu_lock 2763 * for write, i.e. unsync cannot transition from 1->0 2764 * while this CPU holds mmu_lock for read (or write). 2765 */ 2766 if (READ_ONCE(sp->unsync)) 2767 continue; 2768 } 2769 2770 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2771 kvm_unsync_page(kvm, sp); 2772 } 2773 if (locked) 2774 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2775 2776 /* 2777 * We need to ensure that the marking of unsync pages is visible 2778 * before the SPTE is updated to allow writes because 2779 * kvm_mmu_sync_roots() checks the unsync flags without holding 2780 * the MMU lock and so can race with this. If the SPTE was updated 2781 * before the page had been marked as unsync-ed, something like the 2782 * following could happen: 2783 * 2784 * CPU 1 CPU 2 2785 * --------------------------------------------------------------------- 2786 * 1.2 Host updates SPTE 2787 * to be writable 2788 * 2.1 Guest writes a GPTE for GVA X. 2789 * (GPTE being in the guest page table shadowed 2790 * by the SP from CPU 1.) 2791 * This reads SPTE during the page table walk. 2792 * Since SPTE.W is read as 1, there is no 2793 * fault. 2794 * 2795 * 2.2 Guest issues TLB flush. 2796 * That causes a VM Exit. 2797 * 2798 * 2.3 Walking of unsync pages sees sp->unsync is 2799 * false and skips the page. 2800 * 2801 * 2.4 Guest accesses GVA X. 2802 * Since the mapping in the SP was not updated, 2803 * so the old mapping for GVA X incorrectly 2804 * gets used. 2805 * 1.1 Host marks SP 2806 * as unsync 2807 * (sp->unsync = true) 2808 * 2809 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2810 * the situation in 2.4 does not arise. It pairs with the read barrier 2811 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2812 */ 2813 smp_wmb(); 2814 2815 return 0; 2816 } 2817 2818 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2819 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2820 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2821 { 2822 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2823 int level = sp->role.level; 2824 int was_rmapped = 0; 2825 int ret = RET_PF_FIXED; 2826 bool flush = false; 2827 bool wrprot; 2828 u64 spte; 2829 2830 /* Prefetching always gets a writable pfn. */ 2831 bool host_writable = !fault || fault->map_writable; 2832 bool prefetch = !fault || fault->prefetch; 2833 bool write_fault = fault && fault->write; 2834 2835 if (unlikely(is_noslot_pfn(pfn))) { 2836 vcpu->stat.pf_mmio_spte_created++; 2837 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2838 return RET_PF_EMULATE; 2839 } 2840 2841 if (is_shadow_present_pte(*sptep)) { 2842 if (prefetch) 2843 return RET_PF_SPURIOUS; 2844 2845 /* 2846 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2847 * the parent of the now unreachable PTE. 2848 */ 2849 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2850 struct kvm_mmu_page *child; 2851 u64 pte = *sptep; 2852 2853 child = spte_to_child_sp(pte); 2854 drop_parent_pte(vcpu->kvm, child, sptep); 2855 flush = true; 2856 } else if (pfn != spte_to_pfn(*sptep)) { 2857 drop_spte(vcpu->kvm, sptep); 2858 flush = true; 2859 } else 2860 was_rmapped = 1; 2861 } 2862 2863 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2864 false, host_writable, &spte); 2865 2866 if (*sptep == spte) { 2867 ret = RET_PF_SPURIOUS; 2868 } else { 2869 flush |= mmu_spte_update(sptep, spte); 2870 trace_kvm_mmu_set_spte(level, gfn, sptep); 2871 } 2872 2873 if (wrprot && write_fault) 2874 ret = RET_PF_WRITE_PROTECTED; 2875 2876 if (flush) 2877 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2878 2879 if (!was_rmapped) { 2880 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2881 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2882 } else { 2883 /* Already rmapped but the pte_access bits may have changed. */ 2884 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2885 } 2886 2887 return ret; 2888 } 2889 2890 static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep, 2891 int nr_pages, unsigned int access) 2892 { 2893 struct page *pages[PTE_PREFETCH_NUM]; 2894 struct kvm_memory_slot *slot; 2895 int i; 2896 2897 if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM)) 2898 return false; 2899 2900 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2901 if (!slot) 2902 return false; 2903 2904 nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages); 2905 if (nr_pages <= 0) 2906 return false; 2907 2908 for (i = 0; i < nr_pages; i++, gfn++, sptep++) { 2909 mmu_set_spte(vcpu, slot, sptep, access, gfn, 2910 page_to_pfn(pages[i]), NULL); 2911 2912 /* 2913 * KVM always prefetches writable pages from the primary MMU, 2914 * and KVM can make its SPTE writable in the fast page handler, 2915 * without notifying the primary MMU. Mark pages/folios dirty 2916 * now to ensure file data is written back if it ends up being 2917 * written by the guest. Because KVM's prefetching GUPs 2918 * writable PTEs, the probability of unnecessary writeback is 2919 * extremely low. 2920 */ 2921 kvm_release_page_dirty(pages[i]); 2922 } 2923 2924 return true; 2925 } 2926 2927 static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2928 struct kvm_mmu_page *sp, 2929 u64 *start, u64 *end) 2930 { 2931 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2932 unsigned int access = sp->role.access; 2933 2934 return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access); 2935 } 2936 2937 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2938 struct kvm_mmu_page *sp, u64 *sptep) 2939 { 2940 u64 *spte, *start = NULL; 2941 int i; 2942 2943 WARN_ON_ONCE(!sp->role.direct); 2944 2945 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 2946 spte = sp->spt + i; 2947 2948 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2949 if (is_shadow_present_pte(*spte) || spte == sptep) { 2950 if (!start) 2951 continue; 2952 if (!direct_pte_prefetch_many(vcpu, sp, start, spte)) 2953 return; 2954 2955 start = NULL; 2956 } else if (!start) 2957 start = spte; 2958 } 2959 if (start) 2960 direct_pte_prefetch_many(vcpu, sp, start, spte); 2961 } 2962 2963 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2964 { 2965 struct kvm_mmu_page *sp; 2966 2967 sp = sptep_to_sp(sptep); 2968 2969 /* 2970 * Without accessed bits, there's no way to distinguish between 2971 * actually accessed translations and prefetched, so disable pte 2972 * prefetch if accessed bits aren't available. 2973 */ 2974 if (sp_ad_disabled(sp)) 2975 return; 2976 2977 if (sp->role.level > PG_LEVEL_4K) 2978 return; 2979 2980 /* 2981 * If addresses are being invalidated, skip prefetching to avoid 2982 * accidentally prefetching those addresses. 2983 */ 2984 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 2985 return; 2986 2987 __direct_pte_prefetch(vcpu, sp, sptep); 2988 } 2989 2990 /* 2991 * Lookup the mapping level for @gfn in the current mm. 2992 * 2993 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 2994 * consumer to be tied into KVM's handlers for MMU notifier events! 2995 * 2996 * There are several ways to safely use this helper: 2997 * 2998 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 2999 * consuming it. In this case, mmu_lock doesn't need to be held during the 3000 * lookup, but it does need to be held while checking the MMU notifier. 3001 * 3002 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3003 * event for the hva. This can be done by explicit checking the MMU notifier 3004 * or by ensuring that KVM already has a valid mapping that covers the hva. 3005 * 3006 * - Do not use the result to install new mappings, e.g. use the host mapping 3007 * level only to decide whether or not to zap an entry. In this case, it's 3008 * not required to hold mmu_lock (though it's highly likely the caller will 3009 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3010 * 3011 * Note! The lookup can still race with modifications to host page tables, but 3012 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3013 * race with the primary MMU occurs. 3014 */ 3015 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3016 const struct kvm_memory_slot *slot) 3017 { 3018 int level = PG_LEVEL_4K; 3019 unsigned long hva; 3020 unsigned long flags; 3021 pgd_t pgd; 3022 p4d_t p4d; 3023 pud_t pud; 3024 pmd_t pmd; 3025 3026 /* 3027 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3028 * is not solely for performance, it's also necessary to avoid the 3029 * "writable" check in __gfn_to_hva_many(), which will always fail on 3030 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3031 * page fault steps have already verified the guest isn't writing a 3032 * read-only memslot. 3033 */ 3034 hva = __gfn_to_hva_memslot(slot, gfn); 3035 3036 /* 3037 * Disable IRQs to prevent concurrent tear down of host page tables, 3038 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3039 * the original page table. 3040 */ 3041 local_irq_save(flags); 3042 3043 /* 3044 * Read each entry once. As above, a non-leaf entry can be promoted to 3045 * a huge page _during_ this walk. Re-reading the entry could send the 3046 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3047 * value) and then p*d_offset() walks into the target huge page instead 3048 * of the old page table (sees the new value). 3049 */ 3050 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3051 if (pgd_none(pgd)) 3052 goto out; 3053 3054 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3055 if (p4d_none(p4d) || !p4d_present(p4d)) 3056 goto out; 3057 3058 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3059 if (pud_none(pud) || !pud_present(pud)) 3060 goto out; 3061 3062 if (pud_leaf(pud)) { 3063 level = PG_LEVEL_1G; 3064 goto out; 3065 } 3066 3067 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3068 if (pmd_none(pmd) || !pmd_present(pmd)) 3069 goto out; 3070 3071 if (pmd_leaf(pmd)) 3072 level = PG_LEVEL_2M; 3073 3074 out: 3075 local_irq_restore(flags); 3076 return level; 3077 } 3078 3079 static int __kvm_mmu_max_mapping_level(struct kvm *kvm, 3080 const struct kvm_memory_slot *slot, 3081 gfn_t gfn, int max_level, bool is_private) 3082 { 3083 struct kvm_lpage_info *linfo; 3084 int host_level; 3085 3086 max_level = min(max_level, max_huge_page_level); 3087 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3088 linfo = lpage_info_slot(gfn, slot, max_level); 3089 if (!linfo->disallow_lpage) 3090 break; 3091 } 3092 3093 if (is_private) 3094 return max_level; 3095 3096 if (max_level == PG_LEVEL_4K) 3097 return PG_LEVEL_4K; 3098 3099 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3100 return min(host_level, max_level); 3101 } 3102 3103 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3104 const struct kvm_memory_slot *slot, gfn_t gfn) 3105 { 3106 bool is_private = kvm_slot_can_be_private(slot) && 3107 kvm_mem_is_private(kvm, gfn); 3108 3109 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, PG_LEVEL_NUM, is_private); 3110 } 3111 3112 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3113 { 3114 struct kvm_memory_slot *slot = fault->slot; 3115 kvm_pfn_t mask; 3116 3117 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3118 3119 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3120 return; 3121 3122 if (is_error_noslot_pfn(fault->pfn)) 3123 return; 3124 3125 if (kvm_slot_dirty_track_enabled(slot)) 3126 return; 3127 3128 /* 3129 * Enforce the iTLB multihit workaround after capturing the requested 3130 * level, which will be used to do precise, accurate accounting. 3131 */ 3132 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3133 fault->gfn, fault->max_level, 3134 fault->is_private); 3135 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3136 return; 3137 3138 /* 3139 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3140 * the pmd can't be split from under us. 3141 */ 3142 fault->goal_level = fault->req_level; 3143 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3144 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3145 fault->pfn &= ~mask; 3146 } 3147 3148 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3149 { 3150 if (cur_level > PG_LEVEL_4K && 3151 cur_level == fault->goal_level && 3152 is_shadow_present_pte(spte) && 3153 !is_large_pte(spte) && 3154 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3155 /* 3156 * A small SPTE exists for this pfn, but FNAME(fetch), 3157 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3158 * large PTE instead: just force them to go down another level, 3159 * patching back for them into pfn the next 9 bits of the 3160 * address. 3161 */ 3162 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3163 KVM_PAGES_PER_HPAGE(cur_level - 1); 3164 fault->pfn |= fault->gfn & page_mask; 3165 fault->goal_level--; 3166 } 3167 } 3168 3169 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3170 { 3171 struct kvm_shadow_walk_iterator it; 3172 struct kvm_mmu_page *sp; 3173 int ret; 3174 gfn_t base_gfn = fault->gfn; 3175 3176 kvm_mmu_hugepage_adjust(vcpu, fault); 3177 3178 trace_kvm_mmu_spte_requested(fault); 3179 for_each_shadow_entry(vcpu, fault->addr, it) { 3180 /* 3181 * We cannot overwrite existing page tables with an NX 3182 * large page, as the leaf could be executable. 3183 */ 3184 if (fault->nx_huge_page_workaround_enabled) 3185 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3186 3187 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3188 if (it.level == fault->goal_level) 3189 break; 3190 3191 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3192 if (sp == ERR_PTR(-EEXIST)) 3193 continue; 3194 3195 link_shadow_page(vcpu, it.sptep, sp); 3196 if (fault->huge_page_disallowed) 3197 account_nx_huge_page(vcpu->kvm, sp, 3198 fault->req_level >= it.level); 3199 } 3200 3201 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3202 return -EFAULT; 3203 3204 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3205 base_gfn, fault->pfn, fault); 3206 if (ret == RET_PF_SPURIOUS) 3207 return ret; 3208 3209 direct_pte_prefetch(vcpu, it.sptep); 3210 return ret; 3211 } 3212 3213 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3214 { 3215 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3216 3217 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3218 } 3219 3220 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3221 { 3222 if (is_sigpending_pfn(fault->pfn)) { 3223 kvm_handle_signal_exit(vcpu); 3224 return -EINTR; 3225 } 3226 3227 /* 3228 * Do not cache the mmio info caused by writing the readonly gfn 3229 * into the spte otherwise read access on readonly gfn also can 3230 * caused mmio page fault and treat it as mmio access. 3231 */ 3232 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3233 return RET_PF_EMULATE; 3234 3235 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3236 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3237 return RET_PF_RETRY; 3238 } 3239 3240 return -EFAULT; 3241 } 3242 3243 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3244 struct kvm_page_fault *fault, 3245 unsigned int access) 3246 { 3247 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3248 3249 if (fault->is_private) { 3250 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3251 return -EFAULT; 3252 } 3253 3254 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3255 access & shadow_mmio_access_mask); 3256 3257 fault->slot = NULL; 3258 fault->pfn = KVM_PFN_NOSLOT; 3259 fault->map_writable = false; 3260 3261 /* 3262 * If MMIO caching is disabled, emulate immediately without 3263 * touching the shadow page tables as attempting to install an 3264 * MMIO SPTE will just be an expensive nop. 3265 */ 3266 if (unlikely(!enable_mmio_caching)) 3267 return RET_PF_EMULATE; 3268 3269 /* 3270 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3271 * any guest that generates such gfns is running nested and is being 3272 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3273 * only if L1's MAXPHYADDR is inaccurate with respect to the 3274 * hardware's). 3275 */ 3276 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3277 return RET_PF_EMULATE; 3278 3279 return RET_PF_CONTINUE; 3280 } 3281 3282 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) 3283 { 3284 /* 3285 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3286 * reach the common page fault handler if the SPTE has an invalid MMIO 3287 * generation number. Refreshing the MMIO generation needs to go down 3288 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3289 */ 3290 if (fault->rsvd) 3291 return false; 3292 3293 /* 3294 * For hardware-protected VMs, certain conditions like attempting to 3295 * perform a write to a page which is not in the state that the guest 3296 * expects it to be in can result in a nested/extended #PF. In this 3297 * case, the below code might misconstrue this situation as being the 3298 * result of a write-protected access, and treat it as a spurious case 3299 * rather than taking any action to satisfy the real source of the #PF 3300 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the 3301 * guest spinning on a #PF indefinitely, so don't attempt the fast path 3302 * in this case. 3303 * 3304 * Note that the kvm_mem_is_private() check might race with an 3305 * attribute update, but this will either result in the guest spinning 3306 * on RET_PF_SPURIOUS until the update completes, or an actual spurious 3307 * case might go down the slow path. Either case will resolve itself. 3308 */ 3309 if (kvm->arch.has_private_mem && 3310 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) 3311 return false; 3312 3313 /* 3314 * #PF can be fast if: 3315 * 3316 * 1. The shadow page table entry is not present and A/D bits are 3317 * disabled _by KVM_, which could mean that the fault is potentially 3318 * caused by access tracking (if enabled). If A/D bits are enabled 3319 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3320 * bits for L2 and employ access tracking, but the fast page fault 3321 * mechanism only supports direct MMUs. 3322 * 2. The shadow page table entry is present, the access is a write, 3323 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3324 * the fault was caused by a write-protection violation. If the 3325 * SPTE is MMU-writable (determined later), the fault can be fixed 3326 * by setting the Writable bit, which can be done out of mmu_lock. 3327 */ 3328 if (!fault->present) 3329 return !kvm_ad_enabled; 3330 3331 /* 3332 * Note, instruction fetches and writes are mutually exclusive, ignore 3333 * the "exec" flag. 3334 */ 3335 return fault->write; 3336 } 3337 3338 /* 3339 * Returns true if the SPTE was fixed successfully. Otherwise, 3340 * someone else modified the SPTE from its original value. 3341 */ 3342 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3343 struct kvm_page_fault *fault, 3344 u64 *sptep, u64 old_spte, u64 new_spte) 3345 { 3346 /* 3347 * Theoretically we could also set dirty bit (and flush TLB) here in 3348 * order to eliminate unnecessary PML logging. See comments in 3349 * set_spte. But fast_page_fault is very unlikely to happen with PML 3350 * enabled, so we do not do this. This might result in the same GPA 3351 * to be logged in PML buffer again when the write really happens, and 3352 * eventually to be called by mark_page_dirty twice. But it's also no 3353 * harm. This also avoids the TLB flush needed after setting dirty bit 3354 * so non-PML cases won't be impacted. 3355 * 3356 * Compare with make_spte() where instead shadow_dirty_mask is set. 3357 */ 3358 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3359 return false; 3360 3361 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3362 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3363 3364 return true; 3365 } 3366 3367 /* 3368 * Returns the last level spte pointer of the shadow page walk for the given 3369 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3370 * walk could be performed, returns NULL and *spte does not contain valid data. 3371 * 3372 * Contract: 3373 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3374 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3375 */ 3376 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3377 { 3378 struct kvm_shadow_walk_iterator iterator; 3379 u64 old_spte; 3380 u64 *sptep = NULL; 3381 3382 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3383 sptep = iterator.sptep; 3384 *spte = old_spte; 3385 } 3386 3387 return sptep; 3388 } 3389 3390 /* 3391 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3392 */ 3393 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3394 { 3395 struct kvm_mmu_page *sp; 3396 int ret = RET_PF_INVALID; 3397 u64 spte; 3398 u64 *sptep; 3399 uint retry_count = 0; 3400 3401 if (!page_fault_can_be_fast(vcpu->kvm, fault)) 3402 return ret; 3403 3404 walk_shadow_page_lockless_begin(vcpu); 3405 3406 do { 3407 u64 new_spte; 3408 3409 if (tdp_mmu_enabled) 3410 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); 3411 else 3412 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3413 3414 /* 3415 * It's entirely possible for the mapping to have been zapped 3416 * by a different task, but the root page should always be 3417 * available as the vCPU holds a reference to its root(s). 3418 */ 3419 if (WARN_ON_ONCE(!sptep)) 3420 spte = FROZEN_SPTE; 3421 3422 if (!is_shadow_present_pte(spte)) 3423 break; 3424 3425 sp = sptep_to_sp(sptep); 3426 if (!is_last_spte(spte, sp->role.level)) 3427 break; 3428 3429 /* 3430 * Check whether the memory access that caused the fault would 3431 * still cause it if it were to be performed right now. If not, 3432 * then this is a spurious fault caused by TLB lazily flushed, 3433 * or some other CPU has already fixed the PTE after the 3434 * current CPU took the fault. 3435 * 3436 * Need not check the access of upper level table entries since 3437 * they are always ACC_ALL. 3438 */ 3439 if (is_access_allowed(fault, spte)) { 3440 ret = RET_PF_SPURIOUS; 3441 break; 3442 } 3443 3444 new_spte = spte; 3445 3446 /* 3447 * KVM only supports fixing page faults outside of MMU lock for 3448 * direct MMUs, nested MMUs are always indirect, and KVM always 3449 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3450 * enabled, the SPTE can't be an access-tracked SPTE. 3451 */ 3452 if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte)) 3453 new_spte = restore_acc_track_spte(new_spte) | 3454 shadow_accessed_mask; 3455 3456 /* 3457 * To keep things simple, only SPTEs that are MMU-writable can 3458 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3459 * that were write-protected for dirty-logging or access 3460 * tracking are handled here. Don't bother checking if the 3461 * SPTE is writable to prioritize running with A/D bits enabled. 3462 * The is_access_allowed() check above handles the common case 3463 * of the fault being spurious, and the SPTE is known to be 3464 * shadow-present, i.e. except for access tracking restoration 3465 * making the new SPTE writable, the check is wasteful. 3466 */ 3467 if (fault->write && is_mmu_writable_spte(spte)) { 3468 new_spte |= PT_WRITABLE_MASK; 3469 3470 /* 3471 * Do not fix write-permission on the large spte when 3472 * dirty logging is enabled. Since we only dirty the 3473 * first page into the dirty-bitmap in 3474 * fast_pf_fix_direct_spte(), other pages are missed 3475 * if its slot has dirty logging enabled. 3476 * 3477 * Instead, we let the slow page fault path create a 3478 * normal spte to fix the access. 3479 */ 3480 if (sp->role.level > PG_LEVEL_4K && 3481 kvm_slot_dirty_track_enabled(fault->slot)) 3482 break; 3483 } 3484 3485 /* Verify that the fault can be handled in the fast path */ 3486 if (new_spte == spte || 3487 !is_access_allowed(fault, new_spte)) 3488 break; 3489 3490 /* 3491 * Currently, fast page fault only works for direct mapping 3492 * since the gfn is not stable for indirect shadow page. See 3493 * Documentation/virt/kvm/locking.rst to get more detail. 3494 */ 3495 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3496 ret = RET_PF_FIXED; 3497 break; 3498 } 3499 3500 if (++retry_count > 4) { 3501 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3502 break; 3503 } 3504 3505 } while (true); 3506 3507 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3508 walk_shadow_page_lockless_end(vcpu); 3509 3510 if (ret != RET_PF_INVALID) 3511 vcpu->stat.pf_fast++; 3512 3513 return ret; 3514 } 3515 3516 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3517 struct list_head *invalid_list) 3518 { 3519 struct kvm_mmu_page *sp; 3520 3521 if (!VALID_PAGE(*root_hpa)) 3522 return; 3523 3524 sp = root_to_sp(*root_hpa); 3525 if (WARN_ON_ONCE(!sp)) 3526 return; 3527 3528 if (is_tdp_mmu_page(sp)) { 3529 lockdep_assert_held_read(&kvm->mmu_lock); 3530 kvm_tdp_mmu_put_root(kvm, sp); 3531 } else { 3532 lockdep_assert_held_write(&kvm->mmu_lock); 3533 if (!--sp->root_count && sp->role.invalid) 3534 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3535 } 3536 3537 *root_hpa = INVALID_PAGE; 3538 } 3539 3540 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3541 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3542 ulong roots_to_free) 3543 { 3544 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3545 int i; 3546 LIST_HEAD(invalid_list); 3547 bool free_active_root; 3548 3549 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3550 3551 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3552 3553 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3554 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3555 && VALID_PAGE(mmu->root.hpa); 3556 3557 if (!free_active_root) { 3558 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3559 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3560 VALID_PAGE(mmu->prev_roots[i].hpa)) 3561 break; 3562 3563 if (i == KVM_MMU_NUM_PREV_ROOTS) 3564 return; 3565 } 3566 3567 if (is_tdp_mmu) 3568 read_lock(&kvm->mmu_lock); 3569 else 3570 write_lock(&kvm->mmu_lock); 3571 3572 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3573 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3574 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3575 &invalid_list); 3576 3577 if (free_active_root) { 3578 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3579 /* Nothing to cleanup for dummy roots. */ 3580 } else if (root_to_sp(mmu->root.hpa)) { 3581 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3582 } else if (mmu->pae_root) { 3583 for (i = 0; i < 4; ++i) { 3584 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3585 continue; 3586 3587 mmu_free_root_page(kvm, &mmu->pae_root[i], 3588 &invalid_list); 3589 mmu->pae_root[i] = INVALID_PAE_ROOT; 3590 } 3591 } 3592 mmu->root.hpa = INVALID_PAGE; 3593 mmu->root.pgd = 0; 3594 } 3595 3596 if (is_tdp_mmu) { 3597 read_unlock(&kvm->mmu_lock); 3598 WARN_ON_ONCE(!list_empty(&invalid_list)); 3599 } else { 3600 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3601 write_unlock(&kvm->mmu_lock); 3602 } 3603 } 3604 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3605 3606 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3607 { 3608 unsigned long roots_to_free = 0; 3609 struct kvm_mmu_page *sp; 3610 hpa_t root_hpa; 3611 int i; 3612 3613 /* 3614 * This should not be called while L2 is active, L2 can't invalidate 3615 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3616 */ 3617 WARN_ON_ONCE(mmu->root_role.guest_mode); 3618 3619 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3620 root_hpa = mmu->prev_roots[i].hpa; 3621 if (!VALID_PAGE(root_hpa)) 3622 continue; 3623 3624 sp = root_to_sp(root_hpa); 3625 if (!sp || sp->role.guest_mode) 3626 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3627 } 3628 3629 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3630 } 3631 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3632 3633 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3634 u8 level) 3635 { 3636 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3637 struct kvm_mmu_page *sp; 3638 3639 role.level = level; 3640 role.quadrant = quadrant; 3641 3642 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3643 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3644 3645 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3646 ++sp->root_count; 3647 3648 return __pa(sp->spt); 3649 } 3650 3651 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3652 { 3653 struct kvm_mmu *mmu = vcpu->arch.mmu; 3654 u8 shadow_root_level = mmu->root_role.level; 3655 hpa_t root; 3656 unsigned i; 3657 int r; 3658 3659 if (tdp_mmu_enabled) 3660 return kvm_tdp_mmu_alloc_root(vcpu); 3661 3662 write_lock(&vcpu->kvm->mmu_lock); 3663 r = make_mmu_pages_available(vcpu); 3664 if (r < 0) 3665 goto out_unlock; 3666 3667 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3668 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3669 mmu->root.hpa = root; 3670 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3671 if (WARN_ON_ONCE(!mmu->pae_root)) { 3672 r = -EIO; 3673 goto out_unlock; 3674 } 3675 3676 for (i = 0; i < 4; ++i) { 3677 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3678 3679 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3680 PT32_ROOT_LEVEL); 3681 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3682 shadow_me_value; 3683 } 3684 mmu->root.hpa = __pa(mmu->pae_root); 3685 } else { 3686 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3687 r = -EIO; 3688 goto out_unlock; 3689 } 3690 3691 /* root.pgd is ignored for direct MMUs. */ 3692 mmu->root.pgd = 0; 3693 out_unlock: 3694 write_unlock(&vcpu->kvm->mmu_lock); 3695 return r; 3696 } 3697 3698 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3699 { 3700 struct kvm_memslots *slots; 3701 struct kvm_memory_slot *slot; 3702 int r = 0, i, bkt; 3703 3704 /* 3705 * Check if this is the first shadow root being allocated before 3706 * taking the lock. 3707 */ 3708 if (kvm_shadow_root_allocated(kvm)) 3709 return 0; 3710 3711 mutex_lock(&kvm->slots_arch_lock); 3712 3713 /* Recheck, under the lock, whether this is the first shadow root. */ 3714 if (kvm_shadow_root_allocated(kvm)) 3715 goto out_unlock; 3716 3717 /* 3718 * Check if anything actually needs to be allocated, e.g. all metadata 3719 * will be allocated upfront if TDP is disabled. 3720 */ 3721 if (kvm_memslots_have_rmaps(kvm) && 3722 kvm_page_track_write_tracking_enabled(kvm)) 3723 goto out_success; 3724 3725 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 3726 slots = __kvm_memslots(kvm, i); 3727 kvm_for_each_memslot(slot, bkt, slots) { 3728 /* 3729 * Both of these functions are no-ops if the target is 3730 * already allocated, so unconditionally calling both 3731 * is safe. Intentionally do NOT free allocations on 3732 * failure to avoid having to track which allocations 3733 * were made now versus when the memslot was created. 3734 * The metadata is guaranteed to be freed when the slot 3735 * is freed, and will be kept/used if userspace retries 3736 * KVM_RUN instead of killing the VM. 3737 */ 3738 r = memslot_rmap_alloc(slot, slot->npages); 3739 if (r) 3740 goto out_unlock; 3741 r = kvm_page_track_write_tracking_alloc(slot); 3742 if (r) 3743 goto out_unlock; 3744 } 3745 } 3746 3747 /* 3748 * Ensure that shadow_root_allocated becomes true strictly after 3749 * all the related pointers are set. 3750 */ 3751 out_success: 3752 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3753 3754 out_unlock: 3755 mutex_unlock(&kvm->slots_arch_lock); 3756 return r; 3757 } 3758 3759 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3760 { 3761 struct kvm_mmu *mmu = vcpu->arch.mmu; 3762 u64 pdptrs[4], pm_mask; 3763 gfn_t root_gfn, root_pgd; 3764 int quadrant, i, r; 3765 hpa_t root; 3766 3767 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3768 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 3769 3770 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3771 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3772 return 0; 3773 } 3774 3775 /* 3776 * On SVM, reading PDPTRs might access guest memory, which might fault 3777 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3778 */ 3779 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3780 for (i = 0; i < 4; ++i) { 3781 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3782 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3783 continue; 3784 3785 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3786 pdptrs[i] = 0; 3787 } 3788 } 3789 3790 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3791 if (r) 3792 return r; 3793 3794 write_lock(&vcpu->kvm->mmu_lock); 3795 r = make_mmu_pages_available(vcpu); 3796 if (r < 0) 3797 goto out_unlock; 3798 3799 /* 3800 * Do we shadow a long mode page table? If so we need to 3801 * write-protect the guests page table root. 3802 */ 3803 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3804 root = mmu_alloc_root(vcpu, root_gfn, 0, 3805 mmu->root_role.level); 3806 mmu->root.hpa = root; 3807 goto set_root_pgd; 3808 } 3809 3810 if (WARN_ON_ONCE(!mmu->pae_root)) { 3811 r = -EIO; 3812 goto out_unlock; 3813 } 3814 3815 /* 3816 * We shadow a 32 bit page table. This may be a legacy 2-level 3817 * or a PAE 3-level page table. In either case we need to be aware that 3818 * the shadow page table may be a PAE or a long mode page table. 3819 */ 3820 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3821 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3822 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3823 3824 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3825 r = -EIO; 3826 goto out_unlock; 3827 } 3828 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3829 3830 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3831 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3832 r = -EIO; 3833 goto out_unlock; 3834 } 3835 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3836 } 3837 } 3838 3839 for (i = 0; i < 4; ++i) { 3840 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3841 3842 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3843 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3844 mmu->pae_root[i] = INVALID_PAE_ROOT; 3845 continue; 3846 } 3847 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3848 } 3849 3850 /* 3851 * If shadowing 32-bit non-PAE page tables, each PAE page 3852 * directory maps one quarter of the guest's non-PAE page 3853 * directory. Othwerise each PAE page direct shadows one guest 3854 * PAE page directory so that quadrant should be 0. 3855 */ 3856 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3857 3858 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3859 mmu->pae_root[i] = root | pm_mask; 3860 } 3861 3862 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3863 mmu->root.hpa = __pa(mmu->pml5_root); 3864 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3865 mmu->root.hpa = __pa(mmu->pml4_root); 3866 else 3867 mmu->root.hpa = __pa(mmu->pae_root); 3868 3869 set_root_pgd: 3870 mmu->root.pgd = root_pgd; 3871 out_unlock: 3872 write_unlock(&vcpu->kvm->mmu_lock); 3873 3874 return r; 3875 } 3876 3877 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3878 { 3879 struct kvm_mmu *mmu = vcpu->arch.mmu; 3880 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3881 u64 *pml5_root = NULL; 3882 u64 *pml4_root = NULL; 3883 u64 *pae_root; 3884 3885 /* 3886 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3887 * tables are allocated and initialized at root creation as there is no 3888 * equivalent level in the guest's NPT to shadow. Allocate the tables 3889 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3890 */ 3891 if (mmu->root_role.direct || 3892 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3893 mmu->root_role.level < PT64_ROOT_4LEVEL) 3894 return 0; 3895 3896 /* 3897 * NPT, the only paging mode that uses this horror, uses a fixed number 3898 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3899 * all MMus are 5-level. Thus, this can safely require that pml5_root 3900 * is allocated if the other roots are valid and pml5 is needed, as any 3901 * prior MMU would also have required pml5. 3902 */ 3903 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3904 return 0; 3905 3906 /* 3907 * The special roots should always be allocated in concert. Yell and 3908 * bail if KVM ends up in a state where only one of the roots is valid. 3909 */ 3910 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3911 (need_pml5 && mmu->pml5_root))) 3912 return -EIO; 3913 3914 /* 3915 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3916 * doesn't need to be decrypted. 3917 */ 3918 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3919 if (!pae_root) 3920 return -ENOMEM; 3921 3922 #ifdef CONFIG_X86_64 3923 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3924 if (!pml4_root) 3925 goto err_pml4; 3926 3927 if (need_pml5) { 3928 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3929 if (!pml5_root) 3930 goto err_pml5; 3931 } 3932 #endif 3933 3934 mmu->pae_root = pae_root; 3935 mmu->pml4_root = pml4_root; 3936 mmu->pml5_root = pml5_root; 3937 3938 return 0; 3939 3940 #ifdef CONFIG_X86_64 3941 err_pml5: 3942 free_page((unsigned long)pml4_root); 3943 err_pml4: 3944 free_page((unsigned long)pae_root); 3945 return -ENOMEM; 3946 #endif 3947 } 3948 3949 static bool is_unsync_root(hpa_t root) 3950 { 3951 struct kvm_mmu_page *sp; 3952 3953 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 3954 return false; 3955 3956 /* 3957 * The read barrier orders the CPU's read of SPTE.W during the page table 3958 * walk before the reads of sp->unsync/sp->unsync_children here. 3959 * 3960 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3961 * any guest page table changes are not guaranteed to be visible anyway 3962 * until this VCPU issues a TLB flush strictly after those changes are 3963 * made. We only need to ensure that the other CPU sets these flags 3964 * before any actual changes to the page tables are made. The comments 3965 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3966 * requirement isn't satisfied. 3967 */ 3968 smp_rmb(); 3969 sp = root_to_sp(root); 3970 3971 /* 3972 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3973 * PDPTEs for a given PAE root need to be synchronized individually. 3974 */ 3975 if (WARN_ON_ONCE(!sp)) 3976 return false; 3977 3978 if (sp->unsync || sp->unsync_children) 3979 return true; 3980 3981 return false; 3982 } 3983 3984 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3985 { 3986 int i; 3987 struct kvm_mmu_page *sp; 3988 3989 if (vcpu->arch.mmu->root_role.direct) 3990 return; 3991 3992 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 3993 return; 3994 3995 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3996 3997 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3998 hpa_t root = vcpu->arch.mmu->root.hpa; 3999 4000 if (!is_unsync_root(root)) 4001 return; 4002 4003 sp = root_to_sp(root); 4004 4005 write_lock(&vcpu->kvm->mmu_lock); 4006 mmu_sync_children(vcpu, sp, true); 4007 write_unlock(&vcpu->kvm->mmu_lock); 4008 return; 4009 } 4010 4011 write_lock(&vcpu->kvm->mmu_lock); 4012 4013 for (i = 0; i < 4; ++i) { 4014 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4015 4016 if (IS_VALID_PAE_ROOT(root)) { 4017 sp = spte_to_child_sp(root); 4018 mmu_sync_children(vcpu, sp, true); 4019 } 4020 } 4021 4022 write_unlock(&vcpu->kvm->mmu_lock); 4023 } 4024 4025 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4026 { 4027 unsigned long roots_to_free = 0; 4028 int i; 4029 4030 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4031 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4032 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4033 4034 /* sync prev_roots by simply freeing them */ 4035 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4036 } 4037 4038 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4039 gpa_t vaddr, u64 access, 4040 struct x86_exception *exception) 4041 { 4042 if (exception) 4043 exception->error_code = 0; 4044 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4045 } 4046 4047 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4048 { 4049 /* 4050 * A nested guest cannot use the MMIO cache if it is using nested 4051 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4052 */ 4053 if (mmu_is_nested(vcpu)) 4054 return false; 4055 4056 if (direct) 4057 return vcpu_match_mmio_gpa(vcpu, addr); 4058 4059 return vcpu_match_mmio_gva(vcpu, addr); 4060 } 4061 4062 /* 4063 * Return the level of the lowest level SPTE added to sptes. 4064 * That SPTE may be non-present. 4065 * 4066 * Must be called between walk_shadow_page_lockless_{begin,end}. 4067 */ 4068 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4069 { 4070 struct kvm_shadow_walk_iterator iterator; 4071 int leaf = -1; 4072 u64 spte; 4073 4074 for (shadow_walk_init(&iterator, vcpu, addr), 4075 *root_level = iterator.level; 4076 shadow_walk_okay(&iterator); 4077 __shadow_walk_next(&iterator, spte)) { 4078 leaf = iterator.level; 4079 spte = mmu_spte_get_lockless(iterator.sptep); 4080 4081 sptes[leaf] = spte; 4082 } 4083 4084 return leaf; 4085 } 4086 4087 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 4088 int *root_level) 4089 { 4090 int leaf; 4091 4092 walk_shadow_page_lockless_begin(vcpu); 4093 4094 if (is_tdp_mmu_active(vcpu)) 4095 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); 4096 else 4097 leaf = get_walk(vcpu, addr, sptes, root_level); 4098 4099 walk_shadow_page_lockless_end(vcpu); 4100 return leaf; 4101 } 4102 4103 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4104 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4105 { 4106 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4107 struct rsvd_bits_validate *rsvd_check; 4108 int root, leaf, level; 4109 bool reserved = false; 4110 4111 leaf = get_sptes_lockless(vcpu, addr, sptes, &root); 4112 if (unlikely(leaf < 0)) { 4113 *sptep = 0ull; 4114 return reserved; 4115 } 4116 4117 *sptep = sptes[leaf]; 4118 4119 /* 4120 * Skip reserved bits checks on the terminal leaf if it's not a valid 4121 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4122 * design, always have reserved bits set. The purpose of the checks is 4123 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4124 */ 4125 if (!is_shadow_present_pte(sptes[leaf])) 4126 leaf++; 4127 4128 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4129 4130 for (level = root; level >= leaf; level--) 4131 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4132 4133 if (reserved) { 4134 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4135 __func__, addr); 4136 for (level = root; level >= leaf; level--) 4137 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4138 sptes[level], level, 4139 get_rsvd_bits(rsvd_check, sptes[level], level)); 4140 } 4141 4142 return reserved; 4143 } 4144 4145 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4146 { 4147 u64 spte; 4148 bool reserved; 4149 4150 if (mmio_info_in_cache(vcpu, addr, direct)) 4151 return RET_PF_EMULATE; 4152 4153 reserved = get_mmio_spte(vcpu, addr, &spte); 4154 if (WARN_ON_ONCE(reserved)) 4155 return -EINVAL; 4156 4157 if (is_mmio_spte(vcpu->kvm, spte)) { 4158 gfn_t gfn = get_mmio_spte_gfn(spte); 4159 unsigned int access = get_mmio_spte_access(spte); 4160 4161 if (!check_mmio_spte(vcpu, spte)) 4162 return RET_PF_INVALID; 4163 4164 if (direct) 4165 addr = 0; 4166 4167 trace_handle_mmio_page_fault(addr, gfn, access); 4168 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4169 return RET_PF_EMULATE; 4170 } 4171 4172 /* 4173 * If the page table is zapped by other cpus, let CPU fault again on 4174 * the address. 4175 */ 4176 return RET_PF_RETRY; 4177 } 4178 4179 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4180 struct kvm_page_fault *fault) 4181 { 4182 if (unlikely(fault->rsvd)) 4183 return false; 4184 4185 if (!fault->present || !fault->write) 4186 return false; 4187 4188 /* 4189 * guest is writing the page which is write tracked which can 4190 * not be fixed by page fault handler. 4191 */ 4192 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4193 return true; 4194 4195 return false; 4196 } 4197 4198 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4199 { 4200 struct kvm_shadow_walk_iterator iterator; 4201 u64 spte; 4202 4203 walk_shadow_page_lockless_begin(vcpu); 4204 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4205 clear_sp_write_flooding_count(iterator.sptep); 4206 walk_shadow_page_lockless_end(vcpu); 4207 } 4208 4209 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4210 { 4211 /* make sure the token value is not 0 */ 4212 u32 id = vcpu->arch.apf.id; 4213 4214 if (id << 12 == 0) 4215 vcpu->arch.apf.id = 1; 4216 4217 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4218 } 4219 4220 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4221 struct kvm_page_fault *fault) 4222 { 4223 struct kvm_arch_async_pf arch; 4224 4225 arch.token = alloc_apf_token(vcpu); 4226 arch.gfn = fault->gfn; 4227 arch.error_code = fault->error_code; 4228 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4229 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4230 4231 return kvm_setup_async_pf(vcpu, fault->addr, 4232 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4233 } 4234 4235 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4236 { 4237 int r; 4238 4239 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4240 return; 4241 4242 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4243 work->wakeup_all) 4244 return; 4245 4246 r = kvm_mmu_reload(vcpu); 4247 if (unlikely(r)) 4248 return; 4249 4250 if (!vcpu->arch.mmu->root_role.direct && 4251 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4252 return; 4253 4254 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, 4255 true, NULL, NULL); 4256 4257 /* 4258 * Account fixed page faults, otherwise they'll never be counted, but 4259 * ignore stats for all other return times. Page-ready "faults" aren't 4260 * truly spurious and never trigger emulation 4261 */ 4262 if (r == RET_PF_FIXED) 4263 vcpu->stat.pf_fixed++; 4264 } 4265 4266 static inline u8 kvm_max_level_for_order(int order) 4267 { 4268 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 4269 4270 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 4271 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 4272 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 4273 4274 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 4275 return PG_LEVEL_1G; 4276 4277 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4278 return PG_LEVEL_2M; 4279 4280 return PG_LEVEL_4K; 4281 } 4282 4283 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, 4284 u8 max_level, int gmem_order) 4285 { 4286 u8 req_max_level; 4287 4288 if (max_level == PG_LEVEL_4K) 4289 return PG_LEVEL_4K; 4290 4291 max_level = min(kvm_max_level_for_order(gmem_order), max_level); 4292 if (max_level == PG_LEVEL_4K) 4293 return PG_LEVEL_4K; 4294 4295 req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn); 4296 if (req_max_level) 4297 max_level = min(max_level, req_max_level); 4298 4299 return max_level; 4300 } 4301 4302 static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu, 4303 struct kvm_page_fault *fault, int r) 4304 { 4305 kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page, 4306 r == RET_PF_RETRY, fault->map_writable); 4307 } 4308 4309 static int kvm_mmu_faultin_pfn_private(struct kvm_vcpu *vcpu, 4310 struct kvm_page_fault *fault) 4311 { 4312 int max_order, r; 4313 4314 if (!kvm_slot_can_be_private(fault->slot)) { 4315 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4316 return -EFAULT; 4317 } 4318 4319 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4320 &fault->refcounted_page, &max_order); 4321 if (r) { 4322 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4323 return r; 4324 } 4325 4326 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4327 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, 4328 fault->max_level, max_order); 4329 4330 return RET_PF_CONTINUE; 4331 } 4332 4333 static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4334 struct kvm_page_fault *fault) 4335 { 4336 unsigned int foll = fault->write ? FOLL_WRITE : 0; 4337 4338 if (fault->is_private) 4339 return kvm_mmu_faultin_pfn_private(vcpu, fault); 4340 4341 foll |= FOLL_NOWAIT; 4342 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4343 &fault->map_writable, &fault->refcounted_page); 4344 4345 /* 4346 * If resolving the page failed because I/O is needed to fault-in the 4347 * page, then either set up an asynchronous #PF to do the I/O, or if 4348 * doing an async #PF isn't possible, retry with I/O allowed. All 4349 * other failures are terminal, i.e. retrying won't help. 4350 */ 4351 if (fault->pfn != KVM_PFN_ERR_NEEDS_IO) 4352 return RET_PF_CONTINUE; 4353 4354 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4355 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4356 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4357 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4358 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4359 return RET_PF_RETRY; 4360 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4361 return RET_PF_RETRY; 4362 } 4363 } 4364 4365 /* 4366 * Allow gup to bail on pending non-fatal signals when it's also allowed 4367 * to wait for IO. Note, gup always bails if it is unable to quickly 4368 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4369 */ 4370 foll |= FOLL_INTERRUPTIBLE; 4371 foll &= ~FOLL_NOWAIT; 4372 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4373 &fault->map_writable, &fault->refcounted_page); 4374 4375 return RET_PF_CONTINUE; 4376 } 4377 4378 static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4379 struct kvm_page_fault *fault, unsigned int access) 4380 { 4381 struct kvm_memory_slot *slot = fault->slot; 4382 int ret; 4383 4384 /* 4385 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4386 * change in attributes. is_page_fault_stale() will detect an 4387 * invalidation relate to fault->fn and resume the guest without 4388 * installing a mapping in the page tables. 4389 */ 4390 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4391 smp_rmb(); 4392 4393 /* 4394 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4395 * private vs. shared mismatch. 4396 */ 4397 if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) { 4398 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4399 return -EFAULT; 4400 } 4401 4402 if (unlikely(!slot)) 4403 return kvm_handle_noslot_fault(vcpu, fault, access); 4404 4405 /* 4406 * Retry the page fault if the gfn hit a memslot that is being deleted 4407 * or moved. This ensures any existing SPTEs for the old memslot will 4408 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4409 */ 4410 if (slot->flags & KVM_MEMSLOT_INVALID) 4411 return RET_PF_RETRY; 4412 4413 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4414 /* 4415 * Don't map L1's APIC access page into L2, KVM doesn't support 4416 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4417 * i.e. the access needs to be emulated. Emulating access to 4418 * L1's APIC is also correct if L1 is accelerating L2's own 4419 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4420 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4421 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4422 * uses different roots for L1 vs. L2, i.e. there is no danger 4423 * of breaking APICv/AVIC for L1. 4424 */ 4425 if (is_guest_mode(vcpu)) 4426 return kvm_handle_noslot_fault(vcpu, fault, access); 4427 4428 /* 4429 * If the APIC access page exists but is disabled, go directly 4430 * to emulation without caching the MMIO access or creating a 4431 * MMIO SPTE. That way the cache doesn't need to be purged 4432 * when the AVIC is re-enabled. 4433 */ 4434 if (!kvm_apicv_activated(vcpu->kvm)) 4435 return RET_PF_EMULATE; 4436 } 4437 4438 /* 4439 * Check for a relevant mmu_notifier invalidation event before getting 4440 * the pfn from the primary MMU, and before acquiring mmu_lock. 4441 * 4442 * For mmu_lock, if there is an in-progress invalidation and the kernel 4443 * allows preemption, the invalidation task may drop mmu_lock and yield 4444 * in response to mmu_lock being contended, which is *very* counter- 4445 * productive as this vCPU can't actually make forward progress until 4446 * the invalidation completes. 4447 * 4448 * Retrying now can also avoid unnessary lock contention in the primary 4449 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4450 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4451 * can cause the invalidation to take longer by holding locks that are 4452 * needed to complete the invalidation. 4453 * 4454 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4455 * will never yield mmu_lock in response to contention, as this vCPU is 4456 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4457 * to detect retry guarantees the worst case latency for the vCPU. 4458 */ 4459 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) 4460 return RET_PF_RETRY; 4461 4462 ret = __kvm_mmu_faultin_pfn(vcpu, fault); 4463 if (ret != RET_PF_CONTINUE) 4464 return ret; 4465 4466 if (unlikely(is_error_pfn(fault->pfn))) 4467 return kvm_handle_error_pfn(vcpu, fault); 4468 4469 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4470 return kvm_handle_noslot_fault(vcpu, fault, access); 4471 4472 /* 4473 * Check again for a relevant mmu_notifier invalidation event purely to 4474 * avoid contending mmu_lock. Most invalidations will be detected by 4475 * the previous check, but checking is extremely cheap relative to the 4476 * overall cost of failing to detect the invalidation until after 4477 * mmu_lock is acquired. 4478 */ 4479 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) { 4480 kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY); 4481 return RET_PF_RETRY; 4482 } 4483 4484 return RET_PF_CONTINUE; 4485 } 4486 4487 /* 4488 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4489 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4490 */ 4491 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4492 struct kvm_page_fault *fault) 4493 { 4494 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4495 4496 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4497 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4498 return true; 4499 4500 /* 4501 * Roots without an associated shadow page are considered invalid if 4502 * there is a pending request to free obsolete roots. The request is 4503 * only a hint that the current root _may_ be obsolete and needs to be 4504 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4505 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4506 * to reload even if no vCPU is actively using the root. 4507 */ 4508 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4509 return true; 4510 4511 /* 4512 * Check for a relevant mmu_notifier invalidation event one last time 4513 * now that mmu_lock is held, as the "unsafe" checks performed without 4514 * holding mmu_lock can get false negatives. 4515 */ 4516 return fault->slot && 4517 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4518 } 4519 4520 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4521 { 4522 int r; 4523 4524 /* Dummy roots are used only for shadowing bad guest roots. */ 4525 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4526 return RET_PF_RETRY; 4527 4528 if (page_fault_handle_page_track(vcpu, fault)) 4529 return RET_PF_WRITE_PROTECTED; 4530 4531 r = fast_page_fault(vcpu, fault); 4532 if (r != RET_PF_INVALID) 4533 return r; 4534 4535 r = mmu_topup_memory_caches(vcpu, false); 4536 if (r) 4537 return r; 4538 4539 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4540 if (r != RET_PF_CONTINUE) 4541 return r; 4542 4543 r = RET_PF_RETRY; 4544 write_lock(&vcpu->kvm->mmu_lock); 4545 4546 if (is_page_fault_stale(vcpu, fault)) 4547 goto out_unlock; 4548 4549 r = make_mmu_pages_available(vcpu); 4550 if (r) 4551 goto out_unlock; 4552 4553 r = direct_map(vcpu, fault); 4554 4555 out_unlock: 4556 kvm_mmu_finish_page_fault(vcpu, fault, r); 4557 write_unlock(&vcpu->kvm->mmu_lock); 4558 return r; 4559 } 4560 4561 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4562 struct kvm_page_fault *fault) 4563 { 4564 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4565 fault->max_level = PG_LEVEL_2M; 4566 return direct_page_fault(vcpu, fault); 4567 } 4568 4569 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4570 u64 fault_address, char *insn, int insn_len) 4571 { 4572 int r = 1; 4573 u32 flags = vcpu->arch.apf.host_apf_flags; 4574 4575 #ifndef CONFIG_X86_64 4576 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4577 if (WARN_ON_ONCE(fault_address >> 32)) 4578 return -EFAULT; 4579 #endif 4580 /* 4581 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4582 * upper bits as KVM doesn't use them for #PF (because they are never 4583 * set), and to ensure there are no collisions with KVM-defined bits. 4584 */ 4585 if (WARN_ON_ONCE(error_code >> 32)) 4586 error_code = lower_32_bits(error_code); 4587 4588 /* 4589 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for 4590 * them to conflict with #PF error codes, which are limited to 32 bits. 4591 */ 4592 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4593 4594 vcpu->arch.l1tf_flush_l1d = true; 4595 if (!flags) { 4596 trace_kvm_page_fault(vcpu, fault_address, error_code); 4597 4598 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4599 insn_len); 4600 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4601 vcpu->arch.apf.host_apf_flags = 0; 4602 local_irq_disable(); 4603 kvm_async_pf_task_wait_schedule(fault_address); 4604 local_irq_enable(); 4605 } else { 4606 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4607 } 4608 4609 return r; 4610 } 4611 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4612 4613 #ifdef CONFIG_X86_64 4614 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4615 struct kvm_page_fault *fault) 4616 { 4617 int r; 4618 4619 if (page_fault_handle_page_track(vcpu, fault)) 4620 return RET_PF_WRITE_PROTECTED; 4621 4622 r = fast_page_fault(vcpu, fault); 4623 if (r != RET_PF_INVALID) 4624 return r; 4625 4626 r = mmu_topup_memory_caches(vcpu, false); 4627 if (r) 4628 return r; 4629 4630 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4631 if (r != RET_PF_CONTINUE) 4632 return r; 4633 4634 r = RET_PF_RETRY; 4635 read_lock(&vcpu->kvm->mmu_lock); 4636 4637 if (is_page_fault_stale(vcpu, fault)) 4638 goto out_unlock; 4639 4640 r = kvm_tdp_mmu_map(vcpu, fault); 4641 4642 out_unlock: 4643 kvm_mmu_finish_page_fault(vcpu, fault, r); 4644 read_unlock(&vcpu->kvm->mmu_lock); 4645 return r; 4646 } 4647 #endif 4648 4649 bool kvm_mmu_may_ignore_guest_pat(void) 4650 { 4651 /* 4652 * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM 4653 * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to 4654 * honor the memtype from the guest's PAT so that guest accesses to 4655 * memory that is DMA'd aren't cached against the guest's wishes. As a 4656 * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA, 4657 * KVM _always_ ignores guest PAT (when EPT is enabled). 4658 */ 4659 return shadow_memtype_mask; 4660 } 4661 4662 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4663 { 4664 #ifdef CONFIG_X86_64 4665 if (tdp_mmu_enabled) 4666 return kvm_tdp_mmu_page_fault(vcpu, fault); 4667 #endif 4668 4669 return direct_page_fault(vcpu, fault); 4670 } 4671 4672 static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, 4673 u8 *level) 4674 { 4675 int r; 4676 4677 /* 4678 * Restrict to TDP page fault, since that's the only case where the MMU 4679 * is indexed by GPA. 4680 */ 4681 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) 4682 return -EOPNOTSUPP; 4683 4684 do { 4685 if (signal_pending(current)) 4686 return -EINTR; 4687 cond_resched(); 4688 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); 4689 } while (r == RET_PF_RETRY); 4690 4691 if (r < 0) 4692 return r; 4693 4694 switch (r) { 4695 case RET_PF_FIXED: 4696 case RET_PF_SPURIOUS: 4697 case RET_PF_WRITE_PROTECTED: 4698 return 0; 4699 4700 case RET_PF_EMULATE: 4701 return -ENOENT; 4702 4703 case RET_PF_RETRY: 4704 case RET_PF_CONTINUE: 4705 case RET_PF_INVALID: 4706 default: 4707 WARN_ONCE(1, "could not fix page fault during prefault"); 4708 return -EIO; 4709 } 4710 } 4711 4712 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4713 struct kvm_pre_fault_memory *range) 4714 { 4715 u64 error_code = PFERR_GUEST_FINAL_MASK; 4716 u8 level = PG_LEVEL_4K; 4717 u64 end; 4718 int r; 4719 4720 if (!vcpu->kvm->arch.pre_fault_allowed) 4721 return -EOPNOTSUPP; 4722 4723 /* 4724 * reload is efficient when called repeatedly, so we can do it on 4725 * every iteration. 4726 */ 4727 r = kvm_mmu_reload(vcpu); 4728 if (r) 4729 return r; 4730 4731 if (kvm_arch_has_private_mem(vcpu->kvm) && 4732 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) 4733 error_code |= PFERR_PRIVATE_ACCESS; 4734 4735 /* 4736 * Shadow paging uses GVA for kvm page fault, so restrict to 4737 * two-dimensional paging. 4738 */ 4739 r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); 4740 if (r < 0) 4741 return r; 4742 4743 /* 4744 * If the mapping that covers range->gpa can use a huge page, it 4745 * may start below it or end after range->gpa + range->size. 4746 */ 4747 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); 4748 return min(range->size, end - range->gpa); 4749 } 4750 4751 static void nonpaging_init_context(struct kvm_mmu *context) 4752 { 4753 context->page_fault = nonpaging_page_fault; 4754 context->gva_to_gpa = nonpaging_gva_to_gpa; 4755 context->sync_spte = NULL; 4756 } 4757 4758 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4759 union kvm_mmu_page_role role) 4760 { 4761 struct kvm_mmu_page *sp; 4762 4763 if (!VALID_PAGE(root->hpa)) 4764 return false; 4765 4766 if (!role.direct && pgd != root->pgd) 4767 return false; 4768 4769 sp = root_to_sp(root->hpa); 4770 if (WARN_ON_ONCE(!sp)) 4771 return false; 4772 4773 return role.word == sp->role.word; 4774 } 4775 4776 /* 4777 * Find out if a previously cached root matching the new pgd/role is available, 4778 * and insert the current root as the MRU in the cache. 4779 * If a matching root is found, it is assigned to kvm_mmu->root and 4780 * true is returned. 4781 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4782 * evicted to make room for the current root, and false is returned. 4783 */ 4784 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4785 gpa_t new_pgd, 4786 union kvm_mmu_page_role new_role) 4787 { 4788 uint i; 4789 4790 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4791 return true; 4792 4793 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4794 /* 4795 * The swaps end up rotating the cache like this: 4796 * C 0 1 2 3 (on entry to the function) 4797 * 0 C 1 2 3 4798 * 1 C 0 2 3 4799 * 2 C 0 1 3 4800 * 3 C 0 1 2 (on exit from the loop) 4801 */ 4802 swap(mmu->root, mmu->prev_roots[i]); 4803 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4804 return true; 4805 } 4806 4807 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4808 return false; 4809 } 4810 4811 /* 4812 * Find out if a previously cached root matching the new pgd/role is available. 4813 * On entry, mmu->root is invalid. 4814 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4815 * of the cache becomes invalid, and true is returned. 4816 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4817 */ 4818 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4819 gpa_t new_pgd, 4820 union kvm_mmu_page_role new_role) 4821 { 4822 uint i; 4823 4824 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4825 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4826 goto hit; 4827 4828 return false; 4829 4830 hit: 4831 swap(mmu->root, mmu->prev_roots[i]); 4832 /* Bubble up the remaining roots. */ 4833 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4834 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4835 mmu->prev_roots[i].hpa = INVALID_PAGE; 4836 return true; 4837 } 4838 4839 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4840 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4841 { 4842 /* 4843 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 4844 * avoid having to deal with PDPTEs and other complexities. 4845 */ 4846 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 4847 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4848 4849 if (VALID_PAGE(mmu->root.hpa)) 4850 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4851 else 4852 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4853 } 4854 4855 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4856 { 4857 struct kvm_mmu *mmu = vcpu->arch.mmu; 4858 union kvm_mmu_page_role new_role = mmu->root_role; 4859 4860 /* 4861 * Return immediately if no usable root was found, kvm_mmu_reload() 4862 * will establish a valid root prior to the next VM-Enter. 4863 */ 4864 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4865 return; 4866 4867 /* 4868 * It's possible that the cached previous root page is obsolete because 4869 * of a change in the MMU generation number. However, changing the 4870 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4871 * which will free the root set here and allocate a new one. 4872 */ 4873 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4874 4875 if (force_flush_and_sync_on_reuse) { 4876 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4877 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4878 } 4879 4880 /* 4881 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4882 * switching to a new CR3, that GVA->GPA mapping may no longer be 4883 * valid. So clear any cached MMIO info even when we don't need to sync 4884 * the shadow page tables. 4885 */ 4886 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4887 4888 /* 4889 * If this is a direct root page, it doesn't have a write flooding 4890 * count. Otherwise, clear the write flooding count. 4891 */ 4892 if (!new_role.direct) { 4893 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4894 4895 if (!WARN_ON_ONCE(!sp)) 4896 __clear_sp_write_flooding_count(sp); 4897 } 4898 } 4899 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4900 4901 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4902 unsigned int access) 4903 { 4904 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 4905 if (gfn != get_mmio_spte_gfn(*sptep)) { 4906 mmu_spte_clear_no_track(sptep); 4907 return true; 4908 } 4909 4910 mark_mmio_spte(vcpu, sptep, gfn, access); 4911 return true; 4912 } 4913 4914 return false; 4915 } 4916 4917 #define PTTYPE_EPT 18 /* arbitrary */ 4918 #define PTTYPE PTTYPE_EPT 4919 #include "paging_tmpl.h" 4920 #undef PTTYPE 4921 4922 #define PTTYPE 64 4923 #include "paging_tmpl.h" 4924 #undef PTTYPE 4925 4926 #define PTTYPE 32 4927 #include "paging_tmpl.h" 4928 #undef PTTYPE 4929 4930 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4931 u64 pa_bits_rsvd, int level, bool nx, 4932 bool gbpages, bool pse, bool amd) 4933 { 4934 u64 gbpages_bit_rsvd = 0; 4935 u64 nonleaf_bit8_rsvd = 0; 4936 u64 high_bits_rsvd; 4937 4938 rsvd_check->bad_mt_xwr = 0; 4939 4940 if (!gbpages) 4941 gbpages_bit_rsvd = rsvd_bits(7, 7); 4942 4943 if (level == PT32E_ROOT_LEVEL) 4944 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4945 else 4946 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4947 4948 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4949 if (!nx) 4950 high_bits_rsvd |= rsvd_bits(63, 63); 4951 4952 /* 4953 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4954 * leaf entries) on AMD CPUs only. 4955 */ 4956 if (amd) 4957 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4958 4959 switch (level) { 4960 case PT32_ROOT_LEVEL: 4961 /* no rsvd bits for 2 level 4K page table entries */ 4962 rsvd_check->rsvd_bits_mask[0][1] = 0; 4963 rsvd_check->rsvd_bits_mask[0][0] = 0; 4964 rsvd_check->rsvd_bits_mask[1][0] = 4965 rsvd_check->rsvd_bits_mask[0][0]; 4966 4967 if (!pse) { 4968 rsvd_check->rsvd_bits_mask[1][1] = 0; 4969 break; 4970 } 4971 4972 if (is_cpuid_PSE36()) 4973 /* 36bits PSE 4MB page */ 4974 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4975 else 4976 /* 32 bits PSE 4MB page */ 4977 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4978 break; 4979 case PT32E_ROOT_LEVEL: 4980 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4981 high_bits_rsvd | 4982 rsvd_bits(5, 8) | 4983 rsvd_bits(1, 2); /* PDPTE */ 4984 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4985 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4986 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4987 rsvd_bits(13, 20); /* large page */ 4988 rsvd_check->rsvd_bits_mask[1][0] = 4989 rsvd_check->rsvd_bits_mask[0][0]; 4990 break; 4991 case PT64_ROOT_5LEVEL: 4992 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4993 nonleaf_bit8_rsvd | 4994 rsvd_bits(7, 7); 4995 rsvd_check->rsvd_bits_mask[1][4] = 4996 rsvd_check->rsvd_bits_mask[0][4]; 4997 fallthrough; 4998 case PT64_ROOT_4LEVEL: 4999 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 5000 nonleaf_bit8_rsvd | 5001 rsvd_bits(7, 7); 5002 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 5003 gbpages_bit_rsvd; 5004 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 5005 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5006 rsvd_check->rsvd_bits_mask[1][3] = 5007 rsvd_check->rsvd_bits_mask[0][3]; 5008 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 5009 gbpages_bit_rsvd | 5010 rsvd_bits(13, 29); 5011 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5012 rsvd_bits(13, 20); /* large page */ 5013 rsvd_check->rsvd_bits_mask[1][0] = 5014 rsvd_check->rsvd_bits_mask[0][0]; 5015 break; 5016 } 5017 } 5018 5019 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 5020 struct kvm_mmu *context) 5021 { 5022 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 5023 vcpu->arch.reserved_gpa_bits, 5024 context->cpu_role.base.level, is_efer_nx(context), 5025 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5026 is_cr4_pse(context), 5027 guest_cpuid_is_amd_compatible(vcpu)); 5028 } 5029 5030 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 5031 u64 pa_bits_rsvd, bool execonly, 5032 int huge_page_level) 5033 { 5034 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5035 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 5036 u64 bad_mt_xwr; 5037 5038 if (huge_page_level < PG_LEVEL_1G) 5039 large_1g_rsvd = rsvd_bits(7, 7); 5040 if (huge_page_level < PG_LEVEL_2M) 5041 large_2m_rsvd = rsvd_bits(7, 7); 5042 5043 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 5044 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 5045 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 5046 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 5047 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5048 5049 /* large page */ 5050 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 5051 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 5052 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 5053 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 5054 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 5055 5056 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 5057 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 5058 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 5059 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 5060 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 5061 if (!execonly) { 5062 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 5063 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 5064 } 5065 rsvd_check->bad_mt_xwr = bad_mt_xwr; 5066 } 5067 5068 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 5069 struct kvm_mmu *context, bool execonly, int huge_page_level) 5070 { 5071 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 5072 vcpu->arch.reserved_gpa_bits, execonly, 5073 huge_page_level); 5074 } 5075 5076 static inline u64 reserved_hpa_bits(void) 5077 { 5078 return rsvd_bits(kvm_host.maxphyaddr, 63); 5079 } 5080 5081 /* 5082 * the page table on host is the shadow page table for the page 5083 * table in guest or amd nested guest, its mmu features completely 5084 * follow the features in guest. 5085 */ 5086 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 5087 struct kvm_mmu *context) 5088 { 5089 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5090 bool is_amd = true; 5091 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5092 bool is_pse = false; 5093 struct rsvd_bits_validate *shadow_zero_check; 5094 int i; 5095 5096 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5097 5098 shadow_zero_check = &context->shadow_zero_check; 5099 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5100 context->root_role.level, 5101 context->root_role.efer_nx, 5102 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5103 is_pse, is_amd); 5104 5105 if (!shadow_me_mask) 5106 return; 5107 5108 for (i = context->root_role.level; --i >= 0;) { 5109 /* 5110 * So far shadow_me_value is a constant during KVM's life 5111 * time. Bits in shadow_me_value are allowed to be set. 5112 * Bits in shadow_me_mask but not in shadow_me_value are 5113 * not allowed to be set. 5114 */ 5115 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5116 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5117 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5118 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5119 } 5120 5121 } 5122 5123 static inline bool boot_cpu_is_amd(void) 5124 { 5125 WARN_ON_ONCE(!tdp_enabled); 5126 return shadow_x_mask == 0; 5127 } 5128 5129 /* 5130 * the direct page table on host, use as much mmu features as 5131 * possible, however, kvm currently does not do execution-protection. 5132 */ 5133 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5134 { 5135 struct rsvd_bits_validate *shadow_zero_check; 5136 int i; 5137 5138 shadow_zero_check = &context->shadow_zero_check; 5139 5140 if (boot_cpu_is_amd()) 5141 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5142 context->root_role.level, true, 5143 boot_cpu_has(X86_FEATURE_GBPAGES), 5144 false, true); 5145 else 5146 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5147 reserved_hpa_bits(), false, 5148 max_huge_page_level); 5149 5150 if (!shadow_me_mask) 5151 return; 5152 5153 for (i = context->root_role.level; --i >= 0;) { 5154 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5155 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5156 } 5157 } 5158 5159 /* 5160 * as the comments in reset_shadow_zero_bits_mask() except it 5161 * is the shadow page table for intel nested guest. 5162 */ 5163 static void 5164 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5165 { 5166 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5167 reserved_hpa_bits(), execonly, 5168 max_huge_page_level); 5169 } 5170 5171 #define BYTE_MASK(access) \ 5172 ((1 & (access) ? 2 : 0) | \ 5173 (2 & (access) ? 4 : 0) | \ 5174 (3 & (access) ? 8 : 0) | \ 5175 (4 & (access) ? 16 : 0) | \ 5176 (5 & (access) ? 32 : 0) | \ 5177 (6 & (access) ? 64 : 0) | \ 5178 (7 & (access) ? 128 : 0)) 5179 5180 5181 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5182 { 5183 unsigned byte; 5184 5185 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5186 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5187 const u8 u = BYTE_MASK(ACC_USER_MASK); 5188 5189 bool cr4_smep = is_cr4_smep(mmu); 5190 bool cr4_smap = is_cr4_smap(mmu); 5191 bool cr0_wp = is_cr0_wp(mmu); 5192 bool efer_nx = is_efer_nx(mmu); 5193 5194 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5195 unsigned pfec = byte << 1; 5196 5197 /* 5198 * Each "*f" variable has a 1 bit for each UWX value 5199 * that causes a fault with the given PFEC. 5200 */ 5201 5202 /* Faults from writes to non-writable pages */ 5203 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5204 /* Faults from user mode accesses to supervisor pages */ 5205 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5206 /* Faults from fetches of non-executable pages*/ 5207 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5208 /* Faults from kernel mode fetches of user pages */ 5209 u8 smepf = 0; 5210 /* Faults from kernel mode accesses of user pages */ 5211 u8 smapf = 0; 5212 5213 if (!ept) { 5214 /* Faults from kernel mode accesses to user pages */ 5215 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5216 5217 /* Not really needed: !nx will cause pte.nx to fault */ 5218 if (!efer_nx) 5219 ff = 0; 5220 5221 /* Allow supervisor writes if !cr0.wp */ 5222 if (!cr0_wp) 5223 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5224 5225 /* Disallow supervisor fetches of user code if cr4.smep */ 5226 if (cr4_smep) 5227 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5228 5229 /* 5230 * SMAP:kernel-mode data accesses from user-mode 5231 * mappings should fault. A fault is considered 5232 * as a SMAP violation if all of the following 5233 * conditions are true: 5234 * - X86_CR4_SMAP is set in CR4 5235 * - A user page is accessed 5236 * - The access is not a fetch 5237 * - The access is supervisor mode 5238 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5239 * 5240 * Here, we cover the first four conditions. 5241 * The fifth is computed dynamically in permission_fault(); 5242 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5243 * *not* subject to SMAP restrictions. 5244 */ 5245 if (cr4_smap) 5246 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5247 } 5248 5249 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5250 } 5251 } 5252 5253 /* 5254 * PKU is an additional mechanism by which the paging controls access to 5255 * user-mode addresses based on the value in the PKRU register. Protection 5256 * key violations are reported through a bit in the page fault error code. 5257 * Unlike other bits of the error code, the PK bit is not known at the 5258 * call site of e.g. gva_to_gpa; it must be computed directly in 5259 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5260 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5261 * 5262 * In particular the following conditions come from the error code, the 5263 * page tables and the machine state: 5264 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5265 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5266 * - PK is always zero if U=0 in the page tables 5267 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5268 * 5269 * The PKRU bitmask caches the result of these four conditions. The error 5270 * code (minus the P bit) and the page table's U bit form an index into the 5271 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5272 * with the two bits of the PKRU register corresponding to the protection key. 5273 * For the first three conditions above the bits will be 00, thus masking 5274 * away both AD and WD. For all reads or if the last condition holds, WD 5275 * only will be masked away. 5276 */ 5277 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5278 { 5279 unsigned bit; 5280 bool wp; 5281 5282 mmu->pkru_mask = 0; 5283 5284 if (!is_cr4_pke(mmu)) 5285 return; 5286 5287 wp = is_cr0_wp(mmu); 5288 5289 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5290 unsigned pfec, pkey_bits; 5291 bool check_pkey, check_write, ff, uf, wf, pte_user; 5292 5293 pfec = bit << 1; 5294 ff = pfec & PFERR_FETCH_MASK; 5295 uf = pfec & PFERR_USER_MASK; 5296 wf = pfec & PFERR_WRITE_MASK; 5297 5298 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5299 pte_user = pfec & PFERR_RSVD_MASK; 5300 5301 /* 5302 * Only need to check the access which is not an 5303 * instruction fetch and is to a user page. 5304 */ 5305 check_pkey = (!ff && pte_user); 5306 /* 5307 * write access is controlled by PKRU if it is a 5308 * user access or CR0.WP = 1. 5309 */ 5310 check_write = check_pkey && wf && (uf || wp); 5311 5312 /* PKRU.AD stops both read and write access. */ 5313 pkey_bits = !!check_pkey; 5314 /* PKRU.WD stops write access. */ 5315 pkey_bits |= (!!check_write) << 1; 5316 5317 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5318 } 5319 } 5320 5321 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5322 struct kvm_mmu *mmu) 5323 { 5324 if (!is_cr0_pg(mmu)) 5325 return; 5326 5327 reset_guest_rsvds_bits_mask(vcpu, mmu); 5328 update_permission_bitmask(mmu, false); 5329 update_pkru_bitmask(mmu); 5330 } 5331 5332 static void paging64_init_context(struct kvm_mmu *context) 5333 { 5334 context->page_fault = paging64_page_fault; 5335 context->gva_to_gpa = paging64_gva_to_gpa; 5336 context->sync_spte = paging64_sync_spte; 5337 } 5338 5339 static void paging32_init_context(struct kvm_mmu *context) 5340 { 5341 context->page_fault = paging32_page_fault; 5342 context->gva_to_gpa = paging32_gva_to_gpa; 5343 context->sync_spte = paging32_sync_spte; 5344 } 5345 5346 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5347 const struct kvm_mmu_role_regs *regs) 5348 { 5349 union kvm_cpu_role role = {0}; 5350 5351 role.base.access = ACC_ALL; 5352 role.base.smm = is_smm(vcpu); 5353 role.base.guest_mode = is_guest_mode(vcpu); 5354 role.ext.valid = 1; 5355 5356 if (!____is_cr0_pg(regs)) { 5357 role.base.direct = 1; 5358 return role; 5359 } 5360 5361 role.base.efer_nx = ____is_efer_nx(regs); 5362 role.base.cr0_wp = ____is_cr0_wp(regs); 5363 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5364 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5365 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5366 5367 if (____is_efer_lma(regs)) 5368 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5369 : PT64_ROOT_4LEVEL; 5370 else if (____is_cr4_pae(regs)) 5371 role.base.level = PT32E_ROOT_LEVEL; 5372 else 5373 role.base.level = PT32_ROOT_LEVEL; 5374 5375 role.ext.cr4_smep = ____is_cr4_smep(regs); 5376 role.ext.cr4_smap = ____is_cr4_smap(regs); 5377 role.ext.cr4_pse = ____is_cr4_pse(regs); 5378 5379 /* PKEY and LA57 are active iff long mode is active. */ 5380 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5381 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5382 role.ext.efer_lma = ____is_efer_lma(regs); 5383 return role; 5384 } 5385 5386 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5387 struct kvm_mmu *mmu) 5388 { 5389 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5390 5391 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5392 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5393 5394 if (is_cr0_wp(mmu) == cr0_wp) 5395 return; 5396 5397 mmu->cpu_role.base.cr0_wp = cr0_wp; 5398 reset_guest_paging_metadata(vcpu, mmu); 5399 } 5400 5401 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5402 { 5403 /* tdp_root_level is architecture forced level, use it if nonzero */ 5404 if (tdp_root_level) 5405 return tdp_root_level; 5406 5407 /* Use 5-level TDP if and only if it's useful/necessary. */ 5408 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5409 return 4; 5410 5411 return max_tdp_level; 5412 } 5413 5414 u8 kvm_mmu_get_max_tdp_level(void) 5415 { 5416 return tdp_root_level ? tdp_root_level : max_tdp_level; 5417 } 5418 5419 static union kvm_mmu_page_role 5420 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5421 union kvm_cpu_role cpu_role) 5422 { 5423 union kvm_mmu_page_role role = {0}; 5424 5425 role.access = ACC_ALL; 5426 role.cr0_wp = true; 5427 role.efer_nx = true; 5428 role.smm = cpu_role.base.smm; 5429 role.guest_mode = cpu_role.base.guest_mode; 5430 role.ad_disabled = !kvm_ad_enabled; 5431 role.level = kvm_mmu_get_tdp_level(vcpu); 5432 role.direct = true; 5433 role.has_4_byte_gpte = false; 5434 5435 return role; 5436 } 5437 5438 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5439 union kvm_cpu_role cpu_role) 5440 { 5441 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5442 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5443 5444 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5445 root_role.word == context->root_role.word) 5446 return; 5447 5448 context->cpu_role.as_u64 = cpu_role.as_u64; 5449 context->root_role.word = root_role.word; 5450 context->page_fault = kvm_tdp_page_fault; 5451 context->sync_spte = NULL; 5452 context->get_guest_pgd = get_guest_cr3; 5453 context->get_pdptr = kvm_pdptr_read; 5454 context->inject_page_fault = kvm_inject_page_fault; 5455 5456 if (!is_cr0_pg(context)) 5457 context->gva_to_gpa = nonpaging_gva_to_gpa; 5458 else if (is_cr4_pae(context)) 5459 context->gva_to_gpa = paging64_gva_to_gpa; 5460 else 5461 context->gva_to_gpa = paging32_gva_to_gpa; 5462 5463 reset_guest_paging_metadata(vcpu, context); 5464 reset_tdp_shadow_zero_bits_mask(context); 5465 } 5466 5467 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5468 union kvm_cpu_role cpu_role, 5469 union kvm_mmu_page_role root_role) 5470 { 5471 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5472 root_role.word == context->root_role.word) 5473 return; 5474 5475 context->cpu_role.as_u64 = cpu_role.as_u64; 5476 context->root_role.word = root_role.word; 5477 5478 if (!is_cr0_pg(context)) 5479 nonpaging_init_context(context); 5480 else if (is_cr4_pae(context)) 5481 paging64_init_context(context); 5482 else 5483 paging32_init_context(context); 5484 5485 reset_guest_paging_metadata(vcpu, context); 5486 reset_shadow_zero_bits_mask(vcpu, context); 5487 } 5488 5489 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5490 union kvm_cpu_role cpu_role) 5491 { 5492 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5493 union kvm_mmu_page_role root_role; 5494 5495 root_role = cpu_role.base; 5496 5497 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5498 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5499 5500 /* 5501 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5502 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5503 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5504 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5505 * The iTLB multi-hit workaround can be toggled at any time, so assume 5506 * NX can be used by any non-nested shadow MMU to avoid having to reset 5507 * MMU contexts. 5508 */ 5509 root_role.efer_nx = true; 5510 5511 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5512 } 5513 5514 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5515 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5516 { 5517 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5518 struct kvm_mmu_role_regs regs = { 5519 .cr0 = cr0, 5520 .cr4 = cr4 & ~X86_CR4_PKE, 5521 .efer = efer, 5522 }; 5523 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5524 union kvm_mmu_page_role root_role; 5525 5526 /* NPT requires CR0.PG=1. */ 5527 WARN_ON_ONCE(cpu_role.base.direct); 5528 5529 root_role = cpu_role.base; 5530 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5531 if (root_role.level == PT64_ROOT_5LEVEL && 5532 cpu_role.base.level == PT64_ROOT_4LEVEL) 5533 root_role.passthrough = 1; 5534 5535 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5536 kvm_mmu_new_pgd(vcpu, nested_cr3); 5537 } 5538 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5539 5540 static union kvm_cpu_role 5541 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5542 bool execonly, u8 level) 5543 { 5544 union kvm_cpu_role role = {0}; 5545 5546 /* 5547 * KVM does not support SMM transfer monitors, and consequently does not 5548 * support the "entry to SMM" control either. role.base.smm is always 0. 5549 */ 5550 WARN_ON_ONCE(is_smm(vcpu)); 5551 role.base.level = level; 5552 role.base.has_4_byte_gpte = false; 5553 role.base.direct = false; 5554 role.base.ad_disabled = !accessed_dirty; 5555 role.base.guest_mode = true; 5556 role.base.access = ACC_ALL; 5557 5558 role.ext.word = 0; 5559 role.ext.execonly = execonly; 5560 role.ext.valid = 1; 5561 5562 return role; 5563 } 5564 5565 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5566 int huge_page_level, bool accessed_dirty, 5567 gpa_t new_eptp) 5568 { 5569 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5570 u8 level = vmx_eptp_page_walk_level(new_eptp); 5571 union kvm_cpu_role new_mode = 5572 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5573 execonly, level); 5574 5575 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5576 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5577 context->cpu_role.as_u64 = new_mode.as_u64; 5578 context->root_role.word = new_mode.base.word; 5579 5580 context->page_fault = ept_page_fault; 5581 context->gva_to_gpa = ept_gva_to_gpa; 5582 context->sync_spte = ept_sync_spte; 5583 5584 update_permission_bitmask(context, true); 5585 context->pkru_mask = 0; 5586 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5587 reset_ept_shadow_zero_bits_mask(context, execonly); 5588 } 5589 5590 kvm_mmu_new_pgd(vcpu, new_eptp); 5591 } 5592 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5593 5594 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5595 union kvm_cpu_role cpu_role) 5596 { 5597 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5598 5599 kvm_init_shadow_mmu(vcpu, cpu_role); 5600 5601 context->get_guest_pgd = get_guest_cr3; 5602 context->get_pdptr = kvm_pdptr_read; 5603 context->inject_page_fault = kvm_inject_page_fault; 5604 } 5605 5606 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5607 union kvm_cpu_role new_mode) 5608 { 5609 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5610 5611 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5612 return; 5613 5614 g_context->cpu_role.as_u64 = new_mode.as_u64; 5615 g_context->get_guest_pgd = get_guest_cr3; 5616 g_context->get_pdptr = kvm_pdptr_read; 5617 g_context->inject_page_fault = kvm_inject_page_fault; 5618 5619 /* 5620 * L2 page tables are never shadowed, so there is no need to sync 5621 * SPTEs. 5622 */ 5623 g_context->sync_spte = NULL; 5624 5625 /* 5626 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5627 * L1's nested page tables (e.g. EPT12). The nested translation 5628 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5629 * L2's page tables as the first level of translation and L1's 5630 * nested page tables as the second level of translation. Basically 5631 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5632 */ 5633 if (!is_paging(vcpu)) 5634 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5635 else if (is_long_mode(vcpu)) 5636 g_context->gva_to_gpa = paging64_gva_to_gpa; 5637 else if (is_pae(vcpu)) 5638 g_context->gva_to_gpa = paging64_gva_to_gpa; 5639 else 5640 g_context->gva_to_gpa = paging32_gva_to_gpa; 5641 5642 reset_guest_paging_metadata(vcpu, g_context); 5643 } 5644 5645 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5646 { 5647 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5648 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5649 5650 if (mmu_is_nested(vcpu)) 5651 init_kvm_nested_mmu(vcpu, cpu_role); 5652 else if (tdp_enabled) 5653 init_kvm_tdp_mmu(vcpu, cpu_role); 5654 else 5655 init_kvm_softmmu(vcpu, cpu_role); 5656 } 5657 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5658 5659 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5660 { 5661 /* 5662 * Invalidate all MMU roles to force them to reinitialize as CPUID 5663 * information is factored into reserved bit calculations. 5664 * 5665 * Correctly handling multiple vCPU models with respect to paging and 5666 * physical address properties) in a single VM would require tracking 5667 * all relevant CPUID information in kvm_mmu_page_role. That is very 5668 * undesirable as it would increase the memory requirements for 5669 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5670 * that problem is swept under the rug; KVM's CPUID API is horrific and 5671 * it's all but impossible to solve it without introducing a new API. 5672 */ 5673 vcpu->arch.root_mmu.root_role.invalid = 1; 5674 vcpu->arch.guest_mmu.root_role.invalid = 1; 5675 vcpu->arch.nested_mmu.root_role.invalid = 1; 5676 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5677 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5678 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5679 kvm_mmu_reset_context(vcpu); 5680 5681 /* 5682 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5683 * kvm_arch_vcpu_ioctl(). 5684 */ 5685 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5686 } 5687 5688 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5689 { 5690 kvm_mmu_unload(vcpu); 5691 kvm_init_mmu(vcpu); 5692 } 5693 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5694 5695 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5696 { 5697 int r; 5698 5699 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5700 if (r) 5701 goto out; 5702 r = mmu_alloc_special_roots(vcpu); 5703 if (r) 5704 goto out; 5705 if (vcpu->arch.mmu->root_role.direct) 5706 r = mmu_alloc_direct_roots(vcpu); 5707 else 5708 r = mmu_alloc_shadow_roots(vcpu); 5709 if (r) 5710 goto out; 5711 5712 kvm_mmu_sync_roots(vcpu); 5713 5714 kvm_mmu_load_pgd(vcpu); 5715 5716 /* 5717 * Flush any TLB entries for the new root, the provenance of the root 5718 * is unknown. Even if KVM ensures there are no stale TLB entries 5719 * for a freed root, in theory another hypervisor could have left 5720 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5721 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5722 */ 5723 kvm_x86_call(flush_tlb_current)(vcpu); 5724 out: 5725 return r; 5726 } 5727 5728 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5729 { 5730 struct kvm *kvm = vcpu->kvm; 5731 5732 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5733 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5734 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5735 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5736 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5737 } 5738 5739 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5740 { 5741 struct kvm_mmu_page *sp; 5742 5743 if (!VALID_PAGE(root_hpa)) 5744 return false; 5745 5746 /* 5747 * When freeing obsolete roots, treat roots as obsolete if they don't 5748 * have an associated shadow page, as it's impossible to determine if 5749 * such roots are fresh or stale. This does mean KVM will get false 5750 * positives and free roots that don't strictly need to be freed, but 5751 * such false positives are relatively rare: 5752 * 5753 * (a) only PAE paging and nested NPT have roots without shadow pages 5754 * (or any shadow paging flavor with a dummy root, see note below) 5755 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5756 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5757 * is unlikely to zap an in-use PGD. 5758 * 5759 * Note! Dummy roots are unique in that they are obsoleted by memslot 5760 * _creation_! See also FNAME(fetch). 5761 */ 5762 sp = root_to_sp(root_hpa); 5763 return !sp || is_obsolete_sp(kvm, sp); 5764 } 5765 5766 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5767 { 5768 unsigned long roots_to_free = 0; 5769 int i; 5770 5771 if (is_obsolete_root(kvm, mmu->root.hpa)) 5772 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5773 5774 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5775 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5776 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5777 } 5778 5779 if (roots_to_free) 5780 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5781 } 5782 5783 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5784 { 5785 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5786 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5787 } 5788 5789 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5790 int *bytes) 5791 { 5792 u64 gentry = 0; 5793 int r; 5794 5795 /* 5796 * Assume that the pte write on a page table of the same type 5797 * as the current vcpu paging mode since we update the sptes only 5798 * when they have the same mode. 5799 */ 5800 if (is_pae(vcpu) && *bytes == 4) { 5801 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5802 *gpa &= ~(gpa_t)7; 5803 *bytes = 8; 5804 } 5805 5806 if (*bytes == 4 || *bytes == 8) { 5807 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5808 if (r) 5809 gentry = 0; 5810 } 5811 5812 return gentry; 5813 } 5814 5815 /* 5816 * If we're seeing too many writes to a page, it may no longer be a page table, 5817 * or we may be forking, in which case it is better to unmap the page. 5818 */ 5819 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5820 { 5821 /* 5822 * Skip write-flooding detected for the sp whose level is 1, because 5823 * it can become unsync, then the guest page is not write-protected. 5824 */ 5825 if (sp->role.level == PG_LEVEL_4K) 5826 return false; 5827 5828 atomic_inc(&sp->write_flooding_count); 5829 return atomic_read(&sp->write_flooding_count) >= 3; 5830 } 5831 5832 /* 5833 * Misaligned accesses are too much trouble to fix up; also, they usually 5834 * indicate a page is not used as a page table. 5835 */ 5836 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5837 int bytes) 5838 { 5839 unsigned offset, pte_size, misaligned; 5840 5841 offset = offset_in_page(gpa); 5842 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5843 5844 /* 5845 * Sometimes, the OS only writes the last one bytes to update status 5846 * bits, for example, in linux, andb instruction is used in clear_bit(). 5847 */ 5848 if (!(offset & (pte_size - 1)) && bytes == 1) 5849 return false; 5850 5851 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5852 misaligned |= bytes < 4; 5853 5854 return misaligned; 5855 } 5856 5857 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5858 { 5859 unsigned page_offset, quadrant; 5860 u64 *spte; 5861 int level; 5862 5863 page_offset = offset_in_page(gpa); 5864 level = sp->role.level; 5865 *nspte = 1; 5866 if (sp->role.has_4_byte_gpte) { 5867 page_offset <<= 1; /* 32->64 */ 5868 /* 5869 * A 32-bit pde maps 4MB while the shadow pdes map 5870 * only 2MB. So we need to double the offset again 5871 * and zap two pdes instead of one. 5872 */ 5873 if (level == PT32_ROOT_LEVEL) { 5874 page_offset &= ~7; /* kill rounding error */ 5875 page_offset <<= 1; 5876 *nspte = 2; 5877 } 5878 quadrant = page_offset >> PAGE_SHIFT; 5879 page_offset &= ~PAGE_MASK; 5880 if (quadrant != sp->role.quadrant) 5881 return NULL; 5882 } 5883 5884 spte = &sp->spt[page_offset / sizeof(*spte)]; 5885 return spte; 5886 } 5887 5888 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 5889 int bytes) 5890 { 5891 gfn_t gfn = gpa >> PAGE_SHIFT; 5892 struct kvm_mmu_page *sp; 5893 LIST_HEAD(invalid_list); 5894 u64 entry, gentry, *spte; 5895 int npte; 5896 bool flush = false; 5897 5898 /* 5899 * When emulating guest writes, ensure the written value is visible to 5900 * any task that is handling page faults before checking whether or not 5901 * KVM is shadowing a guest PTE. This ensures either KVM will create 5902 * the correct SPTE in the page fault handler, or this task will see 5903 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 5904 * account_shadowed(). 5905 */ 5906 smp_mb(); 5907 if (!vcpu->kvm->arch.indirect_shadow_pages) 5908 return; 5909 5910 write_lock(&vcpu->kvm->mmu_lock); 5911 5912 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5913 5914 ++vcpu->kvm->stat.mmu_pte_write; 5915 5916 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5917 if (detect_write_misaligned(sp, gpa, bytes) || 5918 detect_write_flooding(sp)) { 5919 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5920 ++vcpu->kvm->stat.mmu_flooded; 5921 continue; 5922 } 5923 5924 spte = get_written_sptes(sp, gpa, &npte); 5925 if (!spte) 5926 continue; 5927 5928 while (npte--) { 5929 entry = *spte; 5930 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5931 if (gentry && sp->role.level != PG_LEVEL_4K) 5932 ++vcpu->kvm->stat.mmu_pde_zapped; 5933 if (is_shadow_present_pte(entry)) 5934 flush = true; 5935 ++spte; 5936 } 5937 } 5938 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5939 write_unlock(&vcpu->kvm->mmu_lock); 5940 } 5941 5942 static bool is_write_to_guest_page_table(u64 error_code) 5943 { 5944 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK; 5945 5946 return (error_code & mask) == mask; 5947 } 5948 5949 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 5950 u64 error_code, int *emulation_type) 5951 { 5952 bool direct = vcpu->arch.mmu->root_role.direct; 5953 5954 /* 5955 * Do not try to unprotect and retry if the vCPU re-faulted on the same 5956 * RIP with the same address that was previously unprotected, as doing 5957 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses 5958 * a non-page-table modifying instruction on the PDE that points to the 5959 * instruction, then unprotecting the gfn will unmap the instruction's 5960 * code, i.e. make it impossible for the instruction to ever complete. 5961 */ 5962 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) && 5963 vcpu->arch.last_retry_addr == cr2_or_gpa) 5964 return RET_PF_EMULATE; 5965 5966 /* 5967 * Reset the unprotect+retry values that guard against infinite loops. 5968 * The values will be refreshed if KVM explicitly unprotects a gfn and 5969 * retries, in all other cases it's safe to retry in the future even if 5970 * the next page fault happens on the same RIP+address. 5971 */ 5972 vcpu->arch.last_retry_eip = 0; 5973 vcpu->arch.last_retry_addr = 0; 5974 5975 /* 5976 * It should be impossible to reach this point with an MMIO cache hit, 5977 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid, 5978 * writable memslot, and creating a memslot should invalidate the MMIO 5979 * cache by way of changing the memslot generation. WARN and disallow 5980 * retry if MMIO is detected, as retrying MMIO emulation is pointless 5981 * and could put the vCPU into an infinite loop because the processor 5982 * will keep faulting on the non-existent MMIO address. 5983 */ 5984 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct))) 5985 return RET_PF_EMULATE; 5986 5987 /* 5988 * Before emulating the instruction, check to see if the access was due 5989 * to a read-only violation while the CPU was walking non-nested NPT 5990 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1. 5991 * If L1 is sharing (a subset of) its page tables with L2, e.g. by 5992 * having nCR3 share lower level page tables with hCR3, then when KVM 5993 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also 5994 * unknowingly write-protecting L1's guest page tables, which KVM isn't 5995 * shadowing. 5996 * 5997 * Because the CPU (by default) walks NPT page tables using a write 5998 * access (to ensure the CPU can do A/D updates), page walks in L1 can 5999 * trigger write faults for the above case even when L1 isn't modifying 6000 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try 6001 * to emulate) an excessive number of L1 instructions; because L1's MMU 6002 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs 6003 * and thus no need to emulate in order to guarantee forward progress. 6004 * 6005 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can 6006 * proceed without triggering emulation. If one or more shadow pages 6007 * was zapped, skip emulation and resume L1 to let it natively execute 6008 * the instruction. If no shadow pages were zapped, then the write- 6009 * fault is due to something else entirely, i.e. KVM needs to emulate, 6010 * as resuming the guest will put it into an infinite loop. 6011 * 6012 * Note, this code also applies to Intel CPUs, even though it is *very* 6013 * unlikely that an L1 will share its page tables (IA32/PAE/paging64 6014 * format) with L2's page tables (EPT format). 6015 * 6016 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to 6017 * unprotect the gfn and retry if an event is awaiting reinjection. If 6018 * KVM emulates multiple instructions before completing event injection, 6019 * the event could be delayed beyond what is architecturally allowed, 6020 * e.g. KVM could inject an IRQ after the TPR has been raised. 6021 */ 6022 if (((direct && is_write_to_guest_page_table(error_code)) || 6023 (!direct && kvm_event_needs_reinjection(vcpu))) && 6024 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 6025 return RET_PF_RETRY; 6026 6027 /* 6028 * The gfn is write-protected, but if KVM detects its emulating an 6029 * instruction that is unlikely to be used to modify page tables, or if 6030 * emulation fails, KVM can try to unprotect the gfn and let the CPU 6031 * re-execute the instruction that caused the page fault. Do not allow 6032 * retrying an instruction from a nested guest as KVM is only explicitly 6033 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't 6034 * going to magically fix whatever issue caused L2 to fail. 6035 */ 6036 if (!is_guest_mode(vcpu)) 6037 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 6038 6039 return RET_PF_EMULATE; 6040 } 6041 6042 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 6043 void *insn, int insn_len) 6044 { 6045 int r, emulation_type = EMULTYPE_PF; 6046 bool direct = vcpu->arch.mmu->root_role.direct; 6047 6048 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 6049 return RET_PF_RETRY; 6050 6051 /* 6052 * Except for reserved faults (emulated MMIO is shared-only), set the 6053 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 6054 * current attributes, which are the source of truth for such VMs. Note, 6055 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 6056 * currently supported nested virtualization (among many other things) 6057 * for software-protected VMs. 6058 */ 6059 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 6060 !(error_code & PFERR_RSVD_MASK) && 6061 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 6062 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 6063 error_code |= PFERR_PRIVATE_ACCESS; 6064 6065 r = RET_PF_INVALID; 6066 if (unlikely(error_code & PFERR_RSVD_MASK)) { 6067 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 6068 return -EFAULT; 6069 6070 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 6071 if (r == RET_PF_EMULATE) 6072 goto emulate; 6073 } 6074 6075 if (r == RET_PF_INVALID) { 6076 vcpu->stat.pf_taken++; 6077 6078 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 6079 &emulation_type, NULL); 6080 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 6081 return -EIO; 6082 } 6083 6084 if (r < 0) 6085 return r; 6086 6087 if (r == RET_PF_WRITE_PROTECTED) 6088 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code, 6089 &emulation_type); 6090 6091 if (r == RET_PF_FIXED) 6092 vcpu->stat.pf_fixed++; 6093 else if (r == RET_PF_EMULATE) 6094 vcpu->stat.pf_emulate++; 6095 else if (r == RET_PF_SPURIOUS) 6096 vcpu->stat.pf_spurious++; 6097 6098 if (r != RET_PF_EMULATE) 6099 return 1; 6100 6101 emulate: 6102 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 6103 insn_len); 6104 } 6105 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 6106 6107 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) 6108 { 6109 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 6110 int root_level, leaf, level; 6111 6112 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); 6113 if (unlikely(leaf < 0)) 6114 return; 6115 6116 pr_err("%s %llx", msg, gpa); 6117 for (level = root_level; level >= leaf; level--) 6118 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); 6119 pr_cont("\n"); 6120 } 6121 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); 6122 6123 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6124 u64 addr, hpa_t root_hpa) 6125 { 6126 struct kvm_shadow_walk_iterator iterator; 6127 6128 vcpu_clear_mmio_info(vcpu, addr); 6129 6130 /* 6131 * Walking and synchronizing SPTEs both assume they are operating in 6132 * the context of the current MMU, and would need to be reworked if 6133 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 6134 */ 6135 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 6136 return; 6137 6138 if (!VALID_PAGE(root_hpa)) 6139 return; 6140 6141 write_lock(&vcpu->kvm->mmu_lock); 6142 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 6143 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 6144 6145 if (sp->unsync) { 6146 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 6147 6148 if (ret < 0) 6149 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 6150 if (ret) 6151 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 6152 } 6153 6154 if (!sp->unsync_children) 6155 break; 6156 } 6157 write_unlock(&vcpu->kvm->mmu_lock); 6158 } 6159 6160 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6161 u64 addr, unsigned long roots) 6162 { 6163 int i; 6164 6165 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 6166 6167 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 6168 if (mmu != &vcpu->arch.guest_mmu) { 6169 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 6170 if (is_noncanonical_invlpg_address(addr, vcpu)) 6171 return; 6172 6173 kvm_x86_call(flush_tlb_gva)(vcpu, addr); 6174 } 6175 6176 if (!mmu->sync_spte) 6177 return; 6178 6179 if (roots & KVM_MMU_ROOT_CURRENT) 6180 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 6181 6182 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6183 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 6184 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 6185 } 6186 } 6187 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 6188 6189 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 6190 { 6191 /* 6192 * INVLPG is required to invalidate any global mappings for the VA, 6193 * irrespective of PCID. Blindly sync all roots as it would take 6194 * roughly the same amount of work/time to determine whether any of the 6195 * previous roots have a global mapping. 6196 * 6197 * Mappings not reachable via the current or previous cached roots will 6198 * be synced when switching to that new cr3, so nothing needs to be 6199 * done here for them. 6200 */ 6201 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6202 ++vcpu->stat.invlpg; 6203 } 6204 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 6205 6206 6207 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6208 { 6209 struct kvm_mmu *mmu = vcpu->arch.mmu; 6210 unsigned long roots = 0; 6211 uint i; 6212 6213 if (pcid == kvm_get_active_pcid(vcpu)) 6214 roots |= KVM_MMU_ROOT_CURRENT; 6215 6216 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6217 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6218 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6219 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6220 } 6221 6222 if (roots) 6223 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6224 ++vcpu->stat.invlpg; 6225 6226 /* 6227 * Mappings not reachable via the current cr3 or the prev_roots will be 6228 * synced when switching to that cr3, so nothing needs to be done here 6229 * for them. 6230 */ 6231 } 6232 6233 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6234 int tdp_max_root_level, int tdp_huge_page_level) 6235 { 6236 tdp_enabled = enable_tdp; 6237 tdp_root_level = tdp_forced_root_level; 6238 max_tdp_level = tdp_max_root_level; 6239 6240 #ifdef CONFIG_X86_64 6241 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6242 #endif 6243 /* 6244 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6245 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6246 * the kernel is not. But, KVM never creates a page size greater than 6247 * what is used by the kernel for any given HVA, i.e. the kernel's 6248 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6249 */ 6250 if (tdp_enabled) 6251 max_huge_page_level = tdp_huge_page_level; 6252 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6253 max_huge_page_level = PG_LEVEL_1G; 6254 else 6255 max_huge_page_level = PG_LEVEL_2M; 6256 } 6257 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6258 6259 static void free_mmu_pages(struct kvm_mmu *mmu) 6260 { 6261 if (!tdp_enabled && mmu->pae_root) 6262 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6263 free_page((unsigned long)mmu->pae_root); 6264 free_page((unsigned long)mmu->pml4_root); 6265 free_page((unsigned long)mmu->pml5_root); 6266 } 6267 6268 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6269 { 6270 struct page *page; 6271 int i; 6272 6273 mmu->root.hpa = INVALID_PAGE; 6274 mmu->root.pgd = 0; 6275 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6276 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6277 6278 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6279 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6280 return 0; 6281 6282 /* 6283 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6284 * while the PDP table is a per-vCPU construct that's allocated at MMU 6285 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6286 * x86_64. Therefore we need to allocate the PDP table in the first 6287 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6288 * generally doesn't use PAE paging and can skip allocating the PDP 6289 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6290 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6291 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6292 */ 6293 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6294 return 0; 6295 6296 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6297 if (!page) 6298 return -ENOMEM; 6299 6300 mmu->pae_root = page_address(page); 6301 6302 /* 6303 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6304 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6305 * that KVM's writes and the CPU's reads get along. Note, this is 6306 * only necessary when using shadow paging, as 64-bit NPT can get at 6307 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6308 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6309 */ 6310 if (!tdp_enabled) 6311 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6312 else 6313 WARN_ON_ONCE(shadow_me_value); 6314 6315 for (i = 0; i < 4; ++i) 6316 mmu->pae_root[i] = INVALID_PAE_ROOT; 6317 6318 return 0; 6319 } 6320 6321 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6322 { 6323 int ret; 6324 6325 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6326 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6327 6328 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6329 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6330 6331 vcpu->arch.mmu_shadow_page_cache.init_value = 6332 SHADOW_NONPRESENT_VALUE; 6333 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6334 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6335 6336 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6337 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6338 6339 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6340 if (ret) 6341 return ret; 6342 6343 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6344 if (ret) 6345 goto fail_allocate_root; 6346 6347 return ret; 6348 fail_allocate_root: 6349 free_mmu_pages(&vcpu->arch.guest_mmu); 6350 return ret; 6351 } 6352 6353 #define BATCH_ZAP_PAGES 10 6354 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6355 { 6356 struct kvm_mmu_page *sp, *node; 6357 int nr_zapped, batch = 0; 6358 LIST_HEAD(invalid_list); 6359 bool unstable; 6360 6361 lockdep_assert_held(&kvm->slots_lock); 6362 6363 restart: 6364 list_for_each_entry_safe_reverse(sp, node, 6365 &kvm->arch.active_mmu_pages, link) { 6366 /* 6367 * No obsolete valid page exists before a newly created page 6368 * since active_mmu_pages is a FIFO list. 6369 */ 6370 if (!is_obsolete_sp(kvm, sp)) 6371 break; 6372 6373 /* 6374 * Invalid pages should never land back on the list of active 6375 * pages. Skip the bogus page, otherwise we'll get stuck in an 6376 * infinite loop if the page gets put back on the list (again). 6377 */ 6378 if (WARN_ON_ONCE(sp->role.invalid)) 6379 continue; 6380 6381 /* 6382 * No need to flush the TLB since we're only zapping shadow 6383 * pages with an obsolete generation number and all vCPUS have 6384 * loaded a new root, i.e. the shadow pages being zapped cannot 6385 * be in active use by the guest. 6386 */ 6387 if (batch >= BATCH_ZAP_PAGES && 6388 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6389 batch = 0; 6390 goto restart; 6391 } 6392 6393 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6394 &invalid_list, &nr_zapped); 6395 batch += nr_zapped; 6396 6397 if (unstable) 6398 goto restart; 6399 } 6400 6401 /* 6402 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6403 * to ensure KVM is not in the middle of a lockless shadow page table 6404 * walk, which may reference the pages. The remote TLB flush itself is 6405 * not required and is simply a convenient way to kick vCPUs as needed. 6406 * KVM performs a local TLB flush when allocating a new root (see 6407 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6408 * running with an obsolete MMU. 6409 */ 6410 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6411 } 6412 6413 /* 6414 * Fast invalidate all shadow pages and use lock-break technique 6415 * to zap obsolete pages. 6416 * 6417 * It's required when memslot is being deleted or VM is being 6418 * destroyed, in these cases, we should ensure that KVM MMU does 6419 * not use any resource of the being-deleted slot or all slots 6420 * after calling the function. 6421 */ 6422 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6423 { 6424 lockdep_assert_held(&kvm->slots_lock); 6425 6426 write_lock(&kvm->mmu_lock); 6427 trace_kvm_mmu_zap_all_fast(kvm); 6428 6429 /* 6430 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6431 * held for the entire duration of zapping obsolete pages, it's 6432 * impossible for there to be multiple invalid generations associated 6433 * with *valid* shadow pages at any given time, i.e. there is exactly 6434 * one valid generation and (at most) one invalid generation. 6435 */ 6436 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6437 6438 /* 6439 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6440 * invalidating TDP MMU roots must be done while holding mmu_lock for 6441 * write and in the same critical section as making the reload request, 6442 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6443 */ 6444 if (tdp_mmu_enabled) 6445 kvm_tdp_mmu_invalidate_all_roots(kvm); 6446 6447 /* 6448 * Notify all vcpus to reload its shadow page table and flush TLB. 6449 * Then all vcpus will switch to new shadow page table with the new 6450 * mmu_valid_gen. 6451 * 6452 * Note: we need to do this under the protection of mmu_lock, 6453 * otherwise, vcpu would purge shadow page but miss tlb flush. 6454 */ 6455 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6456 6457 kvm_zap_obsolete_pages(kvm); 6458 6459 write_unlock(&kvm->mmu_lock); 6460 6461 /* 6462 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6463 * returning to the caller, e.g. if the zap is in response to a memslot 6464 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6465 * associated with the deleted memslot once the update completes, and 6466 * Deferring the zap until the final reference to the root is put would 6467 * lead to use-after-free. 6468 */ 6469 if (tdp_mmu_enabled) 6470 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6471 } 6472 6473 void kvm_mmu_init_vm(struct kvm *kvm) 6474 { 6475 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6476 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6477 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6478 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6479 6480 if (tdp_mmu_enabled) 6481 kvm_mmu_init_tdp_mmu(kvm); 6482 6483 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6484 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6485 6486 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6487 6488 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6489 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6490 } 6491 6492 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6493 { 6494 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6495 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6496 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6497 } 6498 6499 void kvm_mmu_uninit_vm(struct kvm *kvm) 6500 { 6501 if (tdp_mmu_enabled) 6502 kvm_mmu_uninit_tdp_mmu(kvm); 6503 6504 mmu_free_vm_memory_caches(kvm); 6505 } 6506 6507 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6508 { 6509 const struct kvm_memory_slot *memslot; 6510 struct kvm_memslots *slots; 6511 struct kvm_memslot_iter iter; 6512 bool flush = false; 6513 gfn_t start, end; 6514 int i; 6515 6516 if (!kvm_memslots_have_rmaps(kvm)) 6517 return flush; 6518 6519 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6520 slots = __kvm_memslots(kvm, i); 6521 6522 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6523 memslot = iter.slot; 6524 start = max(gfn_start, memslot->base_gfn); 6525 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6526 if (WARN_ON_ONCE(start >= end)) 6527 continue; 6528 6529 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start, 6530 end, true, flush); 6531 } 6532 } 6533 6534 return flush; 6535 } 6536 6537 /* 6538 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6539 * (not including it) 6540 */ 6541 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6542 { 6543 bool flush; 6544 6545 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6546 return; 6547 6548 write_lock(&kvm->mmu_lock); 6549 6550 kvm_mmu_invalidate_begin(kvm); 6551 6552 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6553 6554 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6555 6556 if (tdp_mmu_enabled) 6557 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6558 6559 if (flush) 6560 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6561 6562 kvm_mmu_invalidate_end(kvm); 6563 6564 write_unlock(&kvm->mmu_lock); 6565 } 6566 6567 static bool slot_rmap_write_protect(struct kvm *kvm, 6568 struct kvm_rmap_head *rmap_head, 6569 const struct kvm_memory_slot *slot) 6570 { 6571 return rmap_write_protect(rmap_head, false); 6572 } 6573 6574 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6575 const struct kvm_memory_slot *memslot, 6576 int start_level) 6577 { 6578 if (kvm_memslots_have_rmaps(kvm)) { 6579 write_lock(&kvm->mmu_lock); 6580 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6581 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6582 write_unlock(&kvm->mmu_lock); 6583 } 6584 6585 if (tdp_mmu_enabled) { 6586 read_lock(&kvm->mmu_lock); 6587 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6588 read_unlock(&kvm->mmu_lock); 6589 } 6590 } 6591 6592 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6593 { 6594 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6595 } 6596 6597 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6598 { 6599 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6600 return true; 6601 6602 /* 6603 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6604 * to split a single huge page. Calculating how many are actually needed 6605 * is possible but not worth the complexity. 6606 */ 6607 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6608 need_topup(&kvm->arch.split_page_header_cache, 1) || 6609 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6610 } 6611 6612 static int topup_split_caches(struct kvm *kvm) 6613 { 6614 /* 6615 * Allocating rmap list entries when splitting huge pages for nested 6616 * MMUs is uncommon as KVM needs to use a list if and only if there is 6617 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6618 * aliased by multiple L2 gfns and/or from multiple nested roots with 6619 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6620 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6621 * but aliasing rarely occurs post-boot or for many gfns. If there is 6622 * only one rmap entry, rmap->val points directly at that one entry and 6623 * doesn't need to allocate a list. Buffer the cache by the default 6624 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6625 * encounters an aliased gfn or two. 6626 */ 6627 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6628 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6629 int r; 6630 6631 lockdep_assert_held(&kvm->slots_lock); 6632 6633 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6634 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6635 if (r) 6636 return r; 6637 6638 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6639 if (r) 6640 return r; 6641 6642 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6643 } 6644 6645 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6646 { 6647 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6648 struct shadow_page_caches caches = {}; 6649 union kvm_mmu_page_role role; 6650 unsigned int access; 6651 gfn_t gfn; 6652 6653 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6654 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6655 6656 /* 6657 * Note, huge page splitting always uses direct shadow pages, regardless 6658 * of whether the huge page itself is mapped by a direct or indirect 6659 * shadow page, since the huge page region itself is being directly 6660 * mapped with smaller pages. 6661 */ 6662 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6663 6664 /* Direct SPs do not require a shadowed_info_cache. */ 6665 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6666 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6667 6668 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6669 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6670 } 6671 6672 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6673 const struct kvm_memory_slot *slot, 6674 u64 *huge_sptep) 6675 6676 { 6677 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6678 u64 huge_spte = READ_ONCE(*huge_sptep); 6679 struct kvm_mmu_page *sp; 6680 bool flush = false; 6681 u64 *sptep, spte; 6682 gfn_t gfn; 6683 int index; 6684 6685 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6686 6687 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6688 sptep = &sp->spt[index]; 6689 gfn = kvm_mmu_page_get_gfn(sp, index); 6690 6691 /* 6692 * The SP may already have populated SPTEs, e.g. if this huge 6693 * page is aliased by multiple sptes with the same access 6694 * permissions. These entries are guaranteed to map the same 6695 * gfn-to-pfn translation since the SP is direct, so no need to 6696 * modify them. 6697 * 6698 * However, if a given SPTE points to a lower level page table, 6699 * that lower level page table may only be partially populated. 6700 * Installing such SPTEs would effectively unmap a potion of the 6701 * huge page. Unmapping guest memory always requires a TLB flush 6702 * since a subsequent operation on the unmapped regions would 6703 * fail to detect the need to flush. 6704 */ 6705 if (is_shadow_present_pte(*sptep)) { 6706 flush |= !is_last_spte(*sptep, sp->role.level); 6707 continue; 6708 } 6709 6710 spte = make_small_spte(kvm, huge_spte, sp->role, index); 6711 mmu_spte_set(sptep, spte); 6712 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6713 } 6714 6715 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6716 } 6717 6718 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6719 const struct kvm_memory_slot *slot, 6720 u64 *huge_sptep) 6721 { 6722 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6723 int level, r = 0; 6724 gfn_t gfn; 6725 u64 spte; 6726 6727 /* Grab information for the tracepoint before dropping the MMU lock. */ 6728 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6729 level = huge_sp->role.level; 6730 spte = *huge_sptep; 6731 6732 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6733 r = -ENOSPC; 6734 goto out; 6735 } 6736 6737 if (need_topup_split_caches_or_resched(kvm)) { 6738 write_unlock(&kvm->mmu_lock); 6739 cond_resched(); 6740 /* 6741 * If the topup succeeds, return -EAGAIN to indicate that the 6742 * rmap iterator should be restarted because the MMU lock was 6743 * dropped. 6744 */ 6745 r = topup_split_caches(kvm) ?: -EAGAIN; 6746 write_lock(&kvm->mmu_lock); 6747 goto out; 6748 } 6749 6750 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6751 6752 out: 6753 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6754 return r; 6755 } 6756 6757 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6758 struct kvm_rmap_head *rmap_head, 6759 const struct kvm_memory_slot *slot) 6760 { 6761 struct rmap_iterator iter; 6762 struct kvm_mmu_page *sp; 6763 u64 *huge_sptep; 6764 int r; 6765 6766 restart: 6767 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6768 sp = sptep_to_sp(huge_sptep); 6769 6770 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6771 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6772 continue; 6773 6774 /* The rmaps should never contain non-leaf SPTEs. */ 6775 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6776 continue; 6777 6778 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6779 if (WARN_ON_ONCE(sp->unsync)) 6780 continue; 6781 6782 /* Don't bother splitting huge pages on invalid SPs. */ 6783 if (sp->role.invalid) 6784 continue; 6785 6786 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6787 6788 /* 6789 * The split succeeded or needs to be retried because the MMU 6790 * lock was dropped. Either way, restart the iterator to get it 6791 * back into a consistent state. 6792 */ 6793 if (!r || r == -EAGAIN) 6794 goto restart; 6795 6796 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6797 break; 6798 } 6799 6800 return false; 6801 } 6802 6803 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6804 const struct kvm_memory_slot *slot, 6805 gfn_t start, gfn_t end, 6806 int target_level) 6807 { 6808 int level; 6809 6810 /* 6811 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6812 * down to the target level. This ensures pages are recursively split 6813 * all the way to the target level. There's no need to split pages 6814 * already at the target level. 6815 */ 6816 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6817 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6818 level, level, start, end - 1, true, true, false); 6819 } 6820 6821 /* Must be called with the mmu_lock held in write-mode. */ 6822 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6823 const struct kvm_memory_slot *memslot, 6824 u64 start, u64 end, 6825 int target_level) 6826 { 6827 if (!tdp_mmu_enabled) 6828 return; 6829 6830 if (kvm_memslots_have_rmaps(kvm)) 6831 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6832 6833 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6834 6835 /* 6836 * A TLB flush is unnecessary at this point for the same reasons as in 6837 * kvm_mmu_slot_try_split_huge_pages(). 6838 */ 6839 } 6840 6841 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6842 const struct kvm_memory_slot *memslot, 6843 int target_level) 6844 { 6845 u64 start = memslot->base_gfn; 6846 u64 end = start + memslot->npages; 6847 6848 if (!tdp_mmu_enabled) 6849 return; 6850 6851 if (kvm_memslots_have_rmaps(kvm)) { 6852 write_lock(&kvm->mmu_lock); 6853 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6854 write_unlock(&kvm->mmu_lock); 6855 } 6856 6857 read_lock(&kvm->mmu_lock); 6858 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6859 read_unlock(&kvm->mmu_lock); 6860 6861 /* 6862 * No TLB flush is necessary here. KVM will flush TLBs after 6863 * write-protecting and/or clearing dirty on the newly split SPTEs to 6864 * ensure that guest writes are reflected in the dirty log before the 6865 * ioctl to enable dirty logging on this memslot completes. Since the 6866 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6867 * safe for KVM to decide if a TLB flush is necessary based on the split 6868 * SPTEs. 6869 */ 6870 } 6871 6872 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6873 struct kvm_rmap_head *rmap_head, 6874 const struct kvm_memory_slot *slot) 6875 { 6876 u64 *sptep; 6877 struct rmap_iterator iter; 6878 int need_tlb_flush = 0; 6879 struct kvm_mmu_page *sp; 6880 6881 restart: 6882 for_each_rmap_spte(rmap_head, &iter, sptep) { 6883 sp = sptep_to_sp(sptep); 6884 6885 /* 6886 * We cannot do huge page mapping for indirect shadow pages, 6887 * which are found on the last rmap (level = 1) when not using 6888 * tdp; such shadow pages are synced with the page table in 6889 * the guest, and the guest page table is using 4K page size 6890 * mapping if the indirect sp has level = 1. 6891 */ 6892 if (sp->role.direct && 6893 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn)) { 6894 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6895 6896 if (kvm_available_flush_remote_tlbs_range()) 6897 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6898 else 6899 need_tlb_flush = 1; 6900 6901 goto restart; 6902 } 6903 } 6904 6905 return need_tlb_flush; 6906 } 6907 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); 6908 6909 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6910 const struct kvm_memory_slot *slot) 6911 { 6912 /* 6913 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6914 * pages that are already mapped at the maximum hugepage level. 6915 */ 6916 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6917 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6918 kvm_flush_remote_tlbs_memslot(kvm, slot); 6919 } 6920 6921 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 6922 const struct kvm_memory_slot *slot) 6923 { 6924 if (kvm_memslots_have_rmaps(kvm)) { 6925 write_lock(&kvm->mmu_lock); 6926 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6927 write_unlock(&kvm->mmu_lock); 6928 } 6929 6930 if (tdp_mmu_enabled) { 6931 read_lock(&kvm->mmu_lock); 6932 kvm_tdp_mmu_recover_huge_pages(kvm, slot); 6933 read_unlock(&kvm->mmu_lock); 6934 } 6935 } 6936 6937 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6938 const struct kvm_memory_slot *memslot) 6939 { 6940 if (kvm_memslots_have_rmaps(kvm)) { 6941 write_lock(&kvm->mmu_lock); 6942 /* 6943 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6944 * support dirty logging at a 4k granularity. 6945 */ 6946 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 6947 write_unlock(&kvm->mmu_lock); 6948 } 6949 6950 if (tdp_mmu_enabled) { 6951 read_lock(&kvm->mmu_lock); 6952 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6953 read_unlock(&kvm->mmu_lock); 6954 } 6955 6956 /* 6957 * The caller will flush the TLBs after this function returns. 6958 * 6959 * It's also safe to flush TLBs out of mmu lock here as currently this 6960 * function is only used for dirty logging, in which case flushing TLB 6961 * out of mmu lock also guarantees no dirty pages will be lost in 6962 * dirty_bitmap. 6963 */ 6964 } 6965 6966 static void kvm_mmu_zap_all(struct kvm *kvm) 6967 { 6968 struct kvm_mmu_page *sp, *node; 6969 LIST_HEAD(invalid_list); 6970 int ign; 6971 6972 write_lock(&kvm->mmu_lock); 6973 restart: 6974 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6975 if (WARN_ON_ONCE(sp->role.invalid)) 6976 continue; 6977 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6978 goto restart; 6979 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6980 goto restart; 6981 } 6982 6983 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6984 6985 if (tdp_mmu_enabled) 6986 kvm_tdp_mmu_zap_all(kvm); 6987 6988 write_unlock(&kvm->mmu_lock); 6989 } 6990 6991 void kvm_arch_flush_shadow_all(struct kvm *kvm) 6992 { 6993 kvm_mmu_zap_all(kvm); 6994 } 6995 6996 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm, 6997 struct kvm_memory_slot *slot, 6998 bool flush) 6999 { 7000 LIST_HEAD(invalid_list); 7001 unsigned long i; 7002 7003 if (list_empty(&kvm->arch.active_mmu_pages)) 7004 goto out_flush; 7005 7006 /* 7007 * Since accounting information is stored in struct kvm_arch_memory_slot, 7008 * all MMU pages that are shadowing guest PTEs must be zapped before the 7009 * memslot is deleted, as freeing such pages after the memslot is freed 7010 * will result in use-after-free, e.g. in unaccount_shadowed(). 7011 */ 7012 for (i = 0; i < slot->npages; i++) { 7013 struct kvm_mmu_page *sp; 7014 gfn_t gfn = slot->base_gfn + i; 7015 7016 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) 7017 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7018 7019 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7020 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7021 flush = false; 7022 cond_resched_rwlock_write(&kvm->mmu_lock); 7023 } 7024 } 7025 7026 out_flush: 7027 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7028 } 7029 7030 static void kvm_mmu_zap_memslot(struct kvm *kvm, 7031 struct kvm_memory_slot *slot) 7032 { 7033 struct kvm_gfn_range range = { 7034 .slot = slot, 7035 .start = slot->base_gfn, 7036 .end = slot->base_gfn + slot->npages, 7037 .may_block = true, 7038 }; 7039 bool flush; 7040 7041 write_lock(&kvm->mmu_lock); 7042 flush = kvm_unmap_gfn_range(kvm, &range); 7043 kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush); 7044 write_unlock(&kvm->mmu_lock); 7045 } 7046 7047 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm) 7048 { 7049 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM && 7050 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL); 7051 } 7052 7053 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7054 struct kvm_memory_slot *slot) 7055 { 7056 if (kvm_memslot_flush_zap_all(kvm)) 7057 kvm_mmu_zap_all_fast(kvm); 7058 else 7059 kvm_mmu_zap_memslot(kvm, slot); 7060 } 7061 7062 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 7063 { 7064 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 7065 7066 gen &= MMIO_SPTE_GEN_MASK; 7067 7068 /* 7069 * Generation numbers are incremented in multiples of the number of 7070 * address spaces in order to provide unique generations across all 7071 * address spaces. Strip what is effectively the address space 7072 * modifier prior to checking for a wrap of the MMIO generation so 7073 * that a wrap in any address space is detected. 7074 */ 7075 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 7076 7077 /* 7078 * The very rare case: if the MMIO generation number has wrapped, 7079 * zap all shadow pages. 7080 */ 7081 if (unlikely(gen == 0)) { 7082 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 7083 kvm_mmu_zap_all_fast(kvm); 7084 } 7085 } 7086 7087 static void mmu_destroy_caches(void) 7088 { 7089 kmem_cache_destroy(pte_list_desc_cache); 7090 kmem_cache_destroy(mmu_page_header_cache); 7091 } 7092 7093 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 7094 { 7095 if (nx_hugepage_mitigation_hard_disabled) 7096 return sysfs_emit(buffer, "never\n"); 7097 7098 return param_get_bool(buffer, kp); 7099 } 7100 7101 static bool get_nx_auto_mode(void) 7102 { 7103 /* Return true when CPU has the bug, and mitigations are ON */ 7104 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 7105 } 7106 7107 static void __set_nx_huge_pages(bool val) 7108 { 7109 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 7110 } 7111 7112 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 7113 { 7114 bool old_val = nx_huge_pages; 7115 bool new_val; 7116 7117 if (nx_hugepage_mitigation_hard_disabled) 7118 return -EPERM; 7119 7120 /* In "auto" mode deploy workaround only if CPU has the bug. */ 7121 if (sysfs_streq(val, "off")) { 7122 new_val = 0; 7123 } else if (sysfs_streq(val, "force")) { 7124 new_val = 1; 7125 } else if (sysfs_streq(val, "auto")) { 7126 new_val = get_nx_auto_mode(); 7127 } else if (sysfs_streq(val, "never")) { 7128 new_val = 0; 7129 7130 mutex_lock(&kvm_lock); 7131 if (!list_empty(&vm_list)) { 7132 mutex_unlock(&kvm_lock); 7133 return -EBUSY; 7134 } 7135 nx_hugepage_mitigation_hard_disabled = true; 7136 mutex_unlock(&kvm_lock); 7137 } else if (kstrtobool(val, &new_val) < 0) { 7138 return -EINVAL; 7139 } 7140 7141 __set_nx_huge_pages(new_val); 7142 7143 if (new_val != old_val) { 7144 struct kvm *kvm; 7145 7146 mutex_lock(&kvm_lock); 7147 7148 list_for_each_entry(kvm, &vm_list, vm_list) { 7149 mutex_lock(&kvm->slots_lock); 7150 kvm_mmu_zap_all_fast(kvm); 7151 mutex_unlock(&kvm->slots_lock); 7152 7153 vhost_task_wake(kvm->arch.nx_huge_page_recovery_thread); 7154 } 7155 mutex_unlock(&kvm_lock); 7156 } 7157 7158 return 0; 7159 } 7160 7161 /* 7162 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7163 * its default value of -1 is technically undefined behavior for a boolean. 7164 * Forward the module init call to SPTE code so that it too can handle module 7165 * params that need to be resolved/snapshot. 7166 */ 7167 void __init kvm_mmu_x86_module_init(void) 7168 { 7169 if (nx_huge_pages == -1) 7170 __set_nx_huge_pages(get_nx_auto_mode()); 7171 7172 /* 7173 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7174 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7175 * when the vendor module is loaded. 7176 */ 7177 tdp_mmu_allowed = tdp_mmu_enabled; 7178 7179 kvm_mmu_spte_module_init(); 7180 } 7181 7182 /* 7183 * The bulk of the MMU initialization is deferred until the vendor module is 7184 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7185 * to be reset when a potentially different vendor module is loaded. 7186 */ 7187 int kvm_mmu_vendor_module_init(void) 7188 { 7189 int ret = -ENOMEM; 7190 7191 /* 7192 * MMU roles use union aliasing which is, generally speaking, an 7193 * undefined behavior. However, we supposedly know how compilers behave 7194 * and the current status quo is unlikely to change. Guardians below are 7195 * supposed to let us know if the assumption becomes false. 7196 */ 7197 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7198 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7199 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7200 7201 kvm_mmu_reset_all_pte_masks(); 7202 7203 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7204 if (!pte_list_desc_cache) 7205 goto out; 7206 7207 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7208 sizeof(struct kvm_mmu_page), 7209 0, SLAB_ACCOUNT, NULL); 7210 if (!mmu_page_header_cache) 7211 goto out; 7212 7213 return 0; 7214 7215 out: 7216 mmu_destroy_caches(); 7217 return ret; 7218 } 7219 7220 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7221 { 7222 kvm_mmu_unload(vcpu); 7223 free_mmu_pages(&vcpu->arch.root_mmu); 7224 free_mmu_pages(&vcpu->arch.guest_mmu); 7225 mmu_free_memory_caches(vcpu); 7226 } 7227 7228 void kvm_mmu_vendor_module_exit(void) 7229 { 7230 mmu_destroy_caches(); 7231 } 7232 7233 /* 7234 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7235 * select a halving time of 1 hour". Returns true if recovery is enabled. 7236 */ 7237 static bool calc_nx_huge_pages_recovery_period(uint *period) 7238 { 7239 /* 7240 * Use READ_ONCE to get the params, this may be called outside of the 7241 * param setters, e.g. by the kthread to compute its next timeout. 7242 */ 7243 bool enabled = READ_ONCE(nx_huge_pages); 7244 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7245 7246 if (!enabled || !ratio) 7247 return false; 7248 7249 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7250 if (!*period) { 7251 /* Make sure the period is not less than one second. */ 7252 ratio = min(ratio, 3600u); 7253 *period = 60 * 60 * 1000 / ratio; 7254 } 7255 return true; 7256 } 7257 7258 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7259 { 7260 bool was_recovery_enabled, is_recovery_enabled; 7261 uint old_period, new_period; 7262 int err; 7263 7264 if (nx_hugepage_mitigation_hard_disabled) 7265 return -EPERM; 7266 7267 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7268 7269 err = param_set_uint(val, kp); 7270 if (err) 7271 return err; 7272 7273 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7274 7275 if (is_recovery_enabled && 7276 (!was_recovery_enabled || old_period > new_period)) { 7277 struct kvm *kvm; 7278 7279 mutex_lock(&kvm_lock); 7280 7281 list_for_each_entry(kvm, &vm_list, vm_list) 7282 vhost_task_wake(kvm->arch.nx_huge_page_recovery_thread); 7283 7284 mutex_unlock(&kvm_lock); 7285 } 7286 7287 return err; 7288 } 7289 7290 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7291 { 7292 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7293 struct kvm_memory_slot *slot; 7294 int rcu_idx; 7295 struct kvm_mmu_page *sp; 7296 unsigned int ratio; 7297 LIST_HEAD(invalid_list); 7298 bool flush = false; 7299 ulong to_zap; 7300 7301 rcu_idx = srcu_read_lock(&kvm->srcu); 7302 write_lock(&kvm->mmu_lock); 7303 7304 /* 7305 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7306 * be done under RCU protection, because the pages are freed via RCU 7307 * callback. 7308 */ 7309 rcu_read_lock(); 7310 7311 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7312 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7313 for ( ; to_zap; --to_zap) { 7314 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7315 break; 7316 7317 /* 7318 * We use a separate list instead of just using active_mmu_pages 7319 * because the number of shadow pages that be replaced with an 7320 * NX huge page is expected to be relatively small compared to 7321 * the total number of shadow pages. And because the TDP MMU 7322 * doesn't use active_mmu_pages. 7323 */ 7324 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7325 struct kvm_mmu_page, 7326 possible_nx_huge_page_link); 7327 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7328 WARN_ON_ONCE(!sp->role.direct); 7329 7330 /* 7331 * Unaccount and do not attempt to recover any NX Huge Pages 7332 * that are being dirty tracked, as they would just be faulted 7333 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7334 * recovered, along with all the other huge pages in the slot, 7335 * when dirty logging is disabled. 7336 * 7337 * Since gfn_to_memslot() is relatively expensive, it helps to 7338 * skip it if it the test cannot possibly return true. On the 7339 * other hand, if any memslot has logging enabled, chances are 7340 * good that all of them do, in which case unaccount_nx_huge_page() 7341 * is much cheaper than zapping the page. 7342 * 7343 * If a memslot update is in progress, reading an incorrect value 7344 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7345 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7346 * it is becoming nonzero, the page will be zapped unnecessarily. 7347 * Either way, this only affects efficiency in racy situations, 7348 * and not correctness. 7349 */ 7350 slot = NULL; 7351 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7352 struct kvm_memslots *slots; 7353 7354 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7355 slot = __gfn_to_memslot(slots, sp->gfn); 7356 WARN_ON_ONCE(!slot); 7357 } 7358 7359 if (slot && kvm_slot_dirty_track_enabled(slot)) 7360 unaccount_nx_huge_page(kvm, sp); 7361 else if (is_tdp_mmu_page(sp)) 7362 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7363 else 7364 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7365 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7366 7367 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7368 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7369 rcu_read_unlock(); 7370 7371 cond_resched_rwlock_write(&kvm->mmu_lock); 7372 flush = false; 7373 7374 rcu_read_lock(); 7375 } 7376 } 7377 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7378 7379 rcu_read_unlock(); 7380 7381 write_unlock(&kvm->mmu_lock); 7382 srcu_read_unlock(&kvm->srcu, rcu_idx); 7383 } 7384 7385 static void kvm_nx_huge_page_recovery_worker_kill(void *data) 7386 { 7387 } 7388 7389 static bool kvm_nx_huge_page_recovery_worker(void *data) 7390 { 7391 struct kvm *kvm = data; 7392 bool enabled; 7393 uint period; 7394 long remaining_time; 7395 7396 enabled = calc_nx_huge_pages_recovery_period(&period); 7397 if (!enabled) 7398 return false; 7399 7400 remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period) 7401 - get_jiffies_64(); 7402 if (remaining_time > 0) { 7403 schedule_timeout(remaining_time); 7404 /* check for signals and come back */ 7405 return true; 7406 } 7407 7408 __set_current_state(TASK_RUNNING); 7409 kvm_recover_nx_huge_pages(kvm); 7410 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7411 return true; 7412 } 7413 7414 int kvm_mmu_post_init_vm(struct kvm *kvm) 7415 { 7416 if (nx_hugepage_mitigation_hard_disabled) 7417 return 0; 7418 7419 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7420 kvm->arch.nx_huge_page_recovery_thread = vhost_task_create( 7421 kvm_nx_huge_page_recovery_worker, kvm_nx_huge_page_recovery_worker_kill, 7422 kvm, "kvm-nx-lpage-recovery"); 7423 7424 if (!kvm->arch.nx_huge_page_recovery_thread) 7425 return -ENOMEM; 7426 7427 vhost_task_start(kvm->arch.nx_huge_page_recovery_thread); 7428 return 0; 7429 } 7430 7431 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7432 { 7433 if (kvm->arch.nx_huge_page_recovery_thread) 7434 vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread); 7435 } 7436 7437 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7438 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7439 struct kvm_gfn_range *range) 7440 { 7441 /* 7442 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7443 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7444 * can simply ignore such slots. But if userspace is making memory 7445 * PRIVATE, then KVM must prevent the guest from accessing the memory 7446 * as shared. And if userspace is making memory SHARED and this point 7447 * is reached, then at least one page within the range was previously 7448 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7449 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7450 * a hugepage can be used for affected ranges. 7451 */ 7452 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7453 return false; 7454 7455 return kvm_unmap_gfn_range(kvm, range); 7456 } 7457 7458 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7459 int level) 7460 { 7461 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7462 } 7463 7464 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7465 int level) 7466 { 7467 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7468 } 7469 7470 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7471 int level) 7472 { 7473 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7474 } 7475 7476 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7477 gfn_t gfn, int level, unsigned long attrs) 7478 { 7479 const unsigned long start = gfn; 7480 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7481 7482 if (level == PG_LEVEL_2M) 7483 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs); 7484 7485 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7486 if (hugepage_test_mixed(slot, gfn, level - 1) || 7487 attrs != kvm_get_memory_attributes(kvm, gfn)) 7488 return false; 7489 } 7490 return true; 7491 } 7492 7493 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7494 struct kvm_gfn_range *range) 7495 { 7496 unsigned long attrs = range->arg.attributes; 7497 struct kvm_memory_slot *slot = range->slot; 7498 int level; 7499 7500 lockdep_assert_held_write(&kvm->mmu_lock); 7501 lockdep_assert_held(&kvm->slots_lock); 7502 7503 /* 7504 * Calculate which ranges can be mapped with hugepages even if the slot 7505 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7506 * a range that has PRIVATE GFNs, and conversely converting a range to 7507 * SHARED may now allow hugepages. 7508 */ 7509 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7510 return false; 7511 7512 /* 7513 * The sequence matters here: upper levels consume the result of lower 7514 * level's scanning. 7515 */ 7516 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7517 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7518 gfn_t gfn = gfn_round_for_level(range->start, level); 7519 7520 /* Process the head page if it straddles the range. */ 7521 if (gfn != range->start || gfn + nr_pages > range->end) { 7522 /* 7523 * Skip mixed tracking if the aligned gfn isn't covered 7524 * by the memslot, KVM can't use a hugepage due to the 7525 * misaligned address regardless of memory attributes. 7526 */ 7527 if (gfn >= slot->base_gfn && 7528 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7529 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7530 hugepage_clear_mixed(slot, gfn, level); 7531 else 7532 hugepage_set_mixed(slot, gfn, level); 7533 } 7534 gfn += nr_pages; 7535 } 7536 7537 /* 7538 * Pages entirely covered by the range are guaranteed to have 7539 * only the attributes which were just set. 7540 */ 7541 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7542 hugepage_clear_mixed(slot, gfn, level); 7543 7544 /* 7545 * Process the last tail page if it straddles the range and is 7546 * contained by the memslot. Like the head page, KVM can't 7547 * create a hugepage if the slot size is misaligned. 7548 */ 7549 if (gfn < range->end && 7550 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7551 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7552 hugepage_clear_mixed(slot, gfn, level); 7553 else 7554 hugepage_set_mixed(slot, gfn, level); 7555 } 7556 } 7557 return false; 7558 } 7559 7560 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7561 struct kvm_memory_slot *slot) 7562 { 7563 int level; 7564 7565 if (!kvm_arch_has_private_mem(kvm)) 7566 return; 7567 7568 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7569 /* 7570 * Don't bother tracking mixed attributes for pages that can't 7571 * be huge due to alignment, i.e. process only pages that are 7572 * entirely contained by the memslot. 7573 */ 7574 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7575 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7576 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7577 gfn_t gfn; 7578 7579 if (start < slot->base_gfn) 7580 start += nr_pages; 7581 7582 /* 7583 * Unlike setting attributes, every potential hugepage needs to 7584 * be manually checked as the attributes may already be mixed. 7585 */ 7586 for (gfn = start; gfn < end; gfn += nr_pages) { 7587 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7588 7589 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7590 hugepage_clear_mixed(slot, gfn, level); 7591 else 7592 hugepage_set_mixed(slot, gfn, level); 7593 } 7594 } 7595 } 7596 #endif 7597